WorldWideScience

Sample records for matrix crack spacing

  1. Micromechanical Analyses of Debonding and Matrix Cracking in Dual-Phase Materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Yang, Qingda

    2016-01-01

    Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg - 60 deg relative to the loading...... direction, which is in good agreement with experiments. Matrix cracks initiate at the tip of the debond, and for equi-biaxial loading cracks are formed at both tips. For elliptical reinforcement the matrix cracks initiate at the narrow end of the ellipse. The load carrying capacity is highest for ligaments...

  2. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  3. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  4. Non-self-similar cracking in unidirectional metal-matrix composites

    International Nuclear Information System (INIS)

    Rajesh, G.; Dharani, L.R.

    1993-01-01

    Experimental investigations on the fracture behavior of unidirectional Metal Matrix Composites (MMC) show the presence of extensive matrix damage and non-self-similar cracking of fibers near the notch tip. These failures are primarily observed in the interior layers of an MMC, presenting experimental difficulties in studying them. Hence an investigation of the matrix damage and fiber fracture near the notch tip is necessary to determine the stress concentration at the notch tip. The classical shear lag (CLSL) assumption has been used in the present study to investigate longitudinal matrix damage and nonself-similar cracking of fibers at the notch tip of an MMC. It is seen that non-self-similar cracking of fibers reduces the stress concentration at the notch tip considerably and the effect of matrix damage is negligible after a large number of fibers have broken beyond the notch tip in a non-self-similar manner. Finally, an effort has been made to include non-self-similar fiber fracture and matrix damage to model the fracture behavior of a unidirectional boron/aluminum composite for two different matrices viz. a 6061-0 fully annealed aluminum matrix and a heat treated 6061-T6 aluminum matrix. Results have been drawn for several characteristics pertaining to the shear stiffnesses and the shear yield stresses of the two matrices and compared with the available experimental results

  5. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  6. On crack initiation in notched, cross-plied polymer matrix composites

    Science.gov (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  7. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  8. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  9. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  10. Combined effect of matrix cracking and stress-free edge on delamination

    Science.gov (United States)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  11. Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

    Science.gov (United States)

    Wang, Fu-ji; Zhang, Bo-yu; Ma, Jian-wei; Bi, Guang-jian; Hu, Hai-bo

    2018-04-01

    Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

  12. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  13. Effect of matrix cracking and material uncertainty on composite plates

    International Nuclear Information System (INIS)

    Gayathri, P.; Umesh, K.; Ganguli, R.

    2010-01-01

    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

  14. Criterion for matrix cracking in glass fiber reinforced cross-ply laminates. GFRP chokko sekisoban ni okeru matrix kiretsu no hattatsu kijun

    Energy Technology Data Exchange (ETDEWEB)

    Motoki, S.; Fukuda, T. (Osaka City Univ., Osaka (Japan). Faculty of Engineering); Tanaka, M. (Kobe City College of Technology, Kobe (Japan))

    1992-05-15

    In this research, with regard to GFRP cross-ply laminates, which were the most basic lamination composition, the factors governing the progress of matrix cracks at the 90{degree} layer were studied, in particular the criterion for not depending on the thickness of the 90{degree} layer was examined. For the experiment concerning the above, GFRP prepreg was laminated and three kinds of cross-ply laminates were made for use. A quasistatic tensile load was applied to these specimens and a load-displacement curve was measured, and at the same time, the matrix crack numbers generated in the 90{degree} layer were counted. As a result, it was found that the maximum value of the vertical stress in the loading direction of 90{degree} layer did not depend on the lamination composition, hence could become the criterion for the crack progress. Also it was found that in case when this stress surpassed a certain threshold value, cracks were formed, but in case when it was smaller than the threshold value, no crack was formed. 12 refs., 14 figs.

  15. Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials

    International Nuclear Information System (INIS)

    Palaniappan, J; Wang, H; Ogin, S L; Thorne, A; Reed, G T; Tjin, S C

    2005-01-01

    A comparison is made between conventional (i.e. uniform) and chirped optical fibre Bragg gratings (FBGs) for the detection of matrix cracking damage in composite materials. Matrix cracking damage is generally the first type of visible damage to develop under load in the off-axis plies of laminated composites and is generally the precursor of more serious damage mechanisms, particularly delamination. The detection of this type of damage is thus important, particularly in aerospace applications. Using a uniform FBG, characteristic changes develop in the reflected spectrum which can be used to identify crack development in the composite. The additional advantage of using a chirped grating is that the crack position can also be located

  16. Efficient improvement of virtual crack extension method by a derivative of the finite element stiffness matrix

    International Nuclear Information System (INIS)

    Ishikawa, H.; Nakano, S.; Yuuki, R.; Chung, N.Y.

    1991-01-01

    In the virtual crack extension method, the stress intensity factor, K, is obtained from the converged value of the energy release rate by the difference of the finite element stiffness matrix when some crack extension are taken. Instead of the numerical difference of the finite element stiffness, a new method to use a direct dirivative of the finite element stiffness matrix with respect to crack length is proposed. By the present method, the results of some example problems, such as uniform tension problems of a square plate with a center crack and a rectangular plate with an internal slant crack, are obtained with high accuracy and good efficiency. Comparing with analytical results, the present values of the stress intensity factors of the problems are obtained with the error that is less than 0.6%. This shows the numerical assurance of the usefulness of the present method. A personal computer program for the analysis is developed

  17. Matrix transformation of Fibonacci band matrix on generalized $bv$-space and its dual spaces

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2018-07-01

    Full Text Available In this paper we introduce a new sequence space $bv(\\hat{F}$ by using the Fibonacci band matrix $\\hat{F}.$ We also establish a few inclusion relations concerning this space and determine its $\\alpha-,\\beta-,\\gamma-$duals. Finally we characterize some matrix classes on the space $bv(\\hat{F}.$

  18. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  19. Effect of crack size on gas leakage characteristics in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kun Hyuk; Ryou, Hong Sun; Yoon, Kee Bong; Lee, Hy Uk; Bang, Joo Won [Chung-Ang University, Seoul (Korea, Republic of); Li, Longnan; Choi, Jin Wook; Kim, Dae Joong [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    We numerically investigated the influence of crack size on gas leakage characteristics in a confined space. The real scale model of underground Combined cycle power plant (CCPP) was taken for simulating gas leakage characteristics for different crack sizes such as 10 mm, 15 mm and 20 mm. The commercial code of Fluent (v.16.1) was used for three-dimensional simulation. In particular, a risk region showing such a probability of ignition was newly suggested with the concept of Lower flammable limit (LFL) of methane gas used in the present study to characterize the gas propagation and the damage area in space. From the results, the longitudinal and transverse leakage distances were estimated and analyzed for quantitative evaluation of risk area. The crack size was found to have a great impact on the longitudinal leakage distance, showing an increasing tendency with the crack size. In case of a crack size of 20 mm, the longitudinal leakage distance suddenly increased after 180 s, whereas it remained constant after 2 s in the other cases. This is because a confinement effect, which is caused by circulation flows in the whole space, increased the gas concentration near the gas flow released from the crack. The confinement effect is thus closely associated with the released mass flow rate changing with the crack size. This result would be useful in designing the gas detector system for preventing accidents in the confined space as like CCPP.

  20. Matrix transformations and sequence spaces

    International Nuclear Information System (INIS)

    Nanda, S.

    1983-06-01

    In most cases the most general linear operator from one sequence space into another is actually given by an infinite matrix and therefore the theory of matrix transformations has always been of great interest in the study of sequence spaces. The study of general theory of matrix transformations was motivated by the special results in summability theory. This paper is a review article which gives almost all known results on matrix transformations. This also suggests a number of open problems for further study and will be very useful for research workers. (author)

  1. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  2. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  3. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  4. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  5. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  6. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    Science.gov (United States)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  7. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  8. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  9. A review and assessment of crack case problems in pressurized systems on the space shuttle

    International Nuclear Information System (INIS)

    Patin, R.M.; Forman, R.G.; Horiuchi, G.K.

    1993-01-01

    The principal effort for fracture control during development of the Space Shuttle was concentrated on primary structure, pressure vessels, and the main engines. The real occurrence of crack problems leading to safety-of-flight reviews, however, have been primarily affiliated with pressurized subsystems in the vehicle. The cracking of components in pressurized subsystems has occurred mostly from lack of weld penetration, porosity, and joint design oversight where mode 2 loading accelerated the crack initiation process. This paper provides a synopsis of several crack cases that have occurred, and points out the importance of applying a comprehensive fracture control plan to pressurized systems in space programs

  10. Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations

    Science.gov (United States)

    Harris, Charles E.; Allen, David H.; Nottorf, Eric W.

    1989-01-01

    A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.

  11. The Effect of Matrix Method on Anxiety and Attitude Toward Methamphetamine and Crack Abuse in Males Referring to Addiction Treatment Centers in Tonkabon, Iran

    Directory of Open Access Journals (Sweden)

    Hemmati Sabet

    2015-11-01

    Full Text Available Background Drug abuse is a major problem in the communities and has many harmful effects on human body. Objectives The current study aimed to compare the efficacy of matrix method on anxiety and attitude of male crack abusers referred to addiction treatment centers in Tonkabon, Iran, in 2014. Patients and Methods The current semi -experimental study included 1,000 males referred to addiction treatment centers in Tonkabon with crack abuse history in 2014. Based on Morgan sample volume formula, 278 males with anxiety and higher attitude to drug abuse were randomly selected from 1,000 males referred to addiction treatment centers in Tonkabon. Then, 30 subjects were reselected out of them and equally assigned into two groups of experimental and control, 15 subjects in each group. The experimental group received 24 sessions of 30 - 60 minutes matrix treatment method in group, but the control group received no training. At the end of training period the post-test was carried out. The research findings confirmed the efficacy of matrix method on anxiety and attitude to crack abuse among those referring to the addition treatment center. Results The single covariance analysis of ANCOVA indicated that the value of Eta about 72% of variance of anxiety variable and about 76% of variance of drug abuse variable are taken in to account for variable of group. The intervention was effective in reducing anxiety and attitude to crack in males. Evaluating the adjusted mean showed the effectiveness of matrix method on anxiety and attitude to crack abuse in males. Conclusions The research result showed that matrix method affected the reduction of methamphetamine and attitude to crack abuse in males referred to the addition treatment center.

  12. The effect of low energy protons on silicon solar cells with simulated coverglass cracks

    Science.gov (United States)

    Gasner, S.; Anspaugh, B.; Francis, R.; Marvin, D.

    1991-01-01

    Results of a series of low-energy proton (LEP) tests are presented. The purpose of the tests was to investigate the effect of low-energy protons on the electrical performance of solar cells with simulated cracked covers. The results of the tests were then related to the space environment. A matrix of LEP tests was set up using solar cells with simulated cracks to determine the effect on electrical performance as a function of fluence, energy, crack width, coverglass adhesive shielding, crack location, and solar cell size. The results of the test were, for the most part, logical, and consistent.

  13. Research into topology optimization and the FDM method for a space cracked membrane

    Science.gov (United States)

    Hu, Qingxi; Li, Wanyuan; Zhang, Haiguang; Liu, Dali; Peng, Fujun; Duan, Yongchao

    2017-07-01

    The problem that the space membranes are easily torn open is the main focus in this paper, and a bionic strengthening-ribs structure is proposed for a space membrane based on interdisciplinary strengths, such as topology optimization, composite materials, and rapid prototyping. The optimization method and modeling method of membranes with bionic strengthening-ribs was studied. The PEEK and SCF/PEEK composite material which are applied to the space environment are chosen, and FDM technology is used. Through topology optimization, bionic strengthening-ribs with good tensile and tear capacities were obtained. Cracked membranes, cracked membranes with PEEK strengthening-ribs and SCF/PEEK strengthening-ribs were tested and test data were obtained. An extension situation and tension fracture were compared for three cases. The experimental results showed that membranes with the bionic strengthening-ribs structure have better mechanical properties, and the strength of the membranes with PEEK and SCF/PEEK strengthening-ribs were raised, respectively, up to 266.9% and 185.9%. The strengthening-ribs structure greatly improves the capacity to halt membrane crack-growth, which has an important significance to avoid membrane tear, and to ensure the spacecraft orbital lifetime.

  14. Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system

    Science.gov (United States)

    Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.

  15. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels

    International Nuclear Information System (INIS)

    Poitou, B.

    2007-11-01

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  16. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  17. Trigonometric bases for matrix weighted Lp-spaces

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2010-01-01

    We give a complete characterization of 2π-periodic matrix weights W for which the vector-valued trigonometric system forms a Schauder basis for the matrix weighted space Lp(T;W). Then trigonometric quasi-greedy bases for Lp(T;W) are considered. Quasi-greedy bases are systems for which the simple...

  18. Creep Behavior and Durability of Cracked CMC

    Science.gov (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  19. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  20. An Innovative Approach to Balancing Chemical-Reaction Equations: A Simplified Matrix-Inversion Technique for Determining The Matrix Null Space

    OpenAIRE

    Thorne, Lawrence R.

    2011-01-01

    I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then...

  1. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  2. Optimisation of the Crack Pattern in Continuously Reinforced Concrete Pavements

    OpenAIRE

    Ren, D.

    2015-01-01

    Recent field investigations on several new Continuously Reinforced Concrete Pavements (CRCP) in Belgium indicate that its crack pattern is characterized by low mean crack spacing along with a high percentage of clusters of closely spaced cracks. Field surveys also indicate that it is difficult to significantly reduce the probability of a non-uniform crack pattern - such as closely spaced cracks, meandering, and Y-cracks - by only slightly adjusting the amount of longitudinal steel. Non-unifor...

  3. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  4. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  5. Some Aspects of Formation of Cracks in FRC with Main Reinforcement

    DEFF Research Database (Denmark)

    Brincker, Rune; Simonsen, J.; Hansen, W.

    1997-01-01

    In this paper the response of fibre reinforced concrete (FRC) with main reinforcement in pure tension is considered. Test results are presented showing three distinct regimes: a regime og linear elasticity, a regime of yielding at approximately constant stress, and finally, a regime of strain...... hardening. a simple model is presented which takes into account the debonding between the reinforcement and the fiber reinforced matrix as well as the crack opening relation of the fiber reinforced matrix. The fracture process is described from the un-cracked state and formation of the first crack till......, and a more ductile contribution from the fiber bridging, a plastic regime will be present in the tensile response. The case of a parabolic crack opening relation defines a brittleness number that describes the transition from formation of unstable discrete cracks to smaller cracks controlled by the softening...

  6. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  7. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  8. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  9. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  10. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German

    2017-01-01

    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  11. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    Science.gov (United States)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  12. Z4-symmetric factorized S-matrix in two space-time dimensions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1979-01-01

    The factorized S-matrix with internal symmetry Z 4 is constructed in two space-time dimensions. The two-particle amplitudes are obtained by means of solving the factorization, unitarity and analyticity equations. The solution of factorization equations can be expressed in terms of elliptic functions. The S-matrix cotains the resonance poles naturally. The simple formal relation between the general factorized S-matrices and the Baxter-type lattice transfer matrices is found. In the sense of this relation the Z 4 -symmetric S-matrix corresponds to the Baxter transfer matrix itself. (orig.)

  13. Acoustic Modeling and Analysis for the Space Shuttle Main Propulsion System Liner Crack Investigation

    Science.gov (United States)

    Casiano, Matthew J.; Zoladz, Tom F.

    2004-01-01

    Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.

  14. Vibration Analysis of Cracked Composite Bending-torsion Beams for Damage Diagnosis

    OpenAIRE

    Wang, Kaihong

    2004-01-01

    An analytical model of cracked composite beams vibrating in coupled bending-torsion is developed. The beam is made of fiber-reinforced composite with fiber angles in each ply aligned in the same direction. The crack is assumed open. The local flexibility concept is implemented to model the open crack and the associated compliance matrix is derived. The crack introduces additional boundary conditions at the crack location and these effects in conjunction with those of material properties are i...

  15. Optimisation of the Crack Pattern in Continuously Reinforced Concrete Pavements

    NARCIS (Netherlands)

    Ren, D.

    2015-01-01

    Recent field investigations on several new Continuously Reinforced Concrete Pavements (CRCP) in Belgium indicate that its crack pattern is characterized by low mean crack spacing along with a high percentage of clusters of closely spaced cracks. Field surveys also indicate that it is difficult to

  16. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Perturbative S-matrix for massive scalar fields in global de Sitter space

    International Nuclear Information System (INIS)

    Marolf, Donald; Srednicki, Mark; Morrison, Ian A

    2013-01-01

    We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)

  18. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  19. Single fibre and multifibre unit cell analysis of strength and cracking of unidirectional composites

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Mishnaevsky, Leon

    2009-01-01

    damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads...... to the higher stiffness of the damaged material. The damage in the composites begins by fibre breakage, which causes the interface damage, followed by matrix cracking....

  20. Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate

    Science.gov (United States)

    Bratton, Robert; Datta, Subhendu K.; Shah, Arvind

    1990-01-01

    Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation

  1. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  2. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films

    International Nuclear Information System (INIS)

    Kim, Seong-Woong; Li Xiaoyan; Gao Huajian; Kumar, Sharvan

    2012-01-01

    In situ tensile experiments in a transmission electron microscope revealed that micro-cracks in ultrafine grained, free-standing, thin copper foils containing nanoscale twins initiated in matrix domains separated by the twins and then arrested at twin boundaries as twin boundary sliding proceeded. The adjacent microcracks eventually coalesced through shear failure of the bridging twins. To investigate the atomic mechanism of this rarely seen nanoscale crack bridging behavior, molecular dynamics simulations were performed to show that during crack propagation twin boundaries are impinged upon by numerous dislocations from the plastically deforming matrix. These dislocations react at the interface and evolve into substantially impenetrable dislocation walls that strongly confine crack nucleation and resist crack propagation, leading to the experimentally observed crack bridging behavior. The present results raise an approach to significantly toughening polycrystalline thin films by incorporating nanoscale twin structures into individual grains that serve as crack bridging ligaments.

  3. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  4. Assessment of circumferential cracks in hypereutectic Al-Si clutch housings

    Directory of Open Access Journals (Sweden)

    M. Haghshenas

    2017-04-01

    Full Text Available As in situ natural composites with silicon phase acting as the reinforcing phase, Al-Si alloys are among most commonly used aluminum alloys in automotive applications (i.e. engine component. Silicon contributes to the strength of Al-Si alloys through load transfer from the Al matrix to the hard (rigid Si phase in the microstructure (load-carrying capacity. Casting parameters (i.e. solidification rate, elemental segregation, secondary dendrite spacing… as well as the size and distribution of the microstructural constituents in Al-Si alloys (i.e. morphology of Si particles, intermetallic compounds, secondary dendrite spacing contribute directly to the mechanical response and failure (or fracture behavior of the alloy within the service. In hyper-eutectic Al-Si alloys (i.e. B390.0, distribution of coarse pre-eutectic Si particle mainly contribute to stress concentration, crack initiation and propagation during the actual service condition. In the present paper, the parameters contribution to the formation of the circumferential cracks in clutch housings made of die cast hyper-eutectics B390.0 Al-Si alloys are assessed through optical microscopy and scanning electron microscopy. Casting variable, cooling rate, their effect on the cracks as well some of the possible causes are also discussed in detail.

  5. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  6. Crack Detection with Lamb Wave Wavenumber Analysis

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  7. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...... around 0.15%, More cracks formed with increasing strain. The cracks covered the entire thickness of the filament. but did not Continue into the surrounding (ductile) Ag matrix. These 'tunnel cracks' appeared somewhat zigzag, indicating intergranular cracking mode. At low strains, crack blunting occurred...... at the ceramic/Ag interfaces of the tunnel cracks, At higher strain 'split cracks' formed at the tunnel cracks. The split cracks ran parallel with the ceramic/Ag interface just inside the ceramic layer....

  8. Construction of fuzzy spaces and their applications to matrix models

    Science.gov (United States)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  9. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  10. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  11. Influence of intermetallic particles on short fatigue crack initiation in AA2050-T8 and AA7050-T7451

    Directory of Open Access Journals (Sweden)

    Nizery Erembert

    2014-06-01

    Full Text Available Fatigue crack initiation at particles is studied in hot rolled 2050-T8 and 7050-T7451 material, using 1 to 4 mm cross section specimens. Both size and aspect ratio of particles are observed to affect their probability of being damaged. In 2050-T8 material, the probability that a matrix crack initiate at a cracked particle increases with its size, and no effect of aspect ratio is observed. In 2050-T8 specimens, matrix cracks initiate at both precracked (Al, Cu, Fe, Mn particles and particles cracked during cycling. Initiation in 7050-T74 specimens occur on Mg2Si particles which may be cracked or debonded, and Al7Cu2Fe particles that are cracked during cyclic loading.

  12. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  13. Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites

    Science.gov (United States)

    Mull, M. A.; Chudnovsky, A.; Moet, A.

    1987-01-01

    In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.

  14. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Science.gov (United States)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  15. Comparative study of direct and inverse problems of cracked beams

    Directory of Open Access Journals (Sweden)

    Mahieddine Chettah

    2018-01-01

    Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply

  16. Interaction between a punch and an arbitrary crack or inclusion in a transversely isotropic half-space

    Science.gov (United States)

    Fabrikant, I.; Karapetian, E.; Kalinin, S. V.

    2018-02-01

    We consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Both methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.

  17. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  18. Efficient O(N) recursive computation of the operational space inertial matrix

    International Nuclear Information System (INIS)

    Lilly, K.W.; Orin, D.E.

    1993-01-01

    The operational space inertia matrix Λ reflects the dynamic properties of a robot manipulator to its tip. In the control domain, it may be used to decouple force and/or motion control about the manipulator workspace axes. The matrix Λ also plays an important role in the development of efficient algorithms for the dynamic simulation of closed-chain robotic mechanisms, including simple closed-chain mechanisms such as multiple manipulator systems and walking machines. The traditional approach used to compute Λ has a computational complexity of O(N 3 ) for an N degree-of-freedom manipulator. This paper presents the development of a recursive algorithm for computing the operational space inertia matrix (OSIM) that reduces the computational complexity to O(N). This algorithm, the inertia propagation method, is based on a single recursion that begins at the base of the manipulator and progresses out to the last link. Also applicable to redundant systems and mechanisms with multiple-degree-of-freedom joints, the inertia propagation method is the most efficient method known for computing Λ for N ≥ 6. The numerical accuracy of the algorithm is discussed for a PUMA 560 robot with a fixed base

  19. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  20. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  1. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Directory of Open Access Journals (Sweden)

    Bilčík Juraj

    2017-09-01

    Full Text Available This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  2. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  3. Modal Analysis of a Simply Supported Steel Beam with Cracks under Temperature Load

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available Based on the transfer matrix method, an analytical method is proposed to conduct the modal analysis of the simply supported steel beam with multiple transverse open cracks under different temperatures. The open cracks are replaced with torsion springs without mass, and local flexibility caused by each crack can be derived; the temperature module is introduced by the mechanical properties variation of the structural material, and the temperature load is caused by the temperature variation, which can be transformed to the axial force on the cross-section. The transfer matrix of the whole beam with the temperature and geometric parameters of cracks can be obtained. According to boundary conditions of the simply supported beam, natural frequencies of the beam can be calculated, which are compared with the finite element results. Results indicate that the analytical method proposed has a high accuracy; the natural frequencies of the simply supported steel beam are mostly affected by the temperature load, which cannot be ignored.

  4. Positioning Community Art Practices in Urban Cracks

    Science.gov (United States)

    Verschelden, Griet; Van Eeghem, Elly; Steel, Riet; De Visscher, Sven; Dekeyrel, Carlos

    2012-01-01

    This article addresses the position of community art practices and the role of practitioners in urban cracks. Community art practices raise possibilities for a reconceptualisation of the concept of community and an extension of the concept of art in public space. Urban cracks are conceptualised as spatial, temporal and relational manifestations of…

  5. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  6. Two-Dimensional Space-Time Analysis and Matrix Represen-Tation on the Principle of the Capacitive Displacement Transducer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z Y [College of Metrological Technology and Engineering, China Jiliang University, Hangzhou (China); Luo, J X [Zhejiang Radio Factory, Zhejiang (China)

    2006-10-15

    In order to provide a design method of the capacitive displacement transducer and to improve its measuring performance it is desperately needed to offer a refined mathematic model of the transducer of mulitiphase drive and phase-modulated. On the basis of fully considering its characteristic of digital signals, first it is found that their actual waveforms and space-time characteristics could be tersely represented by matrixes [u{sub ij}], [c{sub j}] and [v{sub i}], and corresponding matrix elements u{sub ij}, c{sub j} and v{sub i} through deeply analyzing space-time and quantum characteristics of their mulitiphase driving signals U{sub i}(t), capacitive coupling signals C{sub j}(x) and output signal V(t). and space-time transform function possessed by U(x,t) itself. Then the basic expression of the relations of the transducer is derived, which is expressed by matrixes, thereby the characteristics of space-time transform and phase modulation are brought to light. The demodulation process and demodulated waveforms and its characteristics in the transducer are also expressed by demodulated matrixes [b{sub ij}]. Finally, the reason for the principle and periodic error produced in the transducer is revealed by sampling matrix [s{sub ij}]. Thus the full process of the produce of driving signals, modulation, demodulation and space-time transform that happen in the transducer, also waveforms and characteristics of various signals in the process are concisely expressed by two-dimensional space-time matrixes. Experimental results indicate that the use of the mathematical model enables its resolving power to reach 1 {mu}m, and the mathematical model proposed is an all-things-considered model to express processes that happen in the transducer.

  7. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    Science.gov (United States)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  8. Matching NLO parton shower matrix element with exact phase space case of $W\\to l\

    CERN Document Server

    Nanava, G; Was, Z

    2010-01-01

    In practical applications PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on exact multiphoton phase space. To evaluate the program precision it is necessary to control its matrix element. Generally it is obtained using iteration of the universal multidimensional kernel. In some cases it is however obtained from the exact first order matrix element. Then, as a consequence, all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the decays W -> l nu and gamma^* -> pi^+ pi^-. The Born level cross sections for both processes approach zero in some points of the phase space. Process dependent, compensating weight is constructed to implement exact matrix element, but it will be recommended for use onl...

  9. A model-based approach to crack sizing with ultrasonic arrays.

    Science.gov (United States)

    Tant, Katherine M M; Mulholland, Anthony J; Gachagan, Anthony

    2015-05-01

    Ultrasonic phased array systems have become increasingly popular in the last 10 years as tools for flaw detection and characterization within the nondestructive testing industry. The existence and location of flaws can often be deduced via images generated from the data captured by these arrays. A factor common to these imaging techniques is the subjective thresholding required to estimate the size of the flaw. This paper puts forward an objective approach which employs a mathematical model. By exploiting the relationship between the width of the central lobe of the scattering matrix and the crack size, an analytical expression for the crack length is reached via the Born approximation. Conclusions are then drawn on the minimum resolvable crack length of the method and it is thus shown that the formula holds for subwavelength defects. An analytical expression for the error that arises from the discrete nature of the array is then derived and it is observed that the method becomes less sensitive to the discretization of the array as the distance between the flaw and array increases. The methodology is then extended and tested on experimental data collected from welded austenitic plates containing a lack-of-fusion crack of 6 mm length. An objective sizing matrix (OSM) is produced by assessing the similarity between the scattering matrices arising from experimentally collected data with those arising from the Born approximation over a range of crack lengths and frequencies. Initially, the global minimum of the OSM is taken as the objective estimation of the crack size, giving a measurement of 7 mm. This is improved upon by the adoption of a multifrequency averaging approach, with which an improved crack size estimation of 6.4 mm is obtained.

  10. Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses

    International Nuclear Information System (INIS)

    Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin

    2007-01-01

    In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity

  11. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  12. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  13. Mechanism of crack healing at room temperature revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H.

    2015-01-01

    Three dimensional molecular dynamics (MD) simulations are systematically carried out to reveal the mechanism of the crack healing at room temperature, in terms of the dislocation shielding and the atomic diffusion to control the crack closure, in a copper (Cu) plate suffering from a shear loading. The results show that the process of the crack healing is actualized through the dislocation emission at a crack tip accompanied with intrinsic stacking faults ribbon forming in the crack tip wake, the dislocation slipping in the matrix and the dislocation annihilation in the free surface. Dislocation included stress compressing the crack tip is examined from the MD simulations and the analytical models, and then the crack closes rapidly due to the assistance of the atomic diffusion induced by the thermal activation when the crack opening displacement is less than a threshold value. This phenomenon is very different from the previous results for the crack propagation under the external load applied because of the crack healing (advancing) largely dependent on the crystallographic orientations of crack and the directions of external loading. Furthermore, based on the energy characteristic and considering the crack size effect, a theoretical model is established to predict the relationships between the crack size and the shear stress which qualitatively agree well with that obtained in the MD simulations

  14. Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments

    International Nuclear Information System (INIS)

    Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S.; Simonen, Edward P.

    2003-01-01

    The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems

  15. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Science.gov (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  16. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

    International Nuclear Information System (INIS)

    Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M.

    2004-01-01

    The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cracks and the damage was examined by scanning electron microscopy. These nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Interface debonding and sliding can thus occur in materials with microstructures approaching the atomic scale. Furthermore, for certain geometries a new mechanism of nanotube collapse in 'shear bands' occurs, rather than crack formation, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models are used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality. Three-dimensional FEM analysis indicates that matrix residual stresses on the order of 300 MPa are sustained in these materials without spontaneous cracking, suggesting that residual stress can be used to engineer enhanced performance. These nanoscale ceramic composites thus have potential for toughening and damage tolerance at submicron scales, and so are excellent candidates for wear-resistant coatings

  17. Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Tuyen

    2017-04-01

    Full Text Available Pulse width modulation strategies have been developed for indirect matrix converters (IMCs in order to improve their performance. In indirect matrix converters, the LC input filter is used to remove input current harmonics and electromagnetic interference problems. Unfortunately, due to the existence of the input filter, the input power factor is diminished, especially during operation at low voltage outputs. In this paper, a new space vector modulation (SVM is proposed to compensate for the input power factor of the indirect matrix converter. Both computer simulation and experimental studies through hardware implementation were performed to verify the effectiveness of the proposed modulation strategy.

  18. Strength and fracture behavior of aluminide matrix composites with ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.; Suganuma, K.; Niihara, K.

    1999-07-01

    This paper investigates the fracture behavior of FeAl and Ni{sub 3}Al matrix composites with ceramic continuous fibers 8.5--10 {micro}m in diameter. When stress is applied to these composites, multiple-fracture of fibers predominantly occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni{sub 3}Al matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873--973 K.

  19. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  20. Micromechanics of fiber pull-out and crack bridging in SCS-6 SiC- CVD SiC composite system at high-temperature

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1993-01-01

    A micro mechanical model is developed to study fiber pull-out and crack bridging in fiber reinforced SiC-SiC composites with time dependent thermal creep. By analyzing the creep data for monolithic CVD SiC (matrix) and the SCS-6 SiC fibers in the temperature range 900-1250 degrees C, it is found that the matrix creep rates can be ignored in comparison to those of fibers. Two important relationships are obtained: (1) a time dependent relation between the pull-out stress and the relative sliding distance between the fiber and matrix for the purpose of analyzing pull-out experiments, and (2) the relation between the bridging stress and the crack opening displacement to be used in studying the mechanics and stability of matrix crack bridged by fibers at high temperatures. The present analysis can also be applied to Nicalon-reinforced CVD SiC matrix system since the Nicalon fibers exhibit creep characteristics similar to those of the SCS-6 fibers

  1. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  2. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

    Science.gov (United States)

    Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan

    2018-06-01

    This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

  3. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  4. Cracking of Beams Strengthened with Externally Bonded SRP Tapes

    Science.gov (United States)

    Krzywoń, Rafał

    2017-10-01

    Paper discusses strengthening efficiency of relatively new kind of SRP composite based on high strength steel wires. They are made of ultra-high strength steel primarily used in cords of car tires. Through advanced treatment, the mechanical properties of SRP steel are similar to other high carbon cold drawn steels used in construction industry. Strength significantly exceed 2000 MPa, there is no perfect plasticity at yield stress level. Almost linear stress-strain relationship makes SRP steel mechanical properties similar to carbon fibers. Also flexibility and weight ratio of the composite overlay is slightly worse than CFRP strip. Despite these advantages SRP is not as popular as other composites reinforced with fibers of high strength. This is due to the small number of studies of SRP behavior and applicability. Paper shows selected results of the laboratory test of beams strengthened with use of SRP and CFRP externally bonded overlays. Attention has been focused primarily on the phenomenon of cracking. Comparison include the cracking moment, crack width and spacing, coverage of crack zone. Despite the somewhat lower rigidity of SRP tapes, they have a much better adhesion to concrete, so that the crack width is comparable in almost the whole load range. The paper also includes an assessment of the common methods of checking the condition of cracking in relation to the tested SRP strengthening. The paper presents actual calculation procedures to determine the crack spacing and crack width. The discussed formulas are verified with results of provided laboratory tests.

  5. Complete Tangent Stiffness for eXtended Finite Element Method by including crack growth parameters

    DEFF Research Database (Denmark)

    Mougaard, J.F.; Poulsen, P.N.; Nielsen, L.O.

    2013-01-01

    the crack geometry parameters, such as the crack length and the crack direction directly in the virtual work formulation. For efficiency, it is essential to obtain a complete tangent stiffness. A new method in this work is presented to include an incremental form the crack growth parameters on equal terms......The eXtended Finite Element Method (XFEM) is a useful tool for modeling the growth of discrete cracks in structures made of concrete and other quasi‐brittle and brittle materials. However, in a standard application of XFEM, the tangent stiffness is not complete. This is a result of not including...... with the degrees of freedom in the FEM‐equations. The complete tangential stiffness matrix is based on the virtual work together with the constitutive conditions at the crack tip. Introducing the crack growth parameters as direct unknowns, both equilibrium equations and the crack tip criterion can be handled...

  6. Microstructure and mechanical properties of internal crack healing in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ruishan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Ma, Qingxian, E-mail: maqxdme@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Weiqi [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The behavior of internal crack healing in a low carbon steel at elevated temperatures was investigated. The internal cracks were introduced into low carbon steel samples via the drilling and compression method. The microstructure of crack healing zone was observed using optical microscopy and scanning electron microscopy. The mechanical properties of crack healing zone at room temperature were tested. The results show that there are two mechanisms of crack healing in the low carbon steel. Crack healing is caused by atomic diffusion at lower temperatures, and mainly depends on recrystallization and grain growth at higher temperatures. The microstructural evolution of crack healing zone can be divided into four stages, and the fracture morphology of crack healing zone can be classified into five stages. At the initial healing stage, the fracture exhibits brittle or low ductile dimple fracture. The ultimate fracture mode is dimple and quasi-cleavage mixed fracture. Fine grain microstructures improve the ultimate tensile strength of crack healing zone, which is even higher than that of the matrix. The strength recovery rate is higher than that of the plasticity.

  7. Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack tip......, the materials show crack growth resistance. It is shown here that the resistance is strongly dependent on the value of the non-singular T-stress, acting parallel to the crack plane. The numerical technique employed makes use of a thin dislocation-free strip of elastic material inside which the crack propagates......, with the material outside described by continuum plasticity. Thus the width of the strip is a material length scale comparable to the dislocation spacing or the dislocation cell size....

  8. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    Science.gov (United States)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  9. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  10. Influence of Cracks in Cementitious Engineered Barriers in a Near-Surface Disposal System: Assessment Analysis of the Belgian Case

    International Nuclear Information System (INIS)

    Perko, Janez; Seetharam, Suresh C.; Jacques, Diederik; Mallants, Dirk; Cool, Wim; Vermarien, Elise

    2013-01-01

    In large cement-based structures such as a near surface disposal facility for radioactive waste voids and cracks are inevitable. However, the pattern and nature of cracks are very difficult to predict reliably. Cracks facilitate preferential water flow through the facility because their saturated hydraulic conductivity is generally higher than the conductivity of the cementitious matrix. Moreover, sorption within the crack is expected to be lower than in the matrix and hence cracks in engineered barriers can act as a bypass for radionuclides. Consequently, understanding the effects of crack characteristics on contaminant fluxes from the facility is of utmost importance in a safety assessment. In this paper we numerically studied radionuclide leaching from a crack-containing cementitious containment system. First, the effect of cracks on radionuclide fluxes is assessed for a single repository component which contains a radionuclide source (i.e. conditioned radwaste). These analyses reveal the influence of cracks on radionuclide release from the source. The second set of calculations deals with the safety assessment results for the planned near-surface disposal facility for low-level radioactive waste in Dessel (Belgium); our focus is on the analysis of total system behaviour in regards to release of radionuclide fluxes from the facility. Simulation results are interpreted through a complementary safety indicator (radiotoxicity flux). We discuss the possible consequences from different scenarios of cracks and voids. (authors)

  11. Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites

    Directory of Open Access Journals (Sweden)

    Lei Jun

    2015-01-01

    Full Text Available To determine fracture parameters of interfacial cracks in transverse isotropic magnetoelectroelastic composites, a displacement extrapolation formula was derived. The matrix-form formula can be applicable for both material components with arbitrary poling directions. The corresponding explicit expression of this formula was obtained for each poling direction normal to the crack plane. This displacement extrapolation formula is only related to the boundary quantities of the extended crack opening displacements across crack faces, which is convenient for numerical applications, especially for BEM. Meantime, an alternative extrapolation formula based on the path-independent J-integral and displacement ratios was presented which may be more adaptable for any domain-based numerical techniques like FEM. A numerical example was presented to show the correctness of these formulae.

  12. Crack path and fracture surface modifications in cement composites

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-10-01

    Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.

  13. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    Science.gov (United States)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  14. The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. Degree awarded by Case Western Reserve Univ., May 2000

    Science.gov (United States)

    Halbig, Michael C.

    2001-01-01

    Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.

  15. On the finite element modeling of the asymmetric cracked rotor

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  16. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    International Nuclear Information System (INIS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-01-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  17. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  18. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  19. Crack propagation and acoustic emission behavior of silver-added Dy123 bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.

    2006-01-01

    The relationship between the crack propagation process and acoustic emission (AE) signals was investigated in 3-point bending tests in which stress loading was applied parallel to the c-axis of U-notched specimens cut from Dy123 bulk superconductors with and without the addition of silver (Ag). The average bending stress of the specimens containing 10 mass% of Ag was approximately 20% higher than that of the specimens without the addition of Ag; the total AE energy of the former specimens was approximately fourfold greater than that of the latter specimens. However, cracks initiated in all of the specimens at a bending stress level of around 25 MPa, regardless of the presence or absence of Ag. An analysis of the amplitude distribution revealed that the failure mode was matrix failure in both types of specimens. Cracks in the low-strength specimens without Ag propagated between gas holes or along cleavage planes, and the AE event count and total AE energy were low. By contrast, the high-strength Ag-added specimens had fewer gas holes and cleavage cracks on account of their improved microstructure. In these samples, crack propagation orthogonal to the cleavage planes caused Ag particles to separate from the matrix and induced cleavage cracks. The addition of Ag presumably had the effect of inhibiting crack propagation, with the result that the AE event count and AE energy increased. The results of this study indicate that failure phenomena can be interpreted by evaluating the amplitude distribution, AE event count and total AE energy. This suggests that the AE method is also applicable to evaluations of bulk superconductors

  20. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    Science.gov (United States)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  1. Estimation of subsurface-fracture orientation with the three-component crack-wave measurement; Kiretsuha sanjiku keisoku ni yoru chika kiretsumen no hoko suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K; Sato, K [Muroran Institute of Technology, Hokkaido (Japan); Niitsuma, H [Tohoku University, Sendai (Japan)

    1996-05-01

    This paper reports experiments carried out to estimate subsurface-fracture orientation with the three-component crack-wave measurement. The experiments were performed by using existing subsurface cracks and two wells in the experimental field. An air gun as a sound source was installed directly above a subsurface crack intersection in one of the wells, and a three-component elastic wave detector was fixed in the vicinity of a subsurface crack intersection in the other well. Crack waves from the sound source were measured in a frequency bandwidth from 150 to 300 Hz. A coherence matrix was constituted relative to triaxial components of vibration in the crack waves; a coherent vector was sought that corresponds to a maximum coherent value of the matrix; and the direction of the longer axis in an ellipse (the direction being perpendicular to the crack face) was approximated in particle motions of the crack waves by using the vector. The normal line direction of the crack face estimated by using the above method was found to agree nearly well with the direction of the minimum crust compression stress measured in the normal line direction of the crack face existed in core samples collected from the wells, and measured at nearly the same position as the subsurface crack. 5 refs., 4 figs.

  2. A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor

    International Nuclear Information System (INIS)

    Yu, Yeun Ho; Choi, Jin Ho; Kweon, Jin Hwe

    2007-01-01

    As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the 8x8 matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64 channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the 8x8 matrix piezo electric sensor

  3. Evaluation of the MMCLIFE 3.0 code in predicting crack growth in titanium aluminide composites

    International Nuclear Information System (INIS)

    Harmon, D.; Larsen, J.M.

    1999-01-01

    Crack growth and fatigue life predictions made with the MMCLIFE 3.0 code are compared to test data for unidirectional, continuously reinforced SCS-6/Ti-14Al-21Nb (wt pct) composite laminates. The MMCLIFE 3.0 analysis package is a design tool capable of predicting strength and fatigue performance in metal matrix composite (MMC) laminates. The code uses a combination of micromechanic lamina and macromechanic laminate analyses to predict stresses and uses linear elastic fracture mechanics to predict crack growth. The crack growth analysis includes a fiber bridging model to predict the growth of matrix flaws in 0 degree laminates and is capable of predicting the effects of interfacial shear stress and thermal residual stresses. The code has also been modified to include edge-notch flaws in addition to center-notch flaws. The model was correlated with constant amplitude, isothermal data from crack growth tests conducted on 0- and 90 degree SCS-6/Ti-14-21 laminates. Spectrum fatigue tests were conducted, which included dwell times and frequency effects. Strengths and areas for improvement for the analysis are discussed

  4. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  5. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Numerical modelling of desiccation cracking of clayey soil

    Directory of Open Access Journals (Sweden)

    Vo Thi Dong

    2016-01-01

    Full Text Available The formation and propagation of desiccation cracks in soil is an extremely complex phenomenon because of the coupling between hydraulic and mechanical behaviour of soil, which are constituted here by the presence of capillary forces and discontinuities. The formation of a cracks network strongly influences the mechanical and hydraulic properties of soil. The main objective of this research is to study the evolution of suction and strain fields, the initiation and propagation of cracks under the effect of drying, using the finite element method. A simulation of a soil sample with four cohesive joints shows the results similar to experimental data. In addition, a simulation of multijoints shows that cracks does not open in all potentials positions and it gives similar spacing.

  7. A crack growth evaluation method for interacting multiple cracks

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2003-01-01

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)

  8. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  9. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  10. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.

    Science.gov (United States)

    Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V

    2009-04-01

    Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.

  11. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    Science.gov (United States)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  12. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  13. Dynamic response of cracked hexagonal subassembly ducts

    International Nuclear Information System (INIS)

    Glazik, J.L.; Petroski, H.J.

    1979-01-01

    The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals

  14. Constitutive equations for cracked reinforced concrete based on a refined model

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)

  15. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  16. Batman-cracks. Observations and numerical simulations

    Science.gov (United States)

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.

    1991-05-01

    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  17. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    Science.gov (United States)

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates.

  18. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  19. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  20. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels; Analyse de la fissuration au voisinage d'une interface dans les materiaux fragiles. Applications aux composites a matrice ceramique et aux combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, B

    2007-11-15

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  1. Analytical Model for the Probability Characteristics of a Crack Penetrating Capsules in Capsule-Based Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Zhong LV

    2017-08-01

    Full Text Available Autonomous crack healing using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of capsule-based self-healing materials. Continuing our previous study, in this contribution a more practical rupturing mode of capsules characterizing the rupturing manner of capsules fractured by cracks in cementitious materials is presented, i.e., penetrating mode. With the underlying assumption that a crack penetrating capsules undoubtedly leads to crack healing, geometrical probability theory is employed to develop the quantitative relationship between crack size and capsule size, capsule concentration in capsule-based self-healing virtual cementitious material. Moreover, an analytical expression of probability of a crack penetrating with randomly dispersed capsules is developed in two-dimensional material matrix setup. The influences of the induced rupturing modes of capsules embedded on the self-healing efficiency are analyzed. Much attention is paid to compare the penetrating probability and the hitting probability, in order to assist the designer to make a choice of the optimal rupturing modes of capsules embedded. The accuracy of results of the theoretical model is also compared with Monte-Carlo numerical analysis of crack interacting with capsules. It shows that the developed probability characteristics of a crack interaction with capsules for different rupturing modes is helpful to provide guidelines for designer working with capsule-based self-healing cementitious materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16888

  2. A grain boundary sliding model for cavitation, crack growth and ...

    African Journals Online (AJOL)

    A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...

  3. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  4. Influence of metallurgical and electrochemical factors on cracking of steels at nuclear power plants under high temperature

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Gnyp, I.P.

    1994-01-01

    The influence of metallurgical heterogeneities in steels and electrochemical factors on corrosion cracking under high temperature water environment is studied, with special emphasis on the influence of manganese sulfide inclusions and other non-metallic ones on the crack growth rate. Results show that the electro-chemical conditions for an hydrogen concentration increase in a pre-failure zone exist at a crack tip under cyclic loading; hydrogen penetrating into metals at high temperature reduces manganese sulfides, ferric carbides, and cause high pressure of gases in micro-discontinuities, thus leading to cyclic corrosion cracking; anodic (relatively to a metal matrix) inclusions are rather the cause of steel cracking resistance decrease than cathodic ones. 16 refs., 4 figs

  5. Dynamic Strain and Crack Monitoring Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new automated vehicle health monitoring sensor system capable of measuring loads and detecting crack, corrosion, and...

  6. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  7. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  8. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  9. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  10. Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants

    International Nuclear Information System (INIS)

    Goldberg, A.; Streit, R.D.

    1981-05-01

    Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads

  11. An interaction analysis of twin surface cracks by the line-spring model

    International Nuclear Information System (INIS)

    Kim, Y.J.; Yang, W.H.; Choy, Y.S.; Lee, J.S.

    1992-01-01

    The fracture mechanics analysis of surface cracks is important for the integrity evaluation of flawed structural components. The objective of this paper is to numerically investigate the interaction effect of twin surface cracks in plate and cylindrical geometrie. First the usefulness of the line-spring model is verified by analyzing a single surface crack in a plate, and then the model is extended to twin surface crack in plate and cylindrical geometries. For the case of a finite plate under uniaxial loading, the effect of crack spacing on the stress intensity factor is negligible. However, for the case of a cylinder under moderate internal pressure, a significant increase in stress intensity factor is observed at the deepest point of the surface crack. (orig.)

  12. Elastic crack-tip stress field in a semi-strip

    Directory of Open Access Journals (Sweden)

    Victor Reut

    2018-04-01

    Full Text Available In this article the plain elasticity problem for a semi-strip with a transverse crack is investigated in the different cases of the boundary conditions at the semi-strips end. Unlike many works dedicated to this subject, the fixed singularities in the singular integral equation�s kernel are considered. The integral transformations� method is applied by the generalized scheme to reduce the initial problem to a one-dimensional problem. The one-dimensional problem is formulated as the vector boundary value problem which is solved with the help of matrix differential calculations and Green�s matrix apparatus. The solution of the problem is reduced to the solving of the system of three singular integral equations. Depending on the conditions given on the short edge of the semi-strip, the constructed singular integral equation can have one, or two fixed singularities. A special method is applied to solve this equation in regard of the singularities existence. Hence the system of the singular integral equations (SSIE is solved with the help of the generalized method. The stress intensity factors (SIF are investigated for different lengths of crack. The novelty of this work is in the application of new approach allowing the consideration of the fixed singularities in the problem about a transverse crack in the elastic semi-strip. The comparison of the numerical results� accuracy during the usage of the different approaches to the solving of SSIE is worked out

  13. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    Science.gov (United States)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  14. Crack identification based on synthetic artificial intelligent technique

    International Nuclear Information System (INIS)

    Shim, Mun Bo; Suh, Myung Won

    2001-01-01

    It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a Continuous Evolutionary Algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising

  15. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  16. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...

  17. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360 degree C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-01-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated

  18. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  19. Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement

    Czech Academy of Sciences Publication Activity Database

    Kotoul, M.; Dlouhý, Ivo

    387-389 (2004), s. 404-408 ISSN 0921-5093 R&D Projects: GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : brittle matrix composites * crack bridging * crack trapping Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.445, year: 2004

  20. Solution of the scattering T matrix equation in discrete complex momentum space

    International Nuclear Information System (INIS)

    Rawitscher, G.H.; Delic, G.

    1984-01-01

    The scattering solution to the Lippmann-Schwinger equation is expanded into a set of spherical Bessel functions of complex wave numbers, K/sub j/, with j = 1,2 , . . . , M. The value of each K/sub j/ is determined from the condition that the spherical Bessel function smoothly matches onto an asymptotically outgoing spherical Hankel (or Coulomb) function of the correct physical wave number at a matching point R. The spherical Bessel functions thus determined are Sturmian functions, and they form a complete set in the interval 0 to R. The coefficients of the expansion of the scattering function are determined by matrix inversion of a linear set of algebraic equations, which are equivalent to the solution of the T-matrix equation in complex momentum space. In view of the presence of a matching radius, no singularities are encountered for the Green's functions, and the inclusion of Coulomb potentials offers no computational difficulties. Three numerical examples are performed in order to illustrate the convergence of the elastic scattering matrix S with M. One of these consists of a set of coupled equations which describe the breakup of a deuteron as it scatters from the nucleus on 58 Ni. A value of M of 15 or less is found sufficient to reproduce the exact S matrix element to an accuracy of four figures after the decimal point

  1. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. A set of equations is given from which the 12 elements of R can be computed form the one period transfer matrix. This set of equations also allows the linear parameters, the β i , α i , i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix

  2. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  3. Crack modeling of rotating blades with cracked hexahedral finite element method

    Science.gov (United States)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  4. A novel underwater dam crack detection and classification approach based on sonar images.

    Science.gov (United States)

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  5. A novel underwater dam crack detection and classification approach based on sonar images.

    Directory of Open Access Journals (Sweden)

    Pengfei Shi

    Full Text Available Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  6. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    Directory of Open Access Journals (Sweden)

    Juyi Pan

    Full Text Available FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress–strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10−3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3–43.4 MPa. The maximum value of stress–strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10−4. On the crack tip, the stress changed as 32.24–40.16 MPa, the strain is at 1.292 × 10−4–1.897 × 10−4. Keywords: FV520B, Crack propagation, Mises stress, Stress–strain, Numerical investigation

  7. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  8. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  9. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Chennubhotla, Chakra [University of Pittsburgh School of Medicine, Pittsburgh PA; Castro, Jason [Bates College

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.

  10. Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0

    Science.gov (United States)

    Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.

    2005-01-01

    In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.

  11. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  12. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale

    Science.gov (United States)

    Chau, Viet T.

    2016-01-01

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 105–106 almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot’s two-phase medium and Terzaghi’s effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597791

  13. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...

  14. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  15. Propagation of cracks and damage in non aging linear viscoelastic media

    International Nuclear Information System (INIS)

    Nguyen, S.T.

    2010-01-01

    Most of France's energy is nuclear. The reactor building comprises a internal and external containment. The internal containment is prestressed to limit the flow of leakage in the internal-external space. The prestress decreases during time by the creep of concrete. It may propagate the cracks by the accidental internal pressure. So we define two research problems: propagation of macro-cracks in viscoelastic structure; effective behavior of micro-cracked viscoelastic material. Firstly, we develop a Burger viscoelastic model of concrete with two approaches: numerical and analytical. Then we solve the problem of single cracks in developing thermodynamically the concept of energy release rate. In the third part we develop a viscoelastic model to study the effective behavior of micro-cracked materials in the case without propagation. The problem of propagation of microcracks is then studied by a numerical approach based on the 'representative pattern morphology'. These studies are finally applied to solve the problems of crack propagation and damage of containment under accidental internal pressure. (authors)

  16. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  17. Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2016-01-01

    Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.

  18. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  19. Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers

    Directory of Open Access Journals (Sweden)

    Tahereh Soleimani

    2013-01-01

    Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.

  20. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    Science.gov (United States)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  1. Effect of cold rolling on fatigue crack propagation of TiNi/A16061 shape memory composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Kyu Chang; Cho, Youn Ho; Lee, Joon Hyun

    2005-01-01

    TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 Shape Memory Alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with 0%, 3.2%, 5.2% and 7% volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by this method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied

  2. Assessment of NDE methods for detecting cracks and damage in environmental barrier coated CMC tested under tension

    Science.gov (United States)

    Abdul-Aziz, Ali; Wroblewski, Adam C.; Bhatt, Ramakrishna T.; Jaskowiak, Martha H.; Gorican, Daniel; Rauser, Richard W.

    2015-03-01

    For validating physics based analytical models predicting spallation life of environmental barrier coating (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a multi layered barium strontium aluminum silicate (BSAS) based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen was tensile tested at room temperature. Multiple tests were performed on a single specimen with increasing predetermined stress levels until final failure. During loading, the damage occurring in the EBC was monitored by digital image correlation (DIC). After unloading from the predetermined stress levels, the specimen was examined by optical microscopy and computed tomography (CT). Results indicate both optical microscopy and CT could not resolve the primary or secondary cracks developed during tensile loading until failure. On the other hand, DIC did show formation of a primary crack at ~ 50% of the ultimate tensile strength and this crack grew with increasing stress and eventually led to final failure of the specimen. Although some secondary cracks were seen in the DIC strain plots prior to final failure, the existence of these cracks were not confirmed by other methods. By using a higher resolution camera, it is possible to improve the capability of DIC in resolving secondary cracks and damage in coated specimen tested at room temperature, but use of DIC at high temperature requires significant development. Based on the current data, it appears that both optical microscopy and CT do not offer any hope for detecting crack initiation or determining crack growth in EBC coated CMC tested at room or high temperatures after the specimen has been unloaded. Other methods such as, thermography and optical/SEM of the polished cross section of EBC coated CMC specimens stressed to

  3. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  4. Crack detecting method

    International Nuclear Information System (INIS)

    Narita, Michiko; Aida, Shigekazu

    1998-01-01

    A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)

  5. Degenerated graphite nodules influence on fatigue crack paths in a ferritic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-10-01

    Full Text Available ferritic to a completely pearlitic matrix, and they are widely used for many applications (e.g. wheels, gears, crankshafts in cars, exhaust manifolds, valves, flywheels, boxes bearings, hubs, shafts, valves, flanges, pipelines .... Considering the graphite elements, their morphology can be considered as degenerated when its nodularity is too low and this can be due to different causes (e.g., a partially failed nodularization process or a wrong inoculant. In this work, a ferritic DCI with degenerated nodules was obtained by means of an annealing treatment and the fatigue crack propagation resistance was investigated by means of fatigue crack propagation tests performed according to ASTM E647, focusing on the influence of degenerated graphite nodules on the fatigue crack paths. This analysis was performed both analysing the crack path profile by means of a scanning electron microscope (SEM and by means of a SEM fracture surfaces analysis

  6. M(atrix) theory: matrix quantum mechanics as a fundamental theory

    International Nuclear Information System (INIS)

    Taylor, Washington

    2001-01-01

    This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed

  7. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  8. The Application Strategy of Iterative Solution Methodology to Matrix Equations in Hydraulic Solver Package, SPACE

    International Nuclear Information System (INIS)

    Na, Y. W.; Park, C. E.; Lee, S. Y.

    2009-01-01

    As a part of the Ministry of Knowledge Economy (MKE) project, 'Development of safety analysis codes for nuclear power plants', KOPEC has been developing the hydraulic solver code package applicable to the safety analyses of nuclear power plants (NPP's). The matrices of the hydraulic solver are usually sparse and may be asymmetric. In the earlier stage of this project, typical direct matrix solver packages MA48 and MA28 had been tested as matrix solver for the hydraulic solver code, SPACE. The selection was based on the reasonably reliable performance experience from their former version MA18 in RELAP computer code. In the later stage of this project, the iterative methodologies have been being tested in the SPACE code. Among a few candidate iterative solution methodologies tested so far, the biconjugate gradient stabilization methodology (BICGSTAB) has shown the best performance in the applicability test and in the application to the SPACE code. Regardless of all the merits of using the direct solver packages, there are some other aspects of tackling the iterative solution methodologies. The algorithm is much simpler and easier to handle. The potential problems related to the robustness of the iterative solution methodologies have been resolved by applying pre-conditioning methods adjusted and modified as appropriate to the application in the SPACE code. The application strategy of conjugate gradient method was introduced in detail by Schewchuk, Golub and Saad in the middle of 1990's. The application of his methodology to nuclear engineering in Korea started about the same time and is still going on and there are quite a few examples of application to neutronics. Besides, Yang introduced a conjugate gradient method programmed in C++ language. The purpose of this study is to assess the performance and behavior of the iterative solution methodology compared to those of the direct solution methodology still being preferred due to its robustness and reliability. The

  9. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  10. Inequalities Involving Upper Bounds for Certain Matrix Operators

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 3. Inequalities Involving Upper Bounds for Certain Matrix Operators. R Lashkaripour D Foroutannia. Volume ... Keywords. Inequality; norm; summability matrix; Hausdorff matrix; Hilbert matrix; weighted sequence space; Lorentz sequence space.

  11. Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France). Lab. de Mecanique Physique

    1998-07-31

    By using both an ultrasonic device and an extensometer, it is possible to know which stiffness coefficients change during the damage process of a material and which part of the global strain is either elastic or inelastic. The influence of the two damage mechanisms is described for a woven 2D SiC-SiC composite. It appears that the two scales of this composite have a great influence on its behaviour. Two elementary mechanisms occur at both scales of the material: at the mesostructure level consisting of the bundles as well as of the inter-bundle matrix and at the microstructure level made from both the fibres and the intra-bundle matrix. The inelastic strains are sensitive to this two-scale effect: an increment of strain at constant stress that comes to saturation corresponding to the inter-bundle damage process and a strain which needs an increase in stress as cracking occurs at the fibres scale. With the help of a model that predicts the compliance changes caused by a crack system in a solid, it is possible to predict the crack density variation at both scales as well as the geometry of the various crack systems during monotonous loading. Furthermore, when the crack opening is taken into account, it appears that the inelastic strain is governed by the transverse crack density. (orig.) 12 refs.

  12. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  13. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  14. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  15. Crack shape developments and leak rates for circumferential complex-cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  16. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  17. Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers

    Science.gov (United States)

    Dry, Carolyn M.; McMillan, William

    1996-05-01

    This was an investigation into the feasibility of using liquid core optical fibers for the detection and self repair of cracking in cement or polymer materials generated by dynamic or static loading. These experiments relied on our current research sponsored by the National Science Foundation. That work on the concept of internal adhesive delivery from hollow fibers for repair was here combined with the nondestructive fiber optic analysis of crack location and volume. The combination of the ability to remotely measure crack occurrence in real time and determine the location and volume of crack damage in the matrix is unique in the field of optic sensors. The combination of this with crack repair, rebonding of any detached or broken fibers, and replenishment of liquid core chemicals, when necessary, make this a potentially powerful sensing and repair tool. Work on this research topic was sponsored by the University of Illinois.

  18. Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock

    Science.gov (United States)

    Morshed, S.; Chesnokov, E.

    2017-12-01

    Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA

  19. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  20. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method

    International Nuclear Information System (INIS)

    Menouillard, T.

    2007-09-01

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  1. On applicability of crack shape characterization rules for multiple in-plane surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su

    2009-01-01

    The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.

  2. Influence of tip mass on dynamic behavior of cracked cantilever pipe conveying fluid with moving mass

    International Nuclear Information System (INIS)

    Yoon, Han Ik; Son, In Soo

    2005-01-01

    In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified

  3. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Norris, D.M.

    1984-11-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior.

  4. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    International Nuclear Information System (INIS)

    Zahoor, A.; Norris, D.M.

    1984-01-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior

  5. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    Science.gov (United States)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  6. Permafrost, palsas and frost-crack polygons, Salluit, Quebec, Canada, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes temperature conditions for ice-wedge cracking, Salluit, northern Quebec. Air temperature, soil temperature, wind speed and direction, July 1989...

  7. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    Science.gov (United States)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  8. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  9. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    International Nuclear Information System (INIS)

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-01-01

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error

  10. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  11. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  12. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  13. Crack retardation by load reduction during fatigue crack propagation

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon

    2003-01-01

    Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction

  14. Investigation of Helicopter Longeron Cracks

    Science.gov (United States)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  15. Crack growth prediction method considering interaction between multiple cracks. Growth of surface cracks of dissimilar size under cyclic tensile and bending load

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Miyokawa, Eiichi; Kikuchi, Masanori

    2011-01-01

    When multiple cracks approach one another, the stress intensity factor is likely to change due to the interaction of the stress field. This causes change in growth rate and shape of cracks. In particular, when cracks are in parallel position to the loading direction, the shape of cracks becomes non-planar. In this study, the complex growth of interacting cracks is evaluated by using the S-Version finite element method, in which local detailed finite element mesh (local mesh) is superposed on coarse finite element model (global mesh) representing the global structure. In order to investigate the effect of interaction on the growth behavior, two parallel surface cracks are subjected to cyclic tensile or bending load. It is shown that the smaller crack is shielded by larger crack due to the interaction and stops growing when the difference in size of two cracks is significant. Based on simulations of various conditions, a procedure and criteria for evaluating crack growth for fitness-for-service assessment is proposed. According to the procedure, the interaction is not necessary to be considered in the crack growth prediction when the difference in size of two cracks exceeds the criterion. (author)

  16. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  17. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  18. Hydrogen-induced crack interaction and coalescence: the role of local crystallographic texture

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F.; Hallen, J. M.; Venegas, V. [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T. [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    Hydrogen induced cracking (HIC) is a big concern in pipeline industry specialized in sour service. The strategies to improve HIC resistance of pipeline steel have not been completely efficient. This study investigated the role of grain orientation in the interaction and coalescence of non-coplanar HIC cracks through experimental analysis. HIC samples of pipeline steels (API 5L X46 and ASME-A106) were studied using automated electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM). The results showed that the microtexture can play a significant role in the coalescence of closely spaced non-coplanar HIC cracks. It was also found that the presence of cleavage planes and slip systems correctly oriented to the mixed-mode stresses can activate low-resistance transgranular paths along in which cracks can merge. It is demonstrated that crystallographic texture must be considered in developing predictive models for the study of the stepwise propagation of HIC cracking in pipeline steels.

  19. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  20. Effect of the size of the apical enlargement with rotary instruments, single-cone filling, post space preparation with drills, fiber post removal, and root canal filling removal on apical crack initiation and propagation.

    Science.gov (United States)

    Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan

    2015-02-01

    The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Crack-opening area calculations for circumferential through-wall pipe cracks

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications.

  2. Crack-opening area calculations for circumferential through-wall pipe cracks

    International Nuclear Information System (INIS)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications

  3. On self-similarity of crack layer

    Science.gov (United States)

    Botsis, J.; Kunin, B.

    1987-01-01

    The crack layer (CL) theory of Chudnovsky (1986), based on principles of thermodynamics of irreversible processes, employs a crucial hypothesis of self-similarity. The self-similarity hypothesis states that the value of the damage density at a point x of the active zone at a time t coincides with that at the corresponding point in the initial (t = 0) configuration of the active zone, the correspondence being given by a time-dependent affine transformation of the space variables. In this paper, the implications of the self-similarity hypothesis for qusi-static CL propagation is investigated using polystyrene as a model material and examining the evolution of damage distribution along the trailing edge which is approximated by a straight segment perpendicular to the crack path. The results support the self-similarity hypothesis adopted by the CL theory.

  4. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  5. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  6. Crack-tip chemistry modeling of stage I stress corrosion cracking

    International Nuclear Information System (INIS)

    Jones, R.H.; Simonen, E.P.

    1991-10-01

    Stage I stress corrosion cracking usually exhibits a very strong K dependence with Paris law exponents of up to 30. 2 Model calculations indicate that the crack velocity in this regime is controlled by transport through a salt film and that the K dependence results from crack opening controlled salt film dissolution. An ionic transport model that accounts for both electromigration through the resistive salt film and Fickian diffusion through the aqueous solution was used for these predictions. Predicted crack growth rates are in excellent agreement with measured values for Ni with P segregated to the grain boundaries and tested in IN H 2 SO 4 at +900 mV. This salt film dissolution may be applicable to stage I cracking of other materials

  7. An analytical method for free vibration analysis of functionally graded beams with edge cracks

    Science.gov (United States)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai

    2012-03-01

    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  8. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    Science.gov (United States)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  9. Analysis of short and long crack behavior and single overload effect by crack opening stress

    International Nuclear Information System (INIS)

    Song, Sam Hong; Lee, Kyeong Ro

    1999-01-01

    The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life

  10. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  11. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  12. Identification of cracks in thick beams with a cracked beam element model

    Science.gov (United States)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  13. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  14. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    Science.gov (United States)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  15. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  16. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  17. The initiation of environmentally-assisted cracking in semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water

  18. The Numerical Simulation of the Crack Elastoplastic Extension Based on the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xia Xiaozhou

    2013-01-01

    Full Text Available In the frame of the extended finite element method, the exponent disconnected function is introduced to reflect the discontinuous characteristic of crack and the crack tip enrichment function which is made of triangular basis function, and the linear polar radius function is adopted to describe the displacement field distribution of elastoplastic crack tip. Where, the linear polar radius function form is chosen to decrease the singularity characteristic induced by the plastic yield zone of crack tip, and the triangle basis function form is adopted to describe the displacement distribution character with the polar angle of crack tip. Based on the displacement model containing the above enrichment displacement function, the increment iterative form of elastoplastic extended finite element method is deduced by virtual work principle. For nonuniform hardening material such as concrete, in order to avoid the nonsymmetry characteristic of stiffness matrix induced by the non-associate flowing of plastic strain, the plastic flowing rule containing cross item based on the least energy dissipation principle is adopted. Finally, some numerical examples show that the elastoplastic X-FEM constructed in this paper is of validity.

  19. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  20. Analysis of the Generating and Influencing Factors of Vertical Cracking in Abutments during Construction

    Directory of Open Access Journals (Sweden)

    Xingwei Xue

    2018-01-01

    Full Text Available In order to analyze the causes of cracking in abutments subject to concrete shrinkage and temperature variation during the construction process and to determine factors affecting the mechanical properties of the abutment, nonlinear calculations capturing abutment behavior are conducted with Midas/FEA software. Using these calculations, the cracking mechanism is identified, and the influence of the evaluated factors is analyzed. It is concluded that the deformation between the pile cap and abutment backwall as constrained by a pile foundation when subjected to concrete shrinkage and temperature changes is the basic cause of abutment cracks during construction; these cracks form over the piles and develop upward. For a given reinforcement ratio, the distribution of horizontal crack-control steel using small, closely spaced bars is more beneficial. When pile-bearing capacity meets the standard, the width of the generated cracks tends to decrease with the decrease in the diameter of the piles. The existence of a postcast strip in the abutment backwall also contributes to the decrease in the depth of the crack. Finally, the impact of age difference between the pile cap concrete and abutment backwall concrete on cracking is inconsequential.

  1. Cracked gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J; Schuster, H D; Gabler, R

    1976-11-17

    A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.

  2. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  3. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  4. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  5. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    Science.gov (United States)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  6. ASTM and VAMAS activities in titanium matrix composites test methods development

    Science.gov (United States)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.

    1994-01-01

    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  7. Mode I and Mode II Interlaminar Crack Growth Resistances of Ceramic Matrix Composites at Ambient Temperature

    National Research Council Canada - National Science Library

    Choi, Sung R; Kowalik, Robert W; Alexander, Donald J

    2007-01-01

    ...) including three gas-turbine grade melt-infiltrated SiC/SiC composites. Modes I and II crack growth resistances, GI and GII, were evaluated at ambient temperature using double cantilever beam and end notched flexure methods, respectively...

  8. Evaluation of water transfer from saturated lightweight aggregate to cement paste matrix by neutron radiography

    International Nuclear Information System (INIS)

    Maruyama, I.; Kanematsu, M.; Noguchi, T.; Iikura, H.; Teramoto, A.; Hayano, H.

    2009-01-01

    In high-strength concrete with low water-cement ratio, self-desiccation occurs due to cement hydration and causes shrinkage and an increased risk of cracking. While high-strength concrete has a denser matrix than normal-strength concrete, resulting in lower permeability, early-age cracks would cancel out this advantage. For the mitigation of this self-desiccation and resultant shrinkage, water-saturated porous aggregate, such as artificial lightweight aggregate, may be used in high-strength concrete. In this contribution, for the purpose of clarification of the volume change of high-strength concrete containing water-saturated lightweight aggregate, water transfer from the lightweight aggregate to cement paste matrix is visualized by neutron radiography. As a result, it is clear that water was supplied to the cement paste matrix in the range 3-8 mm from the surface of the aggregate, and the osmotic forces may yield water transfer around lightweight aggregate in a few hours after mixing.

  9. The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu

    1989-01-01

    The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)

  10. Welding iridium heat-source capsules for space missions

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1982-03-01

    A remote computer-controlled welding station was developed to encapsulate radioactive PuO 2 in iridium. Weld quench cracking caused an interruption in production of capsules for upcoming space missions. Hot crack sensitivity of the DOP-26 iridium alloy was associated with low melting constituents in the grain boundaries. The extent of cracking was reduced but could not be eliminated by changes to the welding operation. An ultrasonic test was developed to detect underbead cracks exceeding a threshold size. Production was continued using the ultrasonic test to reject capsules with detectable cracks

  11. The influence of microstructure on fatigue crack initiation in spheroidal graphite cast irons

    International Nuclear Information System (INIS)

    Starkey, M.S.; Irving, P.E.

    1979-01-01

    This paper reports the first stage of this work which concentrates on fatigue crack initiation with particular emphasis on the influence of microstructure. The fatigue lives of three fully ferritic and two fully pearlitic irons, each with different graphite nodule size distributions, have been determined at two strain amplitudes, 0.005 and 0.00018. The tests were carried out in fully reversed strain control on smooth cylindrical specimens in a servohydraulic testing machine. The effects of matrix structure and strength were clearly seen in that the pearlitic irons were superior at both strain levels. Nodule size on the other hand appeared to have no significant effect. The crack initiation sites in the specimens were located by interrupting the tests on detection of a 5% tensile load drop and heat tinting, before continuing. After failure, which was defined as complete separation, the fracture faces were examined on the scanning electron microscope. In the majority of the specimens the major crack origin was found to be a surface micropore with depths ranging from 50 to 250 μm. It is suggested that these micropores and not the graphite modules strongly influence the crack initiation behaviour in SG iron. These findings were confirmed by monitoring the initiation and growth of surface cracks from micropores using surface replica techniques. The influence of microstructure on the percentage of life spent in initiating and propagating a crack was thus determined. Hence the factors contributing to the fatigue behaviour of SG irons can be quantified. Their influence on predictions of cycles to crack initiation using the local approach is discussed. (orig.) 891 RW/orig. 892 RKD [de

  12. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  13. Cleavage crack growth resistance due to plastic flow around a near-tip dislocation-free region

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    ; but plastic yielding far from the tip still adds to the fracture toughness. The model employed makes use of a dislocation-free strip of elastic material, inside which the crack propagates, while the material outside the strip is described by continuum plasticity. The approximation involved in assuming......Crack growth resistance curves are computed numerically for cases where fracture occurs by atomic separation, so that the length scale of the fracture process is typically much smaller than the dislocation spacing. Here, continuum plasticity would not give realistic stress levels near the crack tip...

  14. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  15. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms

    Science.gov (United States)

    Morscher, Greg; Gowayed, yasser; Miller, Robert; Ojard, Greg; Ahmad, Jalees; Santhosh, Unni; John, Reji

    2008-01-01

    An understanding of the elevated temperature tensile creep, fatigue, rupture, and retained properties of ceramic matrix composites (CMC) envisioned for use in gas turbine engine applications are essential for component design and life-prediction. In order to quantify the effect of stress, time, temperature, and oxidation for a state-of-the-art composite system, a wide variety of tensile creep, dwell fatigue, and cyclic fatigue experiments were performed in air at 1204 C for the SiC/SiC CMC system consisting of Sylramic-iBN SiC fibers, BN fiber interphase coating, and slurry-cast melt-infiltrated (MI) SiC-based matrix. Tests were either taken to failure or interrupted. Interrupted tests were then mechanically tested at room temperature to determine the residual properties. The retained properties of most of the composites subjected to tensile creep or fatigue were usually within 20% of the as-produced strength and 10% of the as-produced elastic modulus. It was observed that during creep, residual stresses in the composite are altered to some extent which results in an increased compressive stress in the matrix upon cooling and a subsequent increased stress required to form matrix cracks. Microscopy of polished sections and the fracture surfaces of specimens which failed during stressed-oxidation or after the room-temperature retained property test was performed on some of the specimens in order to quantify the nature and extent of damage accumulation that occurred during the test. It was discovered that the distribution of stress-dependent matrix cracking at 1204 C was similar to the as-produced composites at room temperature; however, matrix crack growth occurred over time and typically did not appear to propagate through thickness except at final failure crack. Failure of the composites was due to either oxidation-induced unbridged crack growth, which dominated the higher stress regime (> 179 MPa) or controlled by degradation of the fibers, probably caused by

  16. Development of a J-estimation scheme for internal circumferential and axial surface cracks in elbows

    International Nuclear Information System (INIS)

    Mohan, R.; Brust, F.W.; Ghadiali, N.; Wilkowski, G.

    1996-06-01

    This report summarizes efforts to develop elastic and elastic-plastic fracture mechanics analyses for internal surface cracks in elbows. The analyses involved development of a GE/EPRI type J-estimation scheme which requires an elastic and fully plastic contribution to crack-driving force in terms of the J-integral parameter. The elastic analyses require the development of F-function values to relate the J e term to applied loads. Similarly, the fully plastic analyses require the development of h-functions to relate the J p term to the applied loads. The F- and h-functions were determined from a matrix of finite element analyses. To minimize the cost of the analyses, three-dimensional ABAQUS finite element analyses were compared to a simpler finite element technique called the line-spring method. The line-spring method provides a significant computational savings over the full three-dimensional analysis. The comparison showed excellent agreement between the line-spring and three-dimensional analysis. This experience was consistent with comparisons with circumferential surface-crack analyses in straight pipes during the NRC's Short Cracks in Piping and Piping Welds program

  17. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  18. Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?

    International Nuclear Information System (INIS)

    Smyl, Danny; Rashetnia, Reza; Seppänen, Aku; Pour-Ghaz, Mohammad

    2017-01-01

    Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks. - Highlights: • 3D EIT is developed to visualize water ingress in cracked mortar. • Mortar with different size discrete cracks are used. • The EIT results are corroborated with numerical simulations. • EIT results accurately show the temporal and spatial variation of water content. • EIT is shown to be a viable method to monitor flow in cracks and matrix.

  19. Fully plastic crack opening analyses of complex-cracked pipes for Ramberg-Osgood materials

    International Nuclear Information System (INIS)

    Jeong, Jae Uk; Choi, Jae Boong; Huh, Nam Su; Kim, Yun Jae

    2016-01-01

    The plastic influence functions for calculating fully plastic Crack opening displacement (COD) of complex-cracked pipes were newly proposed based on systematic 3-dimensional (3-D) elastic-plastic Finite element (FE) analyses using Ramberg-Osgood (R-O) relation, where global bending moment, axial tension and internal pressure are considered separately as a loading condition. Then, crack opening analyses were performed based on GE/EPRI concept by using the new plastic influence functions for complex-cracked pipes made of SA376 TP304 stainless steel, and the predicted CODs were compared with FE results based on deformation plasticity theory of tensile material behavior. From the comparison, the confidence of the proposed fully plastic crack opening solutions for complex-cracked pipes was gained. Therefore, the proposed engineering scheme for COD estimation using the new plastic influence functions can be utilized to estimate leak rate of a complex-cracked pipe for R-O material.

  20. Ageing temperature effect on inclination of martensite high strength steels EhP699, EhP678, EhP679 to corrosion cracking

    International Nuclear Information System (INIS)

    Rozenfel'd, I.L.; Spiridonov, V.B.; Konradi, M.V.; Krasnorutskaya, I.B.; Fridman, V.S.

    1979-01-01

    Stated are the data permitting to judge of the role of ageing temperature in the total number of factors, determining the inclination to corrosion cracking of high strength maraging steels, which contain chromium as a main alloying element. The inclination of the EhP699, EhP678, EhP679 steels to corrosion cracking was estimated on smooth stressed specimens in 3 % NaCl solution with the use of electrochemical polarization. The tensile stress resulted from deflection; anode and cathode current density was 10 mA/cm 2 . It is shown, that resistance to corrosion cracking depends on the ageing temperature: maximum sensitivity to corrosion cracking the steels manifest at the ageing temperatures, providing for maximum strength (470-500 deg). At the ageing temperatures by 20-30 deg over the temperature of this maximum the sensitivity to corrosion cracking disappears, which may result from the loss of coherence of strengthening phase in a matrix, from particle coagulation and stress relaxation in the crack peak

  1. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  2. Some aspects about the Portland cement utilization as a matrix for radioactive waste immobilization

    International Nuclear Information System (INIS)

    Giraldelli, M.A.

    1990-01-01

    More recently, the environmental policy has concentrated the focus on the study of the waste disposal environmental impact. Since Portland cement is commonly used as a matrix in the low-and intermediate-level radioactive waste immobilization, in the present work, some relationships between the structure and properties of matrix, based on available concrete technology information, has been established by using the multi-level approach analysis. The relationships were developed based on hydrating reactions, the microstructure models, the pore system. It have been verified that: a) CSH gel is responsible for the cementing action and for the strength; b) it seems that the capillary porosity is the strength limiting; c) the permeability, regarded in terms of gel porosity and reduced capillary porosity of the hardened cement paste, may not be a decisive factor for the radionuclide release; d) the shrinkage and the swelling induced cracks can enhance the diffusion mechanism for the cracks increase the exposed surface. The durability of the waste disposal matrix concerning chemical attack in the acidic environment has been considered. (author)

  3. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Directory of Open Access Journals (Sweden)

    Shujie Fan

    2017-11-01

    Full Text Available Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  4. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Science.gov (United States)

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong

    2017-11-01

    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  5. TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam

    International Nuclear Information System (INIS)

    Grabulov, A.; Ziese, U.; Zandbergen, H.W.

    2007-01-01

    The white etching area (WEA) surrounding the cracks formed under high-cycle rolling contact fatigue was investigated by transmission electron microscopy (TEM) and Dual Beam (scanning electron microscopy (SEM)/focused ion beam). SEM revealed the initiation of cracks formed around artificially introduced Al 2 O 3 inclusions in the model steel (composition similar to SAE 52100). TEM investigations showed a microstructural difference between the WEA (formation of nanocrystalline ferrite) and the steel matrix (tempered martensitic structure). A three-dimensional image of the crack reconstructed from ∼400 Dual Beam cross-section images is reported

  6. Study of deflection and crack interrelation that use deck slab's automatic measurement

    International Nuclear Information System (INIS)

    Park, Sung Woo; Park, Yung Suk; Joo, Kwon Yong

    2004-01-01

    Reinforce concrete slab executes finish work if 6 - 8 hours pass since concrete placing. Specially, because minimize process composition slab occasion early space-time that use structure deck plate, concrete strength revelation is very important. The reason is that when strength revelation is not made, fine shock and deflection can provoke concrete crack. Executed radio automatic measure to prevent these crack initiation cause in the advance. Apply radio automatic measure is il-san culture center building and pasta measure period 03/09/06 - 03/10/08.

  7. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  8. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  9. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  10. On crack interaction effects of in-plane surface cracks using elastic and elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su

    2010-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components

  11. The Reflective Cracking in Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Pais Jorge

    2013-07-01

    Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.

  12. Simulation of surface crack initiation induced by slip localization and point defects kinetics

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Liu, Jia; Rachdi, Fatima

    2014-01-01

    Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation. The whole FE modelling accounts for: - localized plastic slip in PSBs; - production and annihilation of vacancies induced by cyclic slip. If temperature is high enough, point defects may diffuse in the surrounding matrix due to large concentration gradients, allowing continuous extrusion growth in agreement with Polak's model. At each cycle, the additional atoms diffusing from the matrix are taken into account by imposing an incremental free dilatation; - brittle fracture at the interfaces between PSBs and their surrounding matrix which is simulated using cohesive zone modelling. Any inverse fitting of parameter is avoided. Only experimental single crystal data are used such as hysteresis loops and resistivity values. Two fracture parameters are required: the {111} surface energy which depends on environment and the cleavage stress which is predicted by the universal binding energy relationship. The predicted extrusion growth curves agree rather well with the experimental data published for copper and the 316L steel. A linear dependence with respect to PSB length, thickness and slip plane angle is predicted in agreement with recent AFM measurement results. Crack initiation simulations predict fairly well the effects of PSB length and environment for copper single and poly-crystals. (authors)

  13. Ellipsoids and matrix-valued valuations

    OpenAIRE

    Ludwig, Monika

    2003-01-01

    We obtain a classification of Borel measurable, GL(n) covariant, symmetric-matrix-valued valuations on the space of n-dimensional convex polytopes. The only ones turn out to be the moment matrix corresponding to the classical Legendre ellipsoid and the matrix corresponding to the ellipsoid recently discovered by E. Lutwak, D. Yang, and G. Zhang.

  14. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    Science.gov (United States)

    Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack

    2013-11-01

    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.

  15. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  16. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    DEFF Research Database (Denmark)

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...

  17. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  18. A Mesoscopic Simulation for the Early-Age Shrinkage Cracking Process of High Performance Concrete in Bridge Engineering

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2017-01-01

    Full Text Available On a mesoscopic level, high performance concrete (HPC was assumed to be a heterogeneous composite material consisting of aggregates, mortar, and pores. The concrete mesoscopic structure model had been established based on CT image reconstruction. By combining this model with continuum mechanics, damage mechanics, and fracture mechanics, a relatively complete system for concrete mesoscopic mechanics analysis was established to simulate the process of early-age shrinkage cracking in HPC. This process was based on the dispersion crack model. The results indicated that the interface between the aggregate and mortar was the crack point caused by shrinkage cracks in HPC. The locations of early-age shrinkage cracks in HPC were associated with the spacing and the size of the aggregate particle. However, the shrinkage deformation size of the mortar was related to the scope of concrete cracking and was independent of the crack position. Whereas lower water to cement ratios can improve the early strength of concrete, this ratio cannot control early-age shrinkage cracks in HPC.

  19. Refinement and evaluation of crack-opening-area analyses for circumferential through-wall cracks in pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H.; Moberg, F.; Brickstad, B.

    1995-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs

  20. Inspecting cracks in foam insulation

    Science.gov (United States)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  1. Pulmonary complications of crack cocaine use: high-resolution computed tomography of the chest

    International Nuclear Information System (INIS)

    Mancano, Alexandre

    2008-01-01

    Here, we report high-resolution computed tomography (HRCT) findings in a patient who developed sudden hemoptysis, dyspnea and chest pain after smoking crack cocaine. Chest X-rays showed consolidations, primarily in the upper lobes, and HRCT scans showed ground glass attenuation opacities, consolidations and air-space nodules. A follow-up CT, after drug use discontinuation and administration of corticosteroids, showed partial resolution of pulmonary lesions and the appearance of cavitations. Clinical, imaging and laboratory findings led to a diagnosis of 'crack lung'. (author)

  2. Fatigue crack threshold relevant to stress ratio, crack wake and loading histories

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Iwasaki, Akira; Kasahara, Naoto

    2013-01-01

    Fatigue crack propagation behavior was investigated in a low alloy steel which experienced several kind of loading histories. Both the effects of stress ratio, test temperature on the fatigue crack threshold, and the change in the threshold depending on the thermo-mechanical loading histories, were experimentally investigated. It was shown that the thermo-mechanical loading history left its effect along the prior fatigue crack wake resulting in the change of fatigue crack threshold. Some discussions are made on how this type of loading history effect should be treated from engineering point of view. (author)

  3. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  4. Matrix resin effects in composite delamination - Mode I fracture aspects

    Science.gov (United States)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  5. Sizing of small surface-breaking tight cracks by using laser-ultrasonics

    International Nuclear Information System (INIS)

    Ochiai, M.; Miura, T.; Kuroda, H.; Yamamoto, S.; Onodera, T.

    2004-01-01

    On the nondestructive testing, not only detection but also sizing of crack is desirable because the crack depth is one of the most important parameter to evaluate the impact of the crack to the material, to estimate crack growth and ultimately to predict lifetime of the component. Moreover, accurate measurement of the crack depth optimizes countermeasures and timing of repairs, and eventually reduces total cost for plant maintenance. Laser-ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another one, long pulse or continuous, coupled to an optical interferometer for detection. The technique features a large detection bandwidth, which is important for small defect inspection. Another feature of laser-ultrasonics is the remote optical scanning of generation and detection points, which enables to inspect components in narrow space and/or having complex shapes. A purpose of this paper is to describe the performance of a laser-ultrasonic testing (LUT) system on stress corrosion cracking (SCC) inspection. We have developed a new technique for sizing shallow cracks, say 0.5-1.5mm, based on the laser-induced surface wave and its frequency analysis. First, sizing capability of the system will be demonstrated by using an artificial surface-breaking slot having depth of 0-2mm in a stainless steel plate. Evaluated depths show good agreement with the machined slot depths within the accuracy of about a few hundred micrometers. Then, SCCs in a stainless steel plate are examined by using the system. Depth of SCC is evaluated every 0.2mm over the crack aperture length. The evaluated depths are compared with the depths measured by the destructive testing. (author)

  6. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  7. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  8. Influence of Normal and Shear Stress on the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a Granite, and a Shale

    Science.gov (United States)

    Rutter, Ernest H.; Mecklenburgh, Julian

    2018-02-01

    Transmissivity of fluids along fractures in rocks is reduced by increasing normal stress acting across them, demonstrated here through gas flow experiments on Bowland shale, and oil flow experiments on Pennant sandstone and Westerly granite. Additionally, the effect of imposing shear stress at constant normal stress was determined, until frictional sliding started. In all cases, increasing shear stress causes an accelerating reduction of transmissivity by 1 to 3 orders of magnitude as slip initiated, as a result of the formation of wear products that block fluid pathways. Only in the case of granite, and to a lesser extent in the sandstone, was there a minor amount of initial increase of transmissivity prior to the onset of slip. These results cast into doubt the commonly applied presumption that cracks with high resolved shear stresses are the most conductive. In the shale, crack transmissivity is commensurate with matrix permeability, such that shales are expected always to be good seals. For the sandstone and granite, unsheared crack transmissivity was respectively 2 and 2.5 orders of magnitude greater than matrix permeability. For these rocks crack transmissivity can dominate fluid flow in the upper crust, potentially enough to permit maintenance of a hydrostatic fluid pressure gradient in a normal (extensional) faulting regime.

  9. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  10. Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains

    International Nuclear Information System (INIS)

    Vazquez, Samuel E.

    2007-01-01

    Using the anti-de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider the case of the 1/2 Bogomol'nyi-Prasad-Sommerfield geometries of type IIB supergravity. These geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show how to reconstruct the full metric inside these droplets using the one-loop N=4 super Yang-Mills theory dilatation operator. This is done by considering long operators in the SU(2) sector, which are dual to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin chains can be explicitly constructed using an interesting algebra which is derived from the matrix model. Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet and the hypotrochoid

  11. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    Science.gov (United States)

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  12. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in

  13. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  14. Investigation of Cracks Found in Helicopter Longerons

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  15. Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fuchen; Xu, Chunming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, 102200 (China); Ng, Siauw H. [National Centre for Upgrading Technology, 1 Oil Patch Drive, Suite A202, Devon, Alberta (Canada); Yui, Sok [Syncrude Research Centre, 9421-17 Avenue, Edmonton, Alberta (Canada)

    2007-09-15

    In an attempt to reduce the production of light cycle oil (LCO), a non-premium fluid catalytic cracking (FCC) product in North America, a large-pore catalyst containing rare-earth-exchanged Y (REY) zeolite, was used to crack two Canadian bitumen-derived crude heavy gas oils (HGOs) hydrotreated to different extents. For comparison, a regular equilibrium FCC catalyst with ultra-stable Y (USY) zeolite and a conventional western Canadian crude HGO were also included in the study. Cracking experiments were conducted in a fixed-bed microactivity test (MAT) reactor at 510 C, 30 s oil injection time, and varying catalyst-to-oil ratios for different conversions. The results show that pre-cracking of heavy molecules with wide-pore matrix, followed by zeolite cracking, enhanced conversion at the expense of light and heavy cycle oils at a constant catalyst-to-oil ratio, giving improved product selectivities (e.g., higher gasoline and lower dry gas, LCO, and coke yields, in general, at a given conversion). To systematically assess the benefits of employing the specialty catalyst over the regular catalyst in cracking Canadian HGOs, individual product yields were compared at common bases, including constant catalyst-to-oil ratios, conversions, and coke yields for three feeds, and at maximum gasoline yield for one feed. In most cases, the preferred choice of large-pore zeolite-rich catalyst over its counterpart was evident. The observed cracking phenomena were explained based on properties of catalysts and characterization data of feedstocks, including their hydrocarbon type analyses by gas chromatograph with a mass-selective detector (GC-MSD). (author)

  16. Statistical distribution of time to crack initiation and initial crack size using service data

    Science.gov (United States)

    Heller, R. A.; Yang, J. N.

    1977-01-01

    Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.

  17. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  18. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    Science.gov (United States)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  19. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    Science.gov (United States)

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  20. Compressive performance and crack propagation in Al alloy/Ti{sub 2}AlC composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, D.A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Hu, L. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Kan, W.H.; Proust, G. [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Foley, M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Karaman, I.; Radovic, M. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-08-30

    Composite materials comprising a porous Ti{sub 2}AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti{sub 2}AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti{sub 2}AlC phase interfaces are key considerations in the design of high performance metal/Ti{sub 2}AlC phase composites.

  1. Study on crack scattering in aluminum plates with Lamb wave frequency–wavenumber analysis

    International Nuclear Information System (INIS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A C

    2013-01-01

    The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency–wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency–wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time–space wavefield is then transformed to the frequency–wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency–wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency–wavenumber spectra at various spatial locations, resulting in a space–frequency–wavenumber representation of the signal. The space–frequency–wavenumber analysis has shown its potential for indicating crack presence. (paper)

  2. The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles

    Energy Technology Data Exchange (ETDEWEB)

    Sabirov, I. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)]. E-mail: sabirov@unileoben.ac.at; Duschlbauer, D. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Pettermann, H.E. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Kolednik, O. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)

    2005-02-25

    A procedure is proposed to determine, for second-phase particles near a crack tip, the maximum particle stresses at the moment of void initiation by either particle fracture or particle/matrix interface separation. A digital image analysis system is applied to perform a quantitative analysis of corresponding fracture surface regions from stereo image pairs taken in the scanning electron microscope. The fracture surface analysis is used to measure, for individual particles, the crack tip opening displacement at the moment of void initiation and the particle location with respect to the crack tip. From these data, the stress tensor at the moment of void initiation is calculated from the Hutchinson-Rice-Rosengren (HRR) field theory. The corresponding average local stresses within the particle are evaluated by a non-linear Mori-Tanaka-type approach. These stresses are compared to estimates according to the models by Argon et al. [A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6 (1975) 825] and Beremin [F.M. Beremin, Metall. Trans. 12 (1981) 723]. The procedure is demonstrated on an Al6061-10% Al{sub 2}O{sub 3} metal matrix composite.

  3. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  4. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2015-04-15

    Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.

  5. Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2018-01-01

    Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.

  6. Universal Shapes formed by Interacting Cracks

    Science.gov (United States)

    Fender, Melissa; Lechenault, Frederic; Daniels, Karen

    2011-03-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.

  7. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  8. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  9. CT Identification and Fractal Characterization of 3-D Propagation and Distribution of Hydrofracturing Cracks in Low-Permeability Heterogeneous Rocks

    Science.gov (United States)

    Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing

    2018-03-01

    Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.

  10. Effects of rust in the crack face on crack detection based on Sonic-IR method

    International Nuclear Information System (INIS)

    Harai, Y.; Izumi, Y.; Tanabe, H.; Takamatsu, T.; Sakagami, T.

    2015-01-01

    Sonic-IR, which is based on the thermographic detection of the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed and small defects. However, this method has a lot of nuclear factors relating to heat generation. In this study, effects of rust in the crack faces on the crack detection based on the sonic-IR method is experimentally investigated by using crack specimens. The heat generation by ultrasonic excitation was observed regularly during rust accelerated test using original device. The distribution of temperature change around the crack was changed with the progress of rust. This change in heat generation, it believed to be due to change in the contact state of the crack surface due to rust. As a result, it was found that heat generation by ultrasonic excitation is affected by rust in the crack faces. And it was also found that crack detection can be conducted by sonic-IR even if rust was generated in the crack faces. (author)

  11. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  12. Crack resistance of austenitic pipes with circumferential through-wall cracks

    International Nuclear Information System (INIS)

    Foerster, K.; Grueter, L.; Setz, W.; Bhandari, S.; Debaene, J.P.; Faidy, C.; Schwalbe, K.H.

    1993-01-01

    For monotonously increasing load the correct evaluation of the crack resistance properties of a structure is essential for safety analyses. Considerable attention has been given to the through-wall case, since this is generally believed to be the controlling case with regard to complete pipe failure. The maximum load conditions for circumferential crack growth in pipes under displacement-controlled loadings has been determined. The need for crack resistance curves, measured on circumferentially through-wall cracked straight pipes of austenitic stainless steel 316L under bending, is emphasized by the limitation in the data range on small specimens and by the differences in the procedures. To answer open questions and to improve calculational methods a joint fracture mechanics program is being performed by Electricite de France, Novatome and Siemens-Interatom. The working program contains experimental and theoretical investigations on the applicability of small-specimen data to real structures. 10 refs., 10 figs., 4 tabs

  13. Ultrasonic inspection of steam-generator tube axial cracking using Lamb wave

    International Nuclear Information System (INIS)

    Park, Jae Seok

    2007-02-01

    In this study, the interaction of Lamb wave propagating thin tube structure with finite vertical discontinuity was studied using both modal decomposition method (MDM) and experimental method. For MDM, a global matrix formulation and orthogonality of Lamb mode was employed to describe the boundary condition of finite vertical discontinuity of the tube and the mode conversion phenomenon respectively. The final form of governing equation by MDM was a linear matrix equation which could be solved using a simple matrix identity. The calculation result showed that, below the cut-off frequency, reflection amplitudes of both A0 and S0 Lamb mode increase as the depth of discontinuity increased beyond the threshold value. An experimental investigation was performed using a Hertzian-contact transducer and steam-generator tubes to verify the calculation results by MDM. A0 Lamb mode was selected as a test signal considering the characteristics of the transducer and previous studies. The experiment for mode identification using half-sectioned tube verified that the Hertzian-contact transducer effectively generated A0 Lamb mode. Tests performed using steam-generator tubes with EDM (electric discharge machined) axial notches showed that the deeper notches produced the higher reflection echo. A0 Lamb mode interacted with the notch having a depth larger than 1/40 of wave length, or corresponding to 30% of the wall thickness. This finding was in good agreement with previous studies and the prediction by MDM. The experiment using real crack specimens to estimate the deviation of reflection amplitude showed that the reflection cross-section of real crack was very similar with that of EDM notch. Therefore, specimens with EDM notches can be used as reference blocks for Lamb wave UT calibration

  14. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  15. Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures

    International Nuclear Information System (INIS)

    Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.

    2010-01-01

    Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage of dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.

  16. Functional equations in matrix normed spaces

    Indian Academy of Sciences (India)

    The abstract characterization given for linear spaces of bounded Hilbert space operators in terms of ... effect on operator algebra theory (see [12]). .... of functional equations for the proof of new fixed point theorems with applications. By.

  17. Prediction of Crack Growth Aqueous Environments.

    Science.gov (United States)

    1983-06-01

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 II...34no crack" has at least a vestigial rupture, associated with cyclic loading of the oxide film at the crack tip. The curve labeled "crack" was obtained...be an effect of crack opening. For the data set labeled "crack", the vestigial crack, although short, is very tight and the impedance is large. Under

  18. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    International Nuclear Information System (INIS)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn 3.5 Ag/Cu solder reaction couple was investigated with a high current density of 5 x 10 3 A/cm 2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu 6 Sn 5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu 6 Sn 5 at the cathode interface due to the thermal stress.

  19. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    NARCIS (Netherlands)

    Stuart, Rosemary A.; Gruhler, Albrecht; Klei, Ida van der; Guiard, Bernard; Koll, Hans; Neupert, Walter

    1994-01-01

    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted.

  20. Cracking behavior of reinforced concrete beams: experiment and simulations on the numerical influence of the steel-concrete bond

    International Nuclear Information System (INIS)

    Jason, L.; Torre-Casanova, A.; Pinelli, X.; Davenne, L.

    2013-01-01

    Experimental and numerical results are provided in this contribution to study the global and cracking behaviors of two reinforced concrete beams subjected to four point bending. Experimentally, the use of image correlation technique enables to obtain precise information concerning the cracking properties (spacing, cumulated, maximum and mean values of the opening). Numerically, two simulations are compared taking into account a bond model between steel and concrete or supposing a perfect relation between the two materials. In both cases, a good agreement is achieved between numerical and experimental results even if the introduction of the bond effects has a direct influence during the development of the cracks (better agreement during the 'active' cracking phase). (authors)

  1. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  2. Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Chen

    2018-05-01

    Full Text Available The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC, fine borides (M3B2 and M5B3, η-Ni3Ti, σ (Cr-Co and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries.

  3. Use of Several Thermal Analysis Techniques to Study the Cracking of a Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.

    1999-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM of each of the two Solid Rocket Boosters (SRBs) on the Space Shuttle. Each cured insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive, and some of the curved areas in the rubber may have significant residual stresses. A number of recently bonded NBR insulators have shown fine surface cracks, and stressed insulator areas may be aging at a faster rate than unstressed areas, thus hastening the surface cracking. Thermal analysis data on both vendor insulators by Dynamic Mechanical Analysis (DMA) through a temperature/frequency sweep from 24 to 74 C have shown a higher flexural storage modulus and Arrhenius activation energy for the stressed area than for the unstressed area. Other thermal analysis techniques are being used to study the insulator surface vs. bulk interior for better understanding this anomaly.

  4. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  5. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    International Nuclear Information System (INIS)

    Lieboldt, M.; Mechtcherine, V.

    2013-01-01

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement, the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well

  6. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  7. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  8. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  9. Structural Health Monitoring System Trade Space Analysis Tool with Consideration for Crack Growth, Sensor Degradation and a Variable Detection Threshold

    Science.gov (United States)

    2014-09-18

    Fatigue crack growth ..................................................................................................25 Probability of detection...32 Figure 5: Fatigue crack growth simulation results for 10 runs .............................................. 35 Figure 6...43 Figure 10: Linear regression fit of ln() vs. ln( ) data for SHM using PZT sensors (Kuhn, 2009

  10. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  11. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  12. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  13. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  14. Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices

    Science.gov (United States)

    Dry, Carolyn M.

    1995-04-01

    This work is an investigation into the feasibility of using liquid core optical fibers for the detection and self repair of cracking in cement or polymer materials generated by dynamic or static loading. These experiments rely on our current research sponsored by the National Science Foundation. It combines that work on the concept of internal adhesive delivery from hollow fibers for repair with nondestructive fiber optic analysis of the crack localization and volume within the same system. The need to monitor the internal state of civil structures and materials is great. Existing instrumentation techniques that mainly rely on magnetism, electricity, or stress gauges are limited if used for remote measurements in concrete or composites. They are sensitive to electrical magnetic noises and they degrade in the environment over time. Optical fibers are attractive because they are immune to electromagnetic interference and are sensitive over long distances. The combination of the ability to remotely measure crack occurrence in real time and determine the location and volume of crack damage in the matrix is unique in the field of optic sensors (or any sensors in general). The combination of this with crack repair, rebonding of any detached or broken fibers, and replenishment of liquid core chemicals, when necessary, make this a potentially powerful sensing and repair tool. Work on this research topic of the combination sponsored by the University of Illinois, looks very promising as a rapid innovative advance.

  15. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  16. Opportunities to learn and barriers to change: crack cocaine use in the Downtown Eastside of Vancouver

    Directory of Open Access Journals (Sweden)

    Moffat Barbara

    2008-11-01

    Full Text Available Abstract In 2004, a team comprised of researchers and service providers launched the Safer Crack Use, Outreach, Research and Education (SCORE project in the Downtown Eastside of Vancouver, British Columbia, Canada. The project was aimed at developing a better understanding of the harms associated with crack cocaine smoking and determining the feasibility of introducing specific harm reduction strategies. Specifically, in partnership with the community, we constructed and distributed kits that contained harm reduction materials. We were particularly interested in understanding what people thought of these kits and how the kits contents were used. To obtain this information, we conducted 27 interviews with women and men who used crack cocaine and received safer crack kits. Four broad themes were generated from the data: 1 the context of crack use practices; 2 learning/transmission of harm reducon education; 3 changing practice; 4 barriers to change. This project suggests that harm reduction education is most successful when it is informed by current practices with crack use. In addition it is most effectively delivered through informal interactions with people who use crack and includes repeated demonstrations of harm reduction equipment by peers and outreach workers. This paper also suggests that barriers to harm reduction are systemic: lack of safe housing and private space shape crack use practices.

  17. Effect of fiber extensibility on the fracture toughness of short fiber or brittle matrix composites

    International Nuclear Information System (INIS)

    Jain, L.K.; Wetherhold, R.C.

    1992-01-01

    A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σ b -γ) relationship. An approximate analysis is then presented which gives both G and σ b -γ directly. To illustrate the effect extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied. 28 refs., 9 figs., 1 tab

  18. Comparison of finite element J-integral evaluations for the blunt crack model and the sharp crack model

    International Nuclear Information System (INIS)

    Pan, Y.C.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is that of hot sodium coming into contact with either unprotected concrete or steel-lined concrete equipment cells and containment structures. An aspect of this is the potential of concrete cracking which would significantly influence the safety assessment. Concrete cracking in finite element analysis can be modeled as a blunt crack in which the crack is assumed to be uniformly distributed throughout the area of the element. A blunt crack model based on the energy release rate and the effective strength concepts which was insensitive to the element size was presented by Bazant and Cedolin. Some difficulties were encountered in incorporating their approach into a general purpose finite element code. An approach based on the J-integral to circumvent some of the difficulties was proposed by Pan, Marchertas, and Kennedy. Alternatively, cracking can also be modeled as a sharp crack where the crack surface is treated as the boundary of the finite element mesh. The sharp crack model is adopted by most researchers and its J-integral has been well established. It is desirable to establish the correlation between the J-integrals, or the energy release rates, for the blunt crack model and the sharp crack model so that data obtained from one model can be used on the other

  19. Crack characterization for in-service inspection planning

    International Nuclear Information System (INIS)

    Waale, J.; Ekstroem, P.

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs

  20. Crack characterization for in-service inspection planning

    Energy Technology Data Exchange (ETDEWEB)

    Waale, J [SAQ Inspection Ltd, Stockholm (Sweden); Ekstroem, P [ABB Atom AB, Vaesteraas (Sweden)

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs.

  1. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  2. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  3. Quenching cracks - formation and possible causes

    International Nuclear Information System (INIS)

    Macherauch, E.; Mueller, H.; Voehringer, O.

    1976-01-01

    The most important principles controlling the martensitic hardening of steels containing carbon are presented, and their effects on the cracks formed by tempering are discussed. Micro-crack formation, influenced by any increase in the carbon content, is dependent on the variations of martensitic morphology; this factor is of decisive importance. Apart from micro residual stresses, macro residual stresses become increasingly involved in the crack development. This is dependent on the given content of carbon and increase in the dimensions of the samples. Based on the empirical values gained from experience about cracks formed by tempering and using a schematic diagram, the constructive influences on the propensity to cracks formed by tempering, with regard to materials and processing, are evaluated. Also the effects of thermic, mechanical and chemical after-treatments upon the propensity to tempering cracks are discussed. In conclusion, the problem of the formation of cracks in hardened parts, i.e. the elongation of the cracks under static stress, is treated briefly. (orig.) [de

  4. Natural zeolite bitumen cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.

  5. Environmentally assisted cracking of LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections

  6. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  7. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  8. Microfractographic analysis of delamination growth in fatigue loaded - carbon fibre/thermosetting matrix composites; Mikrofraktographische Analyse des Delaminationswachstums in zyklisch belasteten Kohlenstoffaser/Duroplastharz-Verbundwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Heutling, F.; Franz, H.E. [Daimler-Benz AG, Muenchen (Germany); Friedrich, K. [Kaiserslautern Univ. (Germany). Inst. for Composite Materials Ltd.

    1998-05-01

    Carbon-fibre-reinforced plastics (CFRP) are known to be considerably less sensitive to fatigue loading than aluminium (Al) alloys, for instance. However, even in the presence of small delaminations, the damage tolerance of structural components may be considerably reduced. The scope of the present contribution is to investigate fatigue phenomena in CFRP materials (with thermosetting matrix) by means of microfractography. The microfractographic features of the fracture surfaces mirror the processes of deformation and fracture at the delamination front. The fatigue fracture behaviour of a CFRP laminate subjected to cyclic mixed-mode loading is determined by matrix-controlled failure mechanisms. Under pure mode-II loading conditions, rollers in addition to fatigue striations appear in the fibre imprints whose formation mechanism was explained by means of high-resolution field-emission scanning electron microscopy (FE-SEM). The ratio between the local tensile and shear stress components influences the propagation direction of secondary cracks originating at the fibres. The local fracture propagations in these secondary cracks can be recognised through the fatigue striations appearing on the surface of the matrix. A comparison with static mixed-mode loading reveals that in both cases the crack propagation follows the path of the local maximum main stress. Applying mathematical relationships derived from the theory of elasticity permitted developing a mixed-mode loading model which makes it possible to predict the crack processes and hence to explain the formation of typical fracture-morphological features. (orig.) 26 refs.

  9. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  10. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    Science.gov (United States)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  11. Analytical Tem Comparisons of Stress-Corrosion-Crack Microstructures in Alloy 600 under Steam-Generator Service and Laboratory Test Conditions

    International Nuclear Information System (INIS)

    Thomas, L.E.; Bruemmer, S.M.; Scott, P.M.

    2002-01-01

    High-resolution analytical transmission electron microscopy (ATEM) has been used to characterize stress-corrosion cracks (SCC) in Alloy 600 steam-generator (SG) tubing from tests with caustic and acid-sulfate solutions. The aim of this work was to identify the microstructural and microchemical signatures of intergranular attack and cracking produced under well-controlled test conditions in order to determine the local environments promoting degradation in service. Cross-sectioned cracks and crack tips were examined in samples of mill-annealed alloy 600 tested in concentrated caustic and acid-sulfate solutions at 320 C. Characteristic microstructures observed in the caustic (10% NaOH) test sample included deeply penetrative attack along crack-intersected grain boundaries, with Cr-rich spinel and NiO structure oxides ranging from random nanocrystalline to oriented epitaxial films filling cracks up to the tips. Sodium was readily detectable in the oxides (up to 5 wt.% in the spinel corrosion product) along with S and Cu enrichment at crack-wall metal/oxide interfaces and local attack of the metal matrix around IG carbide particles. In the sulfate (Na 2 SO 4 + FeSO 4 ) test sample, the grain boundaries were also deeply attacked/cracked. Epitaxial NiO-structure oxide formed on the crack walls and S, sometimes with Cu, was concentrated between the oriented oxide layers rather than along the metal/oxide interfaces. Carbides were attacked and partially converted to fine-grained oxide containing up to several percent S. Observations of crack tips in the acid sulfate sample also revealed nm-wide cracks preceding the oxide along grain boundaries. The SCC structures produced in the laboratory tests differed in most details from the secondary-side SCC structures observed in pulled SG tubes. Important differences included the oxide morphologies, the presence of easily detectable Na and absence of sulfides in the test samples, different types of attack on IG carbide particles

  12. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Science.gov (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  13. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  14. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  15. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  16. Dynamic ductile fracture of a central crack

    Science.gov (United States)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  17. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Mora, L. [Institute Eduardo Torroja for Construction Sciences-CSIC, Madrid (Spain); Department of Materials, University of Oxford (United Kingdom); Lowe, T. [Manchester X-ray Imaging Facility, The University of Manchester (United Kingdom); Zhao, S. [Department of Materials, University of Oxford (United Kingdom); Lee, P.D. [Research Complex at Harwell, Rutherford Appleton Laboratory (United Kingdom); Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester (United Kingdom); Marrow, T.J., E-mail: james.marrow@materials.ox.ac.uk [Department of Materials, University of Oxford (United Kingdom)

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  18. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  19. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  20. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  1. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  2. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  3. Effects of off-centered cracks and restraint of induced bending caused by pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.M.; Bonora, N.

    1996-01-01

    Current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumptions which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions that involve off-centered cracks and the restraint of induced bending caused by pressure, and quantifies their effects on the crack-opening area analysis of pipes. Finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe, considering off-centered cracks and the restraint of induced bending caused by pressure. The results of the analyses show that, for both cases, the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of the induced bending caused by pressure, the reduction in crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is large, the restrained crack opening can be significantly smaller than the unrestrained crack opening, depending on the length of pipe involved; hence, it may be important for the crack-opening-area and leak-rate analyses. (orig.)

  4. Gender stereotypes in psychosocial care for female crack and powder cocaine users.

    Science.gov (United States)

    Silva, Érika Barbosa de Oliveira; Pereira, Adriana Lenho de Figueiredo; Penna, Lúcia Helena Garcia

    2018-05-10

    The study analyzed health professionals' conceptions toward female users of crack and powder cocaine currently receiving psychosocial care, based on a gender perspective. Seventeen health professionals were interviewed, and systematic observations were made of the spaces for collective care in a Center for Psychosocial Care specializing in alcohol and drug addiction in Greater Metropolitan Rio de Janeiro, Brazil. Analysis of the interviews and field diaries using the hermeneutic-dialectic method revealed three categories: frailty as a constitutive attribute of women's condition, the women's emotional addiction to crack and powder cocaine use, and gender stereotypes during psychosocial care. The health professionals voiced a traditional view of the heterosexual, docile, and maternal woman and reproduced stereotypical concepts when addressing female crack and cocaine users as sensitive, frail individuals, emotionally dependent on men and more involved in the home and family. These professionals need a more refined understanding of gender issues in the mental health-disease process in order to allow overcoming preconceived notions and reductionist health care practices.

  5. Crack growth by micropore coalescence at high temperatures

    International Nuclear Information System (INIS)

    Beere, W.

    1981-01-01

    At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)

  6. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  7. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  8. Use of Single-Tow Ceramic Matrix Minicomposites to Determine Fundamental Room and Elevated Temperature Properties

    Science.gov (United States)

    Almansour, Amjad S.

    The room and high temperature mechanical properties of continuous ceramic fiber reinforced matrix composites makes them attractive for implementation in aerospace and nuclear applications. However, the effect of fiber content has not been addressed in previous work. Therefore, single tow composites with fiber content ranging from 3 to 47 % was studied. Single fiber tow minicomposite is the basic architectural feature of woven and laminate ceramic matrix composites (CMCs). An in depth understanding of the initiation and evolution of damage in various ceramic fiber reinforced minicomposites with different fiber volume fractions and interphases was investigated employing several non-destructive evaluation techniques. A new technique is used to determine matrix crack content based on a damage parameter derived from speed of sound measurements which is compared with the established method using cumulative energy of Acoustic Emission (AE) events. Also, a modified theoretical model was implemented to obtain matrix stress at the onset of matrix cracking. Room temperature tensile, high temperature creep rupture and high temperature oxidation degradation loading conditions were all considered and composites' constituents were characterized. Moreover, fibers/matrix load sharing was modeled in creep and fiber volume fraction effect on load transfer was investigated using derived theoretical models. Fibers and matrix creep parameters, load transfer model results and numerical model methodology were used to construct minicomposites' creep strain model to predict creep damage of the different fiber type and content minicomposites. Furthermore, different fiber volume fractions ceramic matrix minicomposites' electrical resistivity temperature dependence isn't well understood. Therefore, the influence of fiber content, heat treatment cycles and creep on electrical resistivity measurements of SiC/SiC minicomposites were also studied here. Next, minicomposites' testing and

  9. Mesh construction and evaluation of the stress intensity factor for the semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Wook; Lee, Gyu Mahn; Jeong, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae

    2001-01-01

    As actual cracks found in practical structures are mostly three-dimensional surface cracks, such cracks give rise to the important problem when the structural integrity is evaluated in a viewpoint of fracture mechanics. The case of a semi-elliptical surface crack is more complicated than that of the embedded elliptical crack since the crack front intersects the free surface. Therefore, the exact expression of stress field according to the boundary condition can be the prior process for the structural integrity evaluation . The commercial code, I-DEAS does not provide the family of strain singular element for the cracked-body analysis. This means that the user cannot make use of the pre-processing function of I-DEAS effectively. But I-DEAS has the capability to hold input data in common with computational fracture mechanics program like ABAQUS. Hence, user can construct the optimized analysis method for the generation of input data of program like ABAQUS using the I-DEAS. In the present study, a procedure for the generation of input data for the optimized 3-dimensional computational fracture mechanics is developed as a series of effort to establish the structural integriyt evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are made using the commercial code, I-DEAS program, The stress analysis is performed using the ABAQUS. To demonstrate the validation of the developed procedure in the present sutdy, semi-elliptic surface crack in a half space subjected to uniform tension are solved, and the effects of crack configuration ratio are discussed in detail. The numerical results are presented and compared to those presented by Raju and Newman. Also, we have established the structural integrity evaluation procedure through the 3-D crack modeling

  10. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  11. Dynamic Crack Branching - A Photoelastic Evaluation,

    Science.gov (United States)

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  12. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  13. Lateral rigidity of cracked concrete structures

    International Nuclear Information System (INIS)

    Castellani, A.; Chesi, C.

    1979-01-01

    Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)

  14. Semi-empirical crack tip analysis

    Science.gov (United States)

    Chudnovsky, A.; Ben Ouezdon, M.

    1988-01-01

    Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.

  15. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  16. Effects of off-centered crack and restraint of induced bending due to pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.; Bonora, N.

    1995-01-01

    Estimation of leak rate is an important element in developing leak-before-break (LBB) methodology for piping integrity and safety analysis of nuclear power plants. Here, current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumption which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions involving off-centered cracks and restraint of induced bending due to pressure and quantifies their effects on the crack-opening analysis of pipes. Both finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe considering off-centered cracks and restrain of induced bending due to pressure. The results of analyses show that for both cases the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of induced bending due to pressure, the reduction of crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is larger, the restrained crack-opening can be significantly smaller than the unrestrained crack-opening depending on the length of pipe involved, and hence, may be important for the crack-opening-area and leak-rate analyses

  17. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Li, H.; Yu, X.L.; Zhou, Y.; Duan, S.W.; Li, S.Z.; Huang, Z.L.; Zuo, L.S.

    2015-01-01

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  18. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  19. Evaluation of the probability of crack initiation and crack instability for a pipe with a semi-elliptical crack

    International Nuclear Information System (INIS)

    Le Delliou, P.; Hornet, P.

    2001-01-01

    This paper presents some work conducted at EDF R and D Division to evaluate the probability that a semi-elliptical crack in a pipe not only initiates but also propagates when submitted to mechanical loading such as bending and pressure combined or not with a thermal shock. The first part is related to the description of the mechanical model: the simplified methods included in the French RSE-M Code used to evaluate the J-integral as well as the principle of the determination of the crack propagation. Then, the way this deterministic approach is combined to a reliability code is described. Finally, an example is shown: the initiation and the instability of a semi-elliptical crack in a pipe submitted to combined pressure and bending moment. (author)

  20. Space Transportation System (STS)-133/External Tank (ET)-137 Intertank (IT) Stringer Cracking Issue and Repair Assessment: Proximate Cause Determination and Material Characterization Study

    Science.gov (United States)

    Piascik, Robert S.

    2011-01-01

    Several cracks were detected in stringers located beneath the foam on the External Tank (ET) following the launch scrub of Space Transportation System (STS)-133 on November 5, 2010. The stringer material was aluminum-lithium (AL-Li) 2090-T83 fabricated from sheets that were nominally 0.064 inches thick. The mechanical properties of the stringer material were known to vary between different material lots, with the stringers from ET-137 (predominately lots 620853 and 620854) having the highest yield and ultimate stresses. Subsequent testing determined that these same lots also had the lowest fracture toughness properties. The NASA Engineering and Safety Center (NESC) supported the Space Shuttle Program (SSP)-led investigation. The objective of this investigation was to develop a database of test results to provide validation for structural analysis models, independently confirm test results obtained from other investigators, and determine the proximate cause of the anomalous low fracture toughness observed in stringer lots 620853 and 620854. This document contains the outcome of the investigation.

  1. Cocaine (Coke, Crack) Facts

    Science.gov (United States)

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  2. CRACK2 - Modelling calcium carbonate deposition from bicarbonate solution in cracks in concrete

    International Nuclear Information System (INIS)

    Brodersen, K.

    2003-03-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description of the model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. The cementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migrating ions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack and on the composition of the outflowing solution, which can be compared directly with experimental results. Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack. The produced thin layers of low porosity calcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant for conventional uses of concrete. (au)

  3. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  4. Assessment of cracking in dissimilar metal welds

    International Nuclear Information System (INIS)

    Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.

    2001-08-01

    During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation

  5. Graphite fiber/copper matrix composites for space power heat pipe fin applications

    International Nuclear Information System (INIS)

    Mcdanels, D.L.; Baker, K.W.; Ellis, D.L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction. 5 refs

  6. Seismic behaviour of un-cracked and cracked thin pipes

    International Nuclear Information System (INIS)

    Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.

    1995-01-01

    In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs

  7. Investigation of UT procedure for crack depth sizing by phased array UT in Ni-based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Fukutomi, Hiroyuki

    2013-01-01

    Recently, it has been reported that the primary water stress corrosion cracking (PWSCC) has occurred in nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing are important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The cracks have occurred in the axial direction of the safe end weld. Furthermore, the cracks had some features such as deep, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect depth sizing capabilities by ultrasonic testing (UT) have been required. Phased array UT technique was applied with regard to defect depth sizing at the inside inspection in Ni-based alloy welds. Phased array UT was examined a standard block specimen with side drilled holes (SDHs). From the experimental results, the performance of linear array probes and dual matrix array probe were investigated. In the basis of the results, UT procedure for defect depth sizing was investigated and proposed. The UT procedure was applied to the defect depth measurement in Ni-based alloy weld specimen with electric discharge machine (EDM) notches. From these results, good accuracy of defect depth sizing by phased array UT for the inside inspection was shown. Therefore, it was clarified the effectiveness of the UT procedure for defect depth sizing in Ni-based alloy weld. (author)

  8. Dislocation model of a subsurface crack

    International Nuclear Information System (INIS)

    Yang, F.; Li, J.C.

    1997-01-01

    A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics

  9. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  10. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  11. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  12. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  13. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  14. Probabilistic fracture mechanics of nuclear structural components. Consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro

    1998-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)

  15. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  16. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  17. Structured decomposition design of partial Mueller matrix polarimeters.

    Science.gov (United States)

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  18. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  19. Fatigue-crack propagation behavior of steels in vacuum, and implications for ASME Section 11 crack growth analyses

    International Nuclear Information System (INIS)

    James, L.A.

    1985-08-01

    Section XI of the ASME Boiler and Pressure Vessel Code provides rules for the analysis of structures for which cracks or crack-like flaws have been discovered during inservice inspection. The Code provides rules for the analysis of both surface flaws as well as flaws that are embedded within the wall of the pressure vessel. In the case of surface flaws, the Code provides fatigue crack growth rate relationships for typical nuclear pressure vessel steels (e.g., ASTM A508-2 and A533-B) cycled in water environments typical of those in light-water reactors (LWR). However, for the case of embedded cracks, the Code provides crack growth relationships based on results from specimens that were cycled in an elevated temperature air environment. Although these latter relationships are often referred to as applying to ''inert'' environments, the results of this paper will show that an elevated temperature air environment is anything but inert, and that use of such relationships can result in overly pessimistic estimates of fatigue-crack growth lifetimes of embedded cracks. The reason, of course, is that embedded cracks grow in an environment that is probably much closer to a vacuum than an air environment

  20. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  1. Universality and the dynamical space-time dimensionality in the Lorentzian type IIB matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tsuchiya, Asato [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2017-03-27

    The type IIB matrix model is one of the most promising candidates for a nonperturbative formulation of superstring theory. In particular, its Lorentzian version was shown to exhibit an interesting real-time dynamics such as the spontaneous breaking of the 9-dimensional rotational symmetry to the 3-dimensional one. This result, however, was obtained after regularizing the original matrix integration by introducing “infrared” cutoffs on the quadratic moments of the Hermitian matrices. In this paper, we generalize the form of the cutoffs in such a way that it involves an arbitrary power (2p) of the matrices. By performing Monte Carlo simulation of a simplified model, we find that the results become independent of p and hence universal for p≳1.3. For p as large as 2.0, however, we find that large-N scaling behaviors do not show up, and we cannot take a sensible large-N limit. Thus we find that there is a certain range of p in which a universal large-N limit can be taken. Within this range of p, the dynamical space-time dimensionality turns out to be (3+1), while for p=2.0, where we cannot take a sensible large-N limit, we observe a (5+1)d structure.

  2. Probabilistic fracture mechanics of nuclear structural components: consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1999-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas of three-dimensional stress intensity factors are presented for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of the PFM round-robin problems set by JSME-RC111 committee (i.e. aged RPV under normal and upset operating conditions) is solved, employing the interpolation formulas. (orig.)

  3. Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites

    Science.gov (United States)

    Hsueh, Chun-Hway

    1992-11-01

    Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.

  4. Computational model of spalling and effective fibers on toughening in fiber reinforced composites at an early stage of crack formation

    Directory of Open Access Journals (Sweden)

    Chong Wang

    Full Text Available This work suggests a computational model that takes account of effective fibers on toughening in FRC at an early stage of crack formation. We derived the distribution of pressure provoked by a random inclined fiber in the matrix and calculated stresses through integrating the pressure and tangent stress along the fiber/matrix interface with the Kelvin's fundamental solution and the Mindlin's complementary solution. The evolution of spalling in the matrix was traced. The percentages of effective fibers were evaluated with variations in strength, interface resistance, diameter and elasticity modulus. The main conclusion is that low elasticity modulus combined high strength of fibers raises dramatically the effective fibers, which would benefit toughening.

  5. Microstructural analysis of cracks generated during welding of 2195 aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1994-01-01

    This research summarizes a series of studies conducted at Marshall Space Flight Center to characterize the properties of 2195 Al-Li alloy. 2195 Al-Li alloy, developed by Martin Marietta laboratories, is designated as a replacement of 2219 Al-Cu alloy for the External Tank (E.T.) of the space shuttle. 2195 Al-Li alloy with its advantage of increased strength per weight over its predecessor, 2219 Al-Cu alloy, also challenges current technology. 2195 Al-Li has a greater tendency to crack than its predecessor. The present study began with the observation of pore formation in 2195 Al-Li alloy in a thermal aging process. In preliminary studies, Talia and Nunes found that most of the two pass welds studied exhibited round and crack-like porosity at the weld roots. Furthermore, the porosity observed was associated with the grain boundaries. The porosity level can be increased by thermal treatment in the air. A solid state reaction proceeding from dendritic boundaries in the weld fusion zone was observed to correlate with the generation of the porosity.

  6. Construction of the exact Fisher information matrix of Gaussian time series models by means of matrix differential rules

    NARCIS (Netherlands)

    Klein, A.A.B.; Melard, G.; Zahaf, T.

    2000-01-01

    The Fisher information matrix is of fundamental importance for the analysis of parameter estimation of time series models. In this paper the exact information matrix of a multivariate Gaussian time series model expressed in state space form is derived. A computationally efficient procedure is used

  7. Monte Carlo simulation taking account of surface crack effect for stress corrosion cracking in a stainless steel SUS 304

    International Nuclear Information System (INIS)

    Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi

    2008-01-01

    Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)

  8. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  9. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)

    1992-04-01

    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  10. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    Science.gov (United States)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  11. Analysis of cocaine/crack biomarkers in meconium by LC-MS.

    Science.gov (United States)

    D'Avila, Felipe Bianchini; Ferreira, Pâmela C Lukasewicz; Salazar, Fernanda Rodrigues; Pereira, Andrea Garcia; Santos, Maíra Kerpel Dos; Pechansky, Flavio; Limberger, Renata Pereira; Fröehlich, Pedro Eduardo

    2016-02-15

    Fetal exposure to illicit drugs is a worldwide problem, since many addicted women do not stop using it during pregnancy. Cocaine consumed in powdered (snorted or injected) or smoked (crack cocaine) form are harmful for the baby and its side effects are not completely known. Meconium, the first stool of a newborn, is a precious matrix usually discarded, that may contain amounts of substances consumed in the last two trimesters of pregnancy. Analyzing this biological matrix it is possible to detect the unaltered molecule of cocaine (COC) or its metabolite benzoylecgonine (BZE) and pyrolytic products anhydroecgonine methyl ester (AEME) and anhydroecgonine (AEC). A liquid chromatography mass spectrometry (LC-MS) method was validated for meconium samples after solvent extraction, followed by direct injection of 10μL. Linearity covered a concentration range of 15 to 500ng/mg with a lower limit of quantification (LLOQ) of 15ng/mg for all analytes. Matrix effect was evaluated and showed adequate results. Detection of illicit substances usage can be crucial for the baby, since knowing that can help provide medical care as fast as possible. The method proved to be simple and fast, and was applied to 17 real meconium samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Creep crack extension by grain-boundary cavitation

    International Nuclear Information System (INIS)

    Bassani, J.L.

    1981-01-01

    Recent work by Riedel and coworkers has led to various descriptions of stationary and moving crack tip fields under creep conditions. For stationary and growing cracks, several flow mechanisms (e.g., elastic, time-independent plastic, primary creep, and secondary creep) can dictate the analytical form of the crack tip field. In this paper, relationship between overall loading and crack velocities are modelled based upon grain-boundary cavity growth and coalescence within the zone of concentrated strain in the crack tip field. Coupled diffusion and creep growth of the cavities is considered. Overall crack extension is taken to be intermittent on a size scale equivalent to the size of a grain. Numerical results are presented for a center-cracked panel of 304 stainless steel. (author)

  13. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    Science.gov (United States)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the

  14. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  15. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  16. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    Science.gov (United States)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  17. Burst Pressure Prediction of Multiple Cracks in Pipelines

    International Nuclear Information System (INIS)

    Razak, N A; Alang, N A; Murad, M A

    2013-01-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks

  18. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  19. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  20. On multiple crack detection in beam structures

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2013-01-15

    This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.

  1. A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension

    International Nuclear Information System (INIS)

    Zheng, X.J.; Metzger, D.R.; Sauve, R.G.

    1995-01-01

    A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))

  2. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  3. Portable IR-Based Inspection System, PIRIS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace structures are prone to damage. In addition to cracks seen in metals, composite structures exhibit other characteristic damage modes such as, matrix...

  4. The relationship between X-ray residual stress near the crack and crack opening/closing behavior controlling fatigue crack propagation in Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Torii, Tashiyuki; Toi, Norihiko; Nakano, Kohji; Honda, Kazuo

    1998-01-01

    Using the X-ray method of stress measurement for Ti-6Al-4V alloys, the residual stress near the crack was measured for annealed (AN) and solution treated and aged (STA) titanium alloys, under the condition that the measured X-ray stress was in satisfactory agreement with the applied stress under tension. The residual stress measured in the wake of the propagating fatigue crack, σ r , was compressive, resulting in a smaller crack opening displacement, COD, than theorized. The measured σ r and COD-values let us understand the fatigue crack propagation rate da/dN in terms of the effective stress intensity factor K eff . As a result, the da/dN under the same K eff -value was smaller in the AN specimen with zigzag crack growth than in the STA specimen with straight crack growth, although the da/dN-K eff relationship under various stress amplitudes was represented by a straight line in a log-log scale separately for the AN and STA specimens. (author)

  5. Probabilistic modeling of crack networks in thermal fatigue

    International Nuclear Information System (INIS)

    Malesys, N.

    2007-11-01

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  6. Facts and views on the role of anionic impurities, crack tip chemistry and oxide films in environmentally assisted cracking

    International Nuclear Information System (INIS)

    Aaltonen, P.; Bojinov, M.; Helin, M.

    2002-01-01

    The aim of this literature study has been to evaluate the level of understanding of the role of anionic impurities in environmentally assisted cracking (EAC) of iron- and nickel-based alloys in the coolant conditions of a boiling water reactor (BWR) - type nuclear power plant, mainly under normal water chemistry (NWC). The study has been motivated by a need to find the most relevant experimental approaches that can be applied when looking for correlations between crack growth rate and measurable electrochemical and chemical parameters. Special crack tip chemistry conditions are established, when trace amounts are present in the BWR coolant and become enriched within a crack. Anions may influence both the conductivity and the pH of the coolant within the crack. In addition, they may influence the composition, structure and properties of the oxide films formed on crack walls either directly via adsorption or incorporation or indirectly via the effect of changes in pH within the crack. Based on the proposed mechanisms for EAC, oxide films formed on crack wall surfaces are likely to play a key role in determing the crack growth rate of structural materials. The prediction of the influence of anionic impurities is thus likely to be facilitated by means of understanding their effect on the films on crack walls. One of the most promising approaches to experimentally clarify this influence is based on investigating the electrochemical behaviour of oxide films Fe- and Ni-based materials in high-temperature conditions simulating the special chemistry within a stress corrosion crack. Results from such studies should be compared and combined with ex situ analytical results obtained using modern electron microscopic techniques. In addition to crack growth, currently available electro-chemical techniques should also be applied to find out whether crack initiation can be explained and modelled on the basis of the electrochemical behaviour of oxide films. (orig.)

  7. Orbit Classification of Qutrit via the Gram Matrix

    International Nuclear Information System (INIS)

    Tay, B. A.; Zainuddin, Hishamuddin

    2008-01-01

    We classify the orbits generated by unitary transformation on the density matrices of the three-state quantum systems (qutrits) via the Gram matrix. The Gram matrix is a real symmetric matrix formed from the Hilbert–Schmidt scalar products of the vectors lying in the tangent space to the orbits. The rank of the Gram matrix determines the dimensions of the orbits, which fall into three classes for qutrits. (general)

  8. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  9. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  10. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    Science.gov (United States)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  11. Crack turning in integrally stiffened aircraft structures

    Science.gov (United States)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture

  12. Dynamic photoelastic investigation of crack arrest

    International Nuclear Information System (INIS)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.

    1977-01-01

    Crack arrest and crack arrest toughness are of great interest, particularly for studies pertaining to safety of nuclear reactor pressure vessels. Investigations are needed in which the instantaneous values of stress intensity factor (K) can be observed during crack propagation and arrest. Such observations are possible if the test specimens are made from plates of a transparent photoelastic sensitive material. Values of K as a function of crack speed are shown for Homalite 100 and various epoxy blends. 9 figures

  13. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    Science.gov (United States)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  14. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  15. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  16. Thermal–stress analysis on the crack formation of tungsten during fusion relevant transient heat loads

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2017-12-01

    Full Text Available In the future fusion devices, ELMs-induced transient heat flux may lead to the surface cracking of tungsten (W based plasma-facing materials (PFMs. In theory, the cracking is related to the material fracture toughness and the thermal stress-strain caused by transient heat flux. In this paper, a finite element model was successfully built to realize a theoretical semi infinite space. The temperature and stress-strain distribution as well as evolution of W during a single heating-cooling cycle of transient heat flux were simulated and analyzed. It showed that the generation of plastic deformation during the brittle temperature range between room temperature and DBTT (ductile to brittle transition temperature, ∼400 °C caused the cracking of W during the cooling phase. The cracking threshold for W under transient heat flux was successfully obtained by finite element analysis, to some extent, in consistent with the similar experimental results. Both the heat flux factors (FHF = P·t0.5 and the maximum surface temperatures at cracking thresholds were almost invariant for the transient heat fluxes with different pulse widths and temporal distributions. This method not only identified the theoretical conclusion but also obtained the detail values for W with actual temperature-dependent properties.

  17. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  18. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  19. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    Science.gov (United States)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  20. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  1. SLPMC- New Self Lubricating Polymer Matrix Composites for Journal and Ball Bearing Applications in Space

    Science.gov (United States)

    Merstallinger, A.; Macho, C.; Brodowski-Hanemann, G.; Bieringer, H.; Pambaguian, L.; Palladino, M.; Buttery, M.

    2015-09-01

    The paper is surveying the results of the ESA-project “SLPMC” covering the development of a self- lubricating polymer composite based on PTFE for use in bearings. The two targets of this project were to investigate lubrication mechanisms in PTFE-based composites under tribological conditions relevant to space applications (air, dry nitrogen, vacuum). And secondly, to develop a new composite to fulfil future needs by space applications. Hence, in the frame of this project several new composites based on PTFE-matrix with different kind of fillers were defined, manufactured and tested on material level. From the most promising variants bushes for journal bearings and cages for ball bearings were machined. Ball bearing tests were done in high vacuum up to 10 million revolutions.This paper summarises the main results from the project on material level focusing on tribological results derived by pin-on-disc tests. The influences of parameters like load, speed, atmosphere and temperature are discussed and compared to other already known materials. The paper also reports the findings from final ball bearing and plain bearing tests.

  2. On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading

    Directory of Open Access Journals (Sweden)

    Hadi Haeri

    Full Text Available The pre-existing cracks in the brittle substances seem to be the main cause of their failure under various loading conditions. In this study, a simultaneous analytical, experimental and numerical analysis of crack propagation, cracks coalescence and failure process of brittle materials has been performed. Brazilian disc tests are being carried out to evaluate the cracks propagation paths in rock-like Brazilian disc specimens containing single and double cracks (using rock-like specimens which are specially prepared from Portland Pozzolana Cement (PPC, fine sands and water in a rock mechanics laboratory. The failure load of the pre-cracked disc specimens are measured showing the decreasing effects of the cracks and their orientation on the final failure load. The same specimens are numerically simulated by a higher order indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the existing analytical and experimental results proving the accuracy and validity of the proposed numerical method. The numerical and experimental results obtained from the tested specimens are in good agreement and demonstrate the accuracy and effectiveness of the proposed approach.

  3. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  4. Stress corrosion cracking of U-0.1% Cr in humid helium atmosphere

    International Nuclear Information System (INIS)

    Zalkind, S.; Eshkenazy, R.; Harush, S.; Halperin, D.; Moreno, D.; Abramov, E.; Venkert, A.

    1994-01-01

    Rivets were matched into adapted drilled holes in plates, both made of U-0.1% Cr alloy and were placed in different environments containing dry air and helium and humid air and helium for a variety of exposure times. After opening, the most significant amounts of corrosion products were detected in the specimens that stayed for three years in humid helium (5% RH) environment. Radial cracks, developed in the bore edge, were detected in the specimens. X-ray diffraction patterns of the corrosion products gave the composition of UH 3 and UO 2 . The microstructure was examined using light and electron microscopy techniques. The hydride phase that was observed, formed mainly beneath the oxide layer and penetrated into the metal matrix as needle-like forms. The formation of a lower density hydride phase, yielded in a large volume change causing the development of high stresses at the rivet-bore interface. The combination of the high stress and the weakening of the bore edge due to the presence of the brittle hydride phase led to radial crack formation around the bore edge. (orig.)

  5. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    Science.gov (United States)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  6. Characteristic of improved fatigue performance for Zr-based bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Qiao, J.W.; Huang, E.W.; Wang, G.Y.; Yang, H.J.; Liang, W.; Zhang, Y.; Liaw, P.K.

    2013-01-01

    Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites exhibit improved four-point-bending fatigue endurance with a fatigue limit of 567 MPa, compared to that under the tension–tension fatigue, due to the high-volume-fractioned dendrites, which can effectively blunt the fatigue-induced cracks. Illuminated by high-energy synchrotron X-ray at 200 and 100 K, the corresponding diffraction peaks, such as (110), (200), and (211) shift rightward to small lattice spacings, compared to those at 298 K. However, the peak widths at 100 K and 200 K are almost identical to that of room temperature. Since an identical fatigue specimen was measured under room temperature, 200 K, and 100 K, the invariant of the peak widths reveal the fact of the irreversible microstructure developments induced by fatigue. Even if the fatigue fracture stress is distinguishingly lower than the yielding strength, the deformation of dendrites locally prevails, evidenced by the occurrence of dislocations

  7. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.J.; Lehmann, E.H.; Tian, L.; Vontobel, P.

    2010-01-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  8. Evaluation Model for Restraint Effect of Pressure Induced Bending on the Plastic Crack Opening of Circumferential Through-Wall-Crack

    International Nuclear Information System (INIS)

    Kim, Jin-Weon

    2006-01-01

    Most of the pipe crack evaluation procedures, including leak-before-break (LBB) analysis, assume that the cracked pipe subjected to remote bending or internal pressure is free to rotate. In this case, the pressure induced bending (PIB) enhances crack opening of a through-wall-crack (TWC) in a pipe. In a real piping system, however, the PIB will be restrained because the ends of the pipe are constrained by the rest of the piping system. Hence, the amount of restraint affects the crack opening of a TWC in a pipe, and the restraint effect on crack opening directly affects the results of LBB evaluation. Therefore, it is necessary to investigate the restraint effect of PIB on crack opening displacement (COD) to quantify the uncertainties in current analysis procedures and to ensure the application of LBB concepts to nuclear piping systems. Recently, several researches were conducted to investigate the restraint effect of PIB on COD, and they proposed a simplified model to evaluate COD under restrained conditions. However, these results are quite limited because the restraint effect was evaluated only in terms of linear-elastic crack opening. In practice, the TWC in a pipe behaves plastically under normal operating loads, and the current LBB analysis methodologies require elastic-plastic crack opening evaluation. Therefore, this study evaluates the restraint effect of PIB on the plastic crack opening of a TWC in a pipe using finite element analysis under various influencing parameters. Based on these results, a closed-from model to be able to estimate the restraint effect of PIB on plastic crack opening is proposed

  9. Matrix realization of string algebra axioms and conditions of invariance

    International Nuclear Information System (INIS)

    Babichev, L.F.; Kuvshinov, V.I.; Fedorov, F.I.

    1990-01-01

    The matrix representations of Witten's and B-algebras of the field string theory in finite dimensional space of the ghost states are suggested for the case of Virasoro algebra truncated to its SU(1,1) subalgebra. In this case all algebraic operations of Witten's and B-algebras are realized in explicit form as some matrix operations in the graded complex vector space. The structure of string action coincides with the universal non-linear cubic matrix form of action for the gauge field theories. These representations lead to matrix conditions of theory invariance which can be used for finding of the explicit form of corresponding operators of the string algebras. (author)

  10. Remarks on crack-bridging concepts

    International Nuclear Information System (INIS)

    Bao, G.; Suo, Z.

    1992-01-01

    The article draws upon recent work by us and our colleagues on metal and ceramic matrix composites for high temperature engines. The central theme here is to deduce mechanical properties, such as toughness, strength and notch-ductility, from bridging laws that characterize inelastic processes associated with fracture. A particular set of normalization is introduced to present the design charts, segregating the roles played by the shape, and the scale, of a bridging law. A single material length, γ 0 E/σ 0 , emerges, where γ 0 is the limiting-separation, σ 0 the bridging-strength, and E the Young's modulus of the solid. It is the huge variation of this length-from a few manometers for atomic bond, to a meter for cross-over fibers - that underlies the richness in material behaviors. Under small-scale bridging conditions, γ 0 E/σ 0 is the only basic length scale in the mechanics problem and represents, with a pre-factor about 0.4, the bridging zone size. A catalog of small-scale bridging solutions is compiled for idealized bridging laws. Large-scale bridging introduces a dimensionless group, a/(γ 0 E/σ 0 ), where a is a length characterizing the component. The group plays a major role in all phenomena associated with bridging, and provides a focus of discussion in this article. For example, it quantifies the bridging scale when a is the unbridged crack length, and notch-sensitivity when a is hole radius. The difference and the connection between Irwin's fracture mechanics and crack bridging concepts are discussed. It is demonstrated that fracture toughness and resistance curve are meaningful only when small-scale bridging conditions prevail, and therefore of limited use in design with composites. Many other mechanical properties of composites, such as strength and notch-sensitivity, can be simulated by invoking large-scale bridging concepts. 37 refs., 21 figs., 3 tabs

  11. Validity limits in J-resistance curve determination: A computational approach to ductile crack growth under large-scale yielding conditions. Volume 2

    International Nuclear Information System (INIS)

    Shih, C.F.; Xia, L.; Hutchinson, J.W.

    1995-02-01

    In this report, Volume 2, Mode I crack initiation and growth under plane strain conditions in tough metals are computed using an elastic/plastic continuum model which accounts for void growth and coalescence ahead of the crack tip. The material parameters include the stress-strain properties, along with the parameters characterizing the spacing and volume fraction of voids in material elements lying in the plane of the crack. For a given set of these parameters and a specific specimen, or component, subject to a specific loading, relationships among load, load-line displacement and crack advance can be computed with no restrictions on the extent of plastic deformation. Similarly, there is no limit on crack advance, except that it must take place on the symmetry plane ahead of the initial crack. Suitably defined measures of crack tip loading intensity, such as those based on the J-integral, can also be computed, thereby directly generating crack growth resistance curves. In this report, the model is applied to five specimen geometries which are known to give rise to significantly different crack tip constraints and crack growth resistance behaviors. Computed results are compared with sets of experimental data for two tough steels for four of the specimen types. Details of the load, displacement and crack growth histories are accurately reproduced, even when extensive crack growth takes place under conditions of fully plastic yielding. A description of material resistance to crack initiation and subsequent growth is essential for assessing structural integrity such as nuclear pressure vessels and piping

  12. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    Science.gov (United States)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  13. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  14. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  15. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  16. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    Science.gov (United States)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  17. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Hutař, Pavel; Náhlík, Luboš; Seitl, Stanislav; Polák, Jaroslav

    2011-01-01

    Roč. 412, 1 (2011), s. 7-12 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : ferritic-martensitic steel * long crack growth * small crack growth * crack closure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.052, year: 2011

  18. A review of shear wave splitting in the crack-critical crust

    Science.gov (United States)

    Crampin, Stuart; Chastin, Sebastien

    2003-10-01

    Over the last 15 years, it has become established that crack-induced stress-aligned shear wave splitting, with azimuthal anisotropy, is an inherent characteristic of almost all rocks in the crust. This means that most in situ rocks are pervaded by fluid-saturated microcracks and consequently are highly compliant. The evolution of such stress-aligned fluid-saturated grain-boundary cracks and pore throats in response to changing conditions can be calculated, in some cases with great accuracy, using anisotropic poro-elasticity (APE). APE is tightly constrained with no free parameters, yet dynamic modelling with APE currently matches a wide range of phenomena concerning anisotropy, stress, shear waves and cracks. In particular, APE has allowed the anisotropic response of a reservoir to injection to be calculated (predicted with hindsight), and the time and magnitude of an earthquake to be correctly stress-forecast. The reason for this calculability and predictability is that the microcracks in the crust are so closely spaced that they form critical systems. This crack-critical crust leads to a new style of geophysics that has profound implications for almost all aspects of pre-fracturing deformation of the crust and for solid-earth geophysics and geology. We review past, present and speculate about the future of shear wave splitting in the crack-critical crust. Shear wave splitting is seen to be a dynamic measure of the deformation of the rock mass. There is some good news and some bad news for conventional geophysics. Many accepted phenomena are no longer valid at high spatial and temporal resolution. A major effect is that the detailed crack geometry changes with time and varies from place to place in response to very small previously negligible changes. However, at least in some circumstances, the behaviour of the rock in the highly complex inhomogeneous Earth may be calculated and the response predicted, opening the way to possible control by feedback. The need is

  19. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  20. Factors controlling nitrate cracking of mild steel

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1977-01-01

    Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth

  1. A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2015-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle...... extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the resulting sparse matrix dominate the execution time, and (3) load balancing must account for sparse data...... memory space and efficiently utilizes the very limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load balancing builds on the number of necessary...

  2. Location identification of closed crack based on Duffing oscillator transient transition

    Science.gov (United States)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  3. Identification and management of cracking in 410 stainless turbine blade roots

    International Nuclear Information System (INIS)

    Clark, M.A.; Lehockey, E.M.; Thompson, I.; Massey, R.

    2003-01-01

    Between April and June of 2002, cracks were discovered in the fir-tree roots of several row 10 low-pressure 410 martensitic stainless steel turbine blades from an operating CANDU station. In total, 9 blades were eventually identified by MPI to have flaw indications near the inlet face between the first and second serrations. Among the population of blades examined fractography revealed cracks propagated by two different mechanisms: fatigue and stress corrosion cracking. In 7 of the 9 blades, the fracture surface morphology confirmed crack propagation by high-cycle fatigue, as evidenced by the beachmarks and ratchet marks produced by multiple initiation sites An analysis of the beachmarks suggested that cracks propagated independently and subsequently coalesced into a unified crack front. No significant pitting or other corrosion was found to accompany these defects, which might suggest a corrosion fatigue mechanism. Likewise, no consistent spatial relationship could be established between the crack path and either prior austenite grain boundaries, MnS stringer inclusions, or other metallurgical anomalies, which indicates their role in crack nucleation was minimal. Although hardness values measured were generally consistent with OEM's specifications, some evidence for over-tempering was observed (ripening of grain boundary precipitates/carbides, etc.). However, the specific role of these factors in promoting the fatigue failure could not be conclusively identified. Spacing between beachmarks within cracks among the (7) fatigued blades appeared similar suggesting that these cracks propagated under the influence of a common stress regime. Furthermore, the bulk of crack advance appeared to have occurred primarily at operating speeds given the number of beachmarks present far exceeded that expected to evolve solely from the stress transients generated during start/stop cycles. By correlating the array of major beachmarks with operating history, it was tentatively

  4. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  5. Path stability of a crack with an eigenstrain

    International Nuclear Information System (INIS)

    Beom, Hyeon Gyu; Kim, Yu Hwan; Cho, Chong Du; Kim, Chang Boo

    2006-01-01

    A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in a linear isotropic material with a concentrated force are obtained from perturbation analyses, which are accurate to the first order of the parameter representing the non-straightness. Stress intensity factors for a slightly curved crack with an eigenstrain are obtained from the perturbation solutions by using a body force analogy. Particular attention is given to the crack path stability under mode I loading. A new parameter of crack path stability is proposed for a crack with an eigenstrain. The path stability of a crack with steady state growth in a transforming material and a ferroelectric material is examined

  6. The S-matrix of superstring field theory

    International Nuclear Information System (INIS)

    Konopka, Sebastian

    2015-01-01

    We show that the classical S-matrix calculated from the recently proposed superstring field theories give the correct perturbative S-matrix. In the proof we exploit the fact that the vertices are obtained by a field redefinition in the large Hilbert space. The result extends to include the NS-NS subsector of type II superstring field theory and the recently found equations of motions for the Ramond fields. In addition, our proof implies that the S-matrix obtained from Berkovits’ WZW-like string field theory then agrees with the perturbative S-matrix to all orders.

  7. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  8. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  9. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory

    Science.gov (United States)

    Zhang, Xueang; Yang, Zhichao; Tang, Bin; Wang, Renbo; Wei, Xiong

    2018-05-01

    During geophysical surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in porous cracked media, research on the properties of the cracks, the oil and water layers, and their relation to pulsed neutron logging characteristics is essential. Using Hudson's crack theory, we simulated oil and water layers in a cracked porous medium with different crack parameters corresponding to the well log responses. We found that, in a cracked medium with medium-angle (40°-50°) cracks, the thermal neutron count peak value is higher and more sensitive than those in low-angle and high-angle crack environments; in addition, the thermal neutron density distribution shows more minimum values than in other cases. Further, the thermal neutron count and the rate of change for the oil layer are greater than those of the water layer, and the time spectrum count peak value for the water layer in middle-high-angle (40°-70°) cracked environments is higher than that of the oil layer. The thermal neutron density distribution sensitivity is higher in the water layer with a range of small crack angles (0°-30°) than in the oil layer with the same range of angles. In comparing the thermal neutron density distribution, thermal neutron count peak, thermal neutron density distribution sensitivity, and time spectrum maximum in the oil and water layers, we find that neutrons in medium-angle (40°-50°) cracked reservoirs are more sensitive to deceleration and absorption than those in water layers; neutrons in approximately horizontal (0°-30°) cracked water layers are more sensitive to deceleration than those in reservoirs. These results can guide future work in the cracked media neutron logging field.

  10. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  11. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  12. Fatigue crack behaviour in mine excavator

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y.; Grondin, G.Y.; Elwi, A.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2006-05-15

    Fatigue cracking in excavation equipment represents a significant operating cost for oil sands operators. It is caused by high impact loads, the high frequency of load cycles, and large component sizes found in oil sands processing facilities. Monitoring and repair strategies for fatigue cracks are typically based on vendor specifications and the experience of maintenance personnel. This paper provided details of an optimized crack management program applied to a BE 395B shovel boom. The proposed crack management tool uses a chart to predict the remaining life of a corner crack in the shovel boom. Predictions are based on limited field measurements of operating loads as well as on data obtained from fatigue testing of boom material, and a finite element analysis of the shovel boom. Field and laboratory data are used along with fracture mechanics and finite element modelling to predict crack life. It was concluded that the tool will allow inspectors and planners to schedule repairs based on safe service life. The tool is applicable for any components subjected to fatigue loading. 3 refs., 21 tabs., 64 figs.

  13. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    International Nuclear Information System (INIS)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-01-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment

  14. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  15. Influence of crack length on crack depth measurement by an alternating current potential drop technique

    International Nuclear Information System (INIS)

    Raja, Manoj K; Mahadevan, S; Rao, B P C; Behera, S P; Jayakumar, T; Raj, Baldev

    2010-01-01

    An alternating current potential drop (ACPD) technique is used for sizing depth of surface cracks in metallic components. Crack depth estimations are prone to large deviations when ACPD measurements are made on very shallow and finite length cracks, especially in low conducting materials such as austenitic stainless steel (SS). Detailed studies have been carried out to investigate the influence of crack length and aspect ratio (length to depth) on depth estimation by performing measurements on electric discharge machined notches with the aspect ratio in the range of 1 to 40 in SS plates. In notches with finite length, an additional path for current to flow through the surface along the length is available causing the notch depths to be underestimated. The experimentally observed deviation in notch depth estimates is explained from a simple mathematical approach using the equivalent resistive circuit model based on the additional path available for the current to flow. A scheme is proposed to accurately measure the depth of cracks with finite lengths in SS components

  16. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  17. Minimal and Maximal Operator Space Structures on Banach Spaces

    OpenAIRE

    P., Vinod Kumar; Balasubramani, M. S.

    2014-01-01

    Given a Banach space $X$, there are many operator space structures possible on $X$, which all have $X$ as their first matrix level. Blecher and Paulsen identified two extreme operator space structures on $X$, namely $Min(X)$ and $Max(X)$ which represents respectively, the smallest and the largest operator space structures admissible on $X$. In this note, we consider the subspace and the quotient space structure of minimal and maximal operator spaces.

  18. Photoimages and the release characteristics of lipophilic matrix tablets containing highly water-soluble potassium citrate with high drug loadings.

    Science.gov (United States)

    Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin

    2007-07-18

    Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.

  19. Forecasting oil price movements with crack spread futures

    International Nuclear Information System (INIS)

    Murat, Atilim; Tokat, Ekin

    2009-01-01

    In oil markets, the crack spread refers to the crude-product price relationship. Refiners are major participants in oil markets and they are primarily exposed to the crack spread. In other words, refiner activity is substantially driven by the objective of protecting the crack spread. Moreover, oil consumers are active participants in the oil hedging market and they are frequently exposed to the crack spread. From another perspective, hedge funds are heavily using crack spread to speculate in oil markets. Based on the high volume of crack spread futures trading in oil markets, the question we want to raise is whether the crack spread futures can be a good predictor of oil price movements. We investigated first whether there is a causal relationship between the crack spread futures and the spot oil markets in a vector error correction framework. We found the causal impact of crack spread futures on spot oil market both in the long- and the short-run after April 2003 where we detected a structural break in the model. To examine the forecasting performance, we use the random walk model (RWM) as a benchmark, and we also evaluate the forecasting power of crack spread futures against the crude oil futures. The results showed that (a) both the crack spread futures and the crude oil futures outperformed the RWM; and (b) the crack spread futures are almost as good as the crude oil futures in predicting the movements in spot oil markets. (author)

  20. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  1. Experimental study of the crack depth ratio threshold to analyze the slow crack growth by creep of high density polyethylene pipes

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien; Devilliers, Clémence; Lucatelli, Jean Marc; Gaudichet-Maurin, Emmanuelle; Brossard, Jean Michel

    2014-01-01

    To assess the durability of drinking water connection pipes subjected to oxidation and slow crack growth, a comprehensive database was constructed on a novel specimen geometry: the pre-cracked NOL ring. 135 tests were carried out consisting of initial crack depth ratio ranging from 0.08 to 0.6; single or double longitudinal cracks: tensile with steady strain rate and creep loading. A threshold value of the crack depth ratio of 0.2, induced by the oxidation was determined by analyzing several mechanical parameters. This threshold value was shown to be independent on the strain rate effects, single or double crack configuration and the kind of loading: tensile or creep. Creep test results with crack depth ratio larger than 0.2 were then utilized to establish a failure assessment diagram. A methodology allowing the prediction of residual lifetime of in-service pipes was proposed, using this diagram. - Highlights: • Experimental data on pre-cracked rings featuring a longitudinally cracked HDPE pipe. • Crack depth ratio threshold for slow crack growth study consecutive to oxidation. • Investigation of the effects of the single/double notch(es) and of the strain rate. • Original results obtained from tests performed with tensile and creep loadings. • Correlation between creep initiation time and C* with DENT and ring specimens

  2. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  3. Numerical simulation of cracks and interfaces with cohesive zone models in the extended finite element method, with EDF R and D software Code Aster

    International Nuclear Information System (INIS)

    Ferte, Guilhem

    2014-01-01

    In order to assess the harmfulness of detected defects in some nuclear power plants, EDF Group is led to develop advanced simulation tools. Among the targeted mechanisms are 3D non-planar quasi-static crack propagation, but also dynamic transients during unstable phases. In the present thesis, quasi-brittle crack growth is simulated based on the combination of the XFEM and cohesive zone models. These are inserted over large potential crack surfaces, so that the cohesive law will naturally separate adherent and de-bonding zones, resulting in an implicit update of the crack front, which makes the originality of the approach. This requires a robust insertion of non-smooth interface laws in the XFEM, which is achieved in quasi-statics with the use of XFEM-suited multiplier spaces in a consistent formulation, block-wise diagonal interface operators and an augmented Lagrangian formalism to write the cohesive law. Based on this concept and a novel directional criterion appealing to cohesive integrals, a propagation procedure over non-planar crack paths is proposed and compared with literature benchmarks. As for dynamics, an initially perfectly adherent cohesive law is implicitly treated within an explicit time-stepping scheme, resulting in an analytical determination of interface tractions if appropriate discrete spaces are used. Implementation is validated on a tapered DCB test. Extension to quadratic elements is then investigated. For stress-free cracks, it was found that a subdivision into quadratic sub-cells is needed for optimality. Theory expects enriched quadrature to be necessary for distorted sub-cells, but this could not be observed in practice. For adherent interfaces, a novel discrete multiplier space was proposed which has both numerical stability and produces quadratic convergence if used along with quadratic sub-cells. (author)

  4. A crack opening stress equation for fatigue crack growth

    Science.gov (United States)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  5. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  6. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  7. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  8. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    Science.gov (United States)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  9. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  10. Statistical crack mechanics

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1993-01-01

    Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives

  11. Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles

    International Nuclear Information System (INIS)

    Forrester, P.J.; Witte, N.S.

    2000-01-01

    Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)

  12. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  13. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  14. Fatigue cracking in road pavement

    Science.gov (United States)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  15. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  16. Crack initiation under generalized plane strain conditions

    International Nuclear Information System (INIS)

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab

  17. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  18. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  19. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  20. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....