WorldWideScience

Sample records for matrix composite coatings

  1. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  2. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  3. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  4. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2016-01-01

    Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs

  5. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  6. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  7. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  8. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  9. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  10. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  11. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  12. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  13. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  14. The characterization of an oxide interfacial coating for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Coons, Timothy P., E-mail: tpcoons@gmail.com [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Reutenauer, Justin W.; Mercado, Andrew [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Kmetz, Michael A. [Pratt and Whitney, 400 Main Street M/S 114-43, East Hartford, CT 06108 (United States); Suib, Steven L. [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States)

    2013-06-20

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon{sup ™}, Hi-Nicalon{sup ™}, and Hi-Nicalon{sup ™} Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO{sub 2} coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO{sub 2} duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon{sup ™} Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  15. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  16. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  17. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  18. Characterization on C/SiC Ceramic Matrix Composites with Novel Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne; Kiser, J. Douglas; McCue, Terry; Verrilli, Michael

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites offer high- strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.

  19. Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials

    Science.gov (United States)

    Lee,Kang

    2001-01-01

    The upper use temperature of current Environmental Barrier Coatings (EBC's) based on mullite and BSAS (EPM EBC's) is limited to -255 F due to silica volatility, chemical reactions, and high thermal conductivity. Therefore, new EBC s having low CTE, good chemical compatibility, and high melting point (greater than 2700 F ) are being investigated. Sinter-resistant, low thermal conductivity EBC s are strongly desired to achieve the UEET EBC goal of 270 F EBC surface temperature and 30 F AT over long exposures (greater than 1000 hr). Key areas affecting the upper temperature limit of current EBC s as well as the ongoing efforts to develop next generation EBC s in the UEET Program will be discussed.

  20. Chemical stability of the fiber coating/matrix interface in silicon-based ceramic matrix composites

    International Nuclear Information System (INIS)

    Lee, K.N.; Jacobson, N.S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si 3 N 4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and by microstructural examination. in the carbon/Si 3 N 4 system, carbon reacted with Si 3 N 4 to form gaseous N 2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si 3 N 4 . Consequently, the development of high p(N 2 ) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating

  1. Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites

    Science.gov (United States)

    Lee, Kang N.; Jacobson, Nathan S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.

  2. Fiber coating/matrix reactions in silicon-base ceramic matrix composites

    International Nuclear Information System (INIS)

    Lee, K.N.; Jacobson, N.S.

    1992-01-01

    The Knudsen cell technique and coupons of carbon coated Si3N4 and BN coated SiC were employed to study the possible reactions at the SiC/C/Si3N4 and SiC/BN/SiC interface. Carbon reacts with Si3N4 to form gaseous N2 and solid SiC. Solid SiC acts as a physical barrier to the reaction, which prevents the generation of high N2 pressure predicted from thermochemical calculations. Thus, deleterious effects of the reaction to the composite are limited. Limited reactions between BN and C-rich SiC was observed. However, the vapor pressure was so low that it is not likely to cause any interfacial instability. The predicted formation of a BN-C solid solution was not observed. 10 refs

  3. Fiber coating/matrix reactions in silicon-base ceramic matrix composites

    Science.gov (United States)

    Lee, K. N.; Jacobson, N. S.

    1992-01-01

    The Knudsen cell technique and coupons of carbon coated Si3N4 and BN coated SiC were employed to study the possible reactions at the SiC/C/Si3N4 and SiC/BN/SiC interface. Carbon reacts with Si3N4 to form gaseous N2 and solid SiC. Solid SiC acts as a physical barrier to the reaction, which prevents the generation of high N2 pressure predicted from thermochemical calculations. Thus, deleterious effects of the reaction to the composite are limited. Limited reactions between BN and C-rich SiC was observed. However, the vapor pressure was so low that it is not likely to cause any interfacial instability. The predicted formation of a BN-C solid solution was not observed.

  4. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  5. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  7. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  8. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  9. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  10. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  11. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Science.gov (United States)

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  12. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  13. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    Science.gov (United States)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  14. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  15. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  16. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  17. Characterization of C/SiC Ceramic Matrix Composites (CMCs) with Novel Interface Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne F.; Kiser, J. Douglas; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate aerospace materials due to their high specific strength, low density and high temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites consist of high-strength carbon fibers and a high modulus, oxidation resistant matrix. For RLV propulsion applications, environmental durability will be critical. Two types of carbon fibers were processed with both standard (pyrolytic carbon) and novel (multilayer and pseudoporous) types of interface coatings as part of a study investigating various combinations of constituents. The benefit of protecting the composites with a surface sealant was also investigated. The strengths, durability in oxidizing environments, and microstructures of these developmental composite materials are presented. The novel interface coatings and the surface sealant show promise for protecting the carbon fibers from the oxidizing environment.

  18. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  19. Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties

    Directory of Open Access Journals (Sweden)

    Casey R. Thurber

    2018-01-01

    Full Text Available The deterioration of metals under the influence of corrosion is a costly problem faced by many industries. Therefore, particle-reinforced composite coatings are being developed in different technological fields with high demands for corrosion resistance. This work studies the effects of nanoplatelet reinforcement on the durability, corrosion resistance, and mechanical properties of copper-nickel coatings. A 90 : 10 Cu-Ni alloy was coelectrodeposited with nanoplatelets of montmorillonite (Mt embedded into the metallic matrix from electrolytic baths containing 0.05, 0.10, and 0.15% Mt. X-ray diffraction of the coatings indicated no disruption of the crystal structure with addition of the nanoplatelets into the alloy. The mechanical properties of the coatings improved with a 17% increase in hardness and an 85% increase in shear adhesion strength with nanoplatelet incorporation. The measured polarization resistance increased from 11.77 kΩ·cm2 for pure Cu-Ni to 33.28 kΩ·cm2 for the Cu-Ni-0.15% Mt coating after soaking in a simulated seawater environment for 30 days. The incorporation of montmorillonite also stabilized the corrosion potential during the immersion study and increased resistance to corrosion.

  20. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  1. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  2. Dynamic densification of metal matrix-coated fibre composites: modelling and processing

    International Nuclear Information System (INIS)

    Peng, H.X.; Dunne, F.P.E.; Grant, P.S.; Cantor, B.

    2005-01-01

    The consolidation processing of Ti-6Al-4V matrix-coated fibre (MCF) composite under vacuum hot pressing (VHP) has been investigated. A new test methodology has been developed for the determination of in situ matrix coating creep properties. In using the methodology, only a single, simple test is required, together with finite element modelling of the single fibre compression test. The creep coefficient and stress index have been determined for electron beam evaporated physical vapour deposited Ti-6Al-4V at 900 deg. C to be 1.23 x 10 -5 and 1.3, respectively. Consolidation experiments have been carried out on multi-ply MCF arrays under vacuum hot pressing. Finite element models have been developed for the dynamic consolidation of both square and hexagonal fibre packings. The creep constants for the Ti-6Al-4V, determined using the single fibre test, were assigned to the coating in the finite element models. Excellent agreement between predicted and experimental results was achieved, providing verification of the single fibre test methodology for the determination of creep constants

  3. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  4. Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites

    International Nuclear Information System (INIS)

    Song Haiyang; Zha Xinwei

    2010-01-01

    The effects of nickel coating on the mechanical behaviors of armchair single-walled carbon nanotubes (SWCNTs) and their embedded gold matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of SWCNTs obviously decrease after nickel coating. For armchair SWCNTs, the decreased ratio of the Young's moduli of SWCNTs with smaller radius is larger than that of SWCNTs with larger radius. A comparison is made between the response to Young's modulus of a composite with parallel embedded nanotube and the response of a composite with vertically embedded nanotube. The results show that the uncoated SWCNT can enhance the Young's modulus of composite under the condition of parallel embedment, but such improvement disappears under the condition of vertical embedment because the interaction between SWCNT and gold matrix is too weak for effective load transfer. However, the nickel-coated SWCNT can indeed significantly improve the composite behavior.

  5. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  6. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  7. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  8. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  9. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  10. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  11. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  12. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  13. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  14. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  15. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  16. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  17. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  18. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    Science.gov (United States)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  19. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  20. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  1. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  2. ESD coating of copper with TiC and TiB2 based ceramic matrix composites

    Science.gov (United States)

    Talas, S.; Mertgenç, E.; Gökçe, B.

    2016-08-01

    In automotive industry, the spot welding is a general practice to join smaller sections of a car. This welding is specifically carried out in short time and in an elevated number with certain pressure applied on copper electrodes. In addition, copper electrodes are expected to endure against cyclic mechanical pressure and temperature that is released during the passage of the current. The deformation and oxidation behaviour of copper electrodes during service appear with increasing temperature of medium and they also need to be cleaned and cooled or replaced for the continuation of joining process. The coating of copper electrodes with ceramic matrix composites can provide alternative excellent high temperature strength and ensures both economic and efficient use of resources. This study shows that the ESD coating of copper electrodes with a continuous film of ceramic phase ensures an improved resistance to thermal effects during the service and the change in content of film may be critical for cyclic alloying.

  3. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; Andronie, A.; Stamatin, I.; Moga, S.; Ducu, C.

    2010-01-01

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm 2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm -1 amide II, 1654 cm -1 amide I, 1243 cm -1 amide III, while the peak from 1027 cm -1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  4. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  5. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  6. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  7. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  8. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  9. Ultra High Temperature and Multifunctional Ceramic Matrix CompositeCoating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  10. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  11. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  12. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  13. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  14. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  15. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  16. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  17. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodriguez

    2018-01-01

    Full Text Available The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2 layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy (RS, and X-ray photoelectron spectroscopy (XPS were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.

  18. Microstructure of a Ni Matrix Composite Coating Reinforced by In-situ TiC Particles Using Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    WUYu-ping; WANGZe-hua; LINPing-hua

    2004-01-01

    Plasma cladding process was used to prepare the TiC/Ni composite coating on the mild steel substrates. The TiC particles were synthesized in-situ. Microstructure and properties of the coating were investigated by optical microscopy, X-Ray diffraction, SEM, TEM and microhardness tester. The results show that the interface between the coating and the substrate is metallurgically bonded. The coating was uniform and almost defect-free when [Ti+C] varied from 10% to 20% after ball milling. The microstructure of the coating is mainly composed of γ-Ni dendrite, interdendritic eutectic (γ-Ni austenite, M23C6 and CrB) and TiC particles. Most of the TiC particles are spherical and a small fraction is blocky in size of 1-2μm. The TiC particles are smaller at the bottom than near the top of the coating. The coating has a gradient microstructure and a highest hardness of 1000Hv0.1.

  19. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  20. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  1. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Directory of Open Access Journals (Sweden)

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  2. Radiation curable coating compositions

    International Nuclear Information System (INIS)

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  3. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  4. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    Science.gov (United States)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  5. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  6. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  7. Wear behaviour of coating of aluminium matrix composites fabricated by thermal spray method; Comportamiento a desgaste de recubrimientos de material compuesto de matriz de aluminio fabricados por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Campo, M.; Escalera, M. D.; Torres, B.; Rams, J.; Urena, A.

    2007-07-01

    In this work, the wear behaviour of coatings made of aluminium matrix composites reinforced with 20% of SiC particles and manufactured by thermal spray method with oxyacetylene flame has been investigated. the wear behaviour between coating with uncoated particles and sol-gel silica coated ones heat treated at 500 degree centigree and 725 degree centigree have been compared. The sprayed coatings with silica coated particles are more homogeneous and less porous due to increase of wettability by molten aluminium that takes place on coated particles. The microstructure of the sprayed coatings, the wear surfaces and the wear debris have been analysed using optical microscopy, scanning electron microscopy and micro-analysis techniques (EDX). The results show a smaller wear rate, a lower friction coefficient and more reduced loss of mass for the coatings sprayed with particles with sol-gel silica coatings than those made with uncoated particles. (Author) 15 refs.

  8. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  9. Effect of consolidation techniques on the properties of Al matrix composite reinforced with nano Ni-coated SiC

    Science.gov (United States)

    Abolkassem, Shimaa A.; Elkady, Omayma A.; Elsayed, Ayman H.; Hussein, Walaa A.; Yehya, Hosam M.

    2018-06-01

    Al /Ni-SiC composite was prepared via powder metallurgy technique. SiC particles were coated with 10 wt% nano nickel by electroless deposition, then mixed by three percents (5, 10 and 15 wt%) with Al powder in a ball mill using 10:1 ball to powder ratio for 5 h. Three types of sintering techniques were used to prepare the composite. Uniaxial cold compacted samples were sintered in a vacuum furnace at 600 °C for 1 h. The second group was the vacuum sintered samples which were post-processed by hot isostatic press (HIP) at 600 °C for 1hr under the pressure of 190 MPa. The third group was the hot pressed samples that were consolidated at 550 °C under the uniaxial pressure of 840 MPa. The results showed that the hot pressed samples have the highest densification values (97-100%), followed by the HIP samples (94-98%), then come the vacuum sintered ones (92-96%). X-ray diffraction analysis (XRD) indicated the presence of Al and Al3Ni, which means that all SiC particles were encapsulated with nickel as short peaks for SiC were observed. Hardness results revealed that HIP samples have the highest hardness values. The magnetization properties were improved by increasing SiC/Ni percent, and HIP samples showed the highest magnetization parameter values.

  10. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  11. Wear-resistant EBW coatings based on a TiB{sub 2}-Fe SHS composite with a high-alloy matrix

    Energy Technology Data Exchange (ETDEWEB)

    Galchenko, Nina K.; Kolesnikova, Ksenia A.; Belyuk, Sergei I. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Semenov, Grigoriy V., E-mail: Kolesnikova_KsAl@mail.ru [Tomsky Instrument Manufacturing Company, Tomsk (Russian Federation)

    2011-07-01

    In the work, we studied the structure and properties of “titanium diboride – high-chromium cast iron binder” coatings obtained by electron beam welding. It is demonstrated that the phase and structure formation of the composite coatings depends on the content of high-chromium cast iron in the deposited mixture. Varying the volume fraction of the hardening compounds and the chemical composition of the metal binder makes possible wear-resistant coatings with specified operating characteristics. Key words: electron beam technology, composite coatings.

  12. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  13. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  14. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  15. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  16. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  17. Composition superconductive plumbous coatings

    International Nuclear Information System (INIS)

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  18. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  19. Impact of metal matrix composite on the evolution and erosion performance characteristics of non lubricated-dry abrasive degradation of ternary composite coating for refineries system

    Science.gov (United States)

    Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac

    2018-06-01

    The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.

  20. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  1. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  2. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  3. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  4. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  5. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO2 metal matrix composite coating on mild steel

    International Nuclear Information System (INIS)

    Fayomi, O.S.I.; Popoola, A.P.I.; Aigbodion, V.S.

    2015-01-01

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO 2 embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO 2 (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO 2 in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO 2 composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO 2 embedded into the Zn–Al metal deposit and effective deposition parameters

  6. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  7. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  8. Novel coating compositions

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Kobayashi, Juichi; Nakamoto, Hideo.

    1969-01-01

    An acrylic coating composition rapidly hardenable by irradiating with ionizing radiations or light beams is given using hydroxyl group-containing vinyl monomers, polycarboxylic acid anhydrides, epoxy group-containing vinyl monomers and an organic solvent having a boiling point of at least 120 0 C. The process comprises the steps of first and second reactions. The first reaction takes place between one mol of a hydroxyl group of a basic polymer and at least 0.1 mol of polycarboxylic acid anhydride, wherein the basic polymer has a molecular weight ranging from 5,000 to 100,000 and consists of 1-40% by weight of vinyl monomer containing hydroxyl group, at least 30% of (meth)acrylic monomer and other vinyl monomers if required. The second reaction takes place between one mol of hydroxyl plus a carboxyl group of the thus obtained basic polymer and at least 0.1 mol of an epoxy group-containing vinyl monomer to produce a prepolymer. The prepolymer is mixed with a solvent such as ethyl benzene to produce the coating material. The electron beam accelerator energy level may be 0.1-2.0 MeV. In light beam polymerization, benzoin is particularly utilized as an intensifying substance. In one example, a basic polymer is produced by reacting 39 parts of styrene, 37 parts of ethyl acrylate, 24 parts of 2-hydroxyl ethyl acrylate, 4 parts of dimethyl amino ethyl methacrylate and others. A prepolymer is produced by reacting this basic polymer with 30 parts of glycidyl acrylate and others. (Iwakiri, K.)

  9. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology

    OpenAIRE

    Walsh, F.C.; Ponce de Leon, Carlos

    2014-01-01

    Following a brief overview of their history, which dates back to the 1920s with marked developments during the 1960s and 1970s, the principles of composite coatings, achieved by including particles dispersed in a bath into a growing electrodeposited metal layer, are considered. The principles and role of electroplating compared to other techniques for realising such coatings, are considered. A good quality particle dispersion (often aided by a suitable type and concentration of surfactants) a...

  10. The effect of BaM/PANI composition with epoxy paint matrix on single and double layers coating with spray coating method for radar absorbing materials applications

    Science.gov (United States)

    Widyastuti, Fajarin, Rindang; Pratiwi, Vania Mitha; Kholid, Rifki Rachman; Habib, Abdulloh

    2018-04-01

    In this study, RAM composite has been succesfully synthesized by mixing BaM as magnetic materials and PANI as conductive materials. BaM and PANI materials were prepared separately by solid state method and polymerization method, respectively. To investigated the presence of BaM phase and magnetic property of the as prepared BaM, XRD pert PAN analytical and VSM 250 Dexing Magnet were employed. Inductance Capacitance Resistance technique was carried out to measure electrical conductivity of the synthesized PANI materials. In order to further characterized the structural features of BaM and PANI, SEM-EDX FEI 850 and FTIR characterizations were conducted. RAM composite was prepared by mixing BaM and PANI powders with ultrasonic cleaner. Afterwards, VNA (Vector Network Analyzer) characterization was carried out to determine reflection loss value of RAM by applying mixed RAM composite and epoxy paint on aluminum plate using spray gun. Microscopic characterization was employed to investigated the distribution of RAM particles on the substrate. It was found that reflection loss value as low as -27.153 dB was achieved when applied 15 wt% BaM/PANi composite at 100.6 µm thickness. In addition, the absorption of electromagnetic waves value increase as the addition of RAM composite composition increases.

  11. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  12. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  13. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO{sub 2} metal matrix composite coating on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Fayomi, O.S.I., E-mail: ojosundayfayomi3@gmail.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Department of Mechanical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State (Nigeria); Popoola, A.P.I. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Aigbodion, V.S. [Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2015-02-25

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO{sub 2} embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO{sub 2} (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO{sub 2} in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO{sub 2} composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO{sub 2} embedded into the Zn–Al metal deposit and effective deposition parameters.

  14. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  15. Radiation-curable coating composition

    International Nuclear Information System (INIS)

    Mibae, Jiro; Kawamura, Hiroshi; Takahashi, Masao.

    1970-01-01

    A radiation-curable coating composition, suitable for metal precoating, is provided. The composition is prepared by mixing 50 to 90 parts of a long chain fatty acid ester (A) with 10 to 50 parts of monomer (B) which is copolymerizable with (A). (A) is prepared by reacting a dimer acid (particularly the dimer of linolenic acid) with hydroxyalkyl methacrylate or glycidyl methacrylate. Upon irradiation with electron beams (0.1 to 3 MeV) the composition cures to yield a coating of high adhesion, impact resistance and bending resistance. In one example, 100 g of dimer acid (Versadime 216, manufactured by General Mills) was esterified with 50 g of 2-hydroxyethyl methacrylate. A zinc plated iron plate was coated with the product and irradiated with electron beams (2 Mrad). Pencil hardness was F; adhesion 0: impact resistance (Du Pont) 1 kg x 30 cm; bending resistance 2T. (Kaichi, S.)

  16. Reactive synthesis of NbAl3 matrix composites

    International Nuclear Information System (INIS)

    Lu, L.; Kim, Y.S.; Gokhale, A.B.; Abbaschian, R.

    1990-01-01

    NbAl 3 matrix composites were synthesized in-situ via reactive hot compaction (RHC) of elemental powders. It was found that the simultaneous application of pressure during synthesis was effective in attaining a near-theoretical density matrix at relatively low temperatures and pressures. Using this technique, two types of composites were produced: matrices containing a uniform dispersion of second phase particles (either Nb 3 Al or Nb 2 Al with an Nb core or Nb 2 Al) and matrices reinforced with coated or uncoated ductile Nb filaments. It was found that a limited amount of toughening is obtained using the first approach, while composites containing coated Nb filaments exhibited a significant increase in the ambient temperature fracture toughness. In this paper, various aspects of RHC processing of NbAl 3 matrix composites, the effect of initial stoichiometry and powder size on the microstructure, as well as the mechanical behavior of the composites are discussed

  17. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  18. Oxidation behaviors of the TiNi/Ti_2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    International Nuclear Information System (INIS)

    Lv, Y.H.; Li, J.; Tao, Y.F.; Hu, L.F.

    2016-01-01

    The TiNi/Ti_2Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti_2Ni as the matrix and TiC/TiB_2/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB_2 and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm"−"2 h"−"1 in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg"2 cm"−"4 h"−"1 in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm"−"2, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO_2, Al_2O_3, and a small amount of NiO, Cr_2O_3 and SiO_2. Moreover, Ta_2O_5 was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser cladding. • Effect of TaC addition on microstructural evolution of the coatings was

  19. Oxidation behaviors of the TiNi/Ti{sub 2}Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y.H.; Li, J., E-mail: jacob_lijun@sina.com; Tao, Y.F.; Hu, L.F.

    2016-09-15

    The TiNi/Ti{sub 2}Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti{sub 2}Ni as the matrix and TiC/TiB{sub 2}/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB{sub 2} and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm{sup −2} h{sup −1} in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg{sup 2} cm{sup −4} h{sup −1} in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm{sup −2}, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO{sub 2}, Al{sub 2}O{sub 3}, and a small amount of NiO, Cr{sub 2}O{sub 3} and SiO{sub 2}. Moreover, Ta{sub 2}O{sub 5} was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser

  20. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  1. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  2. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  3. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  4. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    McCarty, W.H.; Nagy, F.A.; Guarino, J.P.

    1983-01-01

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  5. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  6. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  7. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  8. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  9. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  10. Microstructure of Matrix in UHTC Composites

    Science.gov (United States)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  11. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  12. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  13. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  14. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  15. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  16. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  17. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  18. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  19. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  20. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  1. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  2. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  3. Dependence of Crack Propagation/Deflection Mechanism on Characteristics of Fiber Coating or Interphase in Ceramics Matrix Continuous Fiber Reinforced Composites (Postprint)

    Science.gov (United States)

    2014-07-01

    c ) (d) (e) (f) (g) (h) (i) ( j ) (k) (l) Figure 2. Distinct scenarios...Strength MPa Coating Fracture Energy J /m 2 D ef le ct io n a 800 50 5 b 1200 100 30 c 400 75 5 d 1200 300 15 e 400 100 20 f 1200 50 5 g...1993. [11] W. Lee, S. J . Howard, and W. J . Clegg , "Growth of interface defects and its effect on crack deflection and toughening criteria,"

  4. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    Science.gov (United States)

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  6. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  7. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  8. Scattering-matrix elements of coated infinite-length cylinders

    International Nuclear Information System (INIS)

    Manickavasagam, S.; Menguec, M.P.

    1998-01-01

    The angular variations of scattering-matrix elements of coated cylindrical particles are presented. The sensitivity of different elements for a number of physical parameters are discussed, including size parameter, real and imaginary parts of the refractive index of the outer coat, and the inner core. The numerical predictions are presented for typical index-of-refraction values of cotton fibers. These results show that the physical structure of coated cylinders can be determined from carefully conducted light-scattering experiments. copyright 1998 Optical Society of America

  9. COMPOSITION OF FOWLPOX VIRUS AND INCLUSION MATRIX.

    Science.gov (United States)

    RANDALL, C C; GAFFORD, L G; DARLINGTON, R W; HYDE, J

    1964-04-01

    Randall, Charles C. (University of Mississippi School of Medicine, Jackson), Lanelle G. Gafford, Robert W. Darlington, and James M. Hyde. Composition of fowlpox virus and inclusion matrix. J. Bacteriol. 87:939-944. 1964.-Inclusion bodies of fowlpox virus infection are especially favorable starting material for the isolation of virus and inclusion matrix. Electron micrographs of viral particles and matrix indicated a high degree of purification. Density-gradient centrifugation of virus in cesium chloride and potassium tartrate was unsatisfactory because of inactivation, and clumping or disintegration. Chemical analyses of virus and matrix revealed significant amounts of lipid, protein, and deoxyribonucleic acid, but no ribonucleic acid or carbohydrate. Approximately 47% of the weight of the virus and 83% of the matrix were extractable in chloroform-methanol. The lipid partitions of the petroleum ether extracts were similar, except that the phospholipid content of the matrix was 2.2 times that of the virus. Viral particles were sensitive to diethyl ether and chloroform.

  10. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  11. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  12. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  13. Improved graphite matrix for coated-particle fuel

    International Nuclear Information System (INIS)

    Schell, D.H.; Davidson, K.V.

    1978-10-01

    An experimental process was developed to incorporate coated fuel particles in an extruded graphite matrix. This structure, containing 41 vol% particles, had a high matrix density, >1.6 g/cm 3 , and a matrix conductivity three to four times that of a pitch-injected fuel rod at 1775 K. Experiments were conducted to determine the uniformity of particle loadings in extrusions. Irradiation specimens were supplied for five tests in the High-Fluence Isotope Reactor at the Oak Ridge National Laboratory

  14. Facile morphology-controlled synthesis of nickel-coated graphite core-shell particles for excellent conducting performance of polymer-matrix composites and enhanced catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    Bian, Juan; Lan, Fang; Wang, Yilong; Ren, Ke; Zhao, Suling; Li, Wei; Chen, Zhihong; Li, Jiangyu; Guan, Jianguo

    2018-04-01

    We have developed a novel seed-mediated growth method to fabricate nickel-coated graphite composite particles (GP@Ni-CPs) with controllable shell morphology by simply adjusting the concentration of sodium hydroxide ([NaOH]). The fabrication of two kinds of typical GP@Ni-CPs includes adsorption of Ni2+ via electrostatic attraction, sufficient heterogeneous nucleation of Ni atoms by an in situ reduction, and shell-controlled growth by regulating the kinetics of electroless Ni plating in turn. High [NaOH] results in fast kinetics of electroless plating, which causes heterogeneous nuclei to grow isotropically. After fast and uniform growth of Ni nuclei, GP@Ni-CPs with dense shells can be achieved. The first typical GP@Ni-CPs exhibit denser shells, smaller diameters and higher conductivities than the available commercial ones, indicating their important applications in the conducting of polymer-matrix composites. On the other hand, low [NaOH] favors slow kinetics. Thus, the reduction rate of Ni2+ slows down to a relatively low level so that electroless plating is dominated thermodynamically instead of kinetically, leading to an anisotropic crystalline growth of nuclei and finally to the formation of GP@Ni-CPs with nanoneedle-like shells. The second typical samples can effectively catalyze the reduction of p-nitrophenol into p-aminophenol with NaBH4 in comparison with commercial GP@Ni-CPs and RANEY® Ni, owing to the strong charge accumulation effect of needle-like Ni shells. This work proposes a model system for fundamental investigations and has important applications in the fields of electronic interconnection and catalysis.

  15. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  16. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    International Nuclear Information System (INIS)

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  17. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  18. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  19. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    Directory of Open Access Journals (Sweden)

    Hass Jamie L

    2012-01-01

    Full Text Available Abstract Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of

  20. CNTs Modified and Enhanced Cu Matrix Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Wen-zhong

    2016-12-01

    Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.

  1. Laser-induced reaction alumina coating on ceramic composite

    Science.gov (United States)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  2. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    International Nuclear Information System (INIS)

    Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz

    2014-01-01

    Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix

  3. Solidification processing of monotectic alloy matrix composites

    Science.gov (United States)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  4. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  5. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  6. Corrosion of Graphite Aluminum Metal Matrix Composites

    Science.gov (United States)

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  7. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  8. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  9. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  10. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  11. THERMAL COMPOSITE COATINGS IMPROVING QUALITY OF TECHNICAL MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2015-06-01

    Full Text Available The paper presents the thermal properties of composite insulating material designed for producing of technical means of transport. This material can be coated on most of engineering materials. The matrix of this material is an acrylic resin ant non porous ceramic microspheres made of alumina are the reinforcing phase. Thanks to that into the spheres almost vacuum (0,13 Pa dominants and a big amount of spheres pro thickness unit is it possible to achieve low thermal conductivity. Usage of these coatings for producing of cooling cabins on vehicles let us to reduce of fuel for maintain of given temperature. Usage of these coatings in planes flying on high altitudes (temperature up to -60 allows to reduce of fuel consumption for heating. It has an important influence on transport quality and quality costs.

  12. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  13. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  14. Cell-derived matrix coatings for polymeric scaffolds.

    Science.gov (United States)

    Decaris, Martin L; Binder, Bernard Y; Soicher, Matthew A; Bhat, Archana; Leach, J Kent

    2012-10-01

    Cells in culture deposit a complex extracellular matrix that remains intact following decellularization and possesses the capacity to modulate cell phenotype. The direct application of such decellularized matrices (DMs) to 3D substrates is problematic, as transport issues influence the homogeneous deposition, decellularization, and modification of DM surface coatings. In an attempt to address this shortcoming, we hypothesized that DMs deposited by human mesenchymal stem cells (MSCs) could be transferred to the surface of polymeric scaffolds while maintaining their capacity to direct cell fate. The ability of the transferred DM (tDM)-coated scaffolds to enhance the osteogenic differentiation of undifferentiated and osteogenically induced MSCs under osteogenic conditions in vitro was confirmed. tDM-coated scaffolds increased MSC expression of osteogenic marker genes (BGLAP, IBSP) and intracellular alkaline phosphatase production. In addition, undifferentiated MSCs deposited significantly more calcium when seeded onto tDM-coated scaffolds compared with control scaffolds. MSC-seeded tDM-coated scaffolds subcutaneously implanted in nude rats displayed significantly higher blood vessel density after 2 weeks compared with cells on uncoated scaffolds, but we did not observe significant differences in mineral deposition after 8 weeks. These data demonstrate that DM-coatings produced in 2D culture can be successfully transferred to 3D substrates and retain their capacity to modulate cell phenotype.

  15. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  16. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  17. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  18. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  19. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  20. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  1. Microdistribution of phases and substructure of the composite electrolytic self-lubricating copper-molybdenite coating

    International Nuclear Information System (INIS)

    Pribysh, I.Z.; Bakakin, G.N.; Borzyak, A.G.; Sajfullin, R.S.

    1978-01-01

    The influence of MoS 2 particles on the substructure of a copper matrix was studied, and their location in the composition was established. It is shown that the presence of molybdenite causes a variation in the conditions of electrical crystallization of copper. The optimum composition has been found, which is used as a self-lubricating coating for friction machine parts

  2. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  3. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Geun [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Dae Gil [KAIST, Daejeon (Korea, Republic of)

    2003-10-15

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  4. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    International Nuclear Information System (INIS)

    Kim, Hyoung Geun; Lee, Dae Gil

    2003-01-01

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  5. Development of high performance electroless Ni-P-HNT composite coatings

    Science.gov (United States)

    Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.

    2012-12-01

    Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  6. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  7. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings

    International Nuclear Information System (INIS)

    Kang Yingke; Chen Xinhua; Song Shiyong; Yu Laigui; Zhang Pingyu

    2012-01-01

    Hydrophilic silica nanoparticles (abridged as nano-SiO 2 ) surface-capped with epoxide were dispersed in the solution of epoxy resin (abridged as EP) in tetrahydrofuran under magnetic stirring. Resultant suspension of nano-SiO 2 in EP was then coated onto the surface of glass slides and dried at 80 °C in a vacuum oven for 2 h, generating epoxy resin-nanosilica composite coatings (coded as EP/nano-SiO 2 ). EP coating without nano-SiO 2 was also prepared as a reference in the same manner. A water contact angle meter and a surface profiler were separately performed to measure the water contact angles and surface roughness of as-prepared EP/nano-SiO 2 composite coatings. The friction and wear behavior of as-prepared EP/nano-SiO 2 composite coatings sliding against steel in a ball-on-plate contact configuration under unlubricated condition was evaluated. Particularly, the effect of coating composition on the friction and wear behavior of the composite coatings was highlighted in relation to their microstructure and worn surface morphology examined by means of scanning electron microscopy. Results indicate that EP/nano-SiO 2 composite coatings have a higher surface roughness and water contact angle than EP coating. The EP-SiO 2 coatings doped with a proper amount of hydrophilic SiO 2 nanoparticles show lower friction coefficient than EP coating. However, the introduction of surface-capped nanosilica as the filler results in inconsistent change in the friction coefficient and wear rate of the filled EP-matrix composites; and it needs further study to achieve well balanced friction-reducing and antiwear abilities of the composite coatings for tribological applications.

  8. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  9. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  10. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  11. Electrodeposition and properties of Zn-Ni-CNT composite coatings

    International Nuclear Information System (INIS)

    Praveen, B.M.; Venkatesha, T.V.

    2009-01-01

    Zn-Ni-CNT composite coatings were prepared by electrodeposition from a sulphate bath. The effect of CNTs on the corrosion behavior, wear resistance and hardness of the composite coatings was investigated. Their corrosion properties were evaluated by polarization, impedance, weight loss and salt spray tests. The CNT particles inclusion improved the corrosion resistance, hardness and wear resistance of the coating. The grain size of the composite coating was smaller than that of a pure Zn-Ni coating with the same Zn/Ni ratio. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature.

  12. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  13. An experimental study of the composite CNT/copper coating

    Science.gov (United States)

    Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.

    2018-03-01

    This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.

  14. Structural and functional polymer-matrix composites for electromagnetic applications

    Science.gov (United States)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  15. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    . The focus of the Phase 1 program has been the development of a new approach to achieving bonding between a SiC fiber and a metal matrix. We solve the interface problem by coating the fiber with a thin layer of the matrix metal before it is incorporated into the matrix. Achieving bonding at the SiC-metal interface is addressed by introducing adhesion layers and tempo transition layers as intermediate steps in the deposition process. When the coated fiber is then introduced into a metal matrix, the bonding is between identical metals and should proceed readily. This approach is proprietary and is the subject of a patent application that is in preparation. We expect that it will make it possible to form a metal matrix composite with virtually any metal and any ceramic. The importance of this development is given context by the comments of another group who are developing ceramic-matrix composites (CMC) which pose similar problems Given the difficulty of the project (and a series of unforeseen HR issues), we feel that enough progress has been made during the execution of this Phase I effort to warrant its continuation, even though we did not meet the original goal of fabricating a complete sample MMC for high-temperature creep testing. We believe (and intend to demonstrate in this report and proposal) that the interfacial coating technology we are developing has the merit to continue into Phase II in its own right. Our Axial Thermal Evaporation (ATE) process, invented during the execution of this Phase I SBIR and currently in development, has the potential to improve any fiber-based composite utilizing metal as an interfacial coating component. The reviewers comments received at the start of the Phase I were thoughtful, insightful, and pertinent. Based on their comments we strove to identify the most important 'go/no-go' technical challenges of our approach, then solve as many of those challenges as possible. It became obvious that the key such challenge is the

  16. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (41 ksi (approx. 283 MPa) flexural strength.

  17. Powder addition assessment of manganese residue ceramic matrix coating

    International Nuclear Information System (INIS)

    Conceicao, A.C.R. da; Santos, O.C.; Leao, M.A.

    2016-01-01

    The use of recycled materials in the composition of new products follows the production's worldwide trending, meeting new technological requirements and environmental concerns. This work aims to utilize the residue of manganese dust on ceramic mass for the production of ceramic coating. The raw materials were characterized by both x-ray fluorescence and diffraction. The powder residue added to clay in the percentage of 0%, 5%, 10% and 15% (measured in weight) was compressed by a uniaxial pressing of 30MPa and the sintering temperatures were 900°, 1000° and 1100°. The samples were analysed in relation to flexural strength, bulk density, water absorption and linear shrinkage. The microstructural variation was also analysed by x-ray diffraction and electron microscopy. The results showed that there is a viability for the production of porcelain ceramic coating (A3 and A4 formulations) and stoneware (A2 formulation) according to the specification of technical standards. author)

  18. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  19. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  1. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele, Bucharest (Romania); Mitu, B.; Filipescu, M.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania)

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm{sup −2}. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  2. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    Science.gov (United States)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, Si

  3. Effect of matrix granulation and wax coating on the dissolution rates ...

    African Journals Online (AJOL)

    disintegrating) granules consisting of paracetamol (drug) and acrylatemethacrylate copolymer, a matrix forming material. The effect of coating the matrix granules with wax on the drug release profiles was also investigated. The objective was to ...

  4. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  5. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  6. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  7. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  8. Method and compositions for producting optically clear photocatalytic coatings

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method and compositions for producing a hydrophilic coating on a surface of a solid material. The method comprises a cleaning step and a coating step. The cleaning step may be preceded by an initial cleaning step and it may optionally be succeeded by a preconditioning...... step prior to the coating step. The cleaning step comprises cleaning and preconditioning a surface of a material by use of a first cleaning fluid composition comprising ceria (CeO2) particles. The coating step comprises treatment by use of a coating fluid composition comprising photocatalytically...

  9. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  10. Coating composition curable by electron beam irradiation

    International Nuclear Information System (INIS)

    Masuda, Hiromasa; Iijima, Ken-ichi.

    1971-01-01

    Here is provided a coating composition curable with low dose of electron beams to give a smooth coating film having no surface tackiness. In one example, 126 parts of melamine was reacted with 682 parts of formalin followed by 697 parts of β-hydroxyethyl acrylate to produce component (A) (viscosity 780 cp). On the other hand, 900 parts of tung oil was reacted with 343 parts of maleic anhydride followed by 22 parts of dimethylaminoethyl methacrylate and 406 parts of β-hydroxyethyl acrylate. The resulting product was diluted with 508 parts of methyl methacrylate to give component (B) (dark red, viscous substance). 900 parts of (A), 100 parts of (B), 0.5 part of bees wax and 0.2 part of paraffin wax were blended together. A sized material was coated with the mixture and irradiated with electron beams (6 Mrad) in the presence of air. A smooth film free from surface tackiness was obtained. β-hydroxyethyl acrylate may be replaced by other hydroxyalkyl esters of α,β-unsaturated acids, and melamine may be replaced by urea, benzoguanamine or acetoguanamine. Tung oil may be replaced by linseed, safflower, soybean, rice, oiticica or cotton seed oil. A more flexible film is obtained by using component (B) in a larger proportion. (A)/(B) ratio should be in the range of 90/10 to 10/90 by wt. (Kaichi, S.)

  11. Effect of particulate matrix inhibitors on microstructure and properties of 2-D carbon-carbon composites

    International Nuclear Information System (INIS)

    Tlomak, P.; Takano, Shigeru; Wright, M.A.; Ju, Chien-Ping.

    1991-01-01

    Extended-life applications of structural carbon-carbon (C-C) composites involve multiple periods of operation in high-temperature oxidizing environments and as such require a reliable oxidation protection system (OPS). Advanced OPS's generally consist of an external ceramic coating combined with an in-depth matrix inhibitor. This work investigated the effects produced by particulate inhibitors doped on the matrix on the microstructure of 2D, PAN fiber-pitch matrix C-C's. Boron and zirconium-based particulate inhibitors were added to the matrix material prior to heat treatment. A process was developed to assure a uniform distribution of the inhibitors. Oxidation behavior of such matrix-inhibited composites was evaluated using isothermal oxidation tests. 5 refs

  12. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  13. Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Yoo, Seong Jin; Kim, Woo Jin

    2014-01-01

    A combination of accumulative roll bonding (ARB) and high-energy ball milling was used to fabricate carbon nano tube (CNT)-reinforced Mg composites in sheet form. CNT-Al composite powders synthesized using the high-energy ball-milling process, were coated on the surface of Mg sheets using either spraying or dipping methods. The coated sheets were stacked and then subjected to ARB. Formation of CNT-intermetallic compounds through inter-diffusion between Al and Mg, fragmentation of the CNTintermetallic compounds, and their dispersion into the matrix by plastic flow; as well as dissolution of the intermetallic compound particles into the matrix while leaving CNTs in the matrix, occurred in sequence during the ARB process. This eventually resulted in the uniform distribution of nano-sized CNT particles in the Mg matrix. As the thickness of the Mg sheet and of the coating layer of Al-CNT powder on the surface of the Mg sheet were similar, the dispersion of CNTs into the Mg matrix occurred more uniformly and the strengthening effect of adding CNTs was greater. The strengthening gained by adding CNTs was attributed to Orowan strengthening and dislocation-density increase due to a thermal mismatch between the matrix and the CNTs.

  14. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  16. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  17. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    Science.gov (United States)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  18. Laser cladding of in situ TiB2/Fe composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Zou Zengda; Wang Xinhong; Qu Shiyao

    2008-01-01

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB 2 /Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB 2 and α-Fe. TiB 2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB 2

  19. A novel combinatorial approach for the realization of advanced cBN composite coating

    International Nuclear Information System (INIS)

    Russell, W.C.; Yedave, S.N.; Sundaram, N.; Brown, W.D.; Malshe, A.P.

    2001-01-01

    The paper reports a novel coating process for the synthesis of hard material composite coatings. It consists of electrostatic spray coating (ESC) of powder particles (of micron-nanometer size) followed by chemical vapor infiltration (CVI) of a suitable binder phase. This novel approach enables fabrication of unique compositions such as cubic boron nitride (cBN) and titanium nitride (TiN) in a coating form. Recently, we have demonstrated the success of this technology by first coating a uniform over-layer (in excess of ∼ 10 μm) of cBN particles an carbide cutting tool inserts using ESC, followed by infiltration of particulate cBN matrix with TiN from its vapor phase using CVI to synthesize cBN-TiN a composite coating. The composite has shown excellent cBN-to-TiN and composite coating-to-carbide substrate adhesion. One of the main emphases of the paper is to discuss optimization and scale up of the ESC technology to achieve the desired microstructure and tailor the thickness across the cutting tool for better performance. Further, the cutting tools have been successfully tested for advanced machining applications. (author)

  20. Laser cladding of in situ TiB{sub 2}/Fe composite coating on steel

    Energy Technology Data Exchange (ETDEWEB)

    Du Baoshuai; Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-15

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB{sub 2}/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB{sub 2} and {alpha}-Fe. TiB{sub 2} particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the {alpha}-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB{sub 2}.

  1. Fabrication and properties of ceramic composites with a boron nitride matrix

    International Nuclear Information System (INIS)

    Kim, D.P.; Cofer, C.G.; Economy, J.

    1995-01-01

    Boron nitride (BN) matrix composites reinforced by a number of different ceramic fibers have been prepared using a low-viscosity, borazine oligomer which converts in very high yield to a stable BN matrix when heated to 1,200 C. Fibers including Nicalon (SiC), FP (Al 2 O 3 ), Sumica and Nextel 440 (Al 2 O 3 -SiO 2 ) were evaluated. The Nicalon/BN and Sumica/BN composites displayed good flexural strengths of 380 and 420 MPa, respectively, and modulus values in both cases of 80 GPa. On the other hand, FP/BN and Nextel/BN composites exhibited very brittle behavior. Nicalon fiber with a carbon coating as a buffer barrier improved the strength by 30%, with a large amount of fiber pullout from the BN matrix. In all cases except for Nicalon, the composites showed low dielectric constant and loss

  2. CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    2000-01-01

    Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.

  3. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  4. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  5. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  6. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  7. Development of high performance electroless Ni-P-HNT composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ranganatha, S., E-mail: kamath.ranganath@gmail.com [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Vathsala, K., E-mail: vathsala.mahesh@gmail.com [Nanotribology Laboratory, Mechanical engineering department, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Novel Ni-P composites were prepared by incorporating Halloysite nanotubes. Black-Right-Pointing-Pointer Mild steel specimens surface engineered by nickel using electroless technique. Black-Right-Pointing-Pointer Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. Black-Right-Pointing-Pointer HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm Multiplication-Sign 1-3 {mu}m (diameter Multiplication-Sign length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  8. Development of high performance electroless Ni–P–HNT composite coatings

    International Nuclear Information System (INIS)

    Ranganatha, S.; Venkatesha, T.V.; Vathsala, K.

    2012-01-01

    Highlights: ► Novel Ni–P composites were prepared by incorporating Halloysite nanotubes. ► Mild steel specimens surface engineered by nickel using electroless technique. ► Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. ► HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm × 1–3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni–P–HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni–P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni–P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni–P matrix leading to the development of high performance Ni–P–HNT composite coatings.

  9. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  10. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  11. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation comprise as binding agents a mixture of A. at least 1 unsaturated olefin compound containing urethane groups, and B. at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound A. containing the urethane groups in a reaction product of (a) a compound of the general formula (CHR 1 = CR 2 COOCH 2 CH(OH)CH 2 O CO-)/sub n/R where n is 1 or 2, where R stands for a straight chain or branched alkyl group of valence n, where R 1 is hydrogen, methyl; or the group -COOCH 2 CH(OH)CH 2 OCOR 3 - where R 3 is a monovalent alkyl residue and where R 2 is hydrogen or methyl, and (b) a compound containing at least 1 isocyanate group where the mixture of (A) and (B) may contain conventional additives of the lacquer industry. 6 claims

  12. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    Science.gov (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  13. Oxygen plasma treatment and deposition of CNx on a fluorinated polymer matrix composite for improved erosion resistance

    International Nuclear Information System (INIS)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-01-01

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN x coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN x was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN x coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN x reduced the erosion rate by an order of magnitude for normally incident particles

  14. Plasma Transferred ARC (PTA Hardfacing of Recycled Hardmetal Reinforced Nickel-matrix Surface Composites

    Directory of Open Access Journals (Sweden)

    Arkadi ZIKIN

    2012-03-01

    Full Text Available The aim of this work was to apply coarse recycled hardmetal particles in combination with Ni-based matrix to produce wear resistant metal matrix composite (MMC thick coatings using plasma transferred arc hardfacing (PTA technology. Assignment of hardmetal waste as initial material can significantly decrease the production costs and improve the mechanical properties of coatings and, consequently, increase their wear resistance. The microstructure of MMC fabricated from a recycled powder was examined by optical and SEM/EDS microscopes, whereas quantitative analyses were performed by image analysis method. Micro-mechanical properties, including hardness and elastic modulus of features, were measured by nanoindentation. Furthermore, behaviour of materials subjected to abrasive and impact conditions was studied. Results show the recycled powder provides hardfacings of high quality which can be successfully used in the fabrication of wear resistant MMC coatings by PTA-technology.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1334

  15. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shoujie, E-mail: jlliushoujie@126.com; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Su, Yangyang, E-mail: suyangyang@mail.nwpu.edu.cn; Guo, Qian, E-mail: 1729299905@163.com; Zhang, Leilei, E-mail: zhangleilei@nwpu.edu.cn

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86 ± 1.43 MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. - Highlights: • A novel bioceramic composite coating of hydroxyapatite reinforced with in-situ grown carbon nanotubes was fabricated. • The doping of carbon nanotubes had almost no impact on the biocompatibility of hydroxyapatite coatings. • The doping of carbon nanotubes improved corrosion resistance of hydroxyapatite coatings in simulated human body solution.

  16. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  17. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    International Nuclear Information System (INIS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-01-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4 C and SiC) layers forming B 2 O 3 -based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported

  18. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  19. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  20. Thermal conductivity of microPCMs-filled epoxy matrix composites

    OpenAIRE

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in detai...

  1. Short and long carbon fibre reinforced Cu-matrix composites: microstructural results and structural origin of properties

    International Nuclear Information System (INIS)

    Buchgraber, W.

    1997-01-01

    Carbon fibre reinforced copper matrix composites possess properties of copper, i.e. excellent thermal and electrical conductivities, and properties of carbon fibre, i.e. a small thermal expansion coefficient. Since the desirable properties of the composite can be obtained by selecting the amount, type and orientation of the carbon fibres, it is considered to be suitable for use as electric and electronic materials. This lecture focuses on two-dimensional isotropic carbon fibre reinforced copper matrix composites with long or short carbon fibres. Short carbon fibre reinforced copper matrix composites have been produced by hot-pressing of copper coated short carbon fibres. During hot-pressing, the carbon fibres take on a preferred orientation in a plane perpendicular to the hot pressing direction. Within this plane the fibre orientation is random. Long carbon fibre reinforced copper matrix composites have been made by hot pressing of monolayers consisting of copper coated long carbon fibres. Different orientations of the monolayers will be compared. Both the physical and mechanical properties of the discussed composites are strongly influenced not only by the properties of its individual constituents, but also by the microstructure and properties of the fibre matrix interface. The problem of poor wettability of the carbon fibre by the copper matrix will be discussed. The microstructure of several types of carbon fibre reinforced copper matrix composites will be discussed. Their thermophysical properties will be compared with microstructural results. (author)

  2. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  3. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  4. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  5. Coated powder for electrolyte matrix for carbonate fuel cell

    International Nuclear Information System (INIS)

    Iacovangelo, C.D.; Browall, K.W.

    1985-01-01

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell

  6. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  7. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  8. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    Science.gov (United States)

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  9. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    Science.gov (United States)

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  10. Preparation of magnesium metal matrix composites by powder metallurgy process

    Science.gov (United States)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  11. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    M.A. Malik

    2013-01-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Ramanmicroscopy in the composites microstructure.

  12. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    OpenAIRE

    Malika M.A.; Majchrzak K.; Braszczyńska-Malik K.N.

    2013-01-01

    Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  13. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Malika M.A.

    2013-03-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  14. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  15. Structure, composition and function of interfaces in ceramic fibre/matrix composites

    International Nuclear Information System (INIS)

    Pippel, E.

    1993-01-01

    Improving the properties of fibre reinforced ceramics and glasses by optimizing their microstructure requires the knowledge of this structure down to the atomic level. In these materials energy-dissipative processes during fracture particularly act within an interface layer or layer system between fibre and matrix which can either be produced by fibre coating, or which develops during the processing of the composites. Examples are presented of the microstructural phenomena of such layers revealed by HVEM and HREM and complemented by microchemical information via a nanoscale EDXS equipment. The investigations are carried out on Nicalon fibres in Duran glass as well as on Tyranno, Nicalon and carbon fibres in different SiC-matrices. Finally, a process is discussed which may control the important interface parameters. (orig.)

  16. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  17. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  18. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  19. Mechanical behavior of nanocellulose coated jute/green epoxy composites

    Science.gov (United States)

    Jabbar, A.; Militký, J.; Ali, A.; Usman Javed, M.

    2017-10-01

    The present study was aimed to investigate the effect of nanocellulose coating on the mechanical behavior of jute/green epoxy composites. Cellulose was purified from waste jute fibers, converted to nanocellulose by acid hydrolysis and subsequently 3, 5 and 10 wt % of nanocellulose suspensions were coated over woven jute reinforcement. The composites were prepared by hand layup and compression molding technique. The surface topologies of treated jute fibers, jute cellulose nanofibrils (CNF), nanocellulose coated jute fabrics and fractured surfaces of composites were characterized by scanning electron microscopy (SEM). The prepared composites were evaluated for tensile, flexural, fatigue and fracture toughness properties. The results revealed the improvement in tensile modulus, flexural strength, flexural modulus, fatigue life and fracture toughness of composites with the increase in concentration of nanocellulose coating over jute reinforcement except the decrease in tensile strength.

  20. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  1. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  2. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yanhui Liu

    2016-09-01

    Full Text Available In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM, X-ray diffractometer (XRD, and energy dispersive X-ray spectroscopy (EDS confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991 and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  3. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    Science.gov (United States)

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  4. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  5. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  6. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  7. Development of Sustained Release Capsules Containing “Coated Matrix Granules of Metoprolol Tartrate”

    OpenAIRE

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-01-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet gr...

  8. Effect of preceramic and Zr coating on impregnation behaviors of SiC ceramic composite

    Science.gov (United States)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    SiC fiber-reinforced ceramic composites were fabricated using a polymer impregnation and pyrolysis process. To develop the low temperature process, the pyrolysis was conducted at 600 °C in air. Both a microstructural observation and a mechanical test were utilized for the evaluation of the impregnation. For the impregnation, two kinds of polycarbosilane having a different degree of cross-linking were used. The level of cross-linking affected the ceramic yield of the composites. The cross-linking under oxygen containing atmosphere resulted in a dense matrix and high density of filling. However, tight bonding between the matrix and fibers in the fully dense composite samples, which was obtained using a cross-linking agent of divinylbenzene, turned out to be deteriorative on the mechanical properties. The physical isolation of fibers from matrix phase in the composites was very important to attain a mechanical ductility. The brittle fracture was alleviated by introducing an interphase coating with metallic Zr. The combination of forming the dense matrix and interphase coating should be a necessary condition for the SiCf/SiC fiber-reinforce composite, and it is practicable by controlling the process parameters.

  9. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  10. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  11. Modern Nondestructive Test Methods for Army Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    Strand, Douglas J

    2008-01-01

    .... Ceramic matrix composites (CMC) are potentially good high-temperature structural materials because of their low density, high elastic moduli, high strength, and for those with weak interfaces, surprisingly good damage tolerance...

  12. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  13. Exploration the extrudability of aluminum matrix composite (LM6/TIC ...

    African Journals Online (AJOL)

    Aluminum matrix composites (LM6/TiC) is a mix of excellent properties of aluminum ... ABAQUS/CAE software has been successfully employed for Modeling and ... Experimental results show that, many mechanical properties are improved and ...

  14. Mechanical Properties of TC4 Matrix Composites Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    WANG Lin

    2017-06-01

    Full Text Available In order to improve the penetration performance of TC4, the direct laser deposition technology was used to prepare TC4 composite material. TA15+30% TiC powder, TA15+20%Cr3C2 powder and TA15+15%B4C powder were used as deposited materials for TC4 matrix. The micromorphology, change of hardness of the deposited coating and mechanical properties of the three composites were studied. The experimental results demonstrate that the TC4 matrix with the three kinds of materials can form a complete metallurgical bonding, and the strength of TC4-(TA15+TiC, TC4-(TA15+Cr3C2 and TC4-(TA15+B4C are higher than that of TC4 matrix materials, while the plasticity is slightly worse.

  15. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  16. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  17. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O.M. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany); Misra, S.K. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Ahmedabad 382424 (India); Gilabert, J. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Valsami-Jones, E. [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchez, E. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Virtanen, S. [Institute for Surface Science and Corrosion (LKO, WW4), Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Boccaccini, A.R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany)

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 g/L) and BG (1–1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. - Highlights: • Organic–inorganic nanocomposite coatings fabricated by electrophoretic deposition • nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect. • Bioactive character and anticorrosion function of coatings demonstrated.

  18. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  19. A study of tribological behaviors of the phenolic composite coating reinforced with carbon fibers

    International Nuclear Information System (INIS)

    Song Haojie; Zhang Zhaozhu; Luo Zhuangzhu

    2007-01-01

    The nitric acid treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces, thereafter these fibers (CFO) and unmodified carbon fibers (CF) were incorporated into the phenolic composite coating for wear investigations. Surface analyses of the carbon fibers before and after treatments were performed by FTIR, X-ray photoelectron spectrometer (XPS). Tribological behaviors of carbon fibers filled phenolic coatings were investigated using a ring on block wear tests under dry friction condition, and the worn surfaces and the transfer films formed on the surface of counterpart ring were, respectively, studied by SEM and optical microscope. The results show that the additions of carbon fibers were able to reduce the friction coefficient of the phenolic coating and enhance the wear life of it, especially, the wear life of the phenolic coating was the best when content of carbon fibers is at 10 wt.%. Moreover, we found that the friction and wear behaviors of the phenolic coating reinforced with 10 wt.% CFO were better than those of the coating reinforced with 10 wt.% CF. FTIR and XPS analyses indicated that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the oxidated treatment. In both cases, appropriate treatments could effectively improve the mechanical and tribological properties in the phenolic composite coating due to the enhanced fiber-matrix interfacial bonding

  20. Ultrasound as a tool for the development of aerospace structural titanium and ceramic matrix composites

    International Nuclear Information System (INIS)

    Karpur, P.

    1993-01-01

    This paper outlines new concepts for the utilization of various ultrasonic techniques for the evaluation of different aspects of development and use of metal matrix composites. The authors introduce a novel mechanical parameter called interfacial shear stiffness coefficient which can be measured using ultrasonic shear wave reflectivity technique to characterize and quantify the matrix-fiber interface. Such nondestructive methods of interface characterization are essential because the utilization of metal matrix composites for aerospace applications require good characterization and evaluation of nascent composite systems in research and developmental stages. During development, it would be critical to evaluate (a) the compatibility of different types of matrix materials with different types of fibers, (b) the effect of different types of fiber coating on the load transfer between the matrix and the fiber, (c) the effect of processing conditions such as temperature, pressure, duration of processing, etc., (d) the suitability of the overall mechanical properties for the intended application, and (e) the mechanical behavior of the composite for life prediction studies

  1. Electroless alloy/composite coatings: A review

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    pharmaceutical ... Four types of reducing agent have been used for electroless nickel bath including ..... coatings, however, the bath is more stable at a pH of about 9. 5. ..... ite coating by dry sliding tests with a slider-on-cylinder tribometer in ...

  2. Hybrid laser technology for composite coating and medical applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Písařík, Petr; Mikšovský, Jan; Remsa, Jan; Mihailescu, I. N.; Kopeček, Jaromír

    2014-01-01

    Roč. 10, č. 1 (2014), s. 1-8 ISSN 1823-3430 R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : hybrid technology * pulsed laser deposition * biocompatible composites * doped coating * composite coating Subject RIV: BM - Solid Matter Physics ; Magnetism http://web.usm.my/jes/pastIssue.html

  3. Coating magnesium hydroxide on surface of carbon microspheres and interface binding with poly (ethylene terephthalate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Baoxia [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Niu, Mei, E-mail: niumei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Bai, Jie; Song, Yinghao; Peng, Yun [College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-08-01

    Highlights: • Magnesium hydroxide (MH) as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs by liquid phase deposition method. • An organic layer of 3-Aminopropyltriethoxysilane (APTS) was then introduced on the surface of MH@CMSs. • The formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties. - Abstract: In this account, magnesium hydroxide (MH) employed as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs using liquid phase deposition, then was modified by 3-Aminopropyltriethoxysilane (APTS) to form FMH@CMSs. To investigate the interface binding forces, a series of PET composites was prepared by melt compounding with MH@CMSs or FMH@CMSs. Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier-transform Infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, chemical structure, and effect of functionalization of CMSs. The coating degree and thermal stability were investigated by thermogravimetry analysis. The results showed that CMSs were coated by an inorganic shell layer of MH as a capsule wall. On the other hand, MH@CMSs were coated with an organic layer of APTS. When compared to MH@CMSs, the interface binding forces between FMH@CMSs and PET matrix were significantly improved, and the tensile strength of FMH@CMSs/PET was higher than that of MH@CMSs/PET. At 1 wt% mass fraction of FMH@CMSs, the limiting oxygen index (LOI) value of PET composites increased from 21% to 27.6% following a V-0 rating. The tensile strength of FMH@CMSs/PET increased by 66.2% to reach 47.20 MPa, a value nearly similar to that of PET. Overall, the formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties, which would broaden their scope of application.

  4. Effect of matrix cracking and material uncertainty on composite plates

    International Nuclear Information System (INIS)

    Gayathri, P.; Umesh, K.; Ganguli, R.

    2010-01-01

    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

  5. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    Science.gov (United States)

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  6. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  7. In vitro testing of curcumin based composites coatings as antitumoral systems against osteosarcoma cells

    Science.gov (United States)

    Tirca, I.; Mitran, V.; Marascu, V.; Brajnicov, S.; Ion, V.; Stokker-Cheregi, F.; Popovici, I. A.; Cimpean, A.; Dinca, V.; Dinescu, M.

    2017-12-01

    In this work, we propose a new design for biodegradable composite coatings obtained by laser methods, which are aimed at evaluating the effects of active antitumoral elements on osteosarcoma cells. Our approach relies on embedding curcumin, which is a natural polyphenol having antitumoral properties, within biodegradable copolymer coatings (i.e. polyvinyl alcohol-polyethylene glycol - PVA-PEG) by using matrix assisted pulsed laser evaporation (MAPLE). The structural and morphological characteristics of the coatings were tailored by using different solvents (water, ethanol, benzene, dimethylsufoxide) as deposition matrix. The morphological characteristics of the resulting films were investigated by atomic force microscopy (AFM), whereas their chemical composition was characterized by Fourier transform infrared spectroscopy (FTIR). These characteristics were correlated with the degradation behavior by using ellipsometry (SE) and AFM measurements data. The in vitro study of the MG-63 osteosarcoma cell behavior indicates that the developed hybrid coatings significantly decreased osteosarcoma cell viability and proliferation potential. The physico-chemical characteristics of the thin films, along with the preliminary in vitro analyses, suggest that our developed polymeric hybrid coatings represent an efficient way to tackle the design of antitumoral surfaces, with applications in biomedicine.

  8. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  9. Characterisation of Microstructure of We43 Magnesium Matrix Composites Reinforced with Carbon Fibres

    Directory of Open Access Journals (Sweden)

    Gryc A.

    2016-06-01

    Full Text Available In the paper the microstructures of WE43 matrix composites reinforced with carbon fibres have been characterised. The influence of reinforcement type and T6 heat treatment (a solution treatment at 525°C for 8 h, a hot water quench and a subsequent ageing treatment at 250°C for 16 h on microstructure have been evaluated. The light microscope and scanning electron microscope investigations have been carried out. No significant differences in samples reinforced with non-coated textiles have been reported. The substantial changes in sample reinforced with nickel-coated textile have been observed. The segregation of alloying elements to the matrix-reinforcement layer has been identified. The T6 heat treatment caused the appearance of disperse precipitates of β phase, but the process cannot be considered as satisfactory (irregular distribution, low volume fraction, relatively large size.

  10. Gum arabic based composite edible coating on green chillies

    Science.gov (United States)

    Valiathan, Sreejit; Athmaselvi, K. A.

    2018-04-01

    Green chillies were coated with a composite edible coating composed of gum arabic (5%), glycerol (1%), thyme oil (0.5%) and tween 80 (0.05%) to preserve the freshness and quality of green chillies and thus reduce the cost of preservation. In the present work, the chillies were coated with the composite edible coating using the dipping method with three dipping times (1, 3 and 5 min). The physicochemical parameters of the coated and control chillies stored at room temperature (28±2ºC) were evaluated at regular intervals of storage. There was a significant difference (p≤0.05) in the physicochemical properties between the control chillies and coated chillies with 1, 3 and 5 min dipping times. The coated green chillies showed significantly (p≤0.05) lower weight loss, phenolic acid production, capsaicin production and significantly (p≤0.05) higher retention of ascorbic acid, total chlorophyll content, colour, firmness and better organoleptic properties. The composite edible coating of gum arabic and thyme oil with 3 min dipping was effective in preserving the desirable physico-chemical and organoleptic properties of the green chillies up to 12 days, compared to the uncoated chillies that had a shelf life of 6 days at room temperature.

  11. Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite

    International Nuclear Information System (INIS)

    Wang, Q.; Chiang, F.P.

    1994-01-01

    The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003(microm). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation

  12. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao

    2016-12-07

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  13. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao; Zheng, Wei-Shi; Ghanem, Bernard

    2016-01-01

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  14. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  15. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    reduced. By means of SEM, EDS and X-ray diffraction techniques, it was found that the longer and stronger SCW is more capable of reinforcing the microstructurally inhomogeneous geopolymer than the smaller diameter, shorter ANF. After heat treatment at 760 °C, the effectiveness of SCW as reinforcement in both fracture toughness and flexural strength was reduced by ~89% and ~43%, respectively, while, the ANF filled materials performed worse than the neat geopolymer. A strong interaction was suggested between ANF and geopolymer at high temperature by means of chemical reactions and diffusion. SEM & X-ray diffraction results suggested the formation of Al4C3 on the SCW surface, which could reduce the interface strength between SCW and geopolymer. Therefore it is suggested that the interface strength should be as high as required for load transfer and crack bridging. Finally, to investigate the potential synergy of a nano-filled matrix material and the fiber/matrix interface toughening mechanism of a continuous fiber composite, composite specimens were produced and tested. Flexural and shear strengths of Nextel 610 continuous fiber reinforced 2vol% SCW filled geopolymer matrix composites were investigated. Specimens were produced with cleaned Nextel fiber and with carbon-coated fibers to investigate the combinations of nano-filled matrix with continuous reinforcement that is well bonded (cleaned fiber) versus poorly bonded (carbon-coated fiber) to the matrix. The results showed that flexural strength of cleaned and coated fiber composites improved by ~35% and ~21% respectively, while shear strength of the similar composite systems improved by ~39.5% and ~24%. The results verified the effectiveness of SCW in toughening not only the neat geopolymer, but also continuous fiber reinforced geopolymer matrix composites.

  16. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    Science.gov (United States)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  17. exploration the extrudability of aluminum matrix composite (lm6/tic)

    African Journals Online (AJOL)

    lanez

    2017-11-24

    Nov 24, 2017 ... Aluminum matrix composites (LM6/TiC) is a mix of excellent properties of aluminum casting alloy (LM6), and particles of (TiC) which make it the first choice in many applications like airplane and marine industries. During this research the extrudability and mechanical specifications of this composite ...

  18. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  19. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  20. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating.

    Science.gov (United States)

    Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao

    2011-04-15

    The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Ezhil Selvi, V.; Rajam, K.S.

    2010-01-01

    In the present investigation the electroless Ni-P-Si 3 N 4 composite coatings were prepared by using a low phosphorus bath containing submicron size silicon nitride particles. Plain Ni-P deposits were also prepared for comparison. The phosphorus contents present in electroless plain Ni-P and Ni-P-Si 3 N 4 coatings are 3.7 and 3.4 wt.%, respectively. Scanning electron microscope (SEM) images obtained for composite coatings (cross-sections) showed that the second phase particles are uniformly distributed throughout the thickness of the deposits. It was found that nodularity increased with particle codeposition in Ni-P matrix. To find out the electrochemical behavior of plain Ni-P and composite coatings, potentiodynamic polarization and electrochemical impedance (EIS) studies were carried out in 3.5 wt.% sodium chloride solution in non-deaerated condition. Second phase particle incorporation in Ni-P matrix indicated a marginal decrease in corrosion current density compared to the plain Ni-P deposits. This was further confirmed by EIS studies and SEM analysis of the corroded samples.

  2. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    Science.gov (United States)

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  3. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  4. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  5. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    Cichosz, Piotr; Karolczak, Pawel; Kuzinovski, Mikolaj

    2008-01-01

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index k h of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  6. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  7. Interfacial reactions in intermetallic matrix composites

    International Nuclear Information System (INIS)

    Cantrell, L.B.; Clevenger, E.M.; Perepezko, J.H.

    1993-01-01

    The thermal stability of advanced composites is dominated by the behavior of internal interfaces. Analysis of these internal interfaces often involves consideration of at least ternary order phase equilibria. Limited thermodynamic data exists for ternary and higher order systems. However, a combined approach based upon the use of binary data to estimate ternary phase equilibria and experimentally determined reaction pathways is effective in the analysis of interface reactions in composite systems. In blended powder samples, thermal analysis was used to find possible reaction temperatures, while X-ray analysis, EDS, and EPMA of diffusion couples were used to assess interdiffusion reaction pathways. The approach is illustrated by compatibility studies between TiAl and TiSi 2 at 1,100 C, and in-situ reactions between B 4 C and TiAl at 1300 C where multiple reaction sequences have been analyzed to provide guidance for the design of in-situ reaction processing of composites

  8. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  9. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  10. The influence of nickel coating on the interface of pressureless infiltrated with vibration Al-SiC composites

    Science.gov (United States)

    Elahinejad, Setare; Sharifi, Hassan; Tayebi, Morteza; Rajaee, Ali

    2017-11-01

    The aim of this study was to investigate the effect of nickel coatings on infiltration and interface of SiC reinforced Al-Mg composite. To this end, the pressureless infiltration procedure with vibration applied to produce composites with uncoated and nickel coated reinforcements at two temperatures of 650 °C and 850 °C. The microstructure of the infiltrated cross section was investigated by optical microscopy, scanning electron microscopy, linear and point analyses. Results indicated that coated ceramic preforms improved infiltration and strong interfaces in both temperatures were achieved. Also uncoated preform infiltrated at a temperature of 650 °C, was not proved to be appropriate and it did not form any interface. In this condition a small gap was found between aluminum matrix and ceramic reinforcement, and no bonding was established between the reinforcement and matrix, however the composite prepared in 850 °C had an acceptable interface and the presence of MgAl2O4 at the interface caused improvement in interface bonding. In addition, in the composite sample with coated reinforcement, the existence of Ni as coating prevented the SiC dissolution in the alloy and there was no sign of carbide formation at the interface. At the interface of produced composite, Al3Ni and Al3Ni2 compounds were formed in the matrix around the reinforcement.

  11. Interfacial reaction effects on erosion of aluminum matrix composites

    International Nuclear Information System (INIS)

    Tu, J.P.; Hiroshima Univ., Higashi-Hiroshima; Matsumura, M.

    1999-01-01

    Alumina borate (A 18 B 4 O 33 ) whisker reinforced aluminum composites have attracted interest because of their high specific strength, high modulus and low cost. An obvious feature of the microstructure in A 18 B 4 O 33 /Al composite is that an interfacial reaction exists between the whisker and the aluminum alloy. In order to discuss the influence of interface interaction between the whisker and matrix on the erosion resistance of composites, two reaction treatments are conducted. From the results of the treated composites, it can be obtained about the erosion characteristics of the composite materials under steady-state conditions

  12. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  13. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  14. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  15. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  16. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  17. Review of Research Work on Ti-BASED Composite Coatings

    Science.gov (United States)

    Gabbitas, Brian; Salman, Asma; Zhang, Deliang; Cao, Peng

    The service life of industrial components is limited predominantly by Chemical corrosion/mechanical wear. The project is concerned with the investigation of the capability of Ti(Al,O)/Al2O3 coatings to improve the service life of tool steel (H13) used for dies in aluminium high pressure die casting. This paper gives a general review on the research work conducted at the University of Waikato on producing and evaluating the titanium/alumina based composite coatings. The powder feedstocks for making the composite coatings were produced by high energy mechanical milling of a mixture of Al and TiO2 powders in two different molar ratios followed by a thermal reaction process. The feedstocks were then thermally sprayed using a high velocity air-fuel (HVAF) technique on H13 steel substrates to produce a Ti(Al,O)/Al2O3 composite coatings. The performance of the coating was assessed in terms of thermal shock resistance and reaction kinetics with molten aluminium. The composite powders and coatings were characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD).

  18. Improving Turbine Performance with Ceramic Matrix Composites

    Science.gov (United States)

    DiCarlo, James A.

    2007-01-01

    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.

  19. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  20. Ceramic matrix composites using polymer pyrolysis and liquid densification processing

    International Nuclear Information System (INIS)

    Davis, H.O.; Petrak, D.R.

    1995-01-01

    The polymer precursor approach for manufacture of ceramic matrix composites (CMCs) is both flexible and tailorable to shape and engineering requirements. The tailorability includes a wide range of reinforcements, polymer matrix precursors and fillers. Processing is selected based on cure/pressure requirements to best produce the required shape, radii, fiber volume and fiber orientation. Combinations of tooling used for cure/pressure applications are discussed and fabricated components are shown. ((orig.))

  1. Microstructure, Friction and Wear of Aluminum Matrix Composites

    Science.gov (United States)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  2. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.

    1997-01-01

    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set-up an iso......This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set...... with a high spatial and temperature resolution and changes in the heat dissipation can be measured almost instantaneously. The technique has been tested on uni-directional ceramic matrix composites. Experimental results are shown and the possibilities and the limitations of the technique are discussed....

  3. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  4. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  5. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  6. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  7. Stress development in particulate, nano-composite and polymeric coatings

    Science.gov (United States)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  8. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  9. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  10. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  11. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  12. Drilling of metal matrix composites: cutting forces and chip formation

    International Nuclear Information System (INIS)

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  13. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  14. Influence of superconductor film composition on adhesion strength of coated conductors

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2016-01-01

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare-earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples. (paper)

  15. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    Science.gov (United States)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  16. Mechanical Properties Analysis Of Composite Magnetic Base On hexa ferrite And Polyester Or Epoxy Matrix With Silane Additive Addition

    International Nuclear Information System (INIS)

    Sudirman; Ridwan; Mujamilah; K K, Aloma; Rembulan, Marisa; Fitriyanti

    2003-01-01

    Application of composite magnetic especially hexa ferrite magnet for industry and home industry in Indonesia has been used. Research purposes were making composite magnetic by mixing hexa ferrite powder with polyester or epoxy and studying the effect of coupling agent 3-aminopropyltriethoxysilane (3-APE) addition on mechanical properties of composite magnetic. The coupling agent may increase bonding properties between magnetic powder and matrix polymer, so that tensile strength of magnetic composite will increase without decreasing the magnetic properties. Magnetic powder (SrM or BaM) wich be coated by coupling agent were added to matrix polyester and mekpo or epoxy and versamid, mixed until homogen then pressing into to the dumbbell form molding. For epoxy matrix, pressing was done in hot press at 70 deg. C and 150 kg/cm 2 following by cooling in cold press, while for polyester matrix pressing was done in hydraulic press and following by curing at 70 deg. C in an oven for 1 hour. The composition of magnetic powder were varied to 30, 40 and 50% volume fraction and coupling agent were varied to 5, 10 and 15 ml for every volume fraction. The result showed that 10 ml added of coupling agent was give best mechanical properties both polyester and epoxy matrix. However generally, increasing of magnetic powder content decreased the tensile strength of magnetic composite. The properties of magnetic composite SrM was better than BaM either in polyester or epoxy matrix

  17. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  18. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  19. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  20. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  1. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  2. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  3. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    coatings without alteration to the existing plating process. Glen Slater, Cirrus Materials | Stephen Flint, Auckland UniServices Ltd Report...ADDRESS(ES) University of Auckland ,Cirrus Materials, Auckland , New Zealand, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...JiA/ g THE UNIVERSITY ’-" OF AUCKLAND NEW ZEALAND Te Whare Wanan a o Thmaki Makaurau ~"""’ • ........,." ... Southwest Pacific Basin . p

  4. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  5. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  6. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  7. Metal matrix composites: History, status, factors and future

    Science.gov (United States)

    Cyriac, Ajith James

    The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.

  8. Metal matrix composites. Part 1. Types, properties, applications

    International Nuclear Information System (INIS)

    Edil da Costa, C.; Velasco Lopez, F.; Torralba Castello, M.

    2000-01-01

    An overview on the state of the art of metal matrix composites used in the automotive and aerospace industries is made. These materials usually are based on light alloys (Al, Ti and Mg) and reinforced with fibres or particles. In this review, it is presented a general scope on the different MMCs families, about their properties and their main applications. (Author) 61 refs

  9. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms...

  10. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  11. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    Science.gov (United States)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  12. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  13. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  14. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate

    Directory of Open Access Journals (Sweden)

    Yern Chee Ching

    2013-01-01

    Full Text Available Acrylic based polyurethane (PU coatings with various amounts of nanosilica contents were prepared using solution casting method. The nanosilica (SiO2 particles used are around 16 nm in diameter. The friction and wear test was conducted using the reciprocating wear testing machine. The tests were performed at rotary speed of 100 rpm and 200 rpm with load of 0.1 kg to 0.4 kg under 1 N interval. The effect of the PU/nano-SiO2 composite coating on friction and wear behavior of polypropylene substrate was investigated and compared. The worn surface of coating film layer after testing was investigated by using an optical microscope. The introduction of PU/nanosilica composite coating containing 3 wt% of nano-SiO2 content gives the lowest friction coefficient and wear rate to PP substrate. Both the friction and wear rate of PP substrate coated with >3 wt% of nano-SiO2 filled PU coating would increase with the increasing of applied load and sliding time.

  15. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  16. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  17. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  18. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  19. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  20. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  1. Microstructure and Properties of Composite Coatings Obtained on Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Bara M.

    2016-09-01

    Full Text Available This paper presents methods of modifying the anode surface layers of Al2O3 by introducing carbon to their microstructure. Composite coatings were prepared using two different methods. In the first, coatings were formed by means of oxidation under constant current conditions. Anodic oxidation of aluminium was conducted in a multicomponent electrolyte with the addition of organic acids and graphite. The second method was based on the formation of oxide coatings in an electrolyte without the addition of graphite or heat treatment of the layers of succinic acid. The obtained coatings were tested using SEM, TEM, and GDOES (glow discharge optical emission spectrometry and their tribological and stereometric properties were measured. The study demonstrated the beneficial effects of the methods when used to improve the tribological properties of sliding couples.

  2. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  3. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    Science.gov (United States)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  4. HfC plasma coating of C/C composites

    International Nuclear Information System (INIS)

    Boncoeur, M.; Schnedecker, G.; Lulewicz, J.D.

    1992-01-01

    The surface properties of C/C composites such as hardness and corrosion or erosion resistance can be modified by a ceramic coating applied by plasma torch. The technique of plasma spraying in controlled temperature and atmosphere, that was developed and patented by the CEA, makes it possible to apply coatings to the majority of metals and ceramics without affecting the characteristics of the composite. An example of hard deposit of HfC on a C/C composite is described. The characteristics of the deposit and of the bonding with the C/C composite were studied before and after a heat treatment under vacuum for 2 hours at 1000 C. 2 refs

  5. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  6. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  7. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  8. Potential assisted fabrication of metal-ceramic composite coatings

    International Nuclear Information System (INIS)

    Knote, A.; Schindler, U.; Krueger, H.G.; Kern, H.

    2003-01-01

    A possibility to produce uniform metal-ceramic composite coatings with a high content of ceramic particles up to 60 vol.% will be presented in this study. This method includes a combination of electrophoretic deposition and electrolytic deposition by several steps. A yttria-stabilized zirconia coating (Tosoh TZ-8Y) was first electrophoretically deposited on a ferritic steel plate and then sintered by 1100 C to an open porous layer. In the next step nickel was electrodeposited into the pores of the layer. By a final annealing step it was possible to improve the bonding of the composit coating on the substrate by diffusion of the metal components. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  9. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  10. Characterisation of phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on casting aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2013-01-01

    Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of ...

  11. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Science.gov (United States)

    2010-04-01

    ...) (using 20 percent alcohol as the solvent when the type of food contains approximately 20 percent alcohol... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc-silicon dioxide matrix coatings. 175.390 Section 175.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. Iron nanoparticles from blood coated with collagen as a matrix for ...

    Indian Academy of Sciences (India)

    A simple wet precipitation technique was used to prepare nanobiocomposite containing iron nanoparticles coated with collagen. This nanobiocomposite was used as matrix for the synthesis of nanohydroxyapatite. The physicochemical characteristic studies of the nanohydroxyapatite thus formed were carried out using ...

  13. Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites

    Directory of Open Access Journals (Sweden)

    TAO Jing-mei

    2017-04-01

    Full Text Available The critical issues of CNTs/Cu composites were reviewed. The preparation techniques of the composites were classified, and the research progress on powder metallurgic methods, electrochemical methods and other methods was summarized, with an emphasis on the relationship between preparation methods and properties. The interfacial characteristic of the CNTs/Cu composites was analyzed, and the research progress and existing problems of mechanical properties, electrical properties, thermal properties and wear and friction properties of the composites were also summarized. It was pointed out that the key to increase the comprehensive properties of the composites is to obtain the homogeneous distribution of CNTs and good interfacial bonding between CNTs and the Cu matrix by improving the preparation methods.

  14. Radiation curable compounds for use in coating compositions

    International Nuclear Information System (INIS)

    Friedlander, C.B.; McMullen, J.C.

    1979-01-01

    Radiation curable compounds are disclosed which are derived from the reaction of a siloxy-containing carbinol, a polyisocyanate and polyfunctional compound having hydroxy and acrylic functional groups. The compounds have high cure rates, are compatible with other components of radiation curable, film forming compositions and impart good slip and other properties to cured film coatings. (author)

  15. Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study.

    Science.gov (United States)

    Stadlinger, Bernd; Pilling, Eckart; Huhle, Matthias; Mai, Ronald; Bierbaum, Susanne; Bernhardt, Ricardo; Scharnweber, Dieter; Kuhlisch, Eberhard; Hempel, Ute; Eckelt, Uwe

    2007-10-01

    Aim of the present study was to test the hypothesis that the application of components of the extracellular matrix such as glycosaminoglycans used as implant surface coatings in combination with collagen, with and without growth factor, can lead to enhanced ossification and thus improve implant stability compared with collagen coatings alone. Twenty miniature pigs received 120 experimental titanium implants in the mandible. Three types of surface coatings were created: (1) collagen type I (coll), (2) collagen type I/chondroitin sulphate (coll/CS), (3) collagen type I/chondroitin sulphate/BMP-4 (coll/CS/BMP). Periimplant bone formation was assessed within a defined recess along the length axis of the implant. Bone-implant contact (BIC) and bone volume density (BVD) were determined, using both histomorphometry and synchrotron radiation micro computed tomography (SRmicroCT). To measure implant stability, resonance frequency analysis was applied after implantation and 1, 3, 7, and 22 weeks after placement. BIC was highest for coll/CS coated implants, followed by coll, p = 0.082. Histomorphometric BVD did not significantly change for any coating. SRmicroCT analysis showed an increased BVD for collagen coated implants, compared with the other two surface coatings. Implant stability showed a decrease for all coatings up to the third week. At 22 weeks, all coatings showed an increase in stability without reaching their initial level. Highest stability was reached for coll coated implants, p = 0.051. It was concluded that collagen and coll/CS implant coatings have advantageous characteristics for peri-implant bone formation, compared with the further integration of BMP-4.

  16. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  17. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  18. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  19. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  20. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    International Nuclear Information System (INIS)

    Xu Jiang; Li Zhengyang; Zhu Wenhui; Liu Zili; Liu Wenjin

    2007-01-01

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of α-Al, TiB, Al 3 Ti and Al 3 Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al 5 Fe 2 phase and definite crystallographic relationship between the Al 5 Fe 2 phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase

  1. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)]. E-mail: xujiang73@nuaa.edu.cn; Li Zhengyang [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhu Wenhui [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Zili [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Wenjin [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2007-02-25

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of {alpha}-Al, TiB, Al{sub 3}Ti and Al{sub 3}Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al{sub 5}Fe{sub 2} phase and definite crystallographic relationship between the Al{sub 5}Fe{sub 2} phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase.

  2. SYNTHESIS AND CORROSION PROTECTION BEHAVIOR OF EPOXYTiO2-MICACEOUS IRON OXIDE NANO - COMPOSITE COATING ON St-37

    Directory of Open Access Journals (Sweden)

    M. R. Khorram

    2016-03-01

    Full Text Available The micro layers micaceous iron oxide and nano-TiO 2 were incorporated into the epoxy resin by mechanical mixing and sonication process. Optical micrographs showed that the number and diameter size of nanoparticle agglomerates were decreased by sonication. The structure and composition of the nanocomposite was determined using transmission electron microscopy which showed the presence of dispersed nano-TiO 2 in the polymer matrix. The anticorrosive properties of the synthesized nano-composites coating were investigated using salt spray, electrochemical impedance spectroscopy and polarization measurement. The EIS results showed that coating resistance increased by addition of micaceous iron oxide micro layers and nano-TiO 2 particles to the epoxy coatings. It was observed that higher corrosion protection of nanocomposite coatings obtained by the addition of 3 %wt micaceous iron oxide and 4%wt nano-TiO 2 into epoxy resin.

  3. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings

    International Nuclear Information System (INIS)

    Charpentier, P A; Burgess, K; Wang, L; Chowdhury, R R; Lotus, A F; Moula, G

    2012-01-01

    Grafting from polymerization was used to synthesize nano-titania/polyurethane (nTiO 2 /polyurethane) composite coatings, where nTiO 2 was chemically attached to the backbone of the polyurethane polymer matrix with a bifunctional monomer, 2,2-bis(hydroxymethyl) propionic acid (DMPA). This bifunctional monomer can coordinate to nTiO 2 through an available –COOH group, with two available hydroxyl groups that can react with diisocyanate terminated pre-polyurethane through step-growth polymerization. The coordination reaction was monitored by FTIR and TGA, with the coordination reaction found to follow first order kinetics. After step-growth polymerization, the polyurethane nanocomposites were found to be stable on standing with excellent distribution of Ti in the polymer matrix without any significant agglomeration compared to simple physical mixtures of nTiO 2 in the polyurethane coatings. The functionalized nTiO 2 –polyurethane composite coatings showed excellent antibacterial activity against gram-negative bacteria Escherichia coli; 99% of E. coli were killed within less than one hour under solar irradiation. Self-cleaning was also demonstrated using stearic acid as a model for ‘dirt’. (paper)

  4. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

    International Nuclear Information System (INIS)

    Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M.

    2004-01-01

    The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cracks and the damage was examined by scanning electron microscopy. These nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Interface debonding and sliding can thus occur in materials with microstructures approaching the atomic scale. Furthermore, for certain geometries a new mechanism of nanotube collapse in 'shear bands' occurs, rather than crack formation, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models are used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality. Three-dimensional FEM analysis indicates that matrix residual stresses on the order of 300 MPa are sustained in these materials without spontaneous cracking, suggesting that residual stress can be used to engineer enhanced performance. These nanoscale ceramic composites thus have potential for toughening and damage tolerance at submicron scales, and so are excellent candidates for wear-resistant coatings

  5. Radiation polymerizable coating composition containing an unsaturated phosphoric ester

    International Nuclear Information System (INIS)

    Dickie, R.A.; Cassatta, J.C.

    1976-01-01

    A radiation polymerizable protective coating composition or paint consists essentially of a binder solution of: (1) between about 90 and about 10 parts of a saturated, thermoplastic vinyl polymer prepared from at least about 85 weight percent of monofunctional vinyl monomers; (2) between about 10 and about 90 parts of vinyl solvent monomers for the vinyl polymer, at least about 10 weight percent, preferably at least about 30 weight percent, of the solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures of these; and (3) between about 1.0 and about 15.0 parts per 100 parts of the total of the thermoplastic vinyl polymer and the vinyl solvent monomers of a triester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrates, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by applying a base coat to a substrate and curing the same; vapor depositing a coating of metal over the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein. 7 claims, no drawings

  6. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  7. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H_2SO_4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  8. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  9. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  10. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  11. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  12. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  13. Oxidation resistance in air of 1-D SiC (Hi-nicalon) fibre reinforced silicon nitride ceramic matrix composite

    International Nuclear Information System (INIS)

    Dupel, P.; Veyret, J.B.

    1997-01-01

    The oxidation behaviour of a Si 3 N 4 matrix reinforced with SiC fibres (Hi-nicalon) pre-coated with a 400 nm thick pyrolytic carbon layer has been investigated in dry air in the temperature range 800-1500 C. The same study was performed for individual constituents of the composite (fibre and matrix). Two phenomena are observed in the oxidation behaviour of the composite. At low temperature (T<1200 C), the matrix oxidation is negligible, only the carbon interphase was oxidised creating an annular space between the fibres and the matrix throughout the sample. At high temperature (T≥1300 C) the rate of formation of the oxidation products of the matrix is rapid and a sealing effect is observed. While at these temperatures the interphase is protected in the bulk of the material, the time needed to seal the gap between the fibre and the matrix is too long to prevent its oxidation to a significant depth from the surface. Finally, preliminary results are presented where the consumption of the interphase is completely prevented by applying an external coating which gives oxidation protection from low to high temperature. (orig.)

  14. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  15. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  16. Preparation and characterization of aluminium-silica metal matrix composite

    Science.gov (United States)

    Mallikarjuna, G. B.; Basavaraj, E.

    2018-04-01

    Aluminum alloys are widely used in aerospace and automobile industries due to their low density and good mechanical properties, better corrosion resistance and wear, low thermal coefficient of expansion as compared to conventional metals and alloys. The excellent properties of these materials and relatively low production cost make them a very attractive for a variety of applications. In this present work, Al alloy LM13-SiO2 composites were produced by stir casting method. The reinforcement SiO2 particle size used for preparation of composites are 106 µm, 150 µm, 250 µm and 355 µm with varying amount of 3 to 12 wt% in steps of 3. The prepared composite specimens were machined as per test standards. Effects of weight percentage of SiO2 particles on wear, tensile strength of Al alloy LM13-SiO2 composites have been investigated. The microstructures of the composites were studied to know the dispersion of the SiO2 particles in matrix. Experimental results shows that there is enhanced mechanical properties, when silica weighing 9% was added to the base aluminium alloy and also similar trend exists in all four different micron size of silica and also it has been observed that addition of SiO2 particles significantly improves wear resistance properties as compared with that of unreinforced matrix.

  17. Development of Electrodeposited Zn/nano-TiO2 Composite Coatings with Enhanced Corrosion Performance

    Science.gov (United States)

    Benea, L.; Dănăilă, E.

    2017-06-01

    Pure zinc coatings have been found ineffective when are used in aggressive environments such as those which contain chlorides or industrial pollutants [1]. In this paper, Zn/nano-TiO2 composite coatings with various contents of TiO2 nanoparticles (diameter size of 10 nm) were prepared on low-carbon steel by electro-codeposition technique. The deposition was carried out at different cathodic potentials ranging from -1600 mV to -2100 mV for different deposition times between 5-15 min. Pure Zn coatings were also produced under the same experimental conditions for comparison. Present work aims to investigate the effects of selected electrodeposition parameters (cathodic potential, TiO2 nanoparticle concentration in the plating bath and electrodeposition time) on the corrosion behavior of electrodeposited Zn/nano-TiO2 composite obtained. The corrosion experiments were performed in natural seawater, using electrochemical methods such as open circuit potential, potentiodynamic polarization and linear polarization resistance. The results showed that the inclusion of TiO2 nanoparticles into zinc matrix lead to an improved corrosion resistance comparatively with pure zinc coatings obtained under similar conditions.

  18. Pulsed laser synthesis of ceramic-metal composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-01-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  19. Pulsed laser synthesis of ceramic-metal composite coating on steel

    Science.gov (United States)

    Du, Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-12-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  20. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  1. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  2. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  3. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  4. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  5. Mechanical and thermal properties of UV curable polyurethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Mohd Sofian Alias; Nik Ghazali Nik Salleh; Mohd Hamzah Harun; Mohd Yusof Hamzah; Rosley Che Ismail

    2012-01-01

    UV curable coating formulation comprises urethane acrylate resin and nano silica as filter were synthesized to develop UV curable inorganic hybrid composite (PUA). The surface of the nano silica was chemically modified to improve its chemical interaction within the urethane acrylate matrix. The modification had been undertaken by applying vinyltrymetoxysilane (VTMOS) that acted as a coupling agent to produce organophilic silica shell (SIMA). The shell is linked to the silica via reaction with the surface silanol group of the silica. The disappearance of methoxy groups in VTMOS was demonstrated by FTIR spectrum. The percentage of silica particles in UV curable hybrid formulation were varied on 5 %, 10 %, 15 %, 20 % and 25 wt % respectively. In this work, the formulation was applied on medium density fiber board (MDF) substrate and subsequent has been irradiated under UV light. Then, the coated MDF were characterized by several testing equipment (TGA, DSC, scratch tester, instron, SEM). From the result, we found that the addition of silica nanoparticles exhibit significant improvement in coating film properties as compared to film without silica nanoparticle includes significant improvement in its modulus and scratch resistance. This make them as promising coating candidate for MDF product. On the other hand, we also found that an increase of silica particle up to 25 wt %, the viscosity has increased rapidly indicates that it is not suitable for acrylate coating formulation due to disappearance of desired effect known as thixotropy. (Author)

  6. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zomorodian, A., E-mail: amir.zomorodian@ist.utl.pt [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Garcia, M.P. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Moura e Silva, T. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL, Department of Mechanical Engineering, 1959-007 Lisboa (Portugal); Fernandes, J.C.S. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Fernandes, M.H. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Montemor, M.F. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation.

  7. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    International Nuclear Information System (INIS)

    Zomorodian, A.; Garcia, M.P.; Moura e Silva, T.; Fernandes, J.C.S.; Fernandes, M.H.; Montemor, M.F.

    2015-01-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation

  8. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  9. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  10. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  11. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    Science.gov (United States)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  12. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  13. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  14. High performance bio-based thermosets for composites and coatings

    Science.gov (United States)

    Paramarta, Adlina Ambeg

    In the recent decade, there has been increasing interest in using renewable feedstocks as chemical commodities for composites and coatings application. Vegetable oils are promising renewable resources due to their wide availability with affordable cost. In fact, the utilization of vegetable oils to produce composite and coatings products has been around for centuries; linseed oil was widely used for wide variety of paints. However, due to its chemical structure, the application of vegetable oils for high-performance materials is limited; and thus chemical modification is necessary. One of the modification approaches is by substituting the glycerol core in the triglycerides with sucrose to form sucrose esters of vegetable oil fatty acids, in which this resin possesses a higher number of functional group per molecule and a more rigid core. In this research, thermosets of highly functionalized sucrose esters of vegetable oils were developed. Two crosslinking methods of epoxidized surcrose soyate (ESS) resins were explored: direct polymerization with anhydride moieties for composite applications and Michael-addition reaction of acrylated-epoxidized sucrose soyate (AESS) for coatings applications. In the first project, it was shown that the reaction kinetics, thermal and mechanical properties of the materials can be tuned by varying the molar ratio between the epoxide and anhydride, plus the type and amount of catalyst. Furthermore, the toughness properties of the ESS-based thermosets can be improved by changing the type of anhydride crosslinkers and incorporating secondary phase rubbers. Then, in the second system, the epoxy functionality in the ESS was converted into acrylate group, which then crosslinked with amine groups through the Michael-addition reaction to produce coatings systems. The high number of functional groups and the fast reactivity of the crosslinker results in coatings that can be cured at ambient temperature, yet still possess moderately high glass

  15. High temperature resin matrix composites for aerospace structures

    Science.gov (United States)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  16. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  17. Characterization and processing of heat treated aluminium matrix composite

    Science.gov (United States)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for

  18. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  19. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  20. Matrix resin effects in composite delamination - Mode I fracture aspects

    Science.gov (United States)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  1. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  2. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

    Science.gov (United States)

    Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo

    2013-04-01

    The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

  3. Electromagnetic and Microwave Absorption Properties of Carbonyl Tetrapod-Shaped Zno Nanostructures Composite Coatings

    Science.gov (United States)

    Yu, Haibo; Qin, Hui; Huang, Yunhua

    2012-08-01

    CIP/T-ZnO/EP composite coatings with carbonyl iron powders (CIP) and tetrapodshaped ZnO (T-ZnO) nanostructures as absorbers, and epoxy resin (EP) as matrix were prepared. The complex permittivity, permeability and microwave absorption properties of the coatings were investigated in the frequency range of 2-18 GHz. The effects of the weight ratio (CIP/T-ZnO/EP), the thickness and the solidification temperature on microwave absorption properties were discussed. When the weight ratio (CIP/TZnO/ EP), the thickness and the solidification temperature is 28:2:22, 1.8 mm, and 10°C, respectively, the optimal wave absorption with the minimum reflection loss (RL) value of -22.38 dB at 15.67 GHz and the bandwidth (RLcoatings may have a promising application in Ku-band (12-18 GHz).

  4. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  5. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  6. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  7. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  8. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    Science.gov (United States)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  9. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    International Nuclear Information System (INIS)

    Dolata, A J; Dyzia, M

    2012-01-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al 2 O 3 , SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  10. Aluminium matrix heterophase composites for air compressor pistons

    Directory of Open Access Journals (Sweden)

    M.Dyzia

    2011-04-01

    Full Text Available The article presents the results of surface test of composite shaped in the permanent mould casting process. As part of the research anddevelopment project realized in the Department of Materials Technology at the Silesian University of Technology, a pilot plant scale stand was built to manufacture of more than 50 kg suspensions in a single technological cycle. Made in industrial conditions castings to form in the five inner core mould mounted in GM110 permanent mould casting machine confirmed the possibility of the shaping the composite pistons. Castings made from composite suspension AlSi7Mg/SiC and AlSi7Mg/SiC + Cg according to the technology procedure were classified as correct and devoted to the proper machining forming working surfaces of the piston to the air compressor. Comparative tests were performed for the casting of unreinforced AlSi7Mg alloy and composite castings. To assess the ability to fill the mold cavity and the accuracy of mapping used in contour shape FRT analysis of the distance between the grooves on the surface of the piston skirt. Studies have confirmed the differences in the fluidity of alloy matrix and composites suspensions. The difference in the accuracy of the dimensional mapping mould does not disqualify of composite materials, all castings are classified as correct and used for machining.

  11. Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Elias, Liju; Hegde, A. Chitharanjan

    2016-01-01

    Highlights: • Electrocatalytic activity of Ni-P alloy is improved by Ag nanoparticle incorporation. • Ni-P-Ag electrode is developed through sol-enhanced electrodeposition. • Ni-P-Ag composite coating shows better electrocatalytic efficiency for HER. - Abstract: The effect of addition of silver nanoparticle sol (SNS) into Ni-P plating bath was studied in terms of the variation in electrocatalytic behavior of the developed coatings in 1.0 M KOH. Ni-P-Ag composite coating was achieved through direct electrolysis by adding a known quantity of the conventionally prepared SNS into Ni-P bath. Ni-P-Ag coatings electrodeposited galvanostatically on copper under different conditions of the bath was used as electrode material for alkaline hydrogen evolution reaction (HER). The optimal concentration of the SNS required for maximum electrocatalytic activity towards HER was obtained by adding different volumes of SNS (from 0 to 50 mL L −1 ) into the bath. The HER efficiency of the test electrodes in 1.0 M KOH medium was examined using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. The kinetics of HER on the alloy and composite electrodes were established through Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. Energy dispersive spectroscopy (EDS) was used to confirm the incorporation of Ag nanoparticles into the Ni-P alloy matrix. The microstructure and morphology of the alloy and composite coatings were analyzed by Scanning Electron Microscopy (SEM). A significant improvement in the electrocatalytic property of nano-Ag derived composite coatings was found, and was attributed to the enhanced electroactive sites of Ag particles. Deposition conditions to maximize the electrocatalytic activity of Ni-P-Ag nanocomposite coatings in relation to traditional Ni-P alloy coatings was arrived, and results are discussed.

  12. Deposition of aluminum coatings on bio-composite laminates

    Science.gov (United States)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  13. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  14. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  15. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    Science.gov (United States)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  16. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  17. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Science.gov (United States)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  18. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications.

    Science.gov (United States)

    Rikhari, Bhavana; Pugal Mani, S; Rajendran, N

    2018-06-01

    In the present work, the corrosion resistance performance and biocompatibility of polypyrrole/chitosan (PPy/CHI) composite coated Ti was studied. The deposition of composite coating was carried out by electropolymerization method. The deposited PPy/CHI composite coatings were different in morphology, structural, surface roughness and wettability compared PPy coated Ti. The presence of composite coating was confirmed by solid 13 C NMR. The PPy/CHI composite coating showed enhanced microhardness and adhesion strength compared to the PPy coating. The corrosion protection ability of PPy/CHI composite coatings at various applied potentials was analyzed by dynamic electrochemical impedance spectroscopy (DEIS), exhibited higher impedance in all the potentials compared to uncoated and PPy coated Ti. The lower corrosion current density obtained for PPy/CHI-2 composite coating from polarization studies revealed increased corrosion protection ability in SBF solution. The stability of composite coating was confirmed by immersion studies. PPy/CHI-2 composite coating immersed in SBF solution enhances hydroxyapatite (HAp) formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  20. Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells.

    Science.gov (United States)

    Franke, Katja; Pompe, Tilo; Bornhäuser, Martin; Werner, Carsten

    2007-02-01

    Interactions of hematopoietic progenitor cells (HPC) with their local microenvironments in the bone marrow are thought to control homing, differentiation, and self-renewal of the cells. To dissect the role of extracellular matrix (ECM) components of the niche microenvironment, a set of well-defined ECM coatings including fibronectin, heparin, heparan sulphate, hyaluronic acid, tropocollagen I, and co-fibrils of collagen I with heparin or hyaluronic acid was prepared and analysed with respect to the attachment of human CD133+ HPC in vitro. The extension of the adhesion areas of individual cells as well as the fraction of adherent cells were assessed by reflection interference contrast microscopy (RICM). Intense cell-matrix interactions were found on surfaces coated with fibronectin, heparin, heparan sulphate, and on the collagen I based co-fibrils. Insignificant adhesion was found for tropocollagen I and hyaluronic acid. The strongest adhesion of HPC was observed on fibronectin with contact areas of about 7 microm(2). Interaction of HPC with coatings consisting of heparin, heparan sulphate, and co-fibrils result in small circular shaped contact zones of 3 microm(2) pointing to another, less efficient, adhesion mechanism. Analysing the specificity of cell-matrix interaction by antibody blocking experiments suggests an integrin(alpha(5)beta(1))-specific adhesion on fibronectin, while adhesion on heparin was shown to be mediated by selectins (CD62L). Taken together, our data provide a basis for the design of advanced culture carriers supporting site-specific proliferation or differentiation of HPC.

  1. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  2. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    Science.gov (United States)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  3. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Science.gov (United States)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  4. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  5. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Mora, L. [Institute Eduardo Torroja for Construction Sciences-CSIC, Madrid (Spain); Department of Materials, University of Oxford (United Kingdom); Lowe, T. [Manchester X-ray Imaging Facility, The University of Manchester (United Kingdom); Zhao, S. [Department of Materials, University of Oxford (United Kingdom); Lee, P.D. [Research Complex at Harwell, Rutherford Appleton Laboratory (United Kingdom); Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester (United Kingdom); Marrow, T.J., E-mail: james.marrow@materials.ox.ac.uk [Department of Materials, University of Oxford (United Kingdom)

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  6. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  7. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Science.gov (United States)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  8. Discontinuously reinforced titanium matrix composites for fusion applications

    International Nuclear Information System (INIS)

    Castro, V.; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M.

    2002-01-01

    We have reinforced α-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  9. Discontinuously reinforced titanium matrix composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. E-mail: mvcastro@fis.uc3m.es; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M

    2002-12-01

    We have reinforced {alpha}-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  10. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  11. Baseplates in metallic matrix composites for power and microwave applications

    International Nuclear Information System (INIS)

    Massiot, P.

    1997-01-01

    Baseplates for microelectronic devices in fields where transform environments are encountered, such as automotive or airborne must have some fundamental characteristics such as: high thermal conductivity, low density, good mechanical properties and a coefficient of thermal expansion (CTE) nearly equal to the microelectronic substrates and the components installed on the baseplates. Metallic matrix composites are very good candidates because they perfectly answer to those requirements. In this presentation, with some examples of electronic devices in power and microwave applications we will show the big interest to use this kind of material. (author)

  12. Melt Drawing/Coating of Oxide Fibers for Composite Materials Applications

    National Research Council Canada - National Science Library

    Weber, J

    1996-01-01

    .... Fiber coatings were formed by pulsed excimer laser ablation. Push-out tests on coated fibers imbedded in a ceramic matrix gave small values of the debonding shear strength, tau d 25 MPa, for fibers coated with 2 MgO-SiO2 (enstatite...

  13. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    Directory of Open Access Journals (Sweden)

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  14. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  15. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  16. Polarization Behavior of Squeeze Cast Al2O3 Fiber Reinforced Aluminum Matrix Composites

    International Nuclear Information System (INIS)

    Ham, S. H.; Kang, Y. C.; Cho, K. M.; Park, I. M.

    1992-01-01

    Electrochemical polarization behavior of squeeze cast Al 2 O 3 short fiber reinforced Al alloy matrix composites was investigated for the basic understanding of the corrosion properties of the composites. The composites were fabricated with variations of fiber volume fraction and matrix alloys. It was found that the reinforced composites are more susceptible to corrosion attack than the unreinforced matrix alloys in general. Corrosion resistance shows decreasing tendency with increasing Al 2 O 3 fiber volume fraction in AC8A matrix. Effect of the matrix alloys revealed that the AC8A Al matrix composite is less susceptible to corrosion attack than the 2024 and 7075 Al matrix composites. Effect of plastic deformation on electrochemical polarization behavior of the squeeze cast Al/Al 2 O 3 composites was examined after extrusion of AC8A-10v/o Al 2 O 3 . Result shows that corrosion resistance is deteriorated after plastic deformation

  17. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  18. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  19. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  20. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  1. Development of sustained release capsules containing "coated matrix granules of metoprolol tartrate".

    Science.gov (United States)

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-09-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.

  2. Composite of ceramic-coated magnetic alloy particles

    Science.gov (United States)

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  3. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  4. Machinability study of Al-TiC metal matrix composite

    Directory of Open Access Journals (Sweden)

    Siddappa P. N.

    2018-01-01

    Full Text Available Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.

  5. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    Goyal, R K; Mulik, U P; Tiwari, A N; Negi, Y S

    2008-01-01

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al 2 O 3 particles was studied. The distribution of Al 2 O 3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10 -6 deg. C -1 for pure PEEK to 22 x 10 -6 deg. C -1 at 43 vol% micro-Al 2 O 3 and to 23 x 10 -6 deg. C -1 at 12 vol% nano-Al 2 O 3 composites. For a given volume fraction, nano-Al 2 O 3 particles are more effective in reducing the CTE of composites than that of micro-Al 2 O 3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  6. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  7. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  8. Nacre biomimetic design—A possible approach to prepare low infrared emissivity composite coatings

    International Nuclear Information System (INIS)

    Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang

    2013-01-01

    Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic–inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Highlights: ► Nacre-like composite coatings with low infrared emissivity were prepared. ► Infrared emissivity of PU/flaky bronze composite coatings can be as low as 0.206. ► One-dimensional photonic structure is the cause for low emissivity of the coatings.

  9. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  10. Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

    KAUST Repository

    Hammami, Mohamed Amen

    2017-11-01

    Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation. This thesis is divided into three sections according to the application including: I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers. II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating. In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. In the second project, the coaxial electrospinning approach has been applied to

  11. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  12. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  13. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  14. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  15. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  16. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    International Nuclear Information System (INIS)

    Janković, Ana; Eraković, Sanja; Mitrić, Miodrag; Matić, Ivana Z.; Juranić, Zorica D.; Tsui, Gary C.P.; Tang, Chak-yin; Mišković-Stanković, Vesna; Rhee, Kyong Yop; Park, Soo Jin

    2015-01-01

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  17. Effects of Different Surfactants on Structural, Tribological and Electrical Properties of Pulsed Electro-Codeposited Cu-ZrO2 Composite Coatings

    Science.gov (United States)

    Maharana, H. S.; Basu, A.

    2018-03-01

    Cu-ZrO2 composite coating was synthesized by pulse electrodeposition from an acidic sulfate electrolyte dispersed with nano-sized ZrO2 particles. Effects of different surfactants in different amounts on the codeposition and distribution of ZrO2 particles in the copper matrix, surface-mechanical (hardness and wear) and electrical (conductivity) properties of developed composite coatings have been thoroughly investigated. Sodium dodecyl sulfate (SDS), poly acrylic acid (PAA) and glucose have been added in the electrolyte in different concentrations as anionic, polymeric and nonionic surfactants. Obtained experimental results confirmed that addition of SDS up to 1 g/L improves the amount of codeposited ZrO2 particles in the copper matrix and surface-mechanical properties of the nanocomposite coatings. But, in case of PAA- and glucose-assisted coatings, highest amount of ZrO2 codeposition was observed in 0.5 g/L PAA and 20 g/L glucose-assisted coatings, which in turn affected the mechanical properties. Surface-mechanical properties were found to be affected by coating matrix morphology and crystallographic orientation along with embedded ZrO2 particle content. Electrical conductivity of all the deposits not only depends upon the codeposition of ZrO2 particles in the matrix but also on the microstructure and crystallographic orientation.

  18. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  19. Effect of Al-B2O3-TiO2 Exothermic System on Performances of Fly Ash Glass/Ceramic Composite Coating

    Directory of Open Access Journals (Sweden)

    Yajun An

    2018-01-01

    Full Text Available Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B2O3 exothermic system, the morphology, phase, thermal shock resistance, and corrosion resistance of the coating were tested, and the influence of exothermic system on the structure and properties of the composite coating was studied. The experimental results show that the addition of exothermic system can promote the formation of NaB15, TiB2, Na2B4O7, Ca2Al2SiO7, and other new phases by thermo-chemical reaction; when compared to the composite coating without addition of exothermic system, combined with a good interface, higher compactness, and lower porosity. The highest micro hardness can be reached 725HV0.1. The number of thermal shock from 700 °C to room temperature can reach more than 50 times; acid, salt, oil immersion corrosion test, composite coating with exothermic system relative to the matrix increased by 27.40 times, 3.97 times, and 1.88 times, respectively. The overall performance is better than that of the composite coating without exothermic system.

  20. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  1. Paint Removal from Composites and Protective Coating Development

    Science.gov (United States)

    1991-01-01

    WL-TR-91-4025 AD-A249 238 PAINT REMOVAL FROM COMPOSITES AND PROTECTIVE COATING DEVELOPMENT Peter W. Kopf Jay Cheney John Martin, et al. Arthur D...PERSONAL AUTHOR(S) Peter Kopf, Jay Cheney, John Martin et al. 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mot, Day) I1S. PAGE COUNT...Adhesive -.............. "𔃺*/900 -.... .... .... -- - 450 - - - -------- - -- e nk~ T17 J 50 ,1 ZEC 9837 Experimental 350OF Surfacing Film DESCRIPTION XHC

  2. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  3. Kinetics of transformation of deformation processed gold-matrix composite

    Science.gov (United States)

    Wongpreedee, Kageeporn

    Gold matrix Ḏeformation-processed M&barbelow;etal M&barbelow;etal C&barbelow;omposites (DMMC) have been developed that have better strength and conductivity than conventional gold alloys. However, DMMC possess metastable two-phase microstructures, and their strength and conductivity decrease after prolonged exposure to elevated temperatures. The kinetics of the transformation from the metastable two-phase microstructure to the equilibrium single-phase solid solution is of interest. This document describes a study of the elevated temperature stability of Au DMMC's and the relationship between microstructure and resistivity of three compositions: Au-7 vol %Ag, Au-14 vol %Ag, and Au-vol 7%Pt. DMMC samples were prepared by a powder metallurgy technique and mechanical processes. The smallest final diameter of these wires was 120 mum. Avrami and Arrhenius relations were used to evaluate the kinetic transformation. The extensive deformation used to produce these composites reshaped the initially equi-axed powder particles into a nanofilamentary composite. Electrical resistivity measurements were used to determine the degree of transformation from the initial metastable nano-filamentary composite to the equilibrium solid solution condition. These measurements indicated that this transformation in Au-14 at%Ag, Au-7 at %Ag Au and Au-7 at %Pt DMMC wires proceeded with activation energies of 141, 156, and 167 kJ/mol, respectively. It is thought that these empirically determined activation energies differ from those determined in single crystal, planar interface Au-Ag and Au-Pt diffusion couples due to chemical potential, surface curvature, and strain effects. The DMMC systems reach the equilibrium solid solution condition faster than single crystal, planar interface systems for two reasons: (1) far more defects (dislocations, grain boundaries, vacancies from non-conservative dislocation motion, etc.) are present in the Au-Ag and Au-Pt DMMC composites, and (2) the small

  4. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  5. Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays.

    Science.gov (United States)

    Gunn, Nicholas M; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L

    2010-11-01

    The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, for example, progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent on the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence.

  6. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  7. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  8. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.