Rules for matrix element evaluations in JWKB approximation
International Nuclear Information System (INIS)
Giler, S.
1990-01-01
Using the properties of the so-called fundamental solutions to the one-dimensional Schroedinger equation having Froeman and Froeman form the rules are formulated which allow one to evaluate matrix elements in the JWKB approximation and its generalizations. The rules apply to operators M(x, d/dx), M being polynomial functions of their arguments. The applicability of the rules depends on the properties of the so-called canonical indices introduced in this paper. The canonical indices are global characteristics of underlying Stokes graphs. If sufficiently small in comparison with unity they allow one to apply safely the JWKB approximation within the so-called ε-reduced canonical domains of a given Stokes graph. The Oth canonical index for the nth energy level Stokes graph corresponding to the harmonic oscillator potential is found to be ε CAN = 0.678/(2n+1). If the application of the rules is allowed then approximated matrix elements are obtained in an unambiguous way and with an accuracy controlled by corresponding canonical indices. Several examples of matrix elements are considered to illustrate how the rules should be used. Limitations to the rules are also discussed with the aid of suitably chosen examples. (author)
Quasi-exact evaluation of time domain MFIE MOT matrix elements
Shi, Yifei
2013-07-01
A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.
Quasi-exact evaluation of time domain MFIE MOT matrix elements
Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric
2013-01-01
A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.
Angeli, C.; Cimiraglia, R.
2013-02-01
A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2
Models based on multichannel R-matrix theory for evaluating light element reactions
International Nuclear Information System (INIS)
Dodder, D.C.; Hale, G.M.; Nisley, R.A.; Witte, K.; Young, P.G.
1975-01-01
Multichannel R-matrix theory has been used as a basis for models for analysis and evaluation of light nuclear systems. These models have the characteristic that data predictions can be made utilizing information derived from other reactions related to the one of primary interest. Several examples are given where such an approach is valid and appropriate. (auth.)
Electromagnetic matrix elements in baryons
International Nuclear Information System (INIS)
Lipkin, H.J.; Moinester, M.A.
1992-01-01
Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)
On the evaluation of the U(3) content of the matrix elements of one-and two-body operators
International Nuclear Information System (INIS)
Vanagas, V.; Alcaras, J.A.C.
1991-09-01
An expression for the U(3) content of the matrix elements of one- and two-body operators in Elliott's basis is obtained. Three alternative ways of evaluating this content with increasing performance in computing time are presented. All of them allow an exact representation of that content in terms of integers, avoiding rounding errors in the computer codes. The role of dual bases in dealing with non-orthogonal bases is also clarified. (author)
International Nuclear Information System (INIS)
Sen, S.; Balasubramaniam, R.; Sethuraman, R.
1996-01-01
The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
Rovibrational matrix elements of the multipole moments
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
Analytic vibrational matrix elements for diatomic molecules
International Nuclear Information System (INIS)
Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.
1986-01-01
The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)
Lattice results for heavy light matrix elements
International Nuclear Information System (INIS)
Soni, A.
1994-09-01
Lattice results for heavy light matrix elements are reviewed and some of their implications are very briefly discussed. Despite the fact that in most cases the lattice results for weak matrix elements at the moment have only a modest accuracy of about 20--30% they already have important phenomenological repercussions; e.g. for V td /V ts , x s /x d and B → K*γ
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIU Guang-Zhou; LIU Wei
2002-01-01
In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIUGuang－Zhou; LIUWei
2002-01-01
In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Renormalon ambiguities in NRQCD operator matrix elements
International Nuclear Information System (INIS)
Bodwin, G.T.; Chen, Y.
1999-01-01
We analyze the renormalon ambiguities that appear in factorization formulas in QCD. Our analysis contains a simple argument that the ambiguities in the short-distance coefficients and operator matrix elements are artifacts of dimensional-regularization factorization schemes and are absent in cutoff schemes. We also present a method for computing the renormalon ambiguities in operator matrix elements and apply it to a computation of the ambiguities in the matrix elements that appear in the NRQCD factorization formulas for the annihilation decays of S-wave quarkonia. Our results, combined with those of Braaten and Chen for the short-distance coefficients, provide an explicit demonstration that the ambiguities cancel in the physical decay rates. In addition, we analyze the renormalon ambiguities in the Gremm-Kapustin relation and in various definitions of the heavy-quark mass. copyright 1999 The American Physical Society
Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2
Bentalha, Zine el abidine
2018-06-01
Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.
Proton decay matrix elements from lattice QCD
International Nuclear Information System (INIS)
Aoki, Yasumichi; Shintani, Eigo
2012-01-01
We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.
Application of FIRE for the calculation of photon matrix elements
Indian Academy of Sciences (India)
to evaluate the two-loop Feynman diagrams for the photon matrix element of the ... sum of scalar Feynman integrals to a linear combination of a few master integrals. .... Then, FIRE is used to express these scalar integrals as a linear combi-.
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
Single-particle Glauber matrix elements
International Nuclear Information System (INIS)
Oset, E.; Strottman, D.
1983-01-01
The single-particle matrix elements of the Glauber profile function are tabulated for harmonic oscillator single-particle wave functions. The tables are presented in such a manner as to be applicable if the hadron--nucleon elementary scattering amplitude is specified by either a partial wave expansion or a Gaussian in momentum transfer squared. The table is complete through the 1 g/sub 9/2/ orbital and contains entries for the 3s/sub 1/2/ orbital for use if realistic wave functions are expanded in terms of harmonic oscillator functions
S-matrix elements from T-duality
International Nuclear Information System (INIS)
Babaei Velni, Komeil; Garousi, Mohammad R.
2013-01-01
Recently it has been speculated that the S-matrix elements satisfy the Ward identity associated with the T-duality. This indicates that a group of S-matrix elements is invariant under the linear T-duality transformations on the external states. If one evaluates one component of such T-dual multiplet, then all other components may be found by the simple use of the linear T-duality. The assumption that fields must be independent of the Killing coordinate, however, may cause, in some cases, the T-dual multiplet not to be gauge invariant. In those cases, the S-matrix elements contain more than one T-dual multiplet which are intertwined by the gauge symmetry. In this paper, we apply the T-dual Ward identity on the S-matrix element of one RR (p−3)-form and two NSNS states on the world volume of a D p -brane to find its corresponding T-dual multiplet. In the case that the RR potential has two transverse indices, the T-dual multiplet is gauge invariant, however, in the case that it has one transverse index the multiplet is not gauge invariant. We find a new T-dual multiplet in this case by imposing the gauge symmetry. We show that the multiplets are reproduced by explicit calculation, and their low energy contact terms at order α ′2 are consistent with the existing couplings in the literature
Reweighting QCD matrix-element and parton-shower calculations
Energy Technology Data Exchange (ETDEWEB)
Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)
2016-11-15
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)
A stochastic method for computing hadronic matrix elements
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-based Science and Technology Research Center; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Collaboration: European Twisted Mass Collaboration
2013-02-15
We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.
An Explicit Consistent Geometric Stiffness Matrix for the DKT Element
Directory of Open Access Journals (Sweden)
Eliseu Lucena Neto
Full Text Available Abstract A large number of references dealing with the geometric stiffness matrix of the DKT finite element exist in the literature, where nearly all of them adopt an inconsistent form. While such a matrix may be part of the element to treat nonlinear problems in general, it is of crucial importance for linearized buckling analysis. The present work seems to be the first to obtain an explicit expression for this matrix in a consistent way. Numerical results on linear buckling of plates assess the element performance either with the proposed explicit consistent matrix, or with the most commonly used inconsistent matrix.
Hadronic matrix elements in the QCD on the lattice
International Nuclear Information System (INIS)
Altmeyer, R.
1995-01-01
The work describes a lattice simulation of full QCD with dynamical Kogut-Susskind fermions. We evaluated different hadronic matrix elements which are related to the static and low-energy behaviour of hadrons. The analysis was performed on a 16 3 x 24 lattice with a coupling constant of β = 5.35 and a quark mass of m = 0.010. The calculations are based on a set of 85 configurations created by using a Hybrid-Monte-Carlo algorithm. First we evaluated the mass and energy spectrum of the low-lying hadrons using local operators as well as non-local operators. As the complete spectrum of the different pion and ρ meson lattice representations has been calculated we were able to check the restoration of continuum flavor symmetry. Moreover, the determination of energies E of hadron states with non-vanishing momentum vector q made it possible to investigate the lattice dispersion function E( vector q). Another part of the presented work is the determination of mesonic decay constants which parameterise the weak decay of mesons. They are related to hadronic matrix elements of the respective quark currents and through the calculation of these matrix elements we were able to determine the decay constants f π and f ρ . Before doing so, we calculated non-perturbatively renormalization constants for the currents under consideration. The next part is the determination of hadronic coupling constants. These parameterise in an effective low-energy model the interactions of different hadrons. They are related to hadronic matrix elements whose lattice calculation can be dpme bu evaluating 3-point correlation functions. Thus we evaluted the hadronic coupling constants g ρππ and g NNπ . Finally, an investigation of the pion-nucleon σterm was done. The σterm is defined through a hadronic matrix element of a quark-antiquark operator and can thus be evaluated on the lattice via the calculation of a 3-point correlation function. As we determined the connected and the disconnected
Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.
2014-01-01
This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.
Hadronic matrix elements in lattice QCD
International Nuclear Information System (INIS)
Jaeger, Benjamin
2014-01-01
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is
Elements of matrix modeling and computing with Matlab
White, Robert E
2006-01-01
As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat
Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J
2011-11-01
Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.
Analytic vibration-rotational matrix elements for diatomic molecules
International Nuclear Information System (INIS)
Bouanich, J.P.
1987-01-01
The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)
Hierarchy of Poisson brackets for elements of a scattering matrix
International Nuclear Information System (INIS)
Konopelchenko, B.G.; Dubrovsky, V.G.
1984-01-01
The infinite family of Poisson brackets [Ssub(i1k1) (lambda 1 ), Ssub(i2k2) (lambda 2 )]sub(n) (n=0, 1, 2, ...) between the elements of a scattering matrix is calculated for the linear matrix spectral problem. (orig.)
Direct calculation of off-diagonal matrix elements
International Nuclear Information System (INIS)
Killingbeck, J P; Jolicard, G
2011-01-01
Gauss elimination is used in a sequence of calculations which give the squares of the off-diagonal matrix elements of x between quartic oscillator eigenstates, in a modification of the original sum rule approach of Tipping et al to the problem. New and more flexible methods are then devised and tested and are shown to permit the isolation and calculation of individual squared matrix elements of x and x 2 .
Hadron matrix elements of quark operators in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1979-07-01
General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Anatomy of double beta decay nuclear matrix elements
Energy Technology Data Exchange (ETDEWEB)
Vogel, Petr, E-mail: pxv@caltech.ed [Kellogg Radiation Laboratory 106-38 Caltech. Pasadena, CA 91125 (United States)
2009-06-01
The necessary ingredients for a realistic evaluation of the 0vbetabeta nuclear matrix elements are reviewed. It is argued that the short range nucleon correlations, nucleon finite size, and higher order nuclear currents need to be included in the calculation, even though a consensus on the best way to treat all of these effects has not been reached. Another positive development is the realization that the two alternative and complementary methods, the Quasiparticle Random Phase Approximation and the Nuclear Shell Model, agree on many aspects of the calculation, in particular on the competition, or cancelation, between the contribution of nuclear pairing on one hand, and the other pieces of interaction that result in admixtures of broken pairs or higher seniority states on the other hand. The relatively short range (r <= 2-3 fm) of the effective 0vbetabeta operator found in both methods is a consequence of that competition.
Empirical Coulomb matrix elements and the mass of 22Al
International Nuclear Information System (INIS)
Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.
1976-01-01
An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)
The effects of flavour symmetry breaking on hadron matrix elements
International Nuclear Information System (INIS)
Cooke, A.N.; Horsley, R.; Pleiter, D.; Zanotti, J.M.
2012-12-01
By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.
Rotational covariance and light-front current matrix elements
International Nuclear Information System (INIS)
Keister, B.D.
1994-01-01
Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements
The Matrix Element Method at Next-to-Leading Order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-01-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...
The effects of flavour symmetry breaking on hadron matrix elements
Energy Technology Data Exchange (ETDEWEB)
Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Pleiter, D. [Juelich Research Centre (Germany); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). School of Chemistry and Physics
2012-12-15
By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.
Nucleon matrix elements using the variational method in lattice QCD
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA
2016-06-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems
International Nuclear Information System (INIS)
Hecht, K.T.; Zahn, W.
1978-01-01
In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references
Optimization of Coil Element Configurations for a Matrix Gradient Coil.
Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim
2018-01-01
Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.
Effects of quenching and partial quenching on penguin matrix elements
Golterman, Maarten; Pallante, Elisabetta
2001-01-01
In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises
Structure of nuclear transition matrix elements for neutrinoless ...
Indian Academy of Sciences (India)
Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...
Structure of nuclear transition matrix elements for neutrinoless ...
Indian Academy of Sciences (India)
Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...
Weak matrix elements on the lattice - Circa 1995
International Nuclear Information System (INIS)
Soni, A.
1995-01-01
Status of weak matrix elements is reviewed. In particular, e'/e, B → K*γ, B B and B B , are discussed and the overall situation with respect to the lattice effort and some of its phenomenological implications are summarised. For e'/e the need for the relevant matrix elements is stressed in view of the forthcoming improved experiments. For some of the operators, (e.g. O 6 ), even bound on their matrix elements would be very helpful. On B → K degrees γ, a constant behavior of T 2 appears disfavored although dependence of T 2 could, of course, be milder than a simple pole. Improved data is badly needed to settle this important issue firmly, especially in view of its ramification for extractions of V td from B → ργ. On B κ , the preliminary result from JLQCD appears to contradict Sharpe et al. JLQCD data seems to fit very well to linear α dependence and leads to an appreciably lower value of B κ . Four studies of B κ in the open-quotes fullclose quotes (n f = 2) theory indicate very little quenching effects on B κ ; the full theory value seems to be just a little less than the quenched result. Based on expectations from HQET, analysis of B-parameter (B h ell) for the heavy-light mesons via B h ell) = constant + constants'/m h ell is suggested. A summary of an illustrative sample of hadron matrix elements is given and constraints on CKM parameters (e.g. V td /V ts , on the unitarity triangle and on x s /x d , emerging from the lattice calculations along with experimental results are briefly discussed. In quite a few cases, for the first time, some indication of quenching errors on weak matrix elements are now becoming available
Glueball Spectrum and Matrix Elements on Anisotropic Lattices
Energy Technology Data Exchange (ETDEWEB)
Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang
2006-01-01
The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.
A collocation finite element method with prior matrix condensation
International Nuclear Information System (INIS)
Sutcliffe, W.J.
1977-01-01
For thin shells with general loading, sixteen degrees of freedom have been used for a previous finite element solution procedure using a Collocation method instead of the usual variational based procedures. Although the number of elements required was relatively small, nevertheless the final matrix for the simultaneous solution of all unknowns could become large for a complex compound structure. The purpose of the present paper is to demonstrate a method of reducing the final matrix size, so allowing solution for large structures with comparatively small computer storage requirements while retaining the accuracy given by high order displacement functions. Collocation points, a number are equilibrium conditions which must be satisfied independently of the overall compatibility of forces and deflections for a complete structure. (Auth.)
Inert matrix fuel in dispersion type fuel elements
Energy Technology Data Exchange (ETDEWEB)
Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)
2006-06-30
The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.
Inert matrix fuel in dispersion type fuel elements
Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.
2006-06-01
The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.
Scattering-matrix elements of coated infinite-length cylinders
International Nuclear Information System (INIS)
Manickavasagam, S.; Menguec, M.P.
1998-01-01
The angular variations of scattering-matrix elements of coated cylindrical particles are presented. The sensitivity of different elements for a number of physical parameters are discussed, including size parameter, real and imaginary parts of the refractive index of the outer coat, and the inner core. The numerical predictions are presented for typical index-of-refraction values of cotton fibers. These results show that the physical structure of coated cylinders can be determined from carefully conducted light-scattering experiments. copyright 1998 Optical Society of America
The scattering matrix element of the three body reactive collision
International Nuclear Information System (INIS)
Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.
1980-08-01
The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)
Double β-decay nuclear matrix elements and lepton conservation
International Nuclear Information System (INIS)
Vergados, J.D.
1976-01-01
The nuclear matrix elements involved in the double β-decay of 48 Ca, 130 Te, and 128 Te were calculated using realistic nuclear interactions and shell model nuclear wave functions. The double doorway state is not appreciably mixed in the ground state of the final nuclei. So the ground state transitions contain a small fraction of the sum rule. A lepton nonconservation parameter eta -4 was deduced
Weak matrix elements efforts on the lattice: Status and prospects
International Nuclear Information System (INIS)
Soni, A.
1995-01-01
Lattice approach to weak matrix elements is reviewed. Recent progress in treating heavy quarks on the lattice is briefly discussed. Illustrative sample of results obtained so far is given. Among them I elaborate on B K , line-integral B and B → K* γ . Experimental implications especially with regard to constraints on the Standard Model (i.e. Wolfenstein) parameters, V td measurements and expectations for B s -bar B s , oscillations are briefly discussed
Calculation of the Cholesky factor directly from the stiffness matrix of the structural element
International Nuclear Information System (INIS)
Prates, C.L.M.; Soriano, H.L.
1978-01-01
The analysis of the structures of nuclear power plants requires the evaluation of the internal forces. This is attained by the solution of a system of equations. This solution takes most of the computing time and memory. One of the ways it can be achieved is based on the Cholesky factor. The structural matrix of the coeficients is transformed into an upper triangular matrix by the Cholesky decomposition. Cholesky factor can be obtained directly from the stiffness matrix of the structural element. The result can thus be obtained in a more precise and quick way. (Author)
de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho
2017-01-01
Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
Intermediate coupling collision strengths from LS coupled R-matrix elements
International Nuclear Information System (INIS)
Clark, R.E.H.
1978-01-01
Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)
Calculations of hadronic weak matrix elements: A status report
International Nuclear Information System (INIS)
Sharpe, S.R.
1988-01-01
I review the calculations of hadronic matrix elements of the weak Hamiltonian. My major emphasis is on lattice calculations. I discuss the application to weak decay constants (f/sub K/, f/sub D/, f/sub B/), K 0 /minus/ /bar K/sup 0// and B 0 /minus/ /bar B/sup 0// mixing, K → ππ decays, and the CP violation parameters ε and ε'. I close with speculations on future progress. 57 refs., 4 figs., 2 tabs
Controlling inclusive cross sections in parton shower + matrix element merging
International Nuclear Information System (INIS)
Plaetzer, Simon
2012-11-01
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Calculation of hadronic matrix elements using lattice QCD
International Nuclear Information System (INIS)
Gupta, R.
1993-01-01
The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D → Keν. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5
Controlling inclusive cross sections in parton shower + matrix element merging
Energy Technology Data Exchange (ETDEWEB)
Plaetzer, Simon
2012-11-15
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Something different - caching applied to calculation of impedance matrix elements
CSIR Research Space (South Africa)
Lysko, AA
2012-09-01
Full Text Available of the multipliers, the approximating functions are used any required parameters, such as input impedance or gain pattern etc. The method is relatively straightforward but, especially for small to medium matrices, requires spending time on filling... of the computing the impedance matrix for the method of moments, or a similar method, such as boundary element method (BEM) [22], with the help of the flowchart shown in Figure 1. Input Parameters (a) Search the cached data for a match (b) A match found...
Calculation of hadronic matrix elements using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1993-08-01
The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D {yields} Ke{nu}. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5.
Improved determination of hadron matrix elements using the variational method
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.
2015-11-01
The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Performance evaluation of matrix gradient coils.
Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2016-02-01
In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
Measurement of the CKM matrix element |V_ts|²
Unverdorben, Christopher Gerhard
This is the first direct measurement of the CKM matrix element |V_ts|, using data collected by the ATLAS detector in 2012 at √s=8 TeV pp-collisions with a total integrated luminosity of 20.3 fb⁻¹. The analysis is based on 112171 reconstructed tt̅ candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 tt̅→WWbs̅ decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element |V_ts|². To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K0s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called "boosted decision trees". The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of |V_ts|² < 1.74 % at 95 % confidence level is set, includi...
The current matrix elements from HAL QCD method
Watanabe, Kai; Ishii, Noriyoshi
2018-03-01
HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.
Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge
Brown, B A; Horoi, M
2015-01-01
The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...
Matching Matrix Elements and Parton Showers with HERWIG and PYTHIA
Mrenna, S; Mrenna, Stephen; Richardson, Peter
2004-01-01
We report on our exploration of matching matrix element calculations with the parton-shower models contained in the event generators HERWIG and Pythia. We describe results for e+e- collisions and for the hadroproduction of W bosons and Drell--Yan pairs. We compare methods based on (1) a strict implementation of ideas proposed by Catani, et al., (2) a generalization based on using the internal Sudakov form factors of HERWIG and Pythia, and (3) a simpler proposal of M. Mangano. Where appropriate, we show the dependence on various choices of scales and clustering that do not affect the soft and collinear limits of the predictions, but have phenomenological implications. Finally, we comment on how to use these results to state systematic errors on the theoretical predictions.
Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.
2018-01-17
We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v_{18} two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.
Measurements of the CKM matrix element V(cb)
Di Ciaccio, L
1996-01-01
A review of the measurements of the element V ch of the CabibboKobayashi-Maskawa matrix is presented. The experimental results discussed here are based on the selection of the decays B -t D' lv and on the study of the differential decay rate as a function of the momentum transfer from the B to D' particle. This method allows to measure IV chi with a reduced model dependence. This review describes mainly the most recent analyses which have been performed by the LEP Collaborations. The IVcbl determination based on the inclusive semileptonic decay width of the B hadrons is also shortly presented. The results obtained with these two methods are averaged and prospects for the future are discussed
Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements
International Nuclear Information System (INIS)
Dong Shihai; Chen Changyuan; Lozada-Cassou, M
2005-01-01
Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied
Matrix elements of the relativistic electron-transition operators
International Nuclear Information System (INIS)
Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.
1976-01-01
The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given
Fabrication of synthetic diffractive elements using advanced matrix laser lithography
International Nuclear Information System (INIS)
Škeren, M; Svoboda, J; Kveton, M; Fiala, P
2013-01-01
In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ∼ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.
Fabrication of synthetic diffractive elements using advanced matrix laser lithography
Škereň, M.; Svoboda, J.; Květoň, M.; Fiala, P.
2013-02-01
In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ~ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.
Wu, Ning
2018-01-01
For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.
Theory of the particle matrix elements for Helium atom scattering in surfaces
International Nuclear Information System (INIS)
Khater, A.; Toennies, J.P.
2000-01-01
Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface
Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)
2015-01-01
We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N_{f} = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a^{2} tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a^{2} tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.
On the estimation of matrix elements for optical transitions in semiconductors
International Nuclear Information System (INIS)
Hassan, A.R.
1992-09-01
A semi-empirical method is used to calculate the numerical values of the interband momentum matrix elements of the allowed optical transitions in semiconductors. This method is based on the evaluation of the ratio of the two-photon and one-photon absorption coefficients and the compare the result with the corresponding experimental values in a number of semiconductors both for direct and indirect transition processes. The numerical values of the momentum matrix elements are compared with the convenient theoretical calculations available. The result is found to agree fairly well with the corresponding values computed using the k-vector · p-vector perturbation theory. (author). 19 refs, 2 figs, 2 tabs
A generalized Talmi-Moshinsky transformation for few-body and direct interaction matrix elements
International Nuclear Information System (INIS)
Tobocman, W.
1981-01-01
A set of basis states for use in evaluating matrix elements of few-body system operators is suggested. These basis states are products of harmonic oscillator wave functions having as arguments a set of Jacobi coordinates for the system. We show that these harmonic oscillator functions can be chosen in a manner that allows such a product to be expanded as a finite sum of the corresponding products for any other set of Jacobi coordinates. This result is a generalization of the Talmi-Moshinsky transformation for two equal-mass particles to a system of any number of particles of arbitrary masses. With the help of our method the multidimensional integral which must be performed to evaluate a few-body matrix element can be transformed into a sum of products of three dimensional integrals. The coefficients in such an expansion are generalized Talmi-Moshinsky coefficients. The method is tested by calculation of a matrix element for knockout scattering for a simple three-body-system. The results indicate that the method is a viable calculational tool. (orig.)
Controlling excited-state contamination in nucleon matrix elements
Energy Technology Data Exchange (ETDEWEB)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.
Matching NLO parton shower matrix element with exact phase space case of $W\\to l\
Nanava, G; Was, Z
2010-01-01
In practical applications PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on exact multiphoton phase space. To evaluate the program precision it is necessary to control its matrix element. Generally it is obtained using iteration of the universal multidimensional kernel. In some cases it is however obtained from the exact first order matrix element. Then, as a consequence, all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the decays W -> l nu and gamma^* -> pi^+ pi^-. The Born level cross sections for both processes approach zero in some points of the phase space. Process dependent, compensating weight is constructed to implement exact matrix element, but it will be recommended for use onl...
International Nuclear Information System (INIS)
Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung
2015-01-01
The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed
Gamow-Teller matrix elements from 00 ( p,n) cross section
International Nuclear Information System (INIS)
Goodman, C.D.; Goulding, C.A.; Greenfield, M.B.; Rapaport, J.; Bainum, D.E.; Foster, C.C.; Love, W.G.; Petrovich, F.
1980-01-01
After simple corrections for distortion effects, 120-MeV, 0 0 (p,n) cross sections are found to be proportional to the squares of the corresponding Fermi and Gamow-Teller matrix elements extracted from β-decay measurements. It is suggested that this proportionality can be used to extract Gamow-Teller matrix elements for transitions inaccessible to β decay
Bag-model matrix elements of the parity-violating weak hamiltonian for charmed baryons
International Nuclear Information System (INIS)
Ebert, D.; Kallies, W.
1983-01-01
Baryon matrix elements of the parity-violating part of the charmchanging weak Hamiltonian might be significant and comparable with those of the parity-conserving one due to large symmetry breaking. Expression for these new matrix elements by using the MIT-bag model are derived and their implications on earlier calculations of nonleptonic charmed-baryon decays are estimated
The temporal Fresnel number in terms of ray matrix elements
International Nuclear Information System (INIS)
Zhang Zhuhong; Fan Dianyuan
1993-01-01
By using the analogy between temporal ray matrix and the well known ray matrix, the temporal Fresnel number, which gives the qualitative and quasiquantitative characteristics (shape, width and chirp) of optical pulses, is derived. A concept of effective propagation time is introduced. Several typical examples are discussed. 6 refs
International Nuclear Information System (INIS)
Gregersen, A.W.
1977-01-01
A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels
Effect of the Heat Treatment on the Graphite Matrix of Fuel Element for HTGR
International Nuclear Information System (INIS)
Lee, Chungyong; Lee, Seungjae; Suh, Jungmin; Jo, Youngho; Lee, Youngwoo; Cho, Moonsung
2013-01-01
In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength for the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and Phenol as a binder were chosen and mixed with each other, formed and heated for the compressive strength test. The objective of this research is to optimize the kinds and composition of the mixed graphite and the forming process by evaluating the compressive strength before/after heat treatment (carbonization of binder). In this study, the effect of heat treatment on graphite matrix was studied in terms of the density and the compressive strength. The size (diameter and length) of pellet is increased by heat treatment. Due to additional weight reduction and swelling (length and diameter) of samples the density of graphite pellet is decreased from about 2.0 to about 1.7g/cm 3 . From the mechanical test results, the compressive strength of graphite pellets was related to the various conditions such as the contents of binder, the kinds of graphite and the heat treatment. Both the green pellet and the heat treated pellet, the compressive strength of G+S+P pellets is relatively higher than that of R+S+P pellets. To optimize fuel element matrix, the effect of Phenol and other binders, graphite composition and the heat treatment on the mechanical properties will be deeply investigated for further study
Relativistic atomic matrix elements of rq for arbitrary states in the quantum-defect approximation
International Nuclear Information System (INIS)
Owono Owono, L.C.; Owona Angue, M.L.C.; Kwato Njock, M.G.; Oumarou, B.
2004-01-01
Recurrence relations used in the calculation of matrix elements of r q for arbitrary q and states of the relativistic one-electron atom with a point-like ionic core are obtained with Dirac and quasirelativistic effective radial Hamiltonians. The phenomenological and supersymmetry-inspired quantum-defect approaches introduced in previous works to model the electron-core interactions are employed. The formulas worked out on the basis of a hypervirial inspired method may be viewed as a generalization to off-diagonal cases of our recently reported results on the evaluation of expectation values of r q
Evaluation of lymphangiogenesis in acellular dermal matrix
Directory of Open Access Journals (Sweden)
Mario Cherubino
2014-01-01
Full Text Available Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA® . On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28
QCD event generators with next-to-leading order matrix-elements and parton showers
International Nuclear Information System (INIS)
Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.
2003-01-01
A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method
Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation
Energy Technology Data Exchange (ETDEWEB)
Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H
1979-11-01
Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.
Radial Matrix Elements of Hydrogen Atom and the Correspondence ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Hydrogen excited states—radial matrix element—corres- ... atoms, its availability, production, its spectras, and importance in astrophysics (Dupree ... far away revolving lazily around in a slow orbit like a distant planet in the solar system. As the electron orbit diameter grows rapidly, its energy also decreases rapidly. Currently ...
Matrix elements of a hyperbolic vector operator under SO(2,1)
International Nuclear Information System (INIS)
Zettili, N.; Boukahil, A.
2003-01-01
We deal here with the use of Wigner–Eckart type arguments to calculate the matrix elements of a hyperbolic vector operator V-vector by expressing them in terms of reduced matrix elements. In particular, we focus on calculating the matrix elements of this vector operator within the basis of the hyperbolic angular momentum T-vector whose components T-vector 1 , T-vector 2 , T-vector 3 satisfy an SO(2,1) Lie algebra. We show that the commutation rules between the components of V-vector and T-vector can be inferred from the algebra of ordinary angular momentum. We then show that, by analogy to the Wigner–Eckart theorem, we can calculate the matrix elements of V-vector within a representation where T-vector 2 and T-vector 3 are jointly diagonal. (author)
Program package for calculating matrix elements of two-cluster structures in nuclei
International Nuclear Information System (INIS)
Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.
1982-01-01
Matrix elements of operators between Slater determinants of two-cluster structures must be expanded into partial waves for the purpose of angular momentum projection. The expansion coefficients contain integrals over the spherical angles theta and phi. (orig.)
International Nuclear Information System (INIS)
Feresin, A.P.; Guseva, I.S.
1984-01-01
Single-particle matrix elements for magnetic quadrupole gamma radiation in odd deformed nuclei, calculated with the aid of Nilsson-potential wave functions, are presented. Also given are the internal conversion penetration matrix elements, calculated in the same manner. The penetration matrix elements are needed to estimate the nuclear penetration parameter, which determines the deviation of experimental internal conversion coefficients from their standard values given in tables. Matrix elements are given for transitions between all pairs of Nilsson single-particle states with ΔN = 1 and ΔK = 0, 1, and 2 for the nuclear shells with 4< or =N< or =7 and for the two deformation values epsilon = 0.2 and 0.3
3-Loop massive O(T2F) contributions to the DIS operator matrix element Agg
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Bluemlein, J.; Freitas, A. de; Hasselhuhn, A.; Round, M.; Manteuffel, A. von
2014-09-01
Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A (3) gg,Q is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.
Institute of Scientific and Technical Information of China (English)
XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian
2007-01-01
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
Matrix elements of u and p for the modified Poeschl-Teller potential
International Nuclear Information System (INIS)
Gomez-Camacho, J; Lemus, R; Arias, J M
2004-01-01
Closed analytical expressions in terms of a single sum are obtained for the matrix elements of the momentum and the natural variable u tanh(αx) in the basis of the modified Poeschl-Teller (MPT) bound eigenstates. These matrix elements are first expressed in terms of Franck-Condon factors, which thereafter are substituted for analytic expressions. Expansions of the variables p and u in terms of creation and annihilation operators associated with the MPT bound eigenfunctions are also presented
A pedagogical derivation of the matrix element method in particle physics data analysis
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Directory of Open Access Journals (Sweden)
Romanas Karkauskas
2011-04-01
Full Text Available The expressions of the finite element method tangent stiffness matrix of geometrically nonlinear constructions are not fully presented in publications. The matrixes of small displacements stiffness are usually presented only. To solve various problems of construction analysis or design and to specify the mode of the real deflection of construction, it is necessary to have a fully described tangent matrix analytical expression. This paper presents a technique of tangent stiffness matrix generation using discrete body total potential energy stationary conditions considering geometrically nonlinear 2D frame element taking account of interelement interaction forces only. The obtained vector-function derivative of internal forces considering nodal displacements is the tangent stiffness matrix. The analytical expressions having nodal displacements of matrixes forming the content of the 2D frame construction element tangent stiffness matrix are presented in the article. The suggested methodology has been checked making symbolical calculations in the medium of MatLAB calculation complex. The analytical expression of the stiffness matrix has been obtained.Article in Lithuanian
On the generalized eigenvalue method for energies and matrix elements in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Paris-XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Morte, Michele della [CERN, Geneva (Switzerland). Physics Dept.]|[Mainz Univ. (Germany). Inst. fuer Kernphysik; Hippel, Georg von; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Mendes, Tereza [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Sao Paulo Univ. (Brazil). IFSC
2009-02-15
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E{sub N+1}-E{sub n}) t). The gap E{sub N+1}-E{sub n} can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m{sub b} in HQET. (orig.)
On the generalized eigenvalue method for energies and matrix elements in lattice field theory
International Nuclear Information System (INIS)
Blossier, Benoit; Mendes, Tereza; Sao Paulo Univ.
2009-02-01
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E N+1 -E n ) t). The gap E N+1 -E n can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m b in HQET. (orig.)
International Nuclear Information System (INIS)
Kim, Jeong Soo; Kim, Moon Kyum
2012-01-01
In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.
Matrix elements for the anti B{yields}X{sub s}{gamma} decay at NNLO
Energy Technology Data Exchange (ETDEWEB)
Schutzmeier, Thomas Paul
2009-12-17
In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B{yields} X{sub s}{gamma} decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B{yields}X{sub s}{gamma} decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B{yields}X{sub s}{gamma} decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the
Matrix elements for the anti B→Xsγ decay at NNLO
International Nuclear Information System (INIS)
Schutzmeier, Thomas Paul
2009-01-01
In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B→ X s γ decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B→X s γ decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B→X s γ decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the effective theory at NNLO. For the first time, the
Nucleon distribution apmlitudes and proton decay matrix elements on the lattice
Energy Technology Data Exchange (ETDEWEB)
Braun, Vladimir M.; Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (GB). School of Physics] (and others)
2008-11-15
Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MS scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)
Correlation between eigenvalues and sorted diagonal matrix elements of a large dimensional matrix
International Nuclear Information System (INIS)
Arima, A.
2008-01-01
Functional dependences of eigenvalues as functions of sorted diagonal elements are given for realistic nuclear shell model (NSM) hamiltonian, the uniform distribution hamiltonian and the GOE hamiltonian. In the NSM case, the dependence is found to be linear. We discuss extrapolation methods for more accurate predictions for low-lying states. (author)
DEFF Research Database (Denmark)
Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.
1992-01-01
A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....
Method of computer algebraic calculation of the matrix elements in the second quantization language
International Nuclear Information System (INIS)
Gotoh, Masashi; Mori, Kazuhide; Itoh, Reikichi
1995-01-01
An automated method by the algebraic programming language REDUCE3 for specifying the matrix elements expressed in second quantization language is presented and then applied to the case of the matrix elements in the TDHF theory. This program works in a very straightforward way by commuting the electron creation and annihilation operator (a † and a) until these operators have completely vanished from the expression of the matrix element under the appropriate elimination conditions. An improved method using singlet generators of unitary transformations in the place of the electron creation and annihilation operators is also presented. This improvement reduces the time and memory required for the calculation. These methods will make programming in the field of quantum chemistry much easier. 11 refs., 1 tab
Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods
Alexander, Steven; Coldwell, R. L.
2015-03-01
The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
The two-mass contribution to the three-loop pure singlet operator matrix element
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2017-11-15
We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.
Matrix elements of Yale potential and level properties of light nuclei
Energy Technology Data Exchange (ETDEWEB)
Kumar, N; Prakash, O [Delhi Univ. (India). Dept. of Physics and Astrophysics
1976-07-01
Shell model calculations using bare and renormalized matrix elements of the Yale potential are reported for the normal-parity states of A = 6-9 nuclei. Renormalization of the two-body matrix elements using second-order perturbation theory is not found to improve the agreements with the experimental data. Inclusion of the energy shifts of ground state rotational bands in /sup 8/Be and /sup 9/Be are, however, found to improve the agreements with the excitation energies of nuclear levels. The need for carrying out more calculations of these nuclei with realistic forces is pointed out.
Protasevich, Alexander E.; Nikitin, Andrei V.
2018-01-01
In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.
Role of shell structure in the 2νββ nuclear matrix elements
International Nuclear Information System (INIS)
Nakada, H.
1998-01-01
Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)
LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix
International Nuclear Information System (INIS)
Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong
2013-01-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)
LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix
International Nuclear Information System (INIS)
Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong
2014-01-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions
Energy Technology Data Exchange (ETDEWEB)
Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.
Bessel equation as an operator identity's matrix element in quantum mechanics
International Nuclear Information System (INIS)
Fan Hongyi; Li Chao
2004-01-01
We study the well-known Bessel equation itself in the framework of quantum mechanics. We show that the Bessel equation is a spontaneous result of an operator identity's matrix element in some definite entangled state representations, which is a fresh look. Application of this operator formalism in the Hankel transform of Laplace equation is presented
Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, I.; Bluemlein, J.; Klein, S.
2007-06-15
The O({alpha}{sup 2}{sub s}) massive operator matrix elements for unpolarized and polarized heavy flavor production at asymptotic values Q{sup 2} >> m{sup 2} are calculated in Mellin space without applying the integration-by-parts method. (orig.)
Analytical matrix elements of semifinite 2D two centre nuclear potential
International Nuclear Information System (INIS)
Niculescu, V. L. R.; Catana, S.; Catana, D.; Babin, V.
1998-01-01
In the present work we introduce a new 2D potential which is a symmetric double-well in one variable and with one centre in the other. The factorable potential matrix elements are expressed by analytical formulas. This implies a shorter computational time. (author)
Effects of quenching and partial quenching on QCD penguin matrix elements
Golterman, Maarten; Pallante, Elisabetta
2002-01-01
We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation
Analytical Expressions of Matrix Elements of Physical Quantities for Dirac Oscillator
Institute of Scientific and Technical Information of China (English)
LI Ning; JU Guo-Xing; REN Zhong-Zhou
2004-01-01
The analytical expressions of the matrix elements for physical quantities are obtained for the Dirac oscillator in two and three spatial dimensions. Their behaviour for the case of operator's square is discussed in details. The twodimensional Dirac oscillator has similar behavior to that for three-dimensional one.
Rigorous constraints on the matrix elements of the energy–momentum tensor
Directory of Open Access Journals (Sweden)
Peter Lowdon
2017-11-01
Full Text Available The structure of the matrix elements of the energy–momentum tensor play an important role in determining the properties of the form factors A(q2, B(q2 and C(q2 which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincaré generators in order to derive constraints on these form factors as q→0. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment B(0 and the condition A(0=1 are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincaré generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincaré transformations.
International Nuclear Information System (INIS)
Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.
1993-01-01
The matrix elements of the potential energy operator (which includes central, spin-orbit and tensor components) are calculated between the generating invariants of the cluster basis describing α + d and t+h configurations of the six-nucleon system. (author). 12 refs
Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Duca, Vittorio Del [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Torino (Italy)
2005-06-01
We describe how to disentangle the singly- and doubly-unresolved (soft and/or collinear) limits of tree-level QCD squared matrix elements. Using the factorization formulae presented in this paper, we outline a viable general subtraction scheme for computing next-to-next-to-leading order corrections for electron-positron annihilation into jets.
Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements
International Nuclear Information System (INIS)
Eberspaecher, M.; Amos, K.; Apagyi, B.
1999-12-01
The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed
International Nuclear Information System (INIS)
Tyas-Djuhariningrum
2004-01-01
The gold sample analysis can be deviated more than >10% to those thrue value caused by the matrix element. So that the matrix element character need to be study in order to reduce the deviation. In rock samples, the matrix elements can cause self quenching, self absorption and ionization process, so there is a result analysis error. In the rock geochemical process, the elements of the same group at the periodic system have the tendency to be together because of their same characteristic. In absorption Atomic Spectroscopy analysis, the elements associate can absorb primer energy with similar wave length so that it can cause deviation in the result interpretation. The aim of study is to predict matrix element influences from rock sample with application standard method for reducing deviation. In quantitative way, assessment of primer light intensity that will be absorbed is proportional to the concentration atom in the sample that relationship between photon intensity with concentration in part per million is linier (ppm). These methods for eliminating matrix elements influence consist of three methods : external standard method, internal standard method, and addition standard method. External standard method for all matrix element, internal standard method for elimination matrix element that have similar characteristics, addition standard methods for elimination matrix elements in Au, Pt samples. The third of standard posess here accuracy are about 95-97%. (author)
Modelling of polypropylene fibre-matrix composites using finite element analysis
Directory of Open Access Journals (Sweden)
2009-01-01
Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.
International Nuclear Information System (INIS)
Ishikawa, H.; Nakano, S.; Yuuki, R.; Chung, N.Y.
1991-01-01
In the virtual crack extension method, the stress intensity factor, K, is obtained from the converged value of the energy release rate by the difference of the finite element stiffness matrix when some crack extension are taken. Instead of the numerical difference of the finite element stiffness, a new method to use a direct dirivative of the finite element stiffness matrix with respect to crack length is proposed. By the present method, the results of some example problems, such as uniform tension problems of a square plate with a center crack and a rectangular plate with an internal slant crack, are obtained with high accuracy and good efficiency. Comparing with analytical results, the present values of the stress intensity factors of the problems are obtained with the error that is less than 0.6%. This shows the numerical assurance of the usefulness of the present method. A personal computer program for the analysis is developed
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
DEFF Research Database (Denmark)
Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard
2009-01-01
A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....
Comparative evaluation of trace elements in blood
International Nuclear Information System (INIS)
Goeij, J.J.M. de; Tjioe, P.S.; Pries, C.; Zwiers, J.H.L.
1976-01-01
The Interuniversitair Reactor Instituut and the Centraal Laboratorium TNO have carried out a common investigation on neutron-activation-analytical procedures for the determination of trace elements in blood. A comparative evaluation of five methods, destructive as well as non-destructive, is given. The sensitivity and reproducibility of the procedures are discussed. By combining some of the methods it is possible, starting with 1 ml blood, to give quantitative information on 14 important trace elements: antimony, arsenic, bromine, cadmium, cobalt, gold, copper, mercury, molybdenum, nickel, rubidium, selenium, iron and zinc. The methods have also been applied to sodium, chromium and potassium
Correlated random-phase approximation from densities and in-medium matrix elements
Energy Technology Data Exchange (ETDEWEB)
Trippel, Richard; Roth, Robert [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)
2016-07-01
The random-phase approximation (RPA) as well as the second RPA (SRPA) are established tools for the study of collective excitations in nuclei. Addressing the well known lack of correlations, we derived a universal framework for a fully correlated RPA based on the use of one- and two-body densities. We apply densities from coupled cluster theory and investigate the impact of correlations. As an alternative approach to correlations we use matrix elements transformed via in-medium similarity renormalization group (IM-SRG) in combination with RPA and SRPA. We find that within SRPA the use of IM-SRG matrix elements leads to the disappearance of instabilities of low-lying states. For the calculations we use normal-ordered two- plus three-body interactions derived from chiral effective field theory. We apply different Hamiltonians to a number of doubly-magic nuclei and calculate electric transition strengths.
Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED
International Nuclear Information System (INIS)
Bluemlein, J.; Freitas, A. de; Universidad Simon Bolivar, Caracas; Neerven, W.L. van
2011-11-01
We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O(α 2 ) initial state corrections to e + e - annihilation into a virtual boson for large cms energies s >>m 2 e into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m 2 e ) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions
Energy Technology Data Exchange (ETDEWEB)
Harris, Frank E., E-mail: harris@qtp.ufl.edu [Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, Florida 32611 (United States)
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.
Lattice calculation of hadronic weak matrix elements: the ΔI = 1/2 rule
International Nuclear Information System (INIS)
Bernard, C.
1984-01-01
A lattice Monte Carlo technique for calculating the matrix elements of weak operators is described. Emphasis is placed on the ΔI = 1/2 rule, which is such a large effect that the significant errors associated with current lattice methods (statistics, finite size, finite lattice spacing, extrapolations in quark mass, etc.) should not disguise the important qualitative features. A detailed exposition of the analytic bases for the calculation is given, and an attempt is made to avoid the questionable phenomenological assumptions (such as some of those inherent in the Penguin approach) which were necessary when matrix elements could not be calculated. The current state of the calculation-in-progress is described. This work is being done in collaboration with A. Soni, T. Draper, G. Hockney, and M. Rushton
Current matrix element in HAL QCD's wavefunction-equivalent potential method
Watanabe, Kai; Ishii, Noriyoshi
2018-04-01
We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.
Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments
Directory of Open Access Journals (Sweden)
Tawfik W.
2007-01-01
Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.
Reactor calculation in coarse mesh by finite element method applied to matrix response method
International Nuclear Information System (INIS)
Nakata, H.
1982-01-01
The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt
Heavy flavor operator matrix elements at O({alpha}{sub s}{sup 3})
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, Isabella; Buemlein, Johannes; Klein, Sebastian
2008-12-15
The heavy quark effects in deep.inelastic scattering in the asymptotic regime Q{sup 2}>>m{sup 2} can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to NLO. We present first results for fixed moments at NNLO. This involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions, which we thereby confirm. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)
2017-05-15
Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
Three-loop contributions to the gluonic massive operator matrix elements at general values of N
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Hasselhuhn, Alexander [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); De Freitas, Abilio; Round, Mark; Schneider, Carsten; Wissbrock, Fabian [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Klein, Sebastian [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik E
2012-12-15
Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(n{sub f}T{sup 2}{sub F}C{sub F,A}) and O(T{sup 2}{sub F}C{sub F,A}) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.
K-M matrix elements and decays of the B meson to J/Psi
International Nuclear Information System (INIS)
Wilson, Richard
2002-01-01
This talk discusses some of the last work on B meson decays of the CLEO collaboration, which work is, in fact, improvements in precision of much earlier work of the same collaboration. New theoretical developments have enabled us to present much improved numbers on the matrix elements Vcb, and Vub. Also some recent work on the decay of B mesons to J/Psi plus other particles will be briefly presented
International Nuclear Information System (INIS)
Rajput, B.S.
1977-01-01
Using the reduced expansions of second quantized electromagnetic vector potential operator in terms of irreducible representations of Pioncare group in the interaction Hamiltonian, the exact matrix elements of interaction of electromagnetic field with a hydrogenic atom have been derived and the contributions of transitions for different combinations of angular momentum quantum numbers to the transition probabilities of various lines in Lyman-, Balmer-, and Paschen-series have been computed. (author)
Quenching of the Gamow-Teller matrix element in closed LS-shell-plus-one nuclei
International Nuclear Information System (INIS)
Towner, I.S.
1989-06-01
It is evident that nuclear Gamow-Teller matrix elements determined from β-decay and charge-exchange reactions are significantly quenched compared to simple shell-model estimates based on one-body operators and free-nucleon coupling constants. Here we discuss the theoretical origins of this quenching giving examples from light nuclei near LS-closed shells, such as 16 0 and 40 Ca. (Author) 12 refs., 2 tabs
Off-diagonal helicity density matrix elements for vector mesons produced at LEP
International Nuclear Information System (INIS)
Anselmino, M.; Bertini, M.; Quintairos, P.
1997-05-01
Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)
Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2011-12-15
We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)
Directory of Open Access Journals (Sweden)
J. Ablinger
2017-08-01
Full Text Available Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=mc2/mb2∼1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
Separation of soft and collinear infrared limits of QCD squared matrix elements
Nagy, Zoltan; Trócsányi, Z L; Trocsanyi, Zoltan; Somogyi, Gabor; Trocsanyi, Zoltan
2007-01-01
We present a simple way of separating the overlap between the soft and collinear factorization formulae of QCD squared matrix elements. We check its validity explicitly for single and double unresolved emissions of tree-level processes. The new method makes possible the definition of helicity-dependent subtraction terms for regularizing the real contributions in computing radiative corrections to QCD jet cross sections. This implies application of Monte Carlo helicity summation in computing higher order corrections.
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges
International Nuclear Information System (INIS)
Elyutin, P V; Rubtsov, A N
2008-01-01
The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence
Directory of Open Access Journals (Sweden)
Kicošev Vesna
2015-01-01
Full Text Available Salt steppes and marshes represent the most valuable ecosystems in the world, providing numerous ecosystem services that are extremely vulnerable to anthropogenic influences. These types of habitat in the territory of Serbia are most dominant in Banat and a significant portion of them is under protection or in the process of becoming protected. The section surrounding the protected areas of Slano Kopovo Special Nature Reserve, Rusanda Nature Park and Okanj Bara Special Nature Reserve with the non-building area of Novi Bečej, Kumane, Melenci, Elemir and Taraš cadastral municipalities, has been chosen for the analysis. The aim of this paper was to assess the influence of specific anthropogenic factors on the elements of an ecological network using the analytical method that can generate the required results in a manner suitable for presentation to various stakeholders. To achieve this aim, the Leopold matrix model, used for assessing anthropogenic influence on the environment, has been chosen. The specificity of this issue of protecting and preserving elements of an ecological network resulted in the need to isolate and evaluate the factors affecting the preservation of habitats and functionality of ecosystems, unlike the concept of Leopold matrix, which treats all factors as equally important in the process of evaluation. Evaluation results indicate significant effects of historical, perennial manner of using the area and other resources in the non-building area.
A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis
Lane, John
2009-01-01
A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.
International Nuclear Information System (INIS)
Li, Guo-Qing; Miao, Xing-Yuan; Hu, Yuan-Tai; Wang, Ji
2013-01-01
A comprehensive study on smart beams with piezoelectric elements using an impedance matrix and the inverse Laplace transform is presented. Based on the authors’ previous work, the dynamics of some elements in beam-like smart structures are represented by impedance matrix equations, including a piezoelectric stack, a piezoelectric bimorph, an elastic straight beam or a circular curved beam. A further transform is applied to the impedance matrix to obtain a set of implicit transfer function matrices. Apart from the analytical solutions to the matrices of smart beams, one computation procedure is proposed to obtained the impedance matrices and transfer function matrices using FEA. By these means the dynamic solution of the elements in the frequency domain is transformed to that in Laplacian s-domain and then inversely transformed to time domain. The connections between the elements and boundary conditions of the smart structures are investigated in detail, and one integrated system equation is finally obtained using the symbolic operation of TF matrices. A procedure is proposed for dynamic analysis and control analysis of the smart beam system using mode superposition and a numerical inverse Laplace transform. The first example is given to demonstrate building transfer function associated impedance matrices using both FEA and analytical solutions. The second example is to verify the ability of control analysis using a suspended beam with PZT patches under close-loop control. The third example is designed for dynamic analysis of beams with a piezoelectric stack and a piezoelectric bimorph under various excitations. The last example of one smart beam with a PPF controller shows the applicability to the control analysis of complex systems using the proposed method. All results show good agreement with the other results in the previous literature. The advantages of the proposed methods are also discussed at the end of this paper. (paper)
Development and evaluation of separation elements
International Nuclear Information System (INIS)
Guimaraes, R.R.R.; Rocha, Z.
1990-01-01
For industrial testing of the uranium enrichment technology by the jet nozzle process, it is being erected in Resende the 'First Cascade' (FC) and it was built the Separation Element Plant (FES). For the development, optimization and quality control of the separation elements produced by FES, it was set up in CDTN a laboratorial infrastructure. As part of it, it was designed, built and assembled the Separation Slit Testing Equipment (ITRS), with several components developed and constructed in CDTN. The tests are being carried out in ITRS with the objective of adjusting the machine tools of FES used in the line production of the separation elements. From the satisfactory results obtained with these tests, FES will start the production of separation tubes to be installed in FC. The objective of this paper is to describe the operation and evaluation tests in ITRS, as well as to present their contribution to the development and quality control of the separation elements produced in FES. (author) [pt
X-ray microanalysis of elements present in the matrix of cnidarian nematocysts.
Tardent, P; Zierold, K; Klug, M; Weber, J
1990-01-01
The composition and concentration of elements, in particular those of metallic cations, present in the intracapsular matrix and the wall of nematocysts of various cnidarian species have been recorded by means of X-ray microanalysis performed on 100nm thick cryosections. The predominant cation detected in the nematocyst matrix of the hydrozoan Podocoryne carnea (medusa), the scyphozoan Aurelia aurita (scyphopolyp) and the anthozoan Calliactis parasitica (tentacles and acontia) is K(+). Mg(2+) prevails in tentacular cysts of Anthopleura elegantissima, Actinia equina and Anemonia viridis, whereas, the acrorhagial cysts of A. elegantissima and A. equina contain Ca(2+) instead of Mg(2+). The acrorhagial cysts of A. viridis contain Mg(2+) like those of the tentacles. In the tentacular nematocysts of Podocoryne carnea polyps (Hydrozoa) on the other hand ambiguous element contents were found indicating that the cysts of this species has no preference for a particular cation. The high values of sulfur recorded in the matrix and particularly the wall of all the cysts are reflecting the presence of numerous protein disulfide bonds within the structural components (wall, shaft, tubule) of the nematocysts.
On the possibility to measure 0νββ-decay nuclear matrix element for 48Ca
International Nuclear Information System (INIS)
Rodin, Vadim
2011-01-01
As shown in Ref. [2], the Fermi part M F 0ν of the total 0νββ-decay nuclear matrix element M 0ν can be related to the single Fermi transition matrix element between the isobaric analog state (IAS) of the ground state of the initial nucleus and the ground state of the final nucleus. The latter matrix element could be measured in charge-exchange reactions. Here we discuss a possibility of such a measurement for 48 Ca and estimate the cross-section of the reaction 48 Ti(n,p) 48 Sc(IAS).
Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements
Energy Technology Data Exchange (ETDEWEB)
Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)
2011-12-16
A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.
Formulation and Evaluation of Tramadol HCl Matrix Tablets Using ...
African Journals Online (AJOL)
Formulation and Evaluation of Tramadol HCl Matrix Tablets Using Carbopol ... to 83 % compared with the release rate of 99 % for the formulation with D:P ratio of 10:3. Kinetic analysis indicates that drug release mechanism was anomalous ...
IMPACT OF MATRIX INVERSION ON THE COMPLEXITY OF THE FINITE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
M. Sybis
2016-04-01
Full Text Available Purpose. The development of a wide construction market and a desire to design innovative architectural building constructions has resulted in the need to create complex numerical models of objects having increasingly higher computational complexity. The purpose of this work is to show that choosing a proper method for solving the set of equations can improve the calculation time (reduce the complexity by a few levels of magnitude. Methodology. The article presents an analysis of the impact of matrix inversion algorithm on the deflection calculation in the beam, using the finite element method (FEM. Based on the literature analysis, common methods of calculating set of equations were determined. From the found solutions the Gaussian elimination, LU and Cholesky decomposition methods have been implemented to determine the effect of the matrix inversion algorithm used for solving the equations set on the number of computational operations performed. In addition, each of the implemented method has been further optimized thereby reducing the number of necessary arithmetic operations. Findings. These optimizations have been performed on the use of certain properties of the matrix, such as symmetry or significant number of zero elements in the matrix. The results of the analysis are presented for the division of the beam to 5, 50, 100 and 200 nodes, for which the deflection has been calculated. Originality. The main achievement of this work is that it shows the impact of the used methodology on the complexity of solving the problem (or equivalently, time needed to obtain results. Practical value. The difference between the best (the less complex and the worst (the most complex is in the row of few orders of magnitude. This result shows that choosing wrong methodology may enlarge time needed to perform calculation significantly.
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2014-01-01
In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).
Kaon matrix elements and CP violation from quenched lattice QCD: The 3-flavor case
International Nuclear Information System (INIS)
Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Mawhinney, R.; Siegert, G.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.
2003-01-01
We report the results of a calculation of the K→ππ matrix elements relevant for the ΔI=1/2 rule and ε ' /ε in quenched lattice QCD using domain wall fermions at a fixed lattice spacing a -1 ∼2 GeV. Working in the three-quark effective theory, where only the u, d, and s quarks enter and which is known perturbatively to next-to-leading order, we calculate the lattice K→π and K→|0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K→ππ matrix elements, which we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of isospin amplitudes vertical bar A 0 vertical bar/vertical bar A 2 vertical bar we find a value of 25.3±1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10%-20% below the experimental values. For ε ' /ε, using known central values for standard model parameters, we calculate (-4.0±2.3)x10 -4 (statistical error only) compared to the current experimental average of (17.2±1.8)x10 -4 . Because we find a large cancellation between the I=0 and I=2 contributions to ε ' /ε, the result may be very sensitive to the approximations employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum perturbation theory below 1.3 GeV. We also calculate the kaon B parameter B K and find B K,MS (2 GeV)=0.532(11). Although currently unable to give a reliable systematic error, we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities
Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2
International Nuclear Information System (INIS)
Unverdorben, Christopher Gerhard
2015-03-01
This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.
Structure of the two-neutrino double-β decay matrix elements within perturbation theory
Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand
2015-06-01
The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.
Closed form for two-photon free-free transition matrix elements
Energy Technology Data Exchange (ETDEWEB)
Karule, Erna E-mail: karule@latnet.lv
2000-08-01
Two-photon free-free transitions happen in the multiphoton ionization with more than one excess photon and in Bremsstrahlung. Up to now, the configuration space free-free transition amplitudes have not been written in closed form. We propose a modified Coulomb Green's function (CGF) Sturm ian expansion which allows one to obtain expressions for two-photon radial transition matrix elements in the closed form which are easy to continue analytically to calculate free-free transitions in H.
Neutron-proton matrix element ratios of 21+ states in 58,60,62,64Ni
International Nuclear Information System (INIS)
Antalik, R.
1989-01-01
The neutron-proton matrix element ratios (η) for 2 1 + states of even Ni isotopes are investigated within the framework of the shell model quasiparticle random-phase approximation. The special attention is devoted to the dependence of η ratios on the radial neutron and proton ground-state density-distribution differences (Δ np ). This dependence is found to be about 0.5Δ np . The theoretical η ratios are 14-23% greater than the hydrodynamical limit. The theoretical Δ np dependence of η ratios enable us to understand the empirical η ratio results. 20 refs.; 2 figs.; 2 tabs
Number-conserving random phase approximation with analytically integrated matrix elements
International Nuclear Information System (INIS)
Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.
1990-01-01
In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
Energy Technology Data Exchange (ETDEWEB)
M. Williams, D. Applegate, M. Bellis, C.A. Meyer
2009-12-01
High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Elimination of matrix effect in quantitative analysis of elements using x-ray fluorescence
International Nuclear Information System (INIS)
Sampaio, R.V.
1973-07-01
The emission-transmission method of Leroux and Mahmud, an experimental technique for compensating matrix effects in photon excited X-ray fluorescence analysis, was used to determine the concentration of lead and antimony in pellets of galalith. The effect of interfering elements was studied by adding various concentrations of mercury and tin to the respective pellets. To illustrate possible environmental applications, a number of pellets was prepared from leaves of almond trees located in different regions of Rio de Janeiro. Lead concentrations were determined for the dried leaf material and showed values ranging from 50 to 145 parts per million [pt
Spin Density Matrix Elements in exclusive production of ω mesons at Hermes
Directory of Open Access Journals (Sweden)
Marianski B.
2014-03-01
Full Text Available Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and –t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.
The matrix element for radiative Bhabha scattering in the forward direction
International Nuclear Information System (INIS)
Kleiss, R.
1993-09-01
We present an approximation to the matrix element for the process e + e - →e + e - γ, appropriate to the situation where one or both of the fermions are scattered over very small angles. The leading terms in the situation where all scattering angles are small contains not only terms quadratic in the electron mass, but also quartic and even sextic terms must be included. Special attention is devoted to the numerical stability of the resultant expression. Its relation to several existing formulae is discussed. (orig.)
The O(αs3TF2) contributions to the gluonic operator matrix element
International Nuclear Information System (INIS)
Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Manteuffel, A. von; Round, M.; Schneider, C.
2014-01-01
The O(α s 3 T F 2 C F (C A )) contributions to the transition matrix element A gg,Q relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines
International Nuclear Information System (INIS)
Yoriyaz, H.
1986-01-01
In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
International Nuclear Information System (INIS)
Song Hong-qiu; Wang Zixing; Cai Yanhuang; Huang Weizhi
1987-01-01
The matrix elements of the M-3Y force are adopted as the equivalent G-matrix elements and the folded diagram method is used to calculate the spectra of 18 O and 18 F. The results show that the matrix elements of the M-3Y force as the equivalent G-matrix elements are suitable for microscopic calculations of the nuclei in the s-d shell
International Nuclear Information System (INIS)
Rousseau, P.
1968-01-01
In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudnyi, 141700 Moscow region (Russian Federation); Cao, Xiangyu [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie, Sorbonne Universités,4 Place Jussieu, 75252 Paris Cedex 05 (France); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)
2017-03-02
In a recent study we considered W{sub 3} Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl{sub 3}. We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes; Hasselhuhn, Alexander; Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik
2012-06-15
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} element of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} >> m{sup 2}.
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Research Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2012-11-01
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} Element-Of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} Much-Greater-Than m{sup 2}.
International Nuclear Information System (INIS)
Cheng Lan; Huang Weizhi; Zhou Baosen
1996-01-01
Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region
Measurement of single top quark production at D0 using a matrix element method
International Nuclear Information System (INIS)
Mitrevski, Jovan Pavle
2007-01-01
Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |V tb |, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb -1 of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of σ s /σ t = 0.44, we measure the single top quark production cross section: σ(p(bar p) → tb + X, tqb + X) = 4.8 -1.4 +1.6 pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance
Diagrammatic technique for calculating matrix elements of collective operators in superradiance
International Nuclear Information System (INIS)
Lee, C.T.
1975-01-01
Adopting the so-called ''genealogical construction,'' one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) -atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-Schwendimann approach to the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field
Reorientation-effect measurement of the matrix element in 10Be
Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.
2012-10-01
The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.
A new program for calculating matrix elements of one-particle operators in jj-coupling
International Nuclear Information System (INIS)
Pyper, N.C.; Grant, I.P.; Beatham, N.
1978-01-01
The aim of this paper is to calculate the matrix elements of one-particle tensor operators occurring in atomic and nuclear theory between configuration state functions representing states containing any number of open shells in jj-coupling. The program calculates the angular part of these matrix elements. The program is essentially a new version of RDMEJJ, written by J.J. Chang. The aims of this version are to eliminate inconsistencies from RDMEJJ, to modify its input requirements for consistency with MCP75, and to modify its output so that it can be stored in a discfile for access by other compatible programs. The program assumes that the configurational states are built from a common orthonormal set of basis orbitals. The number of electrons in a shell having j>=9/2 is restricted to be not greater than 2 by the available CFP routines . The present version allows up to 40 orbitals and 50 configurational states with <=10 open shells; these numbers can be changed by recompiling with modified COMMON/DIMENSION statements. The user should ensure that the CPC library subprograms AAGD, ACRI incorporate all current updates and have been converted to use double precision floating point arithmetic. (Auth.)
An experimentalist's guide to the matrix element in angle resolved photoemission
International Nuclear Information System (INIS)
Moser, Simon
2017-01-01
Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.
Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces
Energy Technology Data Exchange (ETDEWEB)
Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao
2014-07-01
Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.
Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements
International Nuclear Information System (INIS)
Faessler, Amand
2005-01-01
The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters
An experimentalist's guide to the matrix element in angle resolved photoemission
Energy Technology Data Exchange (ETDEWEB)
Moser, Simon, E-mail: skmoser@lbl.gov [Advanced Light Source (ALS), Berkeley, CA 94720 (United States); Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2017-01-15
Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.
Three loop contributions to the matrix elements in the variable flavor number scheme
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Hasselhuhn, Alexander [DESY (Germany); Schneider, Carsten [RISC, JKU Linz (Austria)
2012-07-01
The variable flavor number scheme may be used to describe parton distributions in the transition region in which one heavy quark gradually becomes a light flavor. We present first three-loop results to the massive operator matrix elements A{sub gg} and A{sub gq} for the contributions due to bubble topologies {proportional_to}T{sub F}{sup 2} n{sub f} at general values of the Mellin variable N. The calculation has been performed using higher transcendental functions and by applying modern summation technologies encoded in the package Sigma. These massive operator matrix elements describe the universal contributions in the matching of different flavor sectors, which are the logarithmic and constant contributions in the ratio of m{sup 2}{sub H}/Q{sup 2}, with Q{sup 2} the virtuality and m{sub H} the respective heavy quark mass. The framework allows to derive heavy quark parton distributions which are of relevance for calculating specific processes at hadron-hadron colliders.
Measurement of the top quark mass in the dilepton final state using the matrix element method
Energy Technology Data Exchange (ETDEWEB)
Grohsjean, Alexander [Ludwig Maximilian Univ., Munich (Germany)
2008-12-15
The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb^{-1}. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m_{top}^{Run IIa} = 170.6 ± 6.1(stat.)_{-1.5}^{+2.1}(syst.)GeV; m_{top}^{Run IIb} = 174.1 ± 4.4(stat.)_{-1.8}^{+2.5}(syst.)GeV; m
Standard error propagation in R-matrix model fitting for light elements
International Nuclear Information System (INIS)
Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin
2003-01-01
The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)
International Nuclear Information System (INIS)
Matsuda, Koichi; Nishiura, Hiroyuki
2004-01-01
We reanalyze the mass matrix model of quarks and leptons that gives a unified description of quark and lepton mass matrices with the same texture form. By investigating possible types of assignment for the texture components of the lepton mass matrix, we find that a different assignment for neutrinos than for charged leptons can also lead to consistent values of the Maki-Nakagawa-Sakata-Pontecorv (MNSP) lepton mixing matrix. We also find that the predicted value for the lepton mixing matrix element U 13 of the model depends on the assignment. A proper assignment will be discriminated by future experimental data for U 13
Single top quark production and Vtb CKM matrix element measurement in high energy e+e- collisions
International Nuclear Information System (INIS)
Dokholyan, N.V.; Jikia, G.V.
1993-01-01
The new method of determination of CKM mixing matrix element V tb has been proposed. It has been shown, that at the future colliders one will measure the tb-mixing element with the accuracy 12 - 28%. 16 refs., 6 figs., 1 tab
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
International Nuclear Information System (INIS)
Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Raab, Clemens; Wissbrock, Fabian
2014-02-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a N , a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)
2014-02-15
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States
Abazov, Victor Mukhamedovich
2016-08-18
We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.
International Nuclear Information System (INIS)
Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.
1996-01-01
The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)
Two-loop massive operator matrix elements for unpolarized heavy flavor production to O({epsilon})
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, I.; Bluemlein, J.; Klein, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2008-02-15
We calculate the O({alpha}{sup 2}{sub s}) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}, up to the O({epsilon}) contributions. These terms contribute through the renormalization of the O({alpha}{sup 3}{sub s}) heavy flavor Wilson coefficients of the structure function F{sub 2}(x,Q{sup 2}). The calculation has been performed using light-cone expansion techniques without using the integration-by-parts method. We represent the individual Feynman diagrams by generalized hypergeometric structures, the {epsilon}-expansion of which leads to infinite sums depending on the Mellin variable N. These sums are finally expressed in terms of nested harmonic sums using the general summation techniques implemented in the Sigma package. (orig.)
Improved method for eliminating center-of-mass coordinates from matrix elements in oscillator basis
International Nuclear Information System (INIS)
Richardson, R.H.; Shapiro, J.Y.
1986-01-01
This paper presents a concise, efficient method of reducing potential energy matrix elements to relative coordinates, when one is using an oscillator basis. It is especially suited to computer calculations. One nice feature of the method is its modular form, which allows a wide range of calculations. Separate FORTRAN subroutines have been written which calculate and store tables of the one-dimensional brackets of an equation that is presented and the single particle brackets from the isotropic to the axially symmetric oscillator equations. The tables are used by other subroutines which calculate the modified brackets and the brackets with spin. The methods developed here are a substantial improvement over what has been done heretofore, and open up new possibilities for performing nuclear structure calculations
HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics
Shao, Hua-Sheng
2013-01-01
By the virtues of the Dyson-Schwinger equations, we upgrade the published code \\mtt{HELAC} to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub \\mtt{HELAC-Onia}. We rewrote the original \\mtt{HELAC} to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, \\mtt{HELAC-Onia} is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. $h_{c,b},\\chi_{c,b}$) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.
Grassmann integral and Balian–Brézin decomposition in Hartree–Fock–Bogoliubov matrix elements
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro, E-mail: mizusaki@isc.senshu-u.ac.jp [Institute of Natural Sciences, Senshu University, 3-8-1 Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-8425 (Japan); Oi, Makito [Institute of Natural Sciences, Senshu University, 3-8-1 Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-8425 (Japan); Chen, Fang-Qi [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sun, Yang [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2013-08-09
We present a new formula to calculate matrix elements of a general unitary operator with respect to Hartree–Fock–Bogoliubov states allowing multiple quasi-particle excitations. The Balian–Brézin decomposition of the unitary operator [R. Balian, E. Brézin, Il Nuovo Cimento B 64 (1969) 37] is employed in the derivation. We found that this decomposition is extremely suitable for an application of Fermion coherent state and Grassmann integrals in the quasi-particle basis. The resultant formula is compactly expressed in terms of the Pfaffian, and shows the similar bipartite structure to the formula that we have previously derived in the bare-particles basis [T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219].
Extraction of the CKM matrix element Vus from the hyperon semileptonic decays
International Nuclear Information System (INIS)
Sharma, N.; Dahiya, H.; Chatley, P.K.
2010-01-01
The chiral constituent quark model with configuration mixing (χCQM config ), which is successful in explaining the weak vector and axial-vector form factors for the strangeness-changing as well as strangeness-nonchanging hyperon semileptonic decays at Q 2 =0, has been extended to determine the CKM matrix element V us for the strangeness-changing decays. The implications of the effect of the SU(3) symmetry breaking, Q 2 -dependence and radiative corrections on the form factors and V us have also been investigated. It is found that the results with SU(3) symmetry breaking show considerable improvement over the SU(3) symmetric results when compared with the existing experimental data. The inclusion of the Q 2 -dependence and radiative corrections in form factors have only a small effect on the prediction of V us as is expected from the theory. (orig.)
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
International Nuclear Information System (INIS)
Ablinger, Jakob; Blümlein, Johannes; Hasselhuhn, Alexander; Klein, Sebastian; Schneider, Carsten; Wißbrock, Fabian
2012-01-01
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with ξ∈{1,1/2,2} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q 2 ≫m 2 .
Evaluation of the separate effects tests (SET) validation matrix
International Nuclear Information System (INIS)
1996-11-01
This work is the result of a one year extended mandate which has been given by the CSNI on the request of the PWG 2 and the Task Group on Thermal Hydraulic System Behaviour (TG THSB) in late 1994. The aim was to evaluate the SET validation matrix in order to define the real needs for further experimental work. The statistical evaluation tables of the SET matrix provide an overview of the data base including the parameter ranges covered for each phenomenon and selected parameters, and questions posed to obtain answers concerning the need for additional experimental data with regard to the objective of nuclear power plant safety. A global view of the data base is first presented focussing on areas lacking in data and on hot topics. A new systematic evaluation has been done based on the authors technical judgments and giving evaluation tables. In these tables, global and indicative information are included. Four main parameters have been chosen as the most important and relevant parameters: a state parameter given by the operating pressure of the tests, a flow parameter expressed as mass flux, mass flow rate or volumetric flow rate in the tests, a geometrical parameter provided through a typical dimension expressed by a diameter, an equivalent diameter (hydraulic or heated) or a cross sectional area of the test sections, and an energy or heat transfer parameter given as the fluid temperature, the heat flux or the heat transfer surface temperature of the tests
Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination.
Zhang, Bochao; He, Miaohong; Hang, Wei; Huang, Benli
2013-05-07
Matrix effect is unavoidable in direct solid analysis, which usually is a leading cause of the nonstoichiometric effect in quantitative analysis. In this research, experiments were carried out to study the overall characteristics of atomization and ionization in laser-solid interaction. Both nanosecond (ns) and femtosecond (fs) lasers were applied in a buffer-gas-assisted ionization source coupled with an orthogonal time-of-flight mass spectrometer. Twenty-nine solid standards of ten different matrices, including six metals and four dielectrics, were analyzed. The results indicate that the fs-laser mode offers more stable relative sensitivity coefficients (RSCs) with irradiance higher than 7 × 10(13) W·cm(-2), which could be more reliable in the determination of element composition of solids. The matrix effect is reduced by half when the fs-laser is employed, owing to the fact that the fs-laser ablation and ionization (fs-LAI) incurs an almost heat-free ablation process and creates a dense plasma for the stable ionization.
International Nuclear Information System (INIS)
Boucaud, P.; Gimenez, V.; Lin, C.J.D.; Washington Univ., Seattle, WA; Lubicz, V.; Martinelli, G.; Papinutto, M.; Sachrajda, C.T.
2004-12-01
We present the first direct evaluation of ΔI=3/2 K → ππ matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K → ππ matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behaviour in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. In this way we find stable results for the quenched matrix elements of the electroweak penguin operators ( I=2 left angle ππ vertical stroke O 8 vertical stroke K 0 right angle =(0.68±0.09) GeV 3 and I=2 left angle ππ vertical stroke O 7 vertical stroke K 0 right angle =(0.12±0.02) GeV 3 ), but not for the matrix elements of O 4 (for which there are too many low-energy constants at NLO for a reliable extrapolation). For all three operators we find that the effect of including the NLO corrections is significant (typically about 30%). We present a detailed discussion of the status of the prospects for the reduction of the systematic uncertainties. (orig.)
Directory of Open Access Journals (Sweden)
Sergiu Ciprian Catinas
2015-07-01
Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.
Jiao, C. F.; Engel, J.; Holt, J. D.
2017-11-01
We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.
Energy Technology Data Exchange (ETDEWEB)
Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)
2015-09-14
In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.
International Nuclear Information System (INIS)
Martini, Till; Uwer, Peter
2015-01-01
In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.
A basic evaluated neutronic data file for elemental scandium
International Nuclear Information System (INIS)
Smith, A.B.; Meadows, J.W.; Howerton, R.J.
1992-01-01
This report documents an evaluated neutronic data file for elemental scandium, presented in the ENDF/B-VI format. This file should provide basic nuclear data essential for neutronic calculations involving elemental scandium. No equivalent file was previously available
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
International Nuclear Information System (INIS)
Filippov, G.F.; Ovcharenko, V.I.; Teryoshin, Yu.V.
1980-01-01
For near-magnetic nuclei, the matrix elements of the central exchange nucleon-nucleon interaction potential energy operator between the generating functions of the total basis of the Sn are obtained. The basis states are highest weigt vectorsp(2,R) irreducible representatio of the SO(3) irredicible representation and in addition, have a definite O(A-1) symmetry. The Sp(2,R) basis generating matrix elements simplify essentially the problem of calculating the spectrum of collective excitations of the atomic nucleus over an intrinsic function of definite O(A-1) symmetry
The SBIRT program matrix: a conceptual framework for program implementation and evaluation.
Del Boca, Frances K; McRee, Bonnie; Vendetti, Janice; Damon, Donna
2017-02-01
Screening, Brief Intervention and Referral to Treatment (SBIRT) is a comprehensive, integrated, public health approach to the delivery of services to those at risk for the adverse consequences of alcohol and other drug use, and for those with probable substance use disorders. Research on successful SBIRT implementation has lagged behind studies of efficacy and effectiveness. This paper (1) outlines a conceptual framework, the SBIRT Program Matrix, to guide implementation research and program evaluation and (2) specifies potential implementation outcomes. Overview and narrative description of the SBIRT Program Matrix. The SBIRT Program Matrix has five components, each of which includes multiple elements: SBIRT services; performance sites; provider attributes; patient/client populations; and management structure and activities. Implementation outcomes include program adoption, acceptability, appropriateness, feasibility, fidelity, costs, penetration, sustainability, service provision and grant compliance. The Screening, Brief Intervention and Referral to Treatment Program Matrix provides a template for identifying, classifying and organizing the naturally occurring commonalities and variations within and across SBIRT programs, and for investigating which variables are associated with implementation success and, ultimately, with treatment outcomes and other impacts. © 2017 Society for the Study of Addiction.
International Nuclear Information System (INIS)
Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.
2005-01-01
In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains
Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method
International Nuclear Information System (INIS)
Wolf, J.P.; Darbre, G.R.
1984-01-01
The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)
International Nuclear Information System (INIS)
Badalov, S.A.; Filippov, G.F.
1986-01-01
The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-01
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
International Nuclear Information System (INIS)
Soldatov, A.; Seke, J.; Adam, G.; Polak, M.
2008-01-01
Full text: A closed analytic form for relativistic transition matrix elements between bound-bound, bound-unbound and unbound-unbound relativistic eigenstates of hydrogenic atoms by using the plane-wave expansion for the electromagnetic-field vector potential was derived in a form convenient for large-scale numerical calculations in QED. By applying the obtained formulae, these transition matrix elements can be evaluated analytically and numerically. These exact matrix elements, which to our knowledge have not been calculated as yet, are of great importance in the analysis of various atom-field interaction processes where retardation effects cannot be ignored. The ultimate goal of the ongoing research is to develop a general universal calculation technique for Seke's approximation and renormalization method in QED, for which the usage of the plane vector expansion for the vector potential is a preferable choice. However, our primary interest lies in the Lamb-shift calculation. Our nearest objective is to carry out the plain-style relativistic calculations of the Lamb shift of the energy levels of hydrogen-like atoms and ions from first principles in the second and higher perturbative orders, using the corresponding convenient as well as novel expressions for the magnitude in question as they stand, i.e. without any additional approximations. Due to that there is no way to achieve all the above-declared goals without recourse to large-scale laborious and time-consuming high-precision numerical calculations, having the transition matrix elements of all possible types in an analytic, convenient for their efficient numerical evaluation form, would be highly advantageous and even unavoidable, especially for calculations of various QED effects in higher perturbative orders be it, equally, in traditional or novel approach. (author)
Kramer, Harald; Michaely, Henrik J; Matschl, Volker; Schmitt, Peter; Reiser, Maximilian F; Schoenberg, Stefan O
2007-06-01
Recent developments in hard- and software help to significantly increase image quality of magnetic resonance angiography (MRA). Parallel acquisition techniques (PAT) help to increase spatial resolution and to decrease acquisition time but also suffer from a decrease in signal-to-noise ratio (SNR). The movement to higher field strength and the use of dedicated angiography coils can further increase spatial resolution while decreasing acquisition times at the same SNR as it is known from contemporary exams. The goal of our study was to compare the image quality of MRA datasets acquired with a standard matrix coil in comparison to MRA datasets acquired with a dedicated peripheral angio matrix coil and higher factors of parallel imaging. Before the first volunteer examination, unaccelerated phantom measurements were performed with the different coils. After institutional review board approval, 15 healthy volunteers underwent MRA of the lower extremity on a 32 channel 3.0 Tesla MR System. In 5 of them MRA of the calves was performed with a PAT acceleration factor of 2 and a standard body-matrix surface coil placed at the legs. Ten volunteers underwent MRA of the calves with a dedicated 36-element angiography matrix coil: 5 with a PAT acceleration of 3 and 5 with a PAT acceleration factor of 4, respectively. The acquired volume and acquisition time was approximately the same in all examinations, only the spatial resolution was increased with the acceleration factor. The acquisition time per voxel was calculated. Image quality was rated independently by 2 readers in terms of vessel conspicuity, venous overlay, and occurrence of artifacts. The inter-reader agreement was calculated by the kappa-statistics. SNR and contrast-to-noise ratios from the different examinations were evaluated. All 15 volunteers completed the examination, no adverse events occurred. None of the examinations showed venous overlay; 70% of the examinations showed an excellent vessel conspicuity
Dietary patterns and trace elements intake evaluation
International Nuclear Information System (INIS)
Rahman, A.; Waheed, S.; Zaidi, J.H.; Ahmad, S.
1998-01-01
The dietary patterns and trace element contents of the integrated diets of middle income population in Gujranwala and of Islamabad have been studied and dietary intake of winter and summer are given. An overview of the elemental concentration in the two sets of integrated diets reveals similar zinc and manganese concentrations; comparatively higher nickel, selenium and potassium concentrations in Gujranwala and higher chromium, cesium, scandium, sodium and chlorine concentrations in Islamabad. These results undoubtedly reflect the difference in food selection and habits of the two populations, the influence of soil content and industrial pollution
K →π matrix elements of the chromomagnetic operator on the lattice
Constantinou, M.; Costa, M.; Frezzotti, R.; Lubicz, V.; Martinelli, G.; Meloni, D.; Panagopoulos, H.; Simula, S.; ETM Collaboration
2018-04-01
We present the results of the first lattice QCD calculation of the K →π matrix elements of the chromomagnetic operator OCM=g s ¯ σμ νGμ νd , which appears in the effective Hamiltonian describing Δ S =1 transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOK π=0.273 (69 ) , while in the SU(3) chiral limit we obtain BCMO=0.076 (23 ) . Our findings are significantly smaller than the model-dependent estimate BCMO˜1 - 4 , currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.
Phenomenological renormalization of free nucleon-nucleon interaction. [Sussex matrix elements
Energy Technology Data Exchange (ETDEWEB)
Prakash, M; Waghmare, Y R [Indian Inst. of Tech., Kanpur. Dept. of Physics; Mehrotra, I [Allahabad Univ. (India). Dept. of Physics
1976-08-01
Low-lying spectra of /sup 6/Li, /sup 18/F, /sup 18/O, /sup 42/Sc, /sup 42/Ca, /sup 58/Ni and /sup 92/Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the /sup 3/S/sub 1/ relative state are made (1+..cap alpha..) times their bare interaction value, where ..cap alpha.. is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME.
International Nuclear Information System (INIS)
Fatchurrohman, N; Marini, C D; Suraya, S; Iqbal, AKM Asif
2016-01-01
The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc. (paper)
Quarkonium polarization and the long distance matrix elements hierarchies using jet substructure
Dai, Lin; Shrivastava, Prashant
2017-08-01
We investigate the quarkonium production mechanisms in jets at the LHC, using the fragmenting jet functions (FJF) approach. Specifically, we discuss the jet energy dependence of the J /ψ production cross section at the LHC. By comparing the cross sections for the different NRQCD production channels (1S0[8], 3S1[8], 3PJ[8], and 3cripts>S1[1]), we find that at fixed values of energy fraction z carried by the J /ψ , if the normalized cross section is a decreasing function of the jet energy, in particular for z >0.5 , then the depolarizing 1S0[8] must be the dominant channel. This makes the prediction made in [Baumgart et al., J. High Energy Phys. 11 (2014) 003, 10.1007/JHEP11(2014)003] for the FJF's also true for the cross section. We also make comparisons between the long distance matrix elements extracted by various groups. This analysis could potentially shed light on the polarization properties of the J /ψ production in high pT region.
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Manteuffel, A. von
2015-09-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A Qg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
A measurement of the top quark mass with a matrix element method
Energy Technology Data Exchange (ETDEWEB)
Gibson, Adam Paul [Univ. of California, Berkeley, CA (United States)
2006-01-01
The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb^{-1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t$\\bar{t}$ and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb^{-1} dataset they extract a top quark mass of 172.0 ± 2.6(stat) ± 3.3(syst) GeV/c^{2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c^{2} for m $\\bar{t}$ = 178 GTeV/c^{2} and 3.1 GeV/c^{2} for m $\\bar{t}$ = 172.5 GeV/c^{2}. The systematic error is dominated by the uncertainty of the jet energy scale.
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Study on thermal conductivity of HTR spherical fuel element matrix graphite
International Nuclear Information System (INIS)
Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe
2014-01-01
Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
Energy Technology Data Exchange (ETDEWEB)
Bury, Marcin; Hameren, Andreas van; Kutak, Krzysztof; Sapeta, Sebastian [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Jung, Hannes [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); DESY, Hamburg (Germany); Serino, Mirko [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2018-02-15
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p{sub t} dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization. (orig.)
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, Fabian [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2014-08-15
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a{sup N},a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
International Nuclear Information System (INIS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-01-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a N ,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions
Matrix elements of four-quark operators relevant to life time difference ΔΓBs from QCD sum rules
International Nuclear Information System (INIS)
Huang, C.S.; Zhang Ailin; Zhu, S.L.
2001-01-01
We extract the matrix elements of four-quark operators O L,S relevant to the B s and anti B s life time difference from QCD sum rules. We find that the vacuum saturation approximation works reasonably well, i.e., within 10%. We discuss the implications of our results and compare them with a recent lattice QCD determination. (orig.)
Study of color-octet matrix elements through J/ψ production in e{sup +}e{sup -} annihilation
Energy Technology Data Exchange (ETDEWEB)
Li, Yi-Jie; Xu, Guang-Zhi; Zhang, Pan-Pan; Liu, Kui-Yong [Liaoning University, Department of Physics, Shenyang (China); Zhang, Yu-Jie [Beihang University, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)
2017-09-15
In this paper, the color-octet long distance matrix elements are studied through the inclusive J/ψ production in e{sup +}e{sup -} annihilation within the framework of non-relativistic QCD factorization. The calculations are up-to next-to-leading order with the radiative and relativistic corrections in the energy region of the B-factory and the near-threshold region of 4.6-5.6 GeV. A constraint of the long distance matrix elements (left angle {sup 1}S{sub 0}{sup 8} right angle, left angle {sup 3}P{sub 0}{sup 8} right angle) is obtained. Through our estimation, the P-wave color-octet matrix element (left angle 0 vertical stroke {sup 3}P{sup 8}{sub 0} vertical stroke 0 right angle) should be of the order of 0.008m{sub c}{sup 2} GeV{sup 3} or less. The constrained region is not compatible with the values of the long distance matrix elements fitted at hadron colliders. (orig.)
International Nuclear Information System (INIS)
Zhang, L.
1981-08-01
A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given
Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications
Directory of Open Access Journals (Sweden)
Konstantinos G. Dassios
2013-01-01
Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
International Nuclear Information System (INIS)
Chan, George C.-Y.; Chan, W.-T.
2003-01-01
The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies
Body fluid matrix evaluation on a Roche cobas 8000 system.
Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R
2015-09-01
Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay
Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Lo Presti, D.; Oliveira, J. R. B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; Calabretta, L.; Calvo, D.; Pandola, L.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Brunasso, O.; Burrello, S.; Calabrese, S.; Calanna, A.; Chávez Lomelí, E. R.; D'Agostino, G.; De Faria, P. N.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; Ferreira, J. L.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia-Tecocoatzi, H.; Greco, V.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lay, J. A.; La Via, F.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lubian, J.; Medina, N. H.; Mendes, D. R.; Moralles, M.; Muoio, A.; Pakou, A.; Petrascu, H.; Pinna, F.; Reito, S.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Santos, R. B. B.; Sgouros, O.; da Silveira, M. A. G.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Magana Vsevolodovna, R.; Yildirim, A.; Zagatto, V. A. B.
2018-05-01
The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.
Theoretical evaluation of matrix effects on trapped atomic levels
International Nuclear Information System (INIS)
Das, G.P.; Gruen, D.M.
1986-06-01
We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs
Swain, J D
1999-01-01
We present a new method for the determination of the Cabibbo- Kobayashi-Maskawa quark mixing matrix element V/sub tb/ from electroweak loop corrections, in particular those affecting the process Z to bb. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine V /sub tb/=0.77/sub -0.24//sup +18/. We comment briefly on the implications of this measurement for the mass of the top quark and Higgs boson, alpha /sub s/, and CKM unitarity. (19 refs).
Directory of Open Access Journals (Sweden)
Leandro Ferreira Friedrich
Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, W. van [Leiden Univ. (Netherlands). Lorentz Institute
2008-12-15
We describe the calculation of the two-loop massive operator matrix elements for massive external fermions. These matrix elements are needed for the calculation of the O({alpha}{sup 2}) initial state radiative corrections to e{sup +}e{sup -} annihilation into a neutral virtual gauge boson, based on the renormalization group technique. (orig.)
NNLO QCD corrections to the $B\\to X_s \\gamma$ matrix elements using interpolation in $m_c$
Misiak, M; Misiak, Mikolaj; Steinhauser, Matthias
2007-01-01
One of the most troublesome contributions to the NNLO QCD corrections to B -> X_s gamma originates from three-loop matrix elements of four-quark operators. A part of this contribution that is proportional to the QCD beta-function coefficient beta_0 was found in 2003 as an expansion in m_c/m_b. In the present paper, we evaluate the asymptotic behaviour of the complete contribution for m_c >> m_b/2. The asymptotic form of the beta_0-part matches the small-m_c expansion very well at the threshold m_c = m_b/2. For the remaining part, we perform an interpolation down to the measured value of m_c, assuming that the beta_0-part is a good approximation at m_c=0. Combining our results with other contributions to the NNLO QCD corrections, we find BR(B -> X_s gamma) = (3.15 +_ 0.23) x 10^-4 for E_gamma > 1.6 GeV in the B-meson rest frame. The indicated error has been obtained by adding in quadrature the following uncertainties: non-perturbative (5%), parametric (3%), higher-order perturbative (3%), and the interpolation...
Directory of Open Access Journals (Sweden)
K. A. Ramesh Kumar
2014-09-01
Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1997-01-01
The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)
Evaluation of physical-protection elements for interior applications
International Nuclear Information System (INIS)
Scott, S.H.
1983-01-01
Considerable emphasis has been given in recent years to the threat of sabotage by an insider at nuclear facilities. This threat is inherently different from the outsider threat of theft or sabotage because of the insiders' unique knowledge and access to vital material and equipment. Thus, special safeguards elements are needed in order to counter the insider threat. In addition, insider physical protection system elements must be compatible with the operations, safety, and maintenance programs at the facility. To help identify elements which meet these needs, field evaluations were performed on an interior access control system, piping sensors, interior video motion detectors, and valve monitoring devices. These elements were tested in a realistic operating environment and both technical and operational evaluation data were obtained. Safeguards element descriptions and the results of the operational tests and evaluations are outlined
International Nuclear Information System (INIS)
Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing
2009-01-01
Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.
The transition matrix element Agq(N) of the variable flavor number scheme at O(α3s)
International Nuclear Information System (INIS)
Ablinger, J.; Hasselhuhn, A.; Schneider, C.; Manteuffel, A. von
2014-01-01
We calculate the massive operator matrix element A (3) gq (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α 3 s ). A fist independent recalculation is performed for the contributions ∝ N F of the 3-loop anomalous dimension γ (2) gq (N).
Radiochemical separation and ICP-AES determination of some common metallic elements in ThO2 matrix
International Nuclear Information System (INIS)
Adya, V.C.; Hon, N.S.; Bangia, T.R.; Sastry, M.D.; Iyer, R.H.
1997-01-01
Radioactive tracer and also ICP-AES studies have been carried out to determine Al, Cd, Ca, Cr, Co, Cu, Mn, Mo and Pd in ThO 2 matrix after chemical separation. Di-2-ethyl-hexyl phosphoric acid/xylene/HNO 3 extraction system was used for quantitative separation of thorium. The recovery of elements as determined by tracers and ICP-AES was found to be quantitative within experimental error. (author). 3 refs., 1 tab
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi
2002-01-01
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
SU(2) X SU(2) X U(1) basis for symmetric SO(6) representations: matrix elements of the generators
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1987-01-01
Matrix elements of the group generators for the symmetric irreducible representations of SO(6) are explicitly calculated in a closed form employing thedecomposition chain SO(6) is contained in SU(2) X SU(2) X U(1) (which is different from the well known Wigner supermultiplet scheme). The relation to the Gel'fand Tsetlin method using SO(6) contained in SO(5) up to ... SO(2) is indicated. An example of a physical application is given
The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3)
International Nuclear Information System (INIS)
Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Manteuffel, A. von; Round, M.; Schneider, C.; Wißbrock, F.
2014-01-01
We calculate the massive unpolarized operator matrix element A gq (3) (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α s 3 ). A first independent recalculation is performed for the contributions ∝N F of the 3-loop anomalous dimension γ gq (2) (N)
Evaluation of the glow curves of a new glass matrix
International Nuclear Information System (INIS)
Oliveira, Nathália S.; Souza, Samara P.; Ferreira, Pâmela Z.; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P.; Carrera, Betzabel N.S.; Watanabe, Shigueo
2017-01-01
Thermoluminescence is a dosimetric technique with may be used to personal, clinical, environmental and high doses. In this work a new glass matrix, with nominal composition of 20Li 2 CO 3 .10Al 2 O 3 .25BaO.45B 2 O 3 (mol%), was studied by the thermoluminescence technique. The glow curves was be analyzed, after the irradiation of this glass matrix with high doses. The results showed that this new glass matrix has a temperature peak in 260°C, which is ideal for dosimetry applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)
2017-09-10
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.
DEFF Research Database (Denmark)
Hansen, Lasse Majgaard; Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard
2015-01-01
of modified characteristic stress resultants, which are compared to a pre-defined tolerance value, without any thorough statistical evaluation. In the present paper, it is tested whether three widely-used statistical pattern-recognition-based damage-detection methods can provide an effective statistical...... evaluation of the characteristic stress resultants, hence facilitating general discrimination between damaged and undamaged elements. The three detection methods in question enable outlier analysis on the basis of, respectively, Euclidian distance, Hotelling’s statistics, and Mahalanobis distance. The study...... alternately to an undamaged reference model with known stiffness matrix, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. At present, the discrimination between potentially damaged elements and undamaged ones is typically conducted on the basis...
Theoretical evaluation of matrix effects on trapped atomic levels
Energy Technology Data Exchange (ETDEWEB)
Das, G.P.; Gruen, D.M.
1986-06-01
We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs.
Evaluation of olibanum and its resin as rate controlling matrix for controlled release of diclofenac
Chowdary KPR; Mohapatra P; Murali Krishna M
2006-01-01
Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablet...
Gates, S. James; Kang, Lucas; Kessler, David S.; Korotkikh, Vadim
2018-04-01
A Gadget, more precisely a scalar Gadget, is defined as a mathematical calculation acting over a domain of one or more adinkra graphs and whose range is a real number. A 2010 work on the subject of automorphisms of adinkra graphs, implied the existence of multiple numbers of Gadgets depending on the number of colors under consideration. For four colors, this number is two. In this work, we verify the existence of a second such Gadget and calculate (both analytically and via explicit computer-enabled algorithms) its 1,358,954,496 matrix elements over 36,864 minimal valise adinkras related to the Coxeter Group BC4.
International Nuclear Information System (INIS)
Gladney, E.S.; Perrin, D.R.; Robinson, R.D.; Trujillo, P.E.
1984-01-01
Concentrations of forty-one elements were determined in NBS Urban Air Particulate materials using neutron activation, atomic absorption, and instrumental combustion methods. The usefulness of this reference material is evaluated as a function of composition, certified value availability, matrix format, and cost. (author)
Matrix evaluation for Pseudomonas spp. immobilisation in phenol bioremediation
Directory of Open Access Journals (Sweden)
Leonel Chitiva Urbina
2003-07-01
Full Text Available Pseudomonas spp. were cultivated in a free cell suspension and also immobilised in three different matrices to observe the influence of a contaminant like phenol on degradation velocity and compare each one's results. Polyurethane polymers, alginate (Manohar et al, 2001 and a mixture of alginate and polyvinyl alcohol (Doria et al, 2002 were selected and tested as matrices; all of them proved viable as matrices for cell immobilisation. Pseudomonas were cultivated in an initial 10 cfu/ml concentration in each one of the matrices for comparison purposes and in a medium without matrix; all mediums were supplemented with a minimum salt medium and 200 ppm phenol. A removal time of 23 days was observed in the medium without matrix, 15 days in the polyurethane matrix and 7 days in the alginate matrices. Improved removal times were observed in all matrices when compared to the free cell suspension.
Consolidation effects on tensile properties of an elemental Al matrix composite
Energy Technology Data Exchange (ETDEWEB)
Tang, F. [Building 4515, MS 6064, Metals and Ceramics Division, Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)]. E-mail: tangf@ornl.gov; Meeks, H. [Ceracon Inc., 5150 Fairoaks Blvd. 01-330, Carmichael, CA 95628 (United States); Spowart, J.E. [UES Incorporated, AFRL/MLLM Building 655, 2230 Tenth St. Suite 1, Wright-Patterson AFB, OH 45433 (United States); Gnaeupel-Herold, T. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Prask, H. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Anderson, I.E. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)
2004-11-25
In a simplified composite design, an unalloyed Al matrix was reinforced by spherical Al-Cu-Fe alloy particles (30 vol.%), using either commercial purity (99.7%) or high purity (99.99%) fine powders (diameter < 10 {mu}m). This composite material was consolidated by either vacuum hot pressing (VHP) or quasi-isostatic forging. The spatial distribution of reinforcement particles in both VHP and forged samples was shown to be almost the same by quantitative characterization with a multi-scale area fraction analysis technique. The tensile properties of all composite samples were tested and the forged materials showed significantly higher strength, while the elastic modulus values of all composite materials were close to the upper bound of theoretical predictions. Neutron diffraction measurements showed that there were high compressive residual stresses in the Al matrix of the forged samples and relatively low Al matrix residual stresses (predominantly compressive) in the VHP samples. By tensile tests and neutron diffraction measurements of the forged samples after annealing, it was shown that the high compressive residual stresses in the Al matrix were relieved and that tensile strength was also reduced to almost the same level as that of the VHP samples. Therefore, it was deduced that increased compressive residual stresses and enhanced dislocation densities in the forged composites raised the tensile strength to higher values than those of the VHP composites.
The extracellular matrix - the under-recognized element in lung disease?
Burgess, Janette K.; Mauad, Thais; Tjin, Gavin; Karlsson, Jenny C.; Westergren-Thorsson, Gunilla
2016-01-01
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has
Economic evaluation and Applications of the Policy Analysis Matrix ...
African Journals Online (AJOL)
By using benefit to costs index, internal rate of return, net present value and policy analysis matrix were calculated. The results show that intercropping was affordable than sole cropping. Sole cropping of these crops had no relative advantage, while mixed cropping had a relative advantage than sole cropping. Nominal ...
Design and Evaluation of an Oral Floating Matrix Tablet of ...
African Journals Online (AJOL)
Purpose: To develop floating matrix tablets of salbutamol sulphate using ethyl cellulose and acrycoat S-100 as polymers, and sodium bicarbonate, citric acid and tartaric acid as gas generating agents. Methods: Twenty four formulations were prepared and segregated into four major categories, A to D. The floating tablets ...
Estimation of covariance matrix on the experimental data for nuclear data evaluation
International Nuclear Information System (INIS)
Murata, T.
1985-01-01
In order to evaluate fission and capture cross sections of some U and Pu isotopes for JENDL-3, we have a plan for evaluating them simultaneously with a least-squares method. For the simultaneous evaluation, the covariance matrix is required for each experimental data set. In the present work, we have studied the procedures for deriving the covariance matrix from the error data given in the experimental papers. The covariance matrices were obtained using the partial errors and estimated correlation coefficients between the same type partial errors for different neutron energy. Some examples of the covariance matrix estimation are explained and the preliminary results of the simultaneous evaluation are presented. (author)
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-28
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
International Nuclear Information System (INIS)
Abdolsalami, F.; Abdolsalami, M.; Perez, L.; Gomez, P.
1995-01-01
The authors have applied the finite-element method to electron-molecule collision with the exchange effect implemented rigorously. All the calculations are done in the body-frame within the fixed-nuclei approximation, where the exact treatment of exchange as a nonlocal effect results in a set of coupled integro-differential equations. The method is applied to e-H 2 and e-N 2 scatterings and the cross sections obtained are in very good agreement with the corresponding results the authors have generated from the linear-algebraic approach. This confirms the significant difference observed between their results generated by linear-algebraic method and the previously published e-N 2 cross sections. Their studies show that the finite-element method is clearly superior to the linear-algebraic approach in both memory usage and CPU time especially for large systems such as e-N 2 . The system coefficient matrix obtained from the finite-element method is often sparse and smaller in size by a factor of 12 to 16, compared to the linear-algebraic technique. Moreover, the CPU time required to obtain stable results with the finite-element method is significantly smaller than the linear-algebraic approach for one incident electron energy. The usage of computer resources in the finite-element method can even be reduced much further when (1) scattering calculations involving multiple electron energies are performed in one computer run and (2) exchange, which is a short range effect, is approximated by a sparse matrix. 17 refs., 7 figs., 5 tabs
DESIGN AND EVALUATION OF LOSARTAN POTASSIUM MATRIX TABLETS WITH NATURAL AND SYNTHETIC POLYMERS
R. L. C. Sasidhar et al.
2012-01-01
The objective of the study was to formulate controlled release matrix tablets of losartan Potassium by using a combination of hydrophilic synthetic polymer like poly (ethylene oxides) and natural gums like xanthan gum, karaya gum and guar gum. A combination of synthetic hydrophobic polymers like methacrylates with synthetic hydrophilic polymer like poly (ethylene oxide) was also used in the preparation of matrix tablets and evaluated for their influence on controlled drug release. The matrix ...
Fixation of actinide elements into zeolites/zeotypes and Flexcrete-cement matrix
International Nuclear Information System (INIS)
Amini, S.; Dyer, A.; Durrani, S.K.
1993-01-01
The leaching behavior of α-emitter radionuclides (uranium and americium) from zeolite-L and the zeotype (SAPO-34) in a Flexcrete-cement matrix were examined by static and dynamic methods using 0.005M CaCl 2 and synthetic ground water as leachants. The leaching rates of UO 2 2+ were found to be higher by about ten orders of magnitude than those of Am 3+ for both zeolite-L and SAPO-34 in the cement matrix. The static and dynamic leaching rates of UO 2 2+ for SAPO-34 in CaCl 2 and synthetic ground water were ten orders of magnitude lower than those for L. SAPO-34 showed good selectivity for uranium at pH 2-3.5 and L was usefully selective for Am 3+ . Distribution coefficients of Am 3+ and UO 2 2+ increased with equilibrium pH. (author) 20 refs.; 2 figs.; 4 tabs
Directory of Open Access Journals (Sweden)
Antonoaea Paula
2017-06-01
Full Text Available Objective: Transdermal therapeutic systems (TTSs represent an intensely studied alternative to oral delivery of non-steroid anti-inflammatory drugs (NSAIDs in the treatment of rheumatic diseases due to its ability of avoiding the side effects of the oral route. This study aims to present the evaluation of the mechanical properties of three NSAIDs (meloxicam, tenoxicam and indomethacin individually included in four type of polymeric matrixes, as part of new formulations development process. Methods: 12 products in form of TTS matrixes were prepared by solvent casting evaporation technique, using hydroxypropyl methylcellulose (HPMC 15000, HPMC E5 and/or ethylcellulose as matrix-forming polymers. Each of the resulted products was evaluated by determining the water vapor absorption, desorption or transmission in controlled atmosphere humidity (evaluation of porosity; the elongation capacity, tensile strength and bioadhesiveness (evaluation of mechanical properties. Results: The analysis of three groups of the experimental data expressed as averages on each group was necessary, in order to identify the parameters which statistically are critically influenced by the ingredients associated in the TTSs matrix compositions. Analysis by normality tests, variance and correlation tests (Anova, Pearson enabled evaluation of the effect of NSAID type vs. the effect of polymer matrix type on the parameters of the NSAID TTS matrix. Conclusions: Meloxicam incorporated in the structure of HPMC 15000 polymeric matrix favors its viscoelastic structure. Ethylcellulose functions as plasticizer and supports the matrix bioadhesiveness. HPMC E5 does not meet the requirements for TTS preparation in the used experimental conditions.
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.
2015-01-01
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
International Nuclear Information System (INIS)
Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.
2015-01-01
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm 2 and the total size of the detector head is 47.8 × 46.3 mm 2 . Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can
Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites
Czech Academy of Sciences Publication Activity Database
Dlouhý, Ivo; Chlup, Zdeněk
2005-01-01
Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005
Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes
International Nuclear Information System (INIS)
Anselmino, M.; Murgia, F.; Quintairos, P.
1999-04-01
Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)
Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients
Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.
2018-03-01
Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.
Swain, John; Taylor, Lucas
1997-01-01
The magnitudes of the CKM matrix elements $V_{td}$, $V_{ts}$, and $V_{tb}$ are determined for the first time without any assumptions of unitarity. The implications for the unitarity of the CKM matrix as a whole are discussed.
3-Loop massive O(T{sub 2}{sup F}) contributions to the DIS operator matrix element A{sub gg}
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence
2014-09-15
Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A{sup (3)}{sub gg,Q} is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.
International Nuclear Information System (INIS)
Abdolsalami, F.; Abdolsalami, M.; Gomez, P.
1994-01-01
We have applied the finite-element method to electron-molecule collisions. All the calculations are done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the static and polarization potential, has been used to represent the exchange effect. The method is applied to electron-H 2 scattering and the eigenphase sums and the cross sections obtained are in very good agreement with the corresponding results from the linear-algebraic approach. Finite-element calculations of the R matrix in the region where the static and exchange interactions are strong, however, has about one-half to one-fourth of the memory requirement of the linear-algebraic technique
International Nuclear Information System (INIS)
Pascual, J.
1987-01-01
An X-ray fluorescence method for determining trace elements in silicate rock samples was studied. The procedure focused on the application of the pertinent matrix corrections. Either the Compton peak or the reciprocal of the mass absorption coefficient of the sample was used as internal standard for this purpose. X-ray tubes with W or Cr anodes were employed, and the W Lβ and Cr Kα Compton intensities scattered by the sample were measured. The mass absorption coefficients at both sides of the absorption edge for Fe (1.658 and 1.936 A) were calculated. The elements Zr, Y, Rb, Zn, Ni, Cr and V were determined in 15 international reference rocks covering wide ranges of concentration. Relative mean errors were in many cases less than 10%. (author)
Matrix units and Schur elements for the degenerate cyclotomic Hecke algebras
Zhao, Deke
2011-01-01
The paper uses the cellular basis of the (semi-simple) degenerate cyclotomic Hecke algebras to investigate these algebras exhaustively. As a consequence, we describe explicitly the "Young's seminormal form" and a orthogonal bases for Specht modules and determine explicitly the closed formula for the natural bilinear form on Specht modules and Schur elements for the degenerate cyclotomic Hekce algebras.
Design evaluation of the HTGR fuel element size reduction system
International Nuclear Information System (INIS)
Strand, J.B.
1978-06-01
A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures
Evaluation of some trace elements (zinc, chromium, cadmium and ...
African Journals Online (AJOL)
Throughout the world, tuberculosis (TB) infection is on the increase and it has remained one of the most important causes of death among adults in developing countries. This study evaluated the serum concentrations of some trace elements -Zinc (Zn), Manganese (Mn), Chromium (Cr) and Cadmium (Cd), in 100 blood ...
An evaluated neutronic data file for elemental zirconium
International Nuclear Information System (INIS)
Smith, A.B.; Chiba, S.
1994-09-01
A comprehensive evaluated neutronic data file for elemental zirconium is derived and presented in the ENDF/B-VI formats. The derivation is based upon measured microscopic nuclear data, augmented by model calculations as necessary. The primary objective is a quality contemporary file suitable for fission-reactor development extending from conventional thermal to fast and innovative systems. This new file is a significant improvement over previously available evaluated zirconium files, in part, as a consequence of extensive new experimental measurements reported elsewhere
Evaluation of a Solid Phase DNA Binding Matrix for Downstream PCR Analysis
National Research Council Canada - National Science Library
Bader, Douglas E; Fisher, Glen R; Stratilo, Chad W
2005-01-01
A commercially available solid-phase DNA binding matrix (FTA cards) was evaluated for its ability to capture and release DNA for downstream gene amplification and detection assays using polymerase chain reaction (PCR...
Energy Technology Data Exchange (ETDEWEB)
Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)
1996-12-31
Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.
Directory of Open Access Journals (Sweden)
Prokhin Egor Anatol’evich
2016-10-01
Full Text Available In the modern conditions innovatization of construction is of great necessity, though it is associated with a number of problems of first of all institutional genesis. The development of green construction in Russia is on its first stages, though its necessity is growing according to the tendency for energy efficiency and sustainable development. The innovative process of ecological construction has a network model and requires its optimization with the aim of further development by advancing the institutional platform. The author proposed a conceptual scheme for an institutional platform of the innovative process of green construction and conducted systematization of institutional structures. The unique role of innovative and ecological institutes is substantiated. The author recommends an optimization method for institutional interaction of the subjects using the stakeholder theory and the theory of matrix games aimed at activation of innovative green technologies. Practical application of the offered algorithms and methods will allow increasing the efficiency of green construction development.
The determination of light elements in heavy matrix using proton induced X-ray emission
International Nuclear Information System (INIS)
Levenets, V.V.; Omel'nik, A.P.; Shchur, A.A.; Chernov, A.E.; Usikov, N.P.; Zats, A.V.
2007-01-01
In this report the possibility of determination of light impurities in heavy matrixes is studied using proton induced X-Ray emission. The wide-band X-ray emission filter made from pyrolytic graphite was used in spectrometric scheme of experiment. The results of studying of filter features in energy range of X-ray emission from 4 to 12 keV were presented. The possibilities were examined of application of pyrolytic graphite filter to modify the X-rays spectrum for determination of iron, using characteristic emission of K-series, and hafnium, using L-series, in substances on base of zirconium (glasses, alloys etc.). It was shown, that the using of similar filter allows to reach the significant improving of metrological characteristics of analysis of mentioned impurities: the limits of detection of iron and hafnium were lowered single-order of magnitude. (authors)
International Nuclear Information System (INIS)
Lee, Young Woo; Cho, Moon Sung
2011-01-01
The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Goedicke, A. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)
2017-12-15
We report on our latest results in the calculation of the two-mass contributions to 3-loop operator matrix elements (OMEs). These OMEs are needed to compute the corresponding contributions to the deep-inelastic scattering structure functions and to generalize the variable flavor number scheme by including both charm and bottom quarks. We present the results for the non-singlet and A{sub gq,Q} OMEs, and compare the size of their contribution relative to the single mass case. Results for the gluonic OME A{sub gg,Q} are given in the physical case, going beyond those presented in a previous publication where scalar diagrams were computed. We also discuss our recently published two-mass contribution to the pure singlet OME, and present an alternative method of calculating the corresponding diagrams.
International Nuclear Information System (INIS)
Kirchbach, M.
1986-01-01
In this paper the experience in extracting the value of the weak pion-nucleon coupling constant f/sub π//sup l/ from the parity-mixing matrix element + , T = 1; 1.042 MeV | V/sub PNC/ | O - , T = 0; 1.081 MeV> in 18 F is summarized with the aim to reveal some sources of uncertainties of the models exploited. We show that beyond of the long wavelenth approximation and in treating non-soft pion corrections to the two-body nuclear chiral charge density an upper bound for f/sub π//sup l/ is obtained which is about two times smaller as compared to results of previous analyses of similar character. Finally, we accentuate on the importance of the heavy-meson exchanges in the weak NN-potential for understanding recent measurement results of f/sub π//sup l/ which strongly deviate from earlier data. (author)
International Nuclear Information System (INIS)
Karaziya, R.I.; Rudzikajte, L.S.
1988-01-01
The general method to obtain the explicit expressions for sums of the matrix elements of Hamiltonian and transition operators has been extended. It can be used for determining the main characteristics of atomic spectra, such as the mean energy, the variance, the asymmetry coefficient, etc., as well as for the average quantities which describe the configuration mixing. By mean of this method the formula for the variance of the emission spectrum has been derived. It has been shown that this quantity of the emission spectrum can be expressed by the variances of the energy spectra of the initial and final configurations and by additional terms, caused by the distribution of the intensity in spectrum
Kota, V K B; Chavda, N D; Sahu, R
2006-04-01
Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.
Chegel, Raad; Behzad, Somayeh
2014-02-01
We have studied the electronic structure and dipole matrix element, D, of carbon nanotubes (CNTs) under magnetic field, using the third nearest neighbor tight binding model. It is shown that the 1NN and 3NN-TB band structures show differences such as the spacing and mixing of neighbor subbands. Applying the magnetic field leads to breaking the degeneracy behavior in the D transitions and creates new allowed transitions corresponding to the band modifications. It is found that |D| is proportional to the inverse tube radius and chiral angle. Our numerical results show that amount of filed induced splitting for the first optical peak is proportional to the magnetic field by the splitting rate ν11. It is shown that ν11 changes linearly and parabolicly with the chiral angle and radius, respectively.
NOTION, ELEMENTS AND EVALUATION OF HUMAN RESOURCES MANAGMENT IN SPORT
Milorad M. Drobac; Milica Radović
2009-01-01
Principal object of the author’s research in work is identification of notion, cru- cial elements and evaluation of human resources management in general and apart in sport. From the beginning of usage of term “human resources management”, we use foretoken “strategic” that has especially signified meaning. Strategic approach to the exploration of this problem points to the fact that human resources are from particularly significance for all forms of human organization (firms, associations, in...
Henry, Jackson; Blair, Enrique P.
2018-02-01
Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.
International Nuclear Information System (INIS)
Kirsch, Matthias
2009-01-01
At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of √s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V tb | matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V tb | would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s+t channel production cross
Energy Technology Data Exchange (ETDEWEB)
Kirsch, Matthias [RWTH Aachen Univ. (Germany)
2009-06-29
At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V_{tb}| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s
A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations
Petersson, T.; Hellsing, B.
2010-01-01
A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…
Evaluating damping elements for two-stage suspension vehicles
Directory of Open Access Journals (Sweden)
Ronald M. Martinod R.
2012-01-01
Full Text Available The technical state of the damping elements for a vehicle having two-stage suspension was evaluated by using numerical models based on the multi-body system theory; a set of virtual tests used the eigenproblem mathematical method. A test was developed based on experimental modal analysis (EMA applied to a physical system as the basis for validating the numerical models. The study focused on evaluating vehicle dynamics to determine the influence of the dampers’ technical state in each suspension state.
Formulation and evaluation of floating matrix tablets of metformin ...
African Journals Online (AJOL)
Sodium bicarbonate (30%) and tartaric acid (5%) were incorporated as the gas generating agents. Formulations were either prepared alone with the natural gum or with the addition of 1.0 %w/w of acrylatemethacrylate copolymer (Eudragit RL100). All granules were evaluated for micromeritic properties i.e. bulk and tapped ...
Evaluating dynamic covariance matrix forecasting and portfolio optimization
Sendstad, Lars Hegnes; Holten, Dag Martin
2012-01-01
In this thesis we have evaluated the covariance forecasting ability of the simple moving average, the exponential moving average and the dynamic conditional correlation models. Overall we found that a dynamic portfolio can gain significant improvements by implementing a multivariate GARCH forecast. We further divided the global investment universe into sectors and regions in order to investigate the relative portfolio performance of several asset allocation strategies with both variance and c...
Finite element evaluation of erosion/corrosion affected reducing elbow
International Nuclear Information System (INIS)
Basavaraju, C.
1996-01-01
Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
International Nuclear Information System (INIS)
Holas, A.; Cinal, M.
2005-01-01
Three approximate exchange potentials of high accuracy v x Y (r), Y=A,B,C, for the density-functional theory applications are obtained by replacing the matrix elements of the exact potential between the Kohn-Sham (KS) orbitals with such elements of the Fock exchange operator (within the virtual-occupied subset only) in three representations found for any local potential. A common identity is the base of these representations. The potential v x C happens to be the same as that derived by Harbola and Sahni, and v x A as that derived by Gritsenko and Baerends, and Della Sala and Goerling. The potentials obtained can be expressed in terms of occupied KS orbitals only. At large r, their asymptotic form -1/r is the same as that of the exact potential. The high quality of these three approximations is demonstrated by direct comparison with the exact potential and using various consistency tests. A common root established for the three approximations could be helpful in finding new and better approximations via modification of identities employed in the present investigation
Matrix effects in PIXE evaluation of the major components in thick homogeneous samples
International Nuclear Information System (INIS)
Oystaeyen, B. van; Demortier, G.
1983-01-01
Matrix effects on the major component X-ray yields in PIXE measurements are studied in general terms with the Au-Cu-Ag matrix as practical example. Postulating firstly that all the major components may be simultaneously detected through one well-isolated peak for each of them, and secondly that a known reference material is available which contains all the elements of the unknown sample, we propose a direct method to extract the true concentrations of the latter taking into accout the matrix effects. The geometrical parameters describing the target location with respect to ion beam direction and detector position are also studied and a first attempt is made to include them in the data treatment. (orig.)
International Nuclear Information System (INIS)
Kirsch, Matthias
2009-01-01
exceeds the Standard Model expectation by 2 standard deviations. The result of the analysis presented here is in good agreement with the result of σ(p anti p→tb+X,tqb+X)=4.8± 1.3 pb, obtained from the combination of three other analyses performed on the same data set. From the cross section measurement a measurement of the strength vertical stroke V tb x f 1 L vertical stroke of the V-A coupling at the Wtb-vertex has been extracted. The result is vertical stroke V tb x f 1 L vertical stroke =1.42 -0.20 +0.21 . This value is above the Standard Model expectation by about 2∝standard deviations. The measurement agrees within uncertainties with the measurement of vertical stroke V tb x f 1 L vertical stroke =1.31 -0.21 +0.25 obtained by another analysis performed on the same data set. Constraining the prior of this measurement to the interval [0,1], i.e. setting the strength of the left-handed coupling f 1 L =1, a result for the CKM matrix element vertical stroke V tb vertical stroke has been determined to vertical stroke V tb vertical stroke =1.00 -0.08 +0.00 . From the posterior probability density of this measurement a lower limit for V tb has been set at 95% confidence level: vertical stroke V tb vertical stroke >0.79 rate at 95% C.L. (orig.)
International Nuclear Information System (INIS)
Nozawa, Tomohiro; Arakawa, Yasuhiko
2014-01-01
The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)
Braun, H; Erriquez, O; Martyn, H U; Renton, P B; Romano, F; Vilain, P; Waldren, D
1976-01-01
The matrix element of the three pion decay mode of the kaon is expressed in terms of Mandelstam variables. An analysis of the Dalitz plot density distribution gives information on the parameters of the expression. From an analysis of the decays of stopping K/sup +/ mesons involving neutral pions in the CERN heavy-liquid bubble chamber filled with a propane ethane mixture, it is concluded that the energy dependence of the decay matrix element is compatible with a linear behaviour. (3 refs).
Generazio, Edward R.
1992-01-01
In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.
International Nuclear Information System (INIS)
Klingebiel, Dennis
2014-01-01
The electroweak production of single top quarks offers a unique access to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V tb , which is a fundamental parameter of the Standard Model of particle physics (SM). In this thesis, measurements of the inclusive t-channel single-top-quark-production cross section, the CKM-matrix element V tb , and the ratio of t-channel top-quark-production and top-antiquark-production cross sections are presented. Proton-proton collisions with a center-of-mass energy of 7 TeV are analyzed. These collisions were recorded with the Compact Muon Solenoid (CMS) experiment at the particle-accelerator complex Large Hadron Collider (LHC), which is operated by the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The analyzed data correspond to an integrated luminosity of 1.6/fb. This analysis uses events with at least two jets and either an electron or muon. Each event is classified according to the flavor and charge of the electron or muon, the number of jets, and the number of b-tagged jets. Signal and background processes are discriminated using Boosted Decision Trees (BDTs). The signal cross section is simultaneously measured in twelve orthogonal categories. A Bayesian approach is used to infer the signal cross section from data. Particular emphasis is placed on the modeling of systematic uncertainties and the evaluation of their impact on the measurement. Systematic uncertainties are incorporated as additional nuisance parameters into the likelihood function. Marginalization is used to eliminate the nuisance parameters. The single-top-quark t-channel production cross section is measured to be (66.6 +6.7 -6.2 ) pb. The measured value is in agreement with the next-to-next-to-leading order SM prediction. With a relative uncertainty of -9.3% +10.1%, this measurement is significantly more precise than previous measurements in proton-proton und proton-antiproton collisions. The absolute value of the CKM-matrix element
Measured and evaluated fast neutron cross sections of elemental nickel
International Nuclear Information System (INIS)
Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.
1975-07-01
Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)
Accurate evaluation of exchange fields in finite element micromagnetic solvers
Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.
2012-04-01
Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.
An evaluated neutronic data file for elemental cobalt
Energy Technology Data Exchange (ETDEWEB)
Guenther, P.; Lawson, R.; Meadows, J.; Sugimoto, M.; Smith, A.; Smith, D.; Howerton, R.
1988-08-01
A comprehensive evaluated neutronic data file for elemental cobalt is described. The experimental data base, the calculational methods, the evaluation techniques and judgments, and the physical content are outlined. The file contains: neutron total and scattering cross sections and associated properties, (n,2n) and (n,3n) processes, neutron radiative capture processes, charged-particle-emission processes, and photon-production processes. The file extends from 10/sup /minus/5/ eV to 20 MeV, and is presented in the ENDF/B-VI format. Detailed attention is given to the uncertainties and correlations associated with the prominent neutron-induced processes. The numerical contents of the file have been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 143 refs., 16 figs., 5 tabs.
Measured and evaluated neutron cross sections of elemental bismuth
International Nuclear Information System (INIS)
Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.
1980-04-01
Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables
Search for rare processes with a Z+bb signature at the LHC, with the matrix element method
Beluffi, Camille; Lemaitre, Vincent
This thesis presents a detailed study of the final state with the Z boson decaying into two leptons, produced in the CMS detector at the LHC. In order to tag this topology, sophisticated b jet tagging algorithms have been used, and the calibration of one of them, the Jet Probability (JP) tagger is exposed. A study of the tagger degradation at high energy has been done and led to a small gain of performance. This investigation is followed by the search for the associated production of the standard model (SM) Higgs boson with a Z boson and decaying into two b quarks (ZH channel), using the Matrix Element Method (MEM) and two b-taggers: JP and Combined Secondary Vertex (CSV). The MEM is an advanced tool that produces an event-by-event discriminating variable, called weight. To apply it, several sets of transfer function have been produced. The final results give an observed limit on the ZH production cross section with the H → bb branching ratio of 5.46xσSM when using the CSV tagger and 4.89xσSM when using t...
Measurement of the CKM Matrix Element |V sub u sub b | with B -> rho e nu Decays
Wilden, L
2003-01-01
We present a measurement of the branching fraction for the rare decays B -> rho e nu and extract a value for the magnitude of V sub u sub b , one of the smallest elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. The results are given for five different calculations of form factors used to parametrize the hadronic current in semileptonic decays. Using a sample of 55 million B(bar B) meson pairs recorded with the BABAR detector at the PEP-II e sup + e sup - storage ring, we obtain BETA(B sup 0 -> rho sup - sup 1 e sup + nu) = (3.29 +- 0.42 +- 0.47 +- 0.60) x 10 sup - sup 4 and |V sub u sub b | = (3.64 +- 0.22 +- 0.25 sub - sub 0 sub . sub 5 sub 6 sup + sup 0 sup . sup 3 sup 9) x 10 sup - sup 3 , where the uncertainties are statistical, systematic, and theoretical, respectively.
International Nuclear Information System (INIS)
CDF Collaboration; Freeman, John; Freeman, John
2007-01-01
A measurement of the top quark mass in t(bar t) → l + jets candidate events, obtained from p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t(bar t) production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb -1 data sample, using events with a high-p T lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M meas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c 2
International Nuclear Information System (INIS)
Jasielska, A.; Wiktor, S.
1977-01-01
The table of two-particle matrix elements calculated according to the formalism of MSDI approximation for the orbits 1fsub(7/2), 2psub(3/2), 2psub(1/2) and 1fsub(5/2) and published previously is now supplemented by inclusion of the 1gsub(9/2) orbit. (author)
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Piepenbring, R.
1978-01-01
Matrix elements of a general Hamiltonian H in a subspace spanned by collective K/sup π/+ deformed phonons are derived with the help of recursion formulas. Various approximations are discussed both in the fermion space and in the boson space. Careful comparisons are made in the framework of a simple solvable model
Chackerian, C., Jr.
1976-01-01
The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.
Directory of Open Access Journals (Sweden)
Zhengyan Zhang
2018-03-01
Full Text Available In this paper, we consider the problem of tracking the direction of arrivals (DOA and the direction of departure (DOD of multiple targets for bistatic multiple-input multiple-output (MIMO radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-03-07
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
Architecture and evaluation of software-defined optical switching matrix for hybrid data centers
DEFF Research Database (Denmark)
Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
2016-01-01
A software architecture is proposed for hybrid packet/optical data centers employing programmable NETCONF-enabled optical switching matrix, and a performance evaluation is presented comparing hybrid and electrical-only architectures for elephant flows under different traffic patterns. Network...
Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites
International Nuclear Information System (INIS)
Sun Zhiqiang; Zhang Di; Li Guobin
2005-01-01
This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy
Uclés, S; Lozano, A; Sosa, A; Parrilla Vázquez, P; Valverde, A; Fernández-Alba, A R
2017-11-01
Gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry are currently the most powerful tools employed for the routine analysis of pesticide residues in food control laboratories. However, whatever the multiresidue extraction method, there will be a residual matrix effect making it difficult to identify/quantify some specific compounds in certain cases. Two main effects stand out: (i) co-elution with isobaric matrix interferents, which can be a major drawback for unequivocal identification, and therefore false negative detections, and (ii) signal suppression/enhancement, commonly called the "matrix effect", which may cause serious problems including inaccurate quantitation, low analyte detectability and increased method uncertainty. The aim of this analytical study is to provide a framework for evaluating the maximum expected errors associated with the matrix effects. The worst-case study contrived to give an estimation of the extreme errors caused by matrix effects when extraction/determination protocols are applied in routine multiresidue analysis. Twenty-five different blank matrices extracted with the four most common extraction methods used in routine analysis (citrate QuEChERS with/without PSA clean-up, ethyl acetate and the Dutch mini-Luke "NL" methods) were evaluated by both GC-QqQ-MS/MS and LC-QqQ-MS/MS. The results showed that the presence of matrix compounds with isobaric transitions to target pesticides was higher in GC than under LC in the experimental conditions tested. In a second study, the number of "potential" false negatives was evaluated. For that, ten matrices with higher percentages of natural interfering components were checked. Additionally, the results showed that for more than 90% of the cases, pesticide quantification was not affected by matrix-matched standard calibration when an interferent was kept constant along the calibration curve. The error in quantification depended on the concentration level. In a
Directory of Open Access Journals (Sweden)
Ana María Domínguez
2015-08-01
Full Text Available An evaluation of the pesticides extracted from the soil matrix was conducted using a citrate-buffered solid phase dispersion sample preparation method (QuEChERS. The identification and quantitation of pesticide compounds was performed using gas chromatography-mass spectrometry. Because of the occurrence of the matrix effect in 87% of the analyzed pesticides, the quantification was performed using matrix-matched calibration. The method's quantification limits were between 0.01 and 0.5 mg kg-1. Repeatability and intermediate precision, expressed as a relative standard deviation percentage, were less than 20%. The recoveries in general ranged between 62% and 99%, with a relative standard deviation < 20%. All the responses were linear, with a correlation coefficient (r ≥0.99.
[Evaluation of formal elements of Spanish pediatrics journals].
Aleixandre-Benavent, R; González de Dios, J; Valderrama-Zurián, F J; Bolaños Pizarro, M; Valderrama-Zurián, J C
2007-03-01
Standardization of scientific journals is indispensable for accurate transmission of knowledge, since it guarantees the universality and reproducibility of research. The objective of this study was to evaluate the formal elements of Spanish pediatrics journals. In 2005, we studied the characteristics of Spanish biomedical journals with special emphasis on Spanish pediatrics journals. The form used for the selection of journals for inclusion in the database Indice Médico Español (IME) was employed to evaluate 65 distinct characteristics in each journal. The parameters were grouped in the following five categores: journal presentation, presentation of the articles, scientific and editorial committees, content characteristics, and dissemination parameters. The journals with the highest overall scores were Anales de Pediatría (63 points out of a maximum of 82), followed by Pediatría de Atención Primaria (53 points), Acta Pediátrica Española and Cirugía Pediátrica (55 points each), Pediatrika (53 points), and Revista Española de Pediatría (48 points). The score obtained by Anales de Pediatría places this journal in the top 10 Spanish journals included in IME. Spanish pediatrics journals meet most of the formal elements required of biomedical journals, although some aspects could be improved, such as deficiencies in the frequency and regularity of publication, mention of the dates of manuscript receipt and acceptance, the lack of a clear description of the editorial process of manuscript selection and peer review, the absence of committee members' institutional affiliations, and the absence of articles by non-Spanish authors.
NOTION, ELEMENTS AND EVALUATION OF HUMAN RESOURCES MANAGMENT IN SPORT
Directory of Open Access Journals (Sweden)
Milorad M. Drobac
2009-11-01
Full Text Available Principal object of the author’s research in work is identification of notion, cru- cial elements and evaluation of human resources management in general and apart in sport. From the beginning of usage of term “human resources management”, we use foretoken “strategic” that has especially signified meaning. Strategic approach to the exploration of this problem points to the fact that human resources are from particularly significance for all forms of human organization (firms, associations, institutions etc., regardless are we talking about economy, social activity, politics, science, sport or any other area of human activity. Experience shows that, in our society, we mainly considered human resources management from the aspect of formulation and implementation of strategy in any shape and segment of altogether human activity, but we pay a little interest to the control, or in other words evaluation of human resources performance. What is attained in world rela- tions, on the human resources management plan, admonish and binds that we must ac- cept employees in our environment (it implies sport as an equal partner in management
Energy Technology Data Exchange (ETDEWEB)
Berkolaiko, G., E-mail: berko@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J., E-mail: Jack.Kuipers@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2013-11-15
To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.
Directory of Open Access Journals (Sweden)
M. Kaleemullah
2017-07-01
Full Text Available Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2 value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05 between the F3 and reference drug in terms of MDT and
Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y
2017-07-01
Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p
Evaluation of trace element status of food articles
International Nuclear Information System (INIS)
Qureshi, I.H.; Ahmad, S.; Zaidi, S.J.; Mannan, A.; Waheed, S.; Fatima, I.; Arif, M.; Rahman, A.
1996-01-01
Food is the main source of major, minor and micro nutrients required for human beings. Food articles, due to environmental pollution may also contain some toxic elements which would adversely affect their health. In order to assess the adequacy and safety of human diet main food items were analyzed for the measurement of essential and toxic trace elements employing neutron activation analysis and atomic absorption spectrometry. The data so obtained will serve as baseline values and will be helpful to monitor the changes in the trace element contents of these items in future. The dietary intake of essential and toxic trace elements through these items was estimated and compared with the recommended values. This study indicates that the intake of essential elements except for co is fairly adequate and that of toxic elements in well well within the permissible limits. (author)
International Nuclear Information System (INIS)
Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.
2016-01-01
We compute the hadronic matrix elements of the four-quark operators relevant for K 0 −K̄ 0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f =2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Measurement of the matrix elements for the decays η'→η π+π- and η'→η π0π0
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Magnoni, A. S.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2018-01-01
Based on a sample of 1.31 ×109 J /ψ events collected with the BESIII detector, the matrix elements for the decays η'→η π+π- and η'→η π0π0 are determined using 351,016 η'→(η →γ γ )π+π- and 56,249 η'→(η →γ γ )π0π0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η'→η π+π- and η'→η π0π0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η'→η π0π0 is observed.
International Nuclear Information System (INIS)
Ablinger, J.; Bluemlein, J.; Klein, S.; Schneider, C.; Wissbrock, F.
2011-01-01
The contributions ∝n f to the O(α s 3 ) massive operator matrix elements describing the heavy flavor Wilson coefficients in the limit Q 2 >>m 2 are computed for the structure function F 2 (x,Q 2 ) and transversity for general values of the Mellin variable N. Here, for two matrix elements, A qq,Q PS (N) and A qg,Q (N), the complete result is obtained. A first independent computation of the contributions to the 3-loop anomalous dimensions γ qg (N), γ qq PS (N), and γ qq NS,(TR) (N) is given. In the computation advanced summation technologies for nested sums over products of hypergeometric terms with harmonic sums have been used. For intermediary results generalized harmonic sums occur, while the final results can be expressed by nested harmonic sums only.
International Nuclear Information System (INIS)
Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan
2003-01-01
A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed
International Nuclear Information System (INIS)
Bonatsos, D.; Lo Liduce, N.; Raychev, P.; Roussev, R.; Terziev, P.
1996-01-01
Quantum algebras (also called quantum groups) are nonlinear generalization of the usual Lie algebras, to which the reduce in the limiting case when the deformed parameters are set equal to unity. From mathematical point of view they have the structure of Holf algebras. The interest for applications of quantum algebras in physics was triggered in 1989 by the introduction of the q-deformed harmonic oscillator. In this connection the quantum algebra su q (2) has been used for description of superdeformed bands of even-even nuclei and rotational nuclear and molecular spectra. The construction of chains of subalgebras of a given q-algebra is a non trivial problem, since the existence of a chain of subalgebras of the corresponding Lie algebra does not guarantee the existence of the q-analogue of this chain. In particular, the so q (3) subalgebra of u q (3) has attracted much attention, since its classical analogue is a basic ingredient of several nuclear models, as the Elliot model and the su(3) limit of the Interacting Boson Model (IBM), the Fermion Dynamical Symmetry Model (FDSM), the Interacting Vector Boson Model (IVBM), the nuclear vibron model for clustering, as well as of the su(3) limit of the vibron model for molecules. In the present report we compute the reduced matrix elements of a special second-rank tensor operator (quadrupole operator) in the so q (3) subgroup of u q (3) basis (for the most symmetric u q (3)-representations) and investigate some of their properties. Also we construct a simplified boson realization of the so q (3) subalgebra of u q (3) and the corresponding so q (3) basis states. It should be noted that the obtained results are valid only for real values of the deformation parameter q. On the other hand the comparison of the experimental data with the predictions of a number of physical models, based on the q deformed su q (2) algebra, shows that one can achieve a good agreement between theory and experiment only if q is a pure phase (q
International Nuclear Information System (INIS)
Haefner, Petra
2008-01-01
The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with the W boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t anti t→W ± W -+ b anti b→q anti qlνb anti b is the ''golden channel'' for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb -1 of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m t =(169.2±3.5(stat.)±1.0(syst.)) GeV. The simultaneous measurement of a scaling factor for the jet energy
Energy Technology Data Exchange (ETDEWEB)
Haefner, Petra
2008-07-31
The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with the W boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t anti t{yields}W{sup {+-}}W{sup -+}b anti b{yields}q anti ql{nu}b anti b is the ''golden channel'' for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb{sup -1} of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m{sub t}=(169.2{+-}3.5(stat.){+-}1.0(syst.)) GeV. The
Lin Yan Chang; Lai Wan Chang; Zhou Si Chun
2002-01-01
Dot matrix LCD based on T6963C is a low power supply module. It needs no complex interface circuits connecting with MCU. Application in text and graphics is easy. Application of this LCD in multi-element portable XRF spectrometry is show. How to use it in Chinese, pull-down menu, spectrum and how to design the interface circuits with embedded computer are shown as well
International Nuclear Information System (INIS)
Yannouleas, C.; Pacheco, J.M.
1989-01-01
A collection of procedures able to perform algebraic manipulations for the orthonormalization and for the calculation of matrix elements between the states associated with the U(5)containsO(5)containsO(3) chain of groups is presented. These procedures combine both the exact- and the bigfloat-arithmetic modes and thus return arbitrarily accurate results; this is particulary relevant to the Gram-Schmidt orthonormalization, where strong cancellations usually pose serious problems in all floating-point implementations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Freeman, John [Univ. of California, Berkeley, CA (United States)
2007-01-01
A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb^{-1} data sample, using events with a high-p_{T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M_{meas} = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c^{2}.
Energy Technology Data Exchange (ETDEWEB)
Kroeninger, Kevin Alexander; /Bonn U.
2004-04-01
Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Manteuffel, A. von [PRISMA Cluster of Excellence and Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, F. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2014-05-15
We calculate the massive unpolarized operator matrix element A{sub gq}{sup (3)}(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α{sub s}{sup 3}). A first independent recalculation is performed for the contributions ∝N{sub F} of the 3-loop anomalous dimension γ{sub gq}{sup (2)}(N)
Energy Technology Data Exchange (ETDEWEB)
Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)
2014-09-15
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)
Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.
2014-09-01
We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.
Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J
2014-09-26
We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.
Energy Technology Data Exchange (ETDEWEB)
Schade, L.; Schwarz, U.T. [Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79108 Freiburg (Germany); Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, 79108 Freiburg (Germany); Wernicke, T. [Institute of Solid State Physics, Technical University, Hardenbergstrasse 36, 10623 Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technical University, Hardenbergstrasse 36, 10623 Berlin (Germany); Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany)
2011-03-15
Partial or full linear polarization is characteristic for the spontaneous emission of light from semipolar and nonpolar InGaN quantum wells. This property is an implication of the crystalline anisotropy as a basic property of the wurtzite structure. The influence of this anisotropy on the band structure and the transition matrix elements was calculated by a k.p-method for arbitrary quantum well orientations with respect to the c-axis; results are shown here in detail. Optical polarization is a direct consequence of a broken symmetry, mainly affecting the transition matrix elements from the conduction to the valence bands. Furthermore, the strain of the InGaN quantum well strongly depends on the crystal orientation of the substrate, resulting in a valence band mixing. The composition of the eigenfunctions has emerged to be most important for the polarization dependence of strained semipolar and nonpolar InGaN QW. The matrix elements, in combination with the thermal occupation of the bands, determine the polarization of the spontaneously emitted light. Our photoluminescence measurements of nonpolar QW match well with this model. However, in contrast to calculations with standard band parameters, the two topmost subbands show a larger separation in the emitted energy. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Tanuma, T.; Oneda, S.; Terasaki, K.
1984-01-01
A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes
Energy Technology Data Exchange (ETDEWEB)
Nilsson, E.J.C., E-mail: charlotta.nilsson@nuclear.lu.se [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Pallon, J., E-mail: jan.pallon@nuclear.lu.se [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Przybylowicz, W.J., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wang, Y.D., E-mail: yaodongw@hotmail.com [Materials Research Department, iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Jönsson, K.I., E-mail: ingemar.jonsson@hkr.se [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden)
2014-08-01
Although heavy on labor and equipment, thus not often applied, cryoanalysis of frozen hydrated biological specimens can provide information that better reflects the living state of the organism, compared with analysis in the freeze-dried state. In this paper we report a study where the cryoanalysis facility with cryosectioning capabilities at Materials Research Department, iThemba LABS, South Africa was employed to evaluate the usefulness of combining three ion beam analytical methods (μPIXE, RBS and STIM) to analyze a biological target where a better elemental compositional description is needed – the tardigrade. Imaging as well as quantification results are of interest. In a previous study, the element composition and redistribution of elements in the desiccated and active states of two tardigrade species was investigated. This study included analysis of both whole and sectioned tardigrades, and the aim was to analyze each specimen twice; first frozen hydrated and later freeze-dried. The combination of the three analytical techniques proved useful: elements from C to Rb in the tardigrades could be determined and certain differences in distribution of elements between the frozen hydrated and the freeze-dried states were observed. RBS on frozen hydrated specimens provided knowledge of matrix elements.
Energy Technology Data Exchange (ETDEWEB)
Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es
2006-03-15
A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.
International Nuclear Information System (INIS)
Paredes, Eduardo; Maestre, Salvador E.; Todoli, Jose L.
2006-01-01
A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l -1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l -1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min
Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix
Energy Technology Data Exchange (ETDEWEB)
Ronald L. Hershey; William Howcroft; Paul W. Reimus
2003-03-01
Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared
Tao, Z-Q; Shi, A-M
2016-05-01
The aim of this study is to explore the application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital departments. We selected 73 clinical and medical technology departments of our hospital from 2011 to 2013, and evaluated our hospital by Boston matrix combined with SWOT analysis according to the volume of services, medical quality, work efficiency, patients' evaluations, development capacity, operational capability, economic benefits, comprehensive evaluation of hospital achievement, innovation ability of hospital, influence of hospital, human resources of hospital, health insurance costs, etc. It was found that among clinical departments, there were 11 in Stars (22.4%), 17 in cash cow (34.7%), 15 in question marks (31.2%), 6 Dogs (12.2%), 16 in the youth stage of life cycle assessment (27.6%), 14 in the prime stage (24.1%), 12 in the stationary stage (20.7%), 9 in the aristocracy stage (15.5%) and 7 in the recession stage (12.1%). Among medical technology departments, there were 5 in Stars (20.8%), 1 in Cash cow (4.2%), 10 in question marks (41.6%), 8 Dogs (29.1%), 9 in the youth stage of life cycle assessment (37.5%), 4 in the prime stage (16.7%), 4 in the stable stage (16.7%), 1 in the aristocracy stage (4.2%) and 6 in the recession stage (25%). In conclusion, Boston matrix combined with SWOT analysis is suitable for operational development and comprehensive evaluations of hospital development, and it plays an important role in providing hospitals with development strategies.
Evaluation of the swelling behaviour of iota-carrageenan in monolithic matrix tablets.
Kelemen, András; Buchholcz, Gyula; Sovány, Tamás; Pintye-Hódi, Klára
2015-08-10
The swelling properties of monolithic matrix tablets containing iota-carrageenan were studied at different pH values, with measurements of the swelling force and characterization of the profile of the swelling curve. The swelling force meter was linked to a PC by an RS232 cable and the measured data were evaluated with self-developed software. The monitor displayed the swelling force vs. time curve with the important parameters, which could be fitted with an Analysis menu. In the case of iota-carrageenan matrix tablets, it was concluded that the pH and the pressure did not influence the swelling process, and the first section of the swelling curve could be fitted by the Korsmeyer-Peppas equation. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of two models for predicting elemental accumulation by arthropods
International Nuclear Information System (INIS)
Webster, J.R.; Crossley, D.A. Jr.
1978-01-01
Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from 134 Cs and 85 Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation
Evaluation of Concrete Cylinder Tests Using Finite Elements
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1984-01-01
Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....
Energy Technology Data Exchange (ETDEWEB)
Haefner, Petra [Ludwig Maximilian Univ., Munich (Germany)
2008-07-31
The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with theW boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t $\\bar{t}$ →W^{±}W^{∓} b$\\bar{b}$ →q $\\bar{t}$lnb$\\bar{b}$ is the ”golden channel” for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb^{-1} of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m_{t} = (169.2±3.5(stat.)±1.0(syst.)) GeV . The
Evaluation of Li3N accumulation in a fused LiCl/Li salt matrix
International Nuclear Information System (INIS)
Eberle, C. S.
1998-01-01
Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research a pilot scale of the preprocessing stage is being designed by ANL-W to demonstrate the in situ hot cell capability of the chemical reduction stage. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent LWR uranium oxide fuel. A simple analysis was performed in which the sources of impurities in the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hotcell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix and the mass rate for the device was determined
Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad
2017-03-01
Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.
Energy Technology Data Exchange (ETDEWEB)
Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)
2011-03-15
Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rousseau, P [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires
1967-06-01
In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [French] Dans uns premiere partie, apres un bref rappel de la technologie 'planar' nous etudions les divers elements parasites associes a tout composant d'un circuit integre. Un developpement sommaire des expressions mathematiques de ces elements est propose. Dans une seconde partie nous presentons la matrice de 22 transistors et 12 resistances que nous avons realisee. Cette matrice repond aux principaux besoins de l'electronique nucleaire. Nous proposons ensuite quelques exemples de circuits realises a partir de cette matrice dont notamment une porte logique a emetteurs couples de performances tres interessantes. (auteur)
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
International Nuclear Information System (INIS)
Karjou, J.
2007-01-01
The effect of matrix contents on the detection limit of total reflection X-ray fluorescence analysis was experimentally investigated using a set of multielement standard solutions (500 ng/mL of each element) in variable concentrations of NH 4 NO 3 . It was found that high matrix concentration, i.e. 0.1-10% NH 4 NO 3 , had a strong effect on the detection limits for all investigated elements, whereas no effect was observed at lower matrix concentration, i.e. 0-0.1% NH 4 NO 3 . The effect of soil and blood sample masses on the detection limit was also studied. The results showed decreasing the detection limit (in concentration unit, μg/g) with increasing the sample mass. However, the detection limit increased (in mass unit, ng) with increasing sample mass. The optimal blood sample mass of ca. 200 μg was sufficient to improve the detection limit of Se determination by total reflection X-ray fluorescence. The capability of total reflection X-ray fluorescence to analyze different kinds of samples was discussed with respect to the accuracy and detection limits based on certified and reference materials. Direct analysis of unknown water samples from several sources was also presented in this work
Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang
2018-03-01
In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Ppore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated by laser
Method and apparatus for evaluating structural weakness in polymer matrix composites
Wachter, Eric A.; Fisher, Walter G.
1996-01-01
A method and apparatus for evaluating structural weaknesses in polymer matrix composites is described. An object to be studied is illuminated with laser radiation and fluorescence emanating therefrom is collected and filtered. The fluorescence is then imaged and the image is studied to determine fluorescence intensity over the surface of the object being studied and the wavelength of maximum fluorescent intensity. Such images provide a map of the structural integrity of the part being studied and weaknesses, particularly weaknesses created by exposure of the object to heat, are readily visible in the image.
International Nuclear Information System (INIS)
Montierth, Leland M.
2016-01-01
The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.
Energy Technology Data Exchange (ETDEWEB)
Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-07-19
The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.
Ageing evaluation model of nuclear reactors structural elements
International Nuclear Information System (INIS)
Ziliukas, A.; Jutas, A.; Leisis, V.
2002-01-01
In this article the estimation of non-failure probability by random faults on the structural elements of nuclear reactors is presented. Ageing is certainly a significant factor in determining the limits of nuclear plant lifetime or life extensions. Usually the non failure probability rates failure intensity, which is characteristic for structural elements ageing in nuclear reactors. In practice the reliability is increased incorrectly because not all failures are fixed and cumulated. Therefore, the methodology with using the fine parameter of the failures flow is described. The comparison of non failure probability and failures flow is carried out. The calculation of these parameters in the practical example is shown too. (author)
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
International Nuclear Information System (INIS)
Kastner, S.O.
1980-01-01
Closed expressions are obtained for the conditional probabilities qsub(i)sub(j)sub(,)sub(k) required in evaluating particular ratios of atomic level populations, using a Markov-chain representation of the system of levels. The total transition probability between two arbitrary levels is also evaluated and its relation to population ratios is clarified. It is shown that Seaton's cascade matrix is a subset of the total transition probability matrix. (orig.)
Visual elements of packaging shaping healthiness evaluations of consumers
Cavallo, Carla; Piqueras-Fiszman, Betina
2017-01-01
Visual elements of food products can play an important role in determining food choice through shaping the attributes perception of consumers. Symbols and logos have the role of conveying information, but they can be interpreted in different ways. The product used as a case study is Extra-Virgin
Anomalous scattering factors of some rare earth elements evaluated
Indian Academy of Sciences (India)
section data set experimentally determined using high resolution high purity germanium detector in a narrow beam good geometry set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the authors. Below 5 keV ...
International Nuclear Information System (INIS)
Vasin, B.D.; Ivanov, V.A.; Shchetinskij, A.V.; Vavilov, S.K.; Savochkin, Yu.P.; Bychkov, A.V.; Kormilitsyn, M.V.
2005-01-01
A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements [ru
Factor analytical approaches for evaluating groundwater trace element chemistry data
International Nuclear Information System (INIS)
Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Hodge, V.F.; Stetzenbach, K.J.
2003-01-01
The multivariate statistical techniques principal component analysis (PCA), Q-mode factor analysis (QFA), and correspondence analysis (CA) were applied to a dataset containing trace element concentrations in groundwater samples collected from a number of wells located downgradient from the potential nuclear waste repository at Yucca Mountain, Nevada. PCA results reflect the similarities in the concentrations of trace elements in the water samples resulting from different geochemical processes. QFA results reflect similarities in the trace element compositions, whereas CA reflects similarities in the trace elements that are dominant in the waters relative to all other groundwater samples included in the dataset. These differences are mainly due to the ways in which data are preprocessed by each of the three methods. The highly concentrated, and thus possibly more mature (i.e. older), groundwaters are separated from the more dilute waters using principal component 1 (PC 1). PC 2, as well as dimension 1 of the CA results, describe differences in the trace element chemistry of the groundwaters resulting from the different aquifer materials through which they have flowed. Groundwaters thought to be representative of those flowing through an aquifer composed dominantly of volcanic rocks are characterized by elevated concentrations of Li, Be, Ge, Rb, Cs, and Ba, whereas those associated with an aquifer dominated by carbonate rocks exhibit greater concentrations of Ti, Ni, Sr, Rh, and Bi. PC 3, and to a lesser extent dimension 2 of the CA results, show a strong monotonic relationship with the percentage of As(III) in the groundwater suggesting that these multivariate statistical results reflect, in a qualitative sense, the oxidizing/reducing conditions within the groundwater. Groundwaters that are relatively more reducing exhibit greater concentrations of Mn, Cs, Co, Ba, Rb, and Be, and those that are more oxidizing are characterized by greater concentrations of V, Cr, Ga
International Nuclear Information System (INIS)
Weizhi, T.; Bangfa, N.; Pingsheng, W.; Huiling, N.; Lei, C.; Yangmei, Z.
2001-01-01
Radiochemical neutron activation analysis was used for determinations of 8 rare elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in two Chinese CRMs, GBW 08503 (wheat) and GBW 09101 (hair), and Cs, Sr, Th and U in five NIST SRMs, 1548 (Total Diet), 1486 (Bone Meal), 8414 (Bovine Muscle), 1566a (Oyster Powder ) and 1575 (Pine Needles). These determinations are for eventual certification of above ultratrace elements so far not certified. The radiochemical separation scheme used in RNAA of NIST SRMs is an anion exchange followed by the coprecipitation by (REE)F 3 for U and Th, and SrSo 4 precipitation for Sr and Cs. For RNAA of the two Chinese CRMs, a one step (REE)F 3 precipitation was used. Chemical yields were determined for all relevant elements by tracer experiments. All these materials were also analyzed by ICPMS, that offered an opportunity to compare the two major trace analytical techniques on their merits and drawbacks for these particular cases. RNAA is proven to be one of the important techniques in ultratrace analysis, especially in certification of some ultratrace elements. Determination of elements in sub-ng/g level is still an area to be further investigated because: (1) some such elements are important in food and health related environmental studies, (2) many of these elements have no (or very few) certified values in existing biological CRMs, (3) reliable techniques qualified for ultratrace analysis are needed to be established, and (4) sampling behavior of elements at these levels is still not very well known (recommended minimum sample size may not be adequate). (author)
Energy Technology Data Exchange (ETDEWEB)
Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca [Faculty of Environmental Design, University of Calgary, Calgary, Alberta 2500, University Drive NW, T2N 1N4 (Canada); Assefa, Getachew [Faculty of Environmental Design, University of Calgary, Calgary, Alberta 2500, University Drive NW, T2N 1N4 (Canada); Athena Chair in Life Cycle Assessment in Design (Canada)
2016-09-15
A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirable policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.
International Nuclear Information System (INIS)
Weldu, Yemane W.; Assefa, Getachew
2016-01-01
A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirable policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.
Directory of Open Access Journals (Sweden)
Ruqaiyah Khan
2014-01-01
Full Text Available Introduction: Rabeprazole, a member of substituted benzimidazoles, inhibits the final step in gastric acid secretions. This drug claims to cause fastest acid separation (due to higher pKa, and more rapidly converts to the active species to aid gastric mucin synthesis. The most significant pharmacological action of Rabeprazole is dose dependent suppression of gastric acid secretion; without anticholinergic or H2-blocking action. It completely abolishes the hydrochloric acid secretion as it is powerful inhibitor of gastric acid. Rabeprazole is acid labile and hence commonly formulated as an enteric coated tablet. The absorption of rabeprazole occurs rapidly as soon as tablet leaves the stomach. Aim: In the present study an attempt was made to formulate and evaluate Rabeprazole sustained release matrix tablet using wet granulation technique incorporating various polymers like HPMC-E15, Carbopol934, and sodium carboxymethyl cellulose (CMC. Materials and Methods: The Formulated tablets were evaluated for different physicochemical properties like rheological properties, weight variation, thickness, hardness, % friability, in vitro release studies and drug content. Results: Studies revealed that all the physicochemical parameters comply with the official standards. The in vitro release studies exhibits the release up to 90%, over a prolonged period of time which confirms the extended release profile of formulation, having better bioavailability as well as decreased dosing frequency with reduced doses. Conclusion: The sustained release matrix tablets of rabiprazole shown better bioavailability, efficacy and potency, when compared with official standards.
Defining the Benefits, Outputs, and Knowledge Elements of Program Evaluation.
Zorzi, Rochelle; Perrin, Burt; McGuire, Martha; Long, Bud; Lee, Linda
2002-01-01
The Canadian Evaluation Society explored the benefits that can be attributed to program evaluation, the outputs necessary to achieve those benefits, and the knowledge and skills needed to produce outputs. Findings, which articulate benefits, outputs, and skills, can be used by evaluation organizations to support advocacy and professional…
Determination and evaluation of toxic elements in Chinese foodstuffs
International Nuclear Information System (INIS)
Sun Laiyan; Lu Fengying; Zhou Wenping; Zhen Houxi; Su Rongwei; Liao Qingshang; Li Xuezeng; Wang Huaihui
1988-01-01
The concentrations of toxic elements As, Br, Cr, Cu, Pb, Se and Zn in various foodstuffs collected in Beijing, Shanghai, Xian and Wuhan were determined using neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) methods were obtained with high or medium precision. According to the average daily intake of various foods, the daily intake of these toxic elements were estimated for each person in the four cities. They (in microgram) were 42.6, 166.3, 1738, 106.8, 7939, 1145 and 67.1 respectively for As, Cr, Cu, Se, Zn, Br and Pb in Beijing, 52.2, 167, 1213, 91.5, 6026, 519 and 89.9 in Shanghai, 46.2, 184, 1782, 119.2, 8729, 1132 and 133.4 in Xian, and 63.2, 142.1, 1556, 76.9, 7882, 528 and 73.7 in Wuhan. (author). 2 refs, 12 tabs
International Space Station Bacteria Filter Element Service Life Evaluation
Perry, J. L.
2005-01-01
The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.
Development and Evaluation of Mould for Double Curved Concrete Elements
DEFF Research Database (Denmark)
Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning
2011-01-01
freeform concrete formwork are available, and more are being developed [1-4]. The common way of producing moulds for unique elements today is to manufacture one mould for each unique element using CNC milling in cheaper materials, but since the method is still labour intensive and produces a lot of waste......Complex freeform architecture is one of the most striking trends in contemporary architecture. Architecture differs from traditional target industries of CAD/CAM technology in many ways including aesthetics, statics, structural aspects, scale and manufacturing technologies. Designing a piece...... of freeform architecture in a CAD program is fairly easy, but the translation to a real piece of architecture can be difficult and expensive and as traditional production methods for free-form architecture prove costly, architects and engineers are forced to simplify designs. Today, methods for manufacturing...
Evaluation of the thermodynamics of a four level system using canonical density matrix method
Directory of Open Access Journals (Sweden)
Awoga Oladunjoye A.
2013-02-01
Full Text Available We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
International Nuclear Information System (INIS)
Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.
1995-01-01
Matrix elements of one and two body operators, which appear in a general hamiltonian and in electromagnetic transitions are derived in a subspace spanned by multiphonon states. The method is illustrated for a single j-shell, where phonons built with one type of particles are introduced. The eigenvalues obtained within the space spanned by the phonons of lowest angular momentum are compared to those of the full space. In such a method, the Pauli principle is fully and properly taken into account. ((orig.))
Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew
2018-03-01
We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.
Manoussakis, G.; Delikaraoglou, D.
2011-01-01
In this paper we form relations for the determination of the elements of the E\\"otv\\"os matrix of the Earth's normal gravity field. In addition a relation between the Gauss curvature of the normal equipotential surface and the Gauss curvature of the actual equipotential surface both passing through the point P is presented. For this purpose we use a global Cartesian system (X, Y, Z) and use the variables X, and Y to form a local parameterization a normal equipotential surface to describe its ...
Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements
International Nuclear Information System (INIS)
Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.
1992-01-01
Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs
Evaluation of elemental composition of clays from Campos Gerais (MG)
International Nuclear Information System (INIS)
Martins, Joao P.M.; Maduar, Marcelo F.; Silva, Paulo S.C da
2013-01-01
There are numerous applications given to clays including oil and water adsorbent, ceramic, whitening of beverages, porcelain, waste treatment, organic carrier molecules in cosmetics and pharmaceuticals, support for catalysts. In the pharmaceutical industry, the clays are used as excipients, diluents, desiccants, emulsifiers, to mask undesirable flavors, isotonic agent such as charger and delivery of active substances. These characteristics have contributed to the expansion of the search for applications of clay minerals in the cosmetic industry. The aim of this study was to determine the elemental composition of clays from Campos Gerais, Minas Gerais, with a view to their applicability in the production of cosmetics. The elements As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th,U, Yb and Zn were determined by neutron activation analysis and radionuclide activity concentration of 226 Ra, 228 Ra, 210 Pb and 40 K were determined by gamma spectrometry. It was verified that the activity concentration of radionuclides was in the same concentration as the global average, indicating that these samples do not present a risk of increased radiation exposure. The concentration of most elements determined is less than or equal to the overall mean concentrations, indicated by the values of Continental Upper Crust. (author)
Using a Similarity Matrix Approach to Evaluate the Accuracy of Rescaled Maps
Directory of Open Access Journals (Sweden)
Peijun Sun
2018-03-01
Full Text Available Rescaled maps have been extensively utilized to provide data at the appropriate spatial resolution for use in various Earth science models. However, a simple and easy way to evaluate these rescaled maps has not been developed. We propose a similarity matrix approach using a contingency table to compute three measures: overall similarity (OS, omission error (OE, and commission error (CE to evaluate the rescaled maps. The Majority Rule Based aggregation (MRB method was employed to produce the upscaled maps to demonstrate this approach. In addition, previously created, coarser resolution land cover maps from other research projects were also available for comparison. The question of which is better, a map initially produced at coarse resolution or a fine resolution map rescaled to a coarse resolution, has not been quantitatively investigated. To address these issues, we selected study sites at three different extent levels. First, we selected twelve regions covering the continental USA, then we selected nine states (from the whole continental USA, and finally we selected nine Agriculture Statistical Districts (ASDs (from within the nine selected states as study sites. Crop/non-crop maps derived from the USDA Crop Data Layer (CDL at 30 m as base maps were used for the upscaling and existing maps at 250 m and 1 km were utilized for the comparison. The results showed that a similarity matrix can effectively provide the map user with the information needed to assess the rescaling. Additionally, the upscaled maps can provide higher accuracy and better represent landscape pattern compared to the existing coarser maps. Therefore, we strongly recommend that an evaluation of the upscaled map and the existing coarser resolution map using a similarity matrix should be conducted before deciding which dataset to use for the modelling. Overall, extending our understanding on how to perform an evaluation of the rescaled map and investigation of the applicability
Directory of Open Access Journals (Sweden)
Gurpreet Arora
2011-01-01
Full Text Available The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w. The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm 2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4. Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4 with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations.
Evaluation of the validity of job exposure matrix for psychosocial factors at work.
Directory of Open Access Journals (Sweden)
Svetlana Solovieva
Full Text Available To study the performance of a developed job exposure matrix (JEM for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP.We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys, one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes.The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders.Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists.
Evaluation of the validity of job exposure matrix for psychosocial factors at work.
Solovieva, Svetlana; Pensola, Tiina; Kausto, Johanna; Shiri, Rahman; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira
2014-01-01
To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP). We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes. The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders. Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists.
Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char
International Nuclear Information System (INIS)
Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin
2015-01-01
The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)
International Nuclear Information System (INIS)
Berry, D.L.
1979-01-01
The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days
Energy Technology Data Exchange (ETDEWEB)
Berry, D.L.
1979-01-01
The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.
International Nuclear Information System (INIS)
Zaidi, J.H.; Arif, M.; Fatima, I.; Ahmad, S.; Qureshi, I.H.
2000-01-01
Extensive use of chewing gums, by children in particular, entails the evaluation of trace element contents in them. Radiochemical neutron activation analysis (RNAA) was successfully employed to determine the concentration of 35 trace elements (essential, toxic and nonessential) in eight different brands of chewing gum generally consumed in Rawalpindi/Islamabad area. Comparison of trace element data of our work with literature has been presented. None of the elements detected in the brands of chewing gum examined was found to be present at a level representing a substantial contribution to the total dietary intake of the element. (author)
Lornoxicam gastro retentive floating matrix tablets: Design and in vitro evaluation.
Sathiyaraj, S; Devi, Ramya D; Hari, Vedha B N
2011-07-01
The objective of this present investigation is to prolong the gastric residence time of Lornoxicam by fabricating it into a floating sustained release matrix tablets. Lornoxicam, a potent oxicam group of non-steroidal anti-inflammatory drugs, suffers from relatively short half life of 2 to 3 hrs showing maximal absorption in proximal gastro intestinal tract region necessitating its need to be formulated as a floating sustained release matrix tablets. In this current investigation, hydroxyl propyl methyl cellulose K15M, a high viscous grade polymer with apparent viscosity of 15,000 cps, was kept as a variable (10-50%) and calcium carbonate (13%) was used as a gas generator. The prepared blends were subjected for its pre-formulation characterization. The directly compressed tablets were evaluated for physical parameters such as weight uniformity, hardness, friability, drug content, in-vitro buoyancy with axial and radial enlargement measurement, swelling index. From the investigation it was observed that the buoyancy lasted for up to 24 hrs. Fourier transform infra-red spectroscopy peaks assured the compatibility of the drug with excipients and confirmed the presence of pure drug in the formulation. It was supported by in-vitro dissolution studies; and the dissolution data was subjected to various release kinetic models to understand the mechanism of drug release.
Lornoxicam gastro retentive floating matrix tablets: Design and in vitro evaluation
Directory of Open Access Journals (Sweden)
S Sathiyaraj
2011-01-01
Full Text Available The objective of this present investigation is to prolong the gastric residence time of Lornoxicam by fabricating it into a floating sustained release matrix tablets. Lornoxicam, a potent oxicam group of non-steroidal anti-inflammatory drugs, suffers from relatively short half life of 2 to 3 hrs showing maximal absorption in proximal gastro intestinal tract region necessitating its need to be formulated as a floating sustained release matrix tablets. In this current investigation, hydroxyl propyl methyl cellulose K15M, a high viscous grade polymer with apparent viscosity of 15,000 cps, was kept as a variable (10-50% and calcium carbonate (13% was used as a gas generator. The prepared blends were subjected for its pre-formulation characterization. The directly compressed tablets were evaluated for physical parameters such as weight uniformity, hardness, friability, drug content, in-vitro buoyancy with axial and radial enlargement measurement, swelling index. From the investigation it was observed that the buoyancy lasted for up to 24 hrs. Fourier transform infra-red spectroscopy peaks assured the compatibility of the drug with excipients and confirmed the presence of pure drug in the formulation. It was supported by in-vitro dissolution studies; and the dissolution data was subjected to various release kinetic models to understand the mechanism of drug release.
Close, D.A.; Franks, L.A.; Kocimski, S.M.
1984-08-16
An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)
Energy Technology Data Exchange (ETDEWEB)
Garron, Nicolas [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,Brownlow Hill, Liverpool, L69 3BX (United Kingdom); Hudspith, Renwick J. [Department of Physics and Astronomy, York University,4700 Keele Street, Toronto, Ontario, M3J 1P3 (Canada); Lytle, Andrew T. [SUPA, School of Physics and Astronomy, University of Glasgow,University Avenue, Glasgow, G12 8QQ (United Kingdom); Collaboration: The RBC/UKQCD collaboration
2016-11-02
We compute the hadronic matrix elements of the four-quark operators relevant for K{sup 0}−K̄{sup 0} mixing beyond the Standard Model. Our results are from lattice QCD simulations with n{sub f}=2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Basye, Austin Thomas
A matrix element method analysis of the Standard Model Higgs boson, produced in association with two top quarks decaying to the lepton-plus-jets channel is presented. Based on 20.3 fb−1 of √s=8 TeV data, produced at the Large Hadron Collider and collected by the ATLAS detector, this analysis utilizes multiple advanced techniques to search for tt ̄H signatures with a 125 GeV Higgs boson decaying to two b-quarks. After categorizing selected events based on their jet and b-tag multiplicities, signal rich regions are analyzed using the matrix element method. Resulting variables are then propagated to two parallel multivariate analyses utilizing Neural Networks and Boosted Decision Trees respectively. As no significant excess is found, an observed (expected) limit of 3.4 (2.2) times the Standard Model cross-section is determined at 95% confidence, using the CLs method, for the Neural Network analysis. For the Boosted Decision Tree analysis, an observed (expected) limit of 5.2 (2.7) times the Standard Model cr...
International Nuclear Information System (INIS)
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2002-01-01
We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming
2013-01-01
The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).
Finite-element model of ultrasonic NDE [nondestructive evaluation
International Nuclear Information System (INIS)
Lord, W.
1989-07-01
An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs
Evaluation of radiation damping using 3-D finite element models
International Nuclear Information System (INIS)
Vaughan, D.K.; Isenberg, J.
1983-01-01
The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)
Use of x-ray absorption imaging to evaluate the effects of heterogeneity on matrix diffusion
International Nuclear Information System (INIS)
Altman, S.J.; Tidwell, V.C.; McKenna, S.A.; Meigs, L.C.
1998-01-01
An understanding of matrix diffusion is important in assessing potential nuclear waste repositories in geologic media, as it is a potentially significant process in retarding the transport of contaminant species. Recent work done in evaluating the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has brought up two issues that complicate the incorporation of diffusion in Performance Assessment calculations. First, interpretations of single-well tracer test data suggest that the tracer was diffusing at multiple rates. Second, the estimated relevant rate(s) of diffusion are dependent on the time and length scales of the problem. To match the observed tracer test data, a model with a distribution of diffusion coefficients was required. This has led to the proposal of applying a model with multiple rates of diffusion, the multirate model, to Performance Assessment calculations for the WIPP. A series of laboratory- scale experiments have been designed for the purpose of evaluating heterogeneity and scaling properties of diffusion rates and to test the multirate model. X-ray absorption imaging was used to visualize and quantify the effects of matrix heterogeneity on the diffusion characteristics for four different centimeter-scale samples of dolomite. The samples were obtained from the Culebra dolomite at the WIPP site. Significant variations in diffusion rates were observed over relatively small length and time (months) scales for the preliminary laboratory experiments. A strong correlation between diffusion rate and porosity was also observed in each of the samples. Two sets of experiments are planned for 1998. The first set of experiments is similar to those described above. For these experiments, fourteen samples exhibiting a broader range of physical characteristics are being tested. The second set of experiments will visualize the combined effect of advection in a fracture and diffusion into adjacent matrix materials. Tracer solution will flow through
International Nuclear Information System (INIS)
Kanyauskas, Yu.M.; Rudzikas, Z.B.
1976-01-01
Operators and their submatrix elements are studied in the framework of the electric multipole transitions of complex atoms with account of relativistic corrections of the order of the square of the fine structure constant. The analysis is performed by means of irreducible tensor operators and genealogical coefficients. It has been assumed that angular momenta of individual shells are coupled with each other according to ls, lk, jk and jj coupling. Formulas are given for the operator which causes the relativistic corrections for the single-electron multipole transition and for its submatrix element in the case of configurations with two unfilled shells. A possibility is discussed of using the formulas suggested for calculation. As follows from analysis, the relativistic correction operators even with the pure ls coupling allow intercombination transitions with ΔS equals +-1. The expressions obtained may turn out to be useful for performing calculations in the case of the intermediate type of coupling
International Nuclear Information System (INIS)
Li Chaoliu; Kang Shichang; Zhang Qianggong
2009-01-01
The Tibetan Plateau (TP) is an ideal place for monitoring the atmospheric environment of low to mid latitudes. In total 54 soil samples from the western TP were analyzed for major and trace elements. Results indicate that concentrations of some typical 'pollution' elements (such as As) are naturally high here, which may cause incorrect evaluation for the source region of these elements, especially when upper continental crust values are used to calculate enrichment factors. Because only particles <20 μm are transportable as long distances, elemental concentrations of this fraction of the TP soils are more reliable for the future aerosol related studies over the TP. In addition, REE compositions of the TP soils are unusual, highly characteristic and can be used as an effective index for identifying dust aerosol from the TP. - High concentrations of some elements of the Tibetan soils can cause incorrect evaluation for the source region of these elements during aerosol related study.
International Nuclear Information System (INIS)
Schubert, A; Hackert-Oschätzchen, M; Lehnert, N; Götze, U; Herold, F; Schmidt, A; Meichsner, G
2016-01-01
Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control. (paper)
Rudzki, Piotr J; Gniazdowska, Elżbieta; Buś-Kwaśnik, Katarzyna
2018-06-05
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for studying pharmacokinetics and toxicokinetics. Reliable bioanalysis requires the characterization of the matrix effect, i.e. influence of the endogenous or exogenous compounds on the analyte signal intensity. We have compared two methods for the quantitation of matrix effect. The CVs(%) of internal standard normalized matrix factors recommended by the European Medicines Agency were evaluated against internal standard normalized relative matrix effects derived from Matuszewski et al. (2003). Both methods use post-extraction spiked samples, but matrix factors require also neat solutions. We have tested both approaches using analytes of diverse chemical structures. The study did not reveal relevant differences in the results obtained with both calculation methods. After normalization with the internal standard, the CV(%) of the matrix factor was on average 0.5% higher than the corresponding relative matrix effect. The method adopted by the European Medicines Agency seems to be slightly more conservative in the analyzed datasets. Nine analytes of different structures enabled a general overview of the problem, still, further studies are encouraged to confirm our observations. Copyright © 2018 Elsevier B.V. All rights reserved.
Chemometric evaluation of trace elements in Brazilian medicinal plants
International Nuclear Information System (INIS)
Silva, Paulo S.C. da; Francisconi, Lucilaine S.; Goncalves, Rodolfo D.M.R.
2013-01-01
The growing interest in herbal medicines has required standardization in order to ensure their safe use, therapeutic efficacy and quality of the products. Despite the vast flora and the extensive use of medicinal plants by the Brazilian population, scientific studies on the subject are still insufficiency In this study, 59 medicinal plans were analyzed for the determination of As, Ba, Br, Ca, Cl, Cs, Co, Cr, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis and Cu, Ni, Pb, Cd and Hg by atomic absorption. The results were analyzed by chemometric methods: correlation analysis, principal component analysis and cluster analysis, in order to verify whether or not there is similarity with respect to their mineral and trace metal contents. Results obtained permitted to classify distinct groups among the analyzed plants and extracts so that these data can be useful in future studies, concerning the therapeutic action the elements here determined may exert. (author)
Chemometric evaluation of trace elements in Brazilian medicinal plants
Energy Technology Data Exchange (ETDEWEB)
Silva, Paulo S.C. da; Francisconi, Lucilaine S.; Goncalves, Rodolfo D.M.R., E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas
2013-07-01
The growing interest in herbal medicines has required standardization in order to ensure their safe use, therapeutic efficacy and quality of the products. Despite the vast flora and the extensive use of medicinal plants by the Brazilian population, scientific studies on the subject are still insufficiency In this study, 59 medicinal plans were analyzed for the determination of As, Ba, Br, Ca, Cl, Cs, Co, Cr, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis and Cu, Ni, Pb, Cd and Hg by atomic absorption. The results were analyzed by chemometric methods: correlation analysis, principal component analysis and cluster analysis, in order to verify whether or not there is similarity with respect to their mineral and trace metal contents. Results obtained permitted to classify distinct groups among the analyzed plants and extracts so that these data can be useful in future studies, concerning the therapeutic action the elements here determined may exert. (author)
Evaluation of the fuel-element assembly non-hermeticity at its early stage
International Nuclear Information System (INIS)
Bliznyakova, V.A.; Shevel', V.N.; Ostapenko, V.I.
1983-01-01
The given paper deals with control of the fuel-element assembly shell state at the early stage of failure development. Technique for the fuel-element assembly shell state evaluation are described. A method for assembly failure detection, used at WWR of the Institute for Nuclear Research is described also
Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...
Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer
Directory of Open Access Journals (Sweden)
Nyoman Suaryana
2016-09-01
Full Text Available One type of road pavement material which is developed to be more resistant to permanent deformation is the SMA (Stone Matrix Asphalt. Utilization of the SMA mix in Indonesia has constraints in gain stabilizer and also difficulty to comply the gradations, mainly because it needs a relatively large amount of filler. Alternative of local materials that can be used is asbuton (natural rock asphalt from Buton Island. Asbuton is expected to act as a stabilizer and simultaneously provides an additional filler. The objective of this research is to evaluate the performance of the SMA that uses the asbuton. The methodology used in this research is the experimental method, its starts from material testing, design mix and performance testing that includes dynamic modulus, permanent deformation and fatigue resistance. The results obtained showed asbuton can prevent asphalt draindown as well as increase the proportion of filler. Draindown asphalt can be prevented by using binder absorbers with fiber cellulose and viscosity boosters with asbuton. Asbuton (LGA 50/25 can behave as a stabilizer as well as cellulose fiber. Addition of asbuton also improves the performance of the SMA mix, as shown with increase in the value of dynamic stability. In terms of resistance to fatigue, SMA with cellulosa as stabilizer and SMA with asbuton as stabilizer, relatively have the same performance. Master curve of dynamic modulus indicates SMA with asbuton as stabilizer is relatively stiffer at high temperatures (more than 4.4 °C, but relatively less stiff (less brittle at low temperatures. Keywords: Stone matrix asphalt, Asbuton, Draindown, Dynamic modulus, Permanent deformation
Energy Technology Data Exchange (ETDEWEB)
Pangilinan, Monica [Brown Univ., Providence, RI (United States)
2010-05-01
The top quark produced through the electroweak channel provides a direct measurement of the V_{tb} element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb^{-1} of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30_{-1.20}^{+0.98} pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |V_{tb}| < 1, the 95% confidence level (C.L.) lower limit is |V_{tb}| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'_{L} with SM couplings) > 840 GeV; M(W'_{R}) > 880 GeV or 890 GeV if the
Energy Technology Data Exchange (ETDEWEB)
Schieferdecker, Philipp [Ludwig Maximilian Univ. of Munich (Germany)
2005-08-05
The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb^{-1} of D0 Run II data, the mass of the top quark is measured to be: m$ℓ+jets\\atop{top}$ = 169.5 ± 4.4(stat. + JES)$+1.7\\atop{-1.6}$(syst.) GeV; m$e+jets\\atop{top}$ = 168.8 ± 6.0(stat. + JES)$+1.9\\atop{-1.9}$(syst.) GeV; m$μ+jets\\atop{top}$ = 172.3 ± 9.6(stat.+JES)$+3.4\\atop{-3.3}$(syst.) GeV. The jet energy scale measurement in the ℓ+jets sample yields JES = 1.034 ± 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.
Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula
2017-07-01
The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
Clinical evaluation of a membrane-based voice-producing element for female laryngectomized patients
Tack, Johannes W.; Qiu, Qingjun; Schutte, Harm K.; Kooijman, Piet G.C.; Meeuwis, Cees A.; van der Houwen, Eduard B.; Mahieu, Hans F.; Verkerke, Gijsbertus Jacob
2008-01-01
Background: A newly developed artificial voice source was clinically evaluated in laryngectomized women for voice quality improvements. The prosthesis was placed in a commercially available, tracheoesophageal shunt valve. - Methods: In 17 subjects, voice-producing element (VPE) prototypes were
MCDM based evaluation and ranking of commercial off-the-shelf using fuzzy based matrix method
Directory of Open Access Journals (Sweden)
Rakesh Garg
2017-04-01
Full Text Available In today’s scenario, software has become an essential component in all kinds of systems. The size and the complexity of the software increases with a corresponding increase in its functionality, hence leads to the development of the modular software systems. Software developers emphasize on the concept of component based software engineering (CBSE for the development of modular software systems. The CBSE concept consists of dividing the software into a number of modules; selecting Commercial Off-the-Shelf (COTS for each module; and finally integrating the modules to develop the final software system. The selection of COTS for any module plays a vital role in software development. To address the problem of selection of COTS, a framework for ranking and selection of various COTS components for any software system based on expert opinion elicitation and fuzzy-based matrix methodology is proposed in this research paper. The selection problem is modeled as a multi-criteria decision making (MCDM problem. The evaluation criteria are identified through extensive literature study and the COTS components are ranked based on these identified and selected evaluation criteria using the proposed methods according to the value of a permanent function of their criteria matrices. The methodology is explained through an example and is validated by comparing with an existing method.
Energy Technology Data Exchange (ETDEWEB)
Brandenburg, G W; Dunwoodie, W M; Lasinski, T A; Leith, D W.G.S.; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA); Carnegie, R K [Carleton Univ., Ottawa, Ontario (Canada). Dept. of Physics; Cashmore, R J [Oxford Univ. (UK). Dept. of Physics; Davier, M [Lab. de l' Accelerateur Lineaire, Orsay, France; Matthews, J A.J. [Michigan State Univ., East Lansing (USA). Dept. of Physics; Walden, P [British Columbia Univ., Vancouver (Canada). TRIUMF Facility
1975-11-24
The results of a wire chamber spectrometer experiment studying anti K*(890) production in the reaction K/sup -/p..-->..K/sup -/..pi../sup +/n at 13 GeV are presented. Strong forward structure is observed for mod(t)
DEFF Research Database (Denmark)
Qing, Hai
2013-01-01
Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...... for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage...... model are developed within Abaqus/Standard Subroutine USDFLD, respectively. An Abaqus/Standard Subroutine MPC, which allows defining multi-point constraints, is developed to realize the symmetric boundary condition (SBC) and periodic boundary condition (PBC). A series of computational experiments...
International Nuclear Information System (INIS)
Lueck, Thomas
2013-01-01
This document presents a measurement of the CKM matrix-element vertical stroke V ub vertical stroke in inclusive semileptonic B→X u eν events on a dataset of 471 million B anti B events recorded by the BABAR detector. Inclusive B→X u eν decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B→X u eν decays. A B→D * eν veto is applied to further suppress background. This veto uses D * mesons which have been reconstructed with a partial reconstruction technique.
The O(α{sub s}{sup 3}T{sub F}{sup 2}) contributions to the gluonic operator matrix element
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Manteuffel, A. von [PRISMA Cluster of Excellence, Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria)
2014-08-15
The O(α{sub s}{sup 3}T{sub F}{sup 2}C{sub F}(C{sub A})) contributions to the transition matrix element A{sub gg,Q} relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.
International Nuclear Information System (INIS)
Chen Kouping; Jiao, Jiu J.; Huang Jianmin; Huang Runqiu
2007-01-01
Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the data of trace elements in groundwater using multivariate statistical techniques such as principal component analysis (PCA), Q-mode factor analysis and cluster analysis. The original matrix consisted of 17 trace elements estimated from 55 groundwater samples colleted in 27 wells located in a coastal area in Shenzhen, China. PCA results show that trace elements of V, Cr, As, Mo, W, and U with greatest positive loadings typically occur as soluble oxyanions in oxidizing waters, while Mn and Co with greatest negative loadings are generally more soluble within oxygen depleted groundwater. Cluster analyses demonstrate that most groundwater samples collected from the same well in the study area during summer and winter still fall into the same group. This study also demonstrates the usefulness of multivariate statistical analysis in hydrochemical studies. - Multivariate statistical analysis was used to investigate relationships among trace elements and factors controlling trace element distribution in groundwater
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2015-01-01
Full Text Available . The solver is parallelised for distributed-memory systems using METIS for domaindecomposition and MPI for inter-domain communication. The developed technology is evaluated by application to benchmark problems for strongly-coupled fluid-structure interaction...
International Nuclear Information System (INIS)
Jeong-Ha You
2006-01-01
According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after
Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao
2011-04-15
The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.
Gunn, Nicholas M; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L
2010-11-01
The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, for example, progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent on the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence.
Evaluation of concrete as a matrix for solidification of Savannah River Plant waste
International Nuclear Information System (INIS)
Stone, J.A.
1977-06-01
The properties of concrete as a matrix for solidification of Savannah River Plant (SRP) high-level radioactive wastes were studied. In an experimental, laboratory-scale program, concrete specimens were prepared and evaluated with both simulated and actual SRP waste sludges. Properties of concrete were found adequate for fixation of SRP wastes. Procedures were developed for preparation of simulated sludges and concrete-sludge castings. Effects of cement type, simulated sludge type, sludge loading, and water content on concrete formulations were tested in a factorial experiment. Compressive strength, leachability of strontium and plutonium, thermal stability, and radiation stability were measured for each formulation. From these studies, high-alumina cement and a portland-pozzolanic cement were selected for additional tests. Incorporation of cesium-loaded zeolite into cement-sludge mixtures had no adverse effects on mechanical or chemical properties of waste forms. Effects of heating concrete-sludge castings were investigated; thermal conductivity and DTA-TGA-EGA data are reported. Formulations of actual SRP waste sludges in concrete were prepared and tested for compressive strength; for leachability of 90 Sr, 137 Cs, and alpha emitters; and for long-term thermal stability. The radioactive sludges were generally similar in behavior to simulated sludges in concrete. 37 tables, 34 figures
International Nuclear Information System (INIS)
Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Soker, Shay; Khang, Gilson
2013-01-01
The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation. (paper)
In vitro extracellular matrix model to evaluate stroma cell response to transvaginal mesh.
Wu, Ming-Ping; Huang, Kuan-Hui; Long, Cheng-Yu; Yang, Chau-Chen; Tong, Yat-Ching
2014-04-01
The use of surgical mesh for female pelvic floor reconstruction has increased in recent years. However, there is paucity of information about the biological responses of host stroma cells to different meshes. This study was aimed to establish an in vitro experimental model to study the micro-environment of extracellular matrix (ECM) with embedded mesh and the stroma cell behaviors to different synthetic meshes. Matrigel multi-cellular co-culture system with embedded mesh was used to evaluate the interaction of stroma cells and synthetic mesh in a simulated ECM environment. Human umbilical vein endothelial cells (HUVEC) and NIH3T3 fibroblasts were inoculated in the system. The established multi-cellular Matrigel co-culture system was used to detect stroma cell recruitment and tube formation ability for different synthetic meshes. HUVEC and NIH3T3 cells were recruited into the mesh interstices and organized into tube-like structures in type I mesh material from Perigee, Marlex and Prolift 24 hr after cell inoculation. On the contrary, there was little recruitment of HUVEC and NIH3T3 cells into the type III mesh of intra-vaginal sling (IVS). The Matrigel multi-cellular co-culture system with embedded mesh offers a useful in vitro model to study the biological behaviors of stroma cells in response to different types of synthetic meshes. The system can help to select ideal mesh candidates before actual implantation into the human body. © 2013 Wiley Periodicals, Inc.
Success Evaluation of Pulpotomy in Primary Molars with Enamel Matrix Derivative: a Pilot Study
Directory of Open Access Journals (Sweden)
Fatemeh Mazhari
2016-06-01
Full Text Available Aim: To investigate the effect of Emdogain gel (EMD in pulpotomized primary molars and its clinical and radiographic outcomes. Methods and Materials: In this study, 18 lower second primary molars of nine children were treated by pulpotomy. The teeth were randomly assigned to the EMD (experimental and Formocresol (control groups in each patient (split mouth. Following removal of the coronal pulp and haemostasis, the pulp stumps were covered with Emdogain gel in the experimental group followed by application of resin-modified glass ionomer cement over the gel. In the control group, Formocresol (FC was placed with a cotton pellet over the pulp stumps. Lastly, the teeth in both groups were restored with stainless steel crowns. Results: Nine children referred with clinical failure before/at two months follow up. The radiographic evaluation revealed furcation involvement and extensive radicular radiolucency in molars treated with Emdogain gel. Conclusion: The present study showed the failure of enamel matrix derivative in pulpotomy of primary molars; therefore, we do not recommend using Emdogain as a pulpotomy agent for treatment of cariously exposed primary teeth
Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements
International Nuclear Information System (INIS)
Park, Seung Chul; Hwang, Tae Won; Moon, Chan Kook
2008-01-01
Metal filter elements were newly introduced to the high temperature filter (HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.
R-Matrix Evaluation of 16O neutron cross sections up to 6.3 MeV
International Nuclear Information System (INIS)
Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; Wright, R.Q.
2000-01-01
In this paper the authors describe an evaluation of 16 O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique
International Nuclear Information System (INIS)
Vijayarangan, S.; Rajamanickam, N.; Sivananth, V.
2013-01-01
performed on MMC model before and after optimization. The life of the MMC knuckle is evaluated for maximum load case. The results obtained from numerical analysis and experimental testing encouraged using particulate reinforced metal matrix composites for critical component steering knuckle with a weight saving about 55% when compared with currently used SG iron.
Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra
2017-01-01
Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Eggert, F
2010-01-01
This work describes first real automated solution for qualitative evaluation of EDS spectra in X-ray microanalysis. It uses a combination of integrated standardless quantitative evaluation, computation of analytical errors to a final uncertainty, and parts of recently developed simulation approaches. Multiple spectra reconstruction assessments and peak searches of the residual spectrum are powerful enough to solve the qualitative analytical question automatically for totally unknown specimens. The integrated quantitative assessment is useful to improve the confidence of the qualitative analysis. Therefore, the qualitative element analysis becomes a part of integrated quantitative spectrum evaluation, where the quantitative results are used to iteratively refine element decisions, spectrum deconvolution, and simulation steps.
Energy Technology Data Exchange (ETDEWEB)
Kirsch, Matthias
2009-06-29
.2 standard deviations. The measured cross section value exceeds the Standard Model expectation by 2 standard deviations. The result of the analysis presented here is in good agreement with the result of {sigma}(p anti p{yields}tb+X,tqb+X)=4.8{+-} 1.3 pb, obtained from the combination of three other analyses performed on the same data set. From the cross section measurement a measurement of the strength vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke of the V-A coupling at the Wtb-vertex has been extracted. The result is vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.42{sub -0.20}{sup +0.21}. This value is above the Standard Model expectation by about 2{proportional_to}standard deviations. The measurement agrees within uncertainties with the measurement of vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.31{sub -0.21}{sup +0.25} obtained by another analysis performed on the same data set. Constraining the prior of this measurement to the interval [0,1], i.e. setting the strength of the left-handed coupling f{sub 1}{sup L}=1, a result for the CKM matrix element vertical stroke V{sub tb} vertical stroke has been determined to vertical stroke V{sub tb} vertical stroke =1.00{sub -0.08}{sup +0.00}. From the posterior probability density of this measurement a lower limit for V{sub tb} has been set at 95% confidence level: vertical stroke V{sub tb} vertical stroke >0.79 rate at 95% C.L. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)
2012-05-15
This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.
Evaluated phase diagrams of binary metal-tellurium systems of the D-block transition elements
International Nuclear Information System (INIS)
Chattopadhyay, G.; Bharadwaj, S.R.
1989-01-01
The binary phase diagrams of metal-tellurium systems for twenty seven d-block transition elements have been critically evaluated. Complete phase diagrams are presented for the elements, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, palladium, silver, lanthanum, platinum and gold, whereas, for scandium, titanium, vanadium, yttrium, zirconium, niobium, technitium, ruthenium, rhodium, hafnium, tantalum, tungsten , rhenium, osmium and iridium, the phase diagrams are incomplete and tentative. (author). 20 refs., 27 tabs., 27 figs
田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi
2004-01-01
This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Institute for Theoretical Physics E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria)
2013-01-11
The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N using a new summation technique. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2012-05-15
The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.
Matrix effect studies with empirical formulations in maize saplings
International Nuclear Information System (INIS)
Bansal, Meenakshi; Deep, Kanan; Mittal, Raj
2012-01-01
In X-ray fluorescence, the earlier derived matrix effects from fundamental relations of intensities of analyte/matrix elements with basic atomic and experimental setup parameters and tested on synthetic known samples were found empirically related to analyte/matrix elemental amounts. The present study involves the application of these relations on potassium and calcium macronutrients of maize saplings treated with different fertilizers. The novelty of work involves a determination of an element in the presence of its secondary excitation rather than avoiding the secondary fluorescence. Therefore, the possible utility of this process is in studying the absorption for some intermediate samples in a lot of a category of samples with close Z interfering constituents (just like Ca and K). Once the absorption and enhancement terms are fitted to elemental amounts and fitted coefficients are determined, with the absorption terms from the fit and an enhancer element amount known from its selective excitation, the next iterative elemental amount can be directly evaluated from the relations. - Highlights: ► Empirical formulation for matrix corrections in terms of amounts of analyte and matrix element. ► The study applied on K and Ca nutrients of maize, rice and potato organic materials. ► The formulation provides matrix terms from amounts of analyte/matrix elements and vice versa.
Kaleemullah, M.; Jiyauddin, K.; Thiban, E.; Rasha, S.; Al-Dhalli, S.; Budiasih, S.; Gamal, O.E.; Fadli, A.; Eddy, Y.
2016-01-01
Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop susta...
Preclinical Evaluation of RYM1, a Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm.
Toczek, Jakub; Ye, Yunpeng; Gona, Kiran; Kim, Hye-Yeong; Han, Jinah; Razavian, Mahmoud; Golestani, Reza; Zhang, Jiasheng; Wu, Terence L; Jung, Jae-Joon; Sadeghi, Mehran M
2017-08-01
Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99m Tc. Radiochemical stability of 99m Tc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99m Tc-RP805 in C57BL/6J mice ( n = 10). 99m Tc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE -/- ) mice with CaCl 2 -induced carotid aneurysm ( n = 11). Angiotensin II-infused apoE -/- ( n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99m Tc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99m Tc-RP805. 99m Tc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE -/- mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99m Tc-RYM1 small-animal SPECT/CT images showed
Mengis, Nadine; Keller, David P.; Oschlies, Andreas
2018-01-01
This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom-up approach which combines expert judgment and statistical information to systematically select transparent, nonredundant indicators for a comprehensive assessment of the state of the Earth system. The methods consists of two basic steps: (1) the calculation of a correlation matrix among variables relevant for a given research question and (2) the systematic evaluation of the matrix, to identify clusters of variables with similar behavior and respective mutually independent indicators. Optional further analysis steps include (3) the interpretation of the identified clusters, enabling a learning effect from the selection of indicators, (4) testing the robustness of identified clusters with respect to changes in forcing or boundary conditions, (5) enabling a comparative assessment of varying scenarios by constructing and evaluating a common correlation matrix, and (6) the inclusion of expert judgment, for example, to prescribe indicators, to allow for considerations other than statistical consistency. The example application of the SCoMaE method to Earth system model output forced by different CO2 emission scenarios reveals the necessity of reevaluating indicators identified in a historical scenario simulation for an accurate assessment of an intermediate-high, as well as a business-as-usual, climate change scenario simulation. This necessity arises from changes in prevailing correlations in the Earth system under varying climate forcing. For a comparative assessment of the three climate change scenarios, we construct and evaluate a common correlation matrix, in which we identify robust correlations between variables across the three considered scenarios.
Uncertainties in elemental quantitative analysis by PIXE
International Nuclear Information System (INIS)
Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.
1979-01-01
The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)
International Nuclear Information System (INIS)
Forrester, P.J.; Witte, N.S.
2000-01-01
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)
Evaluation of titanium carbide metal matrix composites deposited via laser cladding
Cavanaugh, Daniel Thomas
Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.
Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes.
Lehotay, Steven J; Mastovská, Katerina; Yun, Seon Jong
2005-01-01
Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 x 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 +/- 1% recovery (n=6) in avocado (15% fat) with a<10 ng/g limit of quantitation.
International Nuclear Information System (INIS)
Oladipo, M.O.A.; Njinga, R.L.; Baba, A.; Muhammad, H.L.
2012-01-01
Instrumental neutron activation analysis was used for multi-trace elemental determination of six medicinal plants: Boerhavia diffusa, Euphoria hirta, Senna occidentalis, Senna obtusofolia, Cyprus dilatatus and Mitracarpus villosu. These plants were irradiated in the Nigeria Research reactor-1, at flux levels of 2.25E+11 ncm −2 s −1 in the outer channel and 5.0E+11 ncm −2 s −1 in the inner channel. A total of the twenty one elemental concentrations were evaluated highlighted the similarity between the elements obtained for the six plants. It was found that Euphoria hirta and Senna occidentalis have similar concentrations of elements. Boerhavia difusa, Mitracarpus villosus, Cyprus dilatalus and Senna obttusifolia were also similar in elemental content to each other, while Boerhavia difusa was the only exceptional outlier. The accuracy of measurements was evaluated by analyzing IAEA-359 cabbage references standard materials and the results show good agreement with certified or literature values within ±0.01% to ±0.87%. - Highlights: ► Application of neutron activation analysis. ► Multi-trace elemental determination of six medicinal plants in northern Nigeria. ► Accuracy of the measurements was based on analyzing IAEA-359 cabbage, a standard reference material. ► Results showed good agreement with certified values within ±0.01 % to ±0.87%.
Energy Technology Data Exchange (ETDEWEB)
Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)
2007-08-14
The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel
2015-06-09
A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 fb$^{-1}$ collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger $\\mathrm{t \\bar{t}}$+jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, $\\mu$, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is $\\mu$ lower than 4.2 (3.3), corresponding to a best fit value $\\hat{\\m...
International Nuclear Information System (INIS)
Lim, Jong Myoung; Moon, Jong Hwa; Chung, Yong Sam; Jung, Byoung Won; Lee, Jin Hong
2009-01-01
Airborne particulate matters, especially the PM2.5 (aerodynamic equivalent diameter, AED, less than 2.5 μm) fraction has been important. This is because of their potential for deposition on to the human respiratory system being accompanied by many harmful trace metals (such as As, Cd, Cr, Cu, Mn, Pb, Se, and Zn). The indoor air quality has become a great concern since late 1980s, because the population spends a majority of their time in various indoor environments. The indoor particulate matter may be influenced from outdoor environment and indoor sources such as environmental tobacco smoke (ETS), combustion devices, cooking, etc. In this study, we undertake the measurements of about 26 elements using instrumental neutron activation analysis (INAA). Based on our measurement data, we characterize concentration status and mutual relationship between indoor and adjacent outdoor air quality. Next, sources at indoor/outdoor environment were identified and the contributions of each source were quantified by positive matrix factorization (PMF)
International Nuclear Information System (INIS)
Demilly, A.
2014-01-01
The LHC produced proton-proton collisions data at 7 TeV of center of mass energy in 2011 and 8 TeV in 2012, corresponding to an integrated luminosity of, respectively, 5 fb"-"1 and 23 fb"-"1. Data acquired by ATLAS have led to a better understanding of the detector and its performance, to many measurements of physical quantities and the discovery of the Higgs boson. Top quark is involved in many processes beyond the Standard Model. Its mass is an important parameter for the Standard Model and any New Physics theory, thus measuring its mass accurately is necessary. After a description of the Standard Model of Particle Physics, and the role of the top quark in it, the first half of this thesis describes the ATLAS detector and its electromagnetic calorimeter, for which a study of the calibration constant patching is detailed. The second half details top quark physics events detected in ATLAS and their selection. Theoretical aspects of the matrix element method and its implementation for the top quark mass measurement in the dilepton electron-muon channel in the experimental framework of ATLAS are discussed. The measurement calibration and optimisation studies for the analysis are presented. Finally, systematic uncertainties are described and estimated. This measurement yields a top quark mass of (173.65 ± 0.70 ± 2.36) GeV ; showing no discrepancy with current worldwide measurements. (author)
International Nuclear Information System (INIS)
Childs, W.J.
1997-01-01
Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs
Meniscus matrix morphological composition: age-dependent evaluation in a swine model
Directory of Open Access Journals (Sweden)
Umberto Polito
2017-06-01
Full Text Available Menisci are fibro-cartilaginous structures interposed between femoral condyle and tibial plateau, which have multiple functions in the stifle joint: act as shock absorbers, bear loaders and allow joint stability, congruity and lubrication (Sweigart et al., 2004; Proffen et al., 2012. It is well known that meniscal injuries lead to osteoarthritis and for these reasons, menisci are considered important target of investigation. Their important role in the knee wellness is only equalled by their deficiency in proper self-repairing. Nowadays, the gold standard technique is not just to remove the damaged meniscus, but to rebuild it or to replace it. For these reasons, studies are necessary to increase the knowledge about these small but essential structures (Streuli, 1999; Deponti et al., 2013. Composition and morphology are basic fundamental information for the development of engineered meniscal substitutes (Di Giancamillo et al., 2014. The analysis of the morphological, structural and biochemical changes, which occur during growth of the normal menisci, represent the goal of the present study. For this purpose, menisci from adult (7-month old, young (1-month old, and neonates (stillbirths pigs were collected. Cellularity and glycosamiglycans (GAGs deposition were evaluated by ELISA, while Collagen-1 and Collagen-2 were investigated by immunohistochemistry and Western blot analyses. Cellularity (P<0.01, all comparisons and Collagen-1 (P<0.05, neonatal-young vs adult decreased from neonatal to adult stage while GAGs (P<0.01 neonatal vs young-adult and Collagen-2 (P<0.01 neonatal-young vs adult showed the opposite trend. Immunohistochemistry revealed similar changes occurring during animal growth thus revealing that cellular phenotype, cellularity and protein expression, as well as fibers aggregation in the matrix, are dissimilar in the three ages analysed categories. These changes reflect the progressive menisci maturation and hyper-specialisation. We
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Plummer, M.; Armour, E. A. G.; Todd, A. C.; Franklin, C. P.; Cooper, J. N.
2009-12-01
We present a program used to calculate intricate three-particle integrals for variational calculations of solutions to the leptonic Schrödinger equation with two nuclear centres in which inter-leptonic distances (electron-electron and positron-electron) are included directly in the trial functions. The program has been used so far in calculations of He-H¯ interactions and positron H 2 scattering, however the precisely defined integrals are applicable to other situations. We include a summary discussion of how the program has been optimized from a 'legacy'-type code to a more modern high-performance code with a performance improvement factor of up to 1000. Program summaryProgram title: tripleint.cc Catalogue identifier: AEEV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 829 No. of bytes in distributed program, including test data, etc.: 91 798 Distribution format: tar.gz Programming language: Fortran 95 (fixed format) Computer: Modern PC (tested on AMD processor) [1], IBM Power5 [2] Cray XT4 [3], similar Operating system: Red Hat Linux [1], IBM AIX [2], UNICOS [3] Has the code been vectorized or parallelized?: Serial (multi-core shared memory may be needed for some large jobs) RAM: Dependent on parameter sizes and option to use intermediate I/O. Estimates for practical use: 0.5-2 GBytes (with intermediate I/O); 1-4 GBytes (all-memory: the preferred option). Classification: 2.4, 2.6, 2.7, 2.9, 16.5, 16.10, 20 Nature of problem: The 'tripleint.cc' code evaluates three-particle integrals needed in certain variational (in particular: Rayleigh-Ritz and generalized-Kohn) matrix elements for solution of the Schrödinger equation with two fixed centres (the solutions may then be used in subsequent dynamic
International Nuclear Information System (INIS)
Soares, Eufemia Paez
2008-01-01
Over the past few years, problems related to food contamination by substances or elements that can be a risk to human health have became a concern, not only to government authorities, but to the general population as well. Within this context, plastic packaging can constitute a source of food contamination since plastic manufacturing processes involve the use of catalysts and different types of additives that may contain toxic elements. When food comes into contact with this packaging, components of the package may migrate to the food. In order to control the material used as food packaging, the National Health Surveillance Agency (ANVISA) in Brazil, has established boundary values of migrant substances and procedures to determine migration from plastic packagings to food. In this study the radiometric method was evaluated for element migration determination from plastic packaging to food simulating or to the food itself. This radiometric method consisted in irradiating plastic packaging samples with a thermal neutron flux from the IEA-R1 nuclear research reactor in order to produce radionuclides of elements present in the packagings. The irradiated plastic was then exposed to food simulant or food for element migration. Gamma ray spectrometry was used to measure radioactivity in the simulant or food in order to quantify the migration. The food simulating types and experimental conditions were established according to the ANVISA regulations. Element migration was studied for plastic packaging used for soft drinks, drinking water, milk, dairy products, juices and fatty foods. In the instrumental neutron activation analysis of these packagings the presence of As, Cd, Cr, Co and Sb II was verified. Results obtained from the migration experiments by the radiometric method indicated that Cd, Co, Cr and Sb present in these plastics migrated to the simulant or to the food. In some packagings, the migration of only some of these elements was observed. In these cases the
Couralet, C.; Sass, U.G.W.; Sterck, F.J.; Zuidema, P.A.
2005-01-01
Tree demography was analysed by applying dendrochronological techniques and matrix modelling on a static data set of Juniperus procera populations of Ethiopian dry highland forests. Six permanent sample plots were established for an inventory of diameters and 11 stem discs were collected for
Evaluation of Extraction Methods for the Analysis of Carotenoids for Different Vegetable Matrix
Directory of Open Access Journals (Sweden)
Stancuta Scrob
2013-11-01
Full Text Available In this study, different solvents were used to achieve the maximum extractibility of total carotenoids. The extracted total carotenoids were estimated using UV- visible spectrophotometer. Carotenoids from vegetable matrix can be used as a food colorant, food additive, cosmetics, antioxidants and nutraceuticals.
Evaluation of matrix type mucoadhesive tablets containing indomethacin for buccal application.
Ikeuchi-Takahashi, Yuri; Sasatsu, Masanaho; Onishi, Hiraku
2013-09-10
Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to systemic side effects. To avoid these side effects and treat local lesions effectively, a matrix type mucoadhesive tablet was developed. A mixture of hard fat, ethylcellulose (EC) and polyethylene glycol (PEG) was used as a matrix base, and indomethacin (IMC) was used as the principal agent. In tablets consisting of hard fat, EC and IMC, the drug release was sustained. In tablets consisting of hard fat, EC, considerable amounts of PEG and IMC, the drug release was relatively increased and IMC existed as the molecular phase or in an amorphous state. The in vitro adhesive force of the tablets consisting of hard fat, EC, considerable amounts of PEG and IMC was significantly increased as compared with the tablets consisting of hard fat and IMC. A significantly high tissue concentration and significantly low plasma concentration were observed after buccal administration of this matrix type mucoadhesive tablet as compared with that after oral administration of IMC. Thus, the matrix type mucoadhesive tablet has good potential as a preparation for the treatment of pain due to oral aphtha. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations
International Nuclear Information System (INIS)
Clark, B.A.; Urban, W.T.; Dudziak, D.J.
1983-01-01
A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates
Using 3 × 3 Matrix to Evaluate the Manufacturing Technology in Food Company
Directory of Open Access Journals (Sweden)
Ingaldi Manuela
2016-06-01
Full Text Available In order to produce goods of sufficient quality finding buyers in the market, a company must have an adequate knowledge of their production technology. Technologies and finished products at the same time will affect the position of the company in the market and hence its existence in this market. Therefore, it is so important for every company to determine the appropriate technological strategy. The 3 × 3 matrix is a very useful tool to do so. This matrix shows the relation between technological possibilities of the company and its position in the market. However, that requires changing the scale used in the matrix. In practice, this means that both those that have a positive impact on the company and those that have a negative impact on it can be included in the factors. The research was conducted in a food industry company. It turned out that the research company was located in field of the matrix marked as ‚Improve marketing’. It means that the company should put more emphasis on improving the factors related to its position in the market.
Structural evaluation of the John A. Roebling Suspension Bridge : element level analysis.
2008-07-01
The primary objective of the structural evaluation of the John A. Roebling Bridge is to determine the maximum allowable gross vehicle weight (GVW) that can be carried by the bridge deck structural elements such as the open steel grid deck, channels, ...
Er, Onur
2017-01-01
This study aims to examine the textbook "Genki I: An Integrated Course in Elementary Japanese" in terms of cultural elements. The data of this qualitative research were collected by means of the document review method. Content analysis, one of the qualitative analysis techniques, was used in the evaluation of the research data. A second…
Ruuska, Salla; Hämäläinen, Wilhelmiina; Kajava, Sari; Mughal, Mikaela; Matilainen, Pekka; Mononen, Jaakko
2018-03-01
The aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and calculate performance measures. In addition, hourly durations of each behaviour were calculated and the accuracy of measurements was evaluated with linear regression and error indices. All three validation methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but the linear regression method often disagreed with them. Our study supports the use of confusion matrix analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent evaluation of validity, and it offers extra information on the type and sources of errors. Copyright © 2018 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Zafar Iqbal, Raza Khan, Fazli Nasir, Jamshaid Ali Khan, Lateef Ahmad, Abad Khan, Yaser Shah
2010-12-01
Full Text Available Objectives: The impact of hydroxypropylmethyl cellulose(HPMC K 100M alone and in combination with the guar gum,xanthan gum and gum tragacanth on the release of the diclofenac sodium matrix tablets were evaluated.Materials and Methods: The granules were prepared using wet granulation method and compressed into tablets using different ratio of drug and gum ratio. The physical properties of the tablets were within acceptable pharmacopeial limits.The release profiles of the matrix tablets were evaluated in vitro,using USP dissolution apparatus II (paddle method.Results: The formulations containing HPMC K 100M drug ratio1:1.3 and 1:1.6 and formulations containing HPMC, gum and drug with different ratio also sustained the release of diclofenac sodium for 12 hours. The mechanism of drug release from the matrix tablets was studied using Zero order, First order, Higuchi and Korsmeyer’s models using regression coefficient method. The stability of the selected formulations was evaluated at 40˚C and 70% RH for 6 months.Conclusions: HPMC K100M alone and in combination with natural gums as the retarding material retarded the release upto 12 hours and showed little deviation from the theoretical release pattern.
Research on the Core Competitive Power Elements Evaluation System of Green Hotel
Hui LIANG
2013-01-01
Green hotel is a new type of hospitality industry development model based on the concept of circular economy and sustainable development. This paper makes an analysis and evaluation of the elements of green hotel core competence, on this basis, constructs the Green Hotel core competitive evaluation index system. The construction of the system is conducive to understand the green hotel’s own competitive advantage objectively, and explore ways to enhance its core competitiveness, providing obje...
Evaluation of chemical elements migration from food packaging plastics into food
International Nuclear Information System (INIS)
Kamiya, Adriana M.; Fulfaro, Roberto; Saiki, Mitiko
2000-01-01
This work presents results of As, Cd, Co, Cr, Sb, Se, Sn, and Zn obtained in the analysis of plastics from food packing materials by instrumental neutron activation analysis. The radiometric method was also applied to evaluate the migration of Co and Sb from the plastic into the food simulant. The possible sources of the toxic elements in plastic materials and the advantages of radiometric method in the migration evaluation are discussed. (author)
Musharraf, Syed Ghulam; Ameer, Mariam; Ali, Arslan
2017-01-05
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) being soft ionization technique, has become a method of choice for high-throughput analysis of proteins and peptides. In this study, we have explored the potential of atypical anti-psychotic drug olanzapine (OLZ) as a matrix for MALDI-MS analysis of peptides aided with the theoretical studies. Seven small peptides were employed as target analytes to check performance of olanzapine and compared with conventional MALDI matrix α-cyano-4-hydroxycinnamic acid (HCCA). All peptides were successfully detected when olanzapine was used as a matrix. Moreover, peptides angiotensin Ι and angiotensin ΙΙ were detected with better S/N ratio and resolution with this method as compared to their analysis by HCCA. Computational studies were performed to determine the thermochemical properties of olanzapine in order to further evaluate its similarity to MALDI matrices which were found in good agreement with the data of existing MALDI matrices. Copyright © 2016. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Shahid Sarwar
2012-12-01
Full Text Available The present study was undertaken to develop sustained release (SR matrix tablets of losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method, along with Kollidon SR as release retardant polymer. The amount of losartan potassium remains fixed (100 mg for all the three formulations whereas the amounts of Kollidon SR were 250 mg, 225 mg, and 200 mg for F-1, F-2, and F-3 respectively. The evaluation involves three stages: the micromeritic properties evaluation of granules, physical property studies of tablets, and in-vitro release kinetics studies. The USP apparatus type II was selected to perform the dissolution test, and the dissolution medium was 900 mL phosphate buffer pH 6.8. The test was carried out at 75 rpm, and the temperature was maintained at 37 ºC ± 0.5 ºC. The release kinetics was analyzed using several kinetics models. Higher polymeric content in the matrix decreased the release rate of drug. At lower polymeric level, the rate and extent of drug release were enhanced. All the formulations followed Higuchi release kinetics where the Regression co-efficient (R² values are 0.958, 0.944, and 0.920 for F-1, F-2, and F-3 respectively, and they exhibited diffusion dominated drug release. Statistically significant (PO presente estudo foi realizado para desenvolver (SR matriz de comprimidos de liberação sustentada de losartana, um antagonista da angiotensina II, para o tratamento da hipertensão arterial. Os comprimidos foram preparados pelo método de compressão direta com Kollidon SR como polímero de liberação lenta. A quantidade de losartana potássica permanece fixa (100 mg para todas as três formulações enquanto que as quantidades de Kollidon SR foram de 250 mg, 225 mg e 200 mg para F-1, F-2 e F-3, respectivamente. A avaliação envolve três etapas- propriedades micromeríticas dos grânulos, estudo das propriedades físicas dos comprimidos e
International Nuclear Information System (INIS)
Soares, Eufemia Paez; Saiki, Mitiko; Wiebeck, Helio
2005-01-01
In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10 12 n cm -2 s -1 and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)
A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements
Energy Technology Data Exchange (ETDEWEB)
Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)
2016-10-21
A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.
Hydraulic and hydrodynamic tests for design evaluation of research reactors fuel elements
International Nuclear Information System (INIS)
Kulichevsky, R.; Martin Ghiselli, A.; Fiori, J.; Yedros, P.
2002-01-01
During the design steps of research reactors fuel elements some tests are usually necessary to verify its design, i.e.: its hydraulic characteristics, dynamical response and structural integrity. The hydraulic tests are developed in order to know the pressure drops characteristics of different parts or elements of the prototype and of the whole fuel element. Also, some tests are carried out to obtain the velocity distribution of the coolant water across different prototype's sections. The hydrodynamic tests scopes are the assessment of the dynamical characteristics of the fuel elements and their components and its dynamical response considering the forces generated by the coolant flowing water at different flow rate conditions. Endurance tests are also necessary to qualify the structural design of the FE prototypes and their corresponding clamp tools, verifying the whole system structural integrity and wear processes influences. To carry out these tests a special test facility is needed to obtain a proper representation of the hydraulic and geometric boundary conditions of the fuel element. In some cases changes on the fuel element prototype or dummy are necessary to assure that the data results are representative of the case under study. Different kind of sensors are mounted on the test section and also on the fuel element itself when necessary. Some examples of the instrumentation used are strain gauges, displacement transducers, absolute and differential pressure transducers, pitot tubes, etc. The obtained data are, for example, plates' vibration amplitudes and frequencies, whole bundle displacement characterization, pressure drops and flow velocity measurements. The Experimental Low Pressure Loop is a hydraulic loop located at CNEA's Constituyentes Atomic Center and is the test facility where different kind of tests are performed in order to support and evaluate the design of research reactor fuel elements. A brief description of the facility, and examples of
The evaluation of multi-element personal dosemeters using the linear programming method
International Nuclear Information System (INIS)
Kragh, P.; Ambrosi, P.; Boehm, J.; Hilgers, G.
1996-01-01
Multi-element dosemeters are frequently used in individual monitoring. Each element can be regarded as an individual dosemeter with its own individual dose measurement value. In general, the individual dose values of one dosemeter vary according to the exposure conditions, i. e. the energy and angle of incidence of the radiation. The (final) dose measurement value of the personal dosemeter is calculated from the individual dose values by means of an evaluation algorithm. The best possible dose value, i.e. that of the smallest systematic (type B) uncertainty if the exposure conditions are changed in the dosemeter's rated range of use, is obtained by the method of linear programming. (author)
INSTRUMENT FOR EVALUATION OF THE ADAPTED ABILITIES FROM THE ELEMENT OF BASKETBALL TECHNIQUE
Directory of Open Access Journals (Sweden)
Goran Šekeljić
2006-06-01
Full Text Available The idea of the work is clearly defined, precise and objective instrument for evaluation of the adopted abilities from the elements of basketball technique. The intention is to cut into small fragments the chosen elements of technique which are going to be evaluated with numerical value of every piece itself. The model established in that way is possible to compare with motorical forms acquired by those who are been inquired. Every fragment of motorical form has precise numerical value on which basis is possible to quantify by simple numerical total the obtained level of sports- technical education. We consider possible to diminish the influence of subjectivity such as to form schoolmarks more objectivly by precise and high-quality system of evaluation on the basis of clearly cut into small pieces structures of elements of the complete technique. In that case we could talk about real expert evaluation. The results of the research have shown that the method of evaluation conceived in this way has given excellent metrics characteristics and that, statistically verified, has been more objective than the two other methods predicted in the experiment
International Nuclear Information System (INIS)
Espinosa, A.; Miranda, J.; Pineda, J. C.
2010-01-01
One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)
Taha, Ehab Ibrahim; Shazly, Gamal Abdel-Ghany; Harisa, Gamaleldin Ibrahim; Barakat, Nahla Sedik; Al-Enazi, Fouza Kayem; Elbagory, Ibrahim Mostafa
2015-03-01
In the present study, Diclofenac Sodium (DS) matrix tablets were prepared by direct compression method under different compression forces (5, 10, 15 and 20 KN), using ethylcellulose as matrix forming material. The produced tablets were characterized on the foundation of satisfactory tablet properties such as hardness, friability, drug content, weight variations and in vitro drug release rate. Differential scanning calorimetry (DSC), Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction have been used to investigate any incompatibilities of the tablet's ingredients. Additionally, in vivo bioavailability has been investigated on beagle dogs. Data obtained revealed that, upon increasing compression force the in vitro drug release was sustained and the T(max) value was four hours (for formulations compressed at 15 and 20 kN) compared to the conventional voltarine(®) 50 tablets (T(max) value of 2 hours).
Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites
International Nuclear Information System (INIS)
Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.
2014-01-01
Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)