WorldWideScience

Sample records for matieres radioactives presente

  1. Presentation the national Plan of management of radioactive materials and wastes. Friday, the 4. of June 2010

    International Nuclear Information System (INIS)

    2010-01-01

    After a synthesis of the national plan of management of radioactive materials and wastes (PNGMDR for Plan national de gestion des matieres et des dechets radioactifs), this document contains the main conclusions of this plan for the period 2010-2012, a presentation of its elaboration modalities, a presentation of the basic principles regarding radioactive materials and wastes (definitions, origins, waste types and categories, waste management types), a presentation of the main actors of their management (agencies, ministries, authorities, research organizations, institutional bodies, associations). A glossary and other documents are provided, notably a presentation of the ASN (the French Nuclear Safety Authority), a report by the ANDRA agency giving an inventory of radioactive materials and wastes, and a chapter of a report on nuclear safety and radioprotection status in France in 2009

  2. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  3. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  4. Vertical and Horizontal Mixing Rates of Radioactive Material in the Ocean; Taux de Melange Vertical et Horizontal des Matieres Radioactives Contenues dans l'Ocean; 0421 041a 041e 0420 041e 0421 0422 0414 ; Velocidades de Mezcla Vertical y Horizontal de Sustancias Radiactivas en las Aguas del Oceano

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y.; Saruhashi, K. [Geochemical Laboratory, Meteorological Research Institute, Tokyo (Japan)

    1960-07-01

    Observations on the vertical distribution of radioactivity in the Pacific Ocean showed that presence of activity was mostly limited to the mixed layer above the thermocline in June 1954 (Miyake, Sugiura and Kameda, 1954). In March 1955, however, the activity extended down to about 600 m below the surface, the thermocline being present at the depth of 75 m (operation Troll, USAEC, 1956). If there is any biological transport of radioactive material in a vertical direction in sea-water, migration of plankton might be more effective than decomposition of organic debris in transporting radioactive material, although it would be only 10-20% of the physical mixing rate. When radioactive material diffuses out from a source point, the horizontal eddy diffusion coefficient may be obtained from the time change of the distribution of the activity. (author) [French] Il ressort des observations sur la repartition verticale de la radioactivite dans l'ocean Pacifique que l'activite, en juin 1954, etait presque entierement limitee a la couche mixte situee au-dessus du gradient thermique. Cependant, en mars 1955, l'activite s'etendait jusqu'aux environs de 600 m au-dessous de la surface, le gradient thermique se situant a une profondeur de 75 m (operation Troll, USAEC 1956). Si donc il y a un transport biologique quelconque de matieres radioactives dans le sens vertical, la migration de planctons pourrait etre plus efficace que la decomposition des debris organiques pour le transport de matieres radioactives alors qu'elle ne representerait que 10 a 20 pour cent du taux de melange physique. Lorsqu'une matiere est diffusee a partir d'une source, le coefficient de diffusion horizontale des remous peut etre calcule d'apres la modification du temps de repartition de l'activite. (author) [Spanish] Los estudios realizados sobre la distribucion vertical de la radiactividad en el oceano Pacifico pusieron de manifiesto que, en junio de 1954, dicha actividad se circunscribia principalmente a

  5. The determination by irradiation with a pulsed neutron generator and delayed neutron counting of the amount of fissile material present in a sample; Determination de la quantite de matiere fissile presente dans un echantillon par irradiation au moyen d'une source pulsee de neutrons et comptage des neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Beliard, L; Janot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A preliminary study was conducted to determine the amount of fissile material present in a sample. The method used consisted in irradiating the sample by means of a pulsed neutron generator and delayed neutron counting. Results show the validity of this method provided some experimental precautions are taken. Checking on the residual proportion of fissile material in leached hulls seems possible. (authors) [French] Ce rapport rend compte d'une etude preliminaire effectuee en vue de determiner la quantite de matiere fissile presente dans un echantillon. La methode utilisee consiste a irradier l'echantillon considere au moyen d'une source puisee de neutrons et a compter les neutrons retardes produits. Les resultats obtenus permettent de conclure a la validite de la methode moyennant certaines precautions. Un controle de la teneur residuelle en matiere fissile des gaines apres traitement semble possible. (auteurs)

  6. The transport safety of radioactive matters; La surete des transports des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Landier, D.; Louet, Ch.A.; Robert, Ch. [Autorite de Surete Nucleaire, 75 - Paris (France); Binet, J. [Commission europeenne, DG Energie et transports, Bruxelles (Belgium); Malesys, P. [TN International, 75 - Paris (France); Pourade, C. [Societe Dangexpress, 78 - St Remy l' Honore (France); Le Meur, A.; Robert, M. [Societe Nationale des Chemins de fer Francais, 75 - Paris (France); Turquet de Beauregard, G.Y.; Hello, E. [CIS bio, 91 - Gif sur Yvette (France); Laumond, A. [Electricite de France (EDF), 75 - Paris (France); Regnault, Ph.; Gourlay, M. [AREVA NC, 78 - Velizy Villacoublay (France); Bruhl, G. [CEA Fontenay-aux-Roses, Dir. de la Protection et de la Surete Nucleaire, 92 (France); Malvache, P.; Dumesnil, J. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Cohen, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Sert, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Pain, M. [Ministere de l' Interieur, et de l' Amenagement du Territoire, Dir. de la Defense et la Securite Civiles, 75 - Paris (France); Green, L.; Hartenstein, M. [World Nuclear Transport Institute, London (United Kingdom); Stewart, J. [Ministere des Transport, Royaume Uni (United Kingdom); Cottens, E.; Liebens, M. [Agence Federale de Controle Nucleaire (Belgium); Marignac, Y. [Wise, 75 - Paris (France)

    2007-02-15

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  7. Disposal of radioactive waste in Romania. Present and future strategy

    International Nuclear Information System (INIS)

    Rodna, A.; Garlea, C.

    2002-01-01

    The paper begins with the presentation of the actual situation of radioactive waste management in Romania. The organizations responsible for radioactive waste management and their capabilities are described, including radioactive waste disposal. The main provisions of the 'Draft law regarding the management of nuclear spent fuel and radioactive waste, in view of their final disposal' are also presented, with accent on the responsibilities of the National Radioactive Waste Agency (ANDRAD) and on the fund for radioactive waste and spent fuel management and for decommissioning. The paper ends with the presentation of the future radioactive waste and spent fuel management strategy. (author)

  8. Radioactivity made understandable. A common language presentation

    International Nuclear Information System (INIS)

    Traebert, E.

    2007-01-01

    The word ''radioactivity'' has something scary about it; it makes us think of something intangable, creeping dangers, the mysterious ticking of Geiger counters, reactor disasters, dirty bombs, nuclear contamination and destruction. True: Whole landscapes were made uninhabitable by accidents involving radioactive material such as Windscale, Sellafield and Chernobyl and others that were kept largely secret from the public. While to some they brought premature death, for the great majority of the world population their effects have so far been insignificant. By contrast, how little known is the fact that natural radioactivity has been around since human beginnings and that the cells of the human body have always been equipped to repair damage from radioactive radiation or other causes provided such damage does not occur too frequently. Elmar Traebert presents the physics underlying radioactivity without resorting to formulas and explains in an easily understandable manner the different types of radiation, their measurement and sources (in medicine, power plants, and weapons technology) and how they should be handled. He describes nuclear power plants and the safety problems they involve, sunburn, radiation therapy, uranium ammunition and uranium mining. Whoever knows about these things can more early cope with his own fears and maybe allay some of them. He can also see through statements made by different interest groups with regard to radioactive material and duly form his own opinion

  9. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  10. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul; Projet de loi sur la gestion des matieres et des dechets radioactifs 2006 avis presente par Mme Anne Duthilleul

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  11. Research strategies and programs related to the National Plan of Management of Radioactive Materials and Wastes. Issue 2008

    International Nuclear Information System (INIS)

    2008-01-01

    After having recalled the legal context defining the requirements of the PNGMDR (Plan national de gestion des matieres et dechets radioactifs, national plan of management of radioactive materials and wastes), this report presents several research programs which address various domains: waste packaging and behaviour (decontamination, waste characterization, waste processing, the storage sizing inventory model, parcel behaviour, used fuel evolution, future wastes), warehousing and storage in deep geological formation (characterization of the Meuse/Haute-Marne site, scientific program, simulation programs, measurement means for storage monitoring, knowledge base, security and reversibility options for storage design, security studies, warehousing options), storage of radiferous and graphite wastes, investigation of separation/transmutation scenarios, investigations related to separation, investigations related to fuel fabrication, investigations related to the transmutation of minor actinides, researches in social and human sciences

  12. Radioactive contamination in Arctic - present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, Per

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  13. National inventory of the radioactive wastes and the recycling materials; Inventaire national des dechets radioactifs et des matieres valorisables

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.C

    2006-07-01

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  14. Present and future radioactive beam studies at GANIL. From SISSI to SPIRAL

    International Nuclear Information System (INIS)

    Guerreau, D.

    1996-01-01

    The present status of radioactive beam developments at GANIL is discussed. The emphasis is put on the construction of the new SPIRAL radioactive beam facility presently underway and of the main trends in physics. (author)

  15. Program law n. 2006-739 of the 28 June 2006 relative to the sustainable management of radioactive materials and wastes: presentation by article; La loi de programme n. 2006-739 du 28 juin 2006 relative a la gestion durable des matieres et dechets radioactifs: presentation par article

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The french law of 1991, decided to define management solutions in the radioactive wastes management policy, is now over. The results of researches led to the promulgation of a new planing act, the law of the 28 June 2006. This law concerns the sustainable management of radioactive materials and wastes. It takes also in account a public debate, organized in September 2005 by the National Commission for Public Debate. The Law project architecture can be described in three main points: the implementing of a national policy of radioactive materials and wastes, a better transparency and democratic control and the implementing of specific modalities for the organization and the financing of spent fuels and radioactive wastes management. This document presents what is in the different articles, with a special attention to the contributions of the parliamentary debate. (A.L.B.)

  16. The energy outlook in China-Minutes from the seminar organised by the Centre Geopolitique de l'Energie et des Matieres Premieres

    International Nuclear Information System (INIS)

    Keppler, J.H.; Meritet, S.

    2004-01-01

    As part of the seminars that are organised on a regular basis, the Centre de Geopolitique de l'Energie et des Matieres Premieres has devoted, on the 2. of June, a day to China, its energetics outlook and the resulting economic and geopolitical challenges. (authors)

  17. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families; Inventaire national des dechets radioactifs et des matieres valorisables 2006. Catalogue descriptif des familles de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  18. Presentation of the program law of the 28 June 2006 relative to the sustainable management of radioactive materials and wastes; Presentation de la loi de programme du 28 juin 2006 relative a la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The french law of 1991, decided to define management solutions in the radioactive wastes management policy, is now over. The results of researches led to the promulgation of a new planing act, the law of the 28 June 2006. This law concerns the sustainable management of radioactive materials and wastes. It takes also in account a public debate, organized in September 2005 by the National Commission for Public Debate. The Law project architecture can be described in three main points: the implementing of a national policy of radioactive materials and wastes, a better transparency and democratic control and the implementing of specific modalities for the organization and the financing of spent fuels and radioactive wastes management. The law sets 2015 as deadline to submit the statutory application in order to commission a deep geological repository for high-level and long-lived radioactive wastes. (A.L.B.)

  19. Analyzing the present Yunnan provincial condition and countermeasure of radioactive environmental management

    International Nuclear Information System (INIS)

    Zhang Jianping; Sun Ye; Zhou Liqiang

    2005-01-01

    Being aware of the present Yunnan provincial realities of the nuclear technology application, the present supervision conditions on nuclear safety and radioactive environment are analysed. Some suggestions, such as constituting Yunnan supervision structure of radioactive environment, demonstrating radiation supervisions in critical regions, and speeding up the system development of Yunnan provincial supervision on radiation environment, are brought out to the details. (authors)

  20. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  1. Present and future radioactive nuclear beam developments at Argonne

    International Nuclear Information System (INIS)

    Decrock, P.

    1996-01-01

    A scheme for building an ISOL-based radioactive nuclear beam facility at the Argonne Physics Division, is currently evaluated. The feasibility and efficiency of the different steps in the proposed production- and acceleration cycles are being tested. At the Dynamitron Facility of the ANL Physics Division, stripping yields of Kr, Xe and Ph beams in a windowless gas cell have been measured and the study of fission of 238 U induced by fast neutrons from the 9 Be(dn) reaction is in progress. Different aspects of the post-acceleration procedure are currently being investigated. In parallel with this work, energetic radioactive beams such as 17 F, 18 F and 56 Ni have recently been developed at Argonne using the present ATLAS facility

  2. Communications of 15 November 1999 Received from Member States Regarding the Export of Nuclear Material and of Certain Categories of Equipment and Other Material; Communications En Date Du 15 Novembre 1999 Recues D'Etats Membres Concernant L'Exportation De Matieres Nucleaires Et De Certaines Categories D'Equipements Et D'Autres Matieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-15

    The Director General of the International Atomic Energy Agency has received letters of 17 October 1996 from the Resident Representatives of Argentina, Australia, Austria, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, the Netherlands, Norway, Poland, Portugal, Romania, the Russian Federation, the Slovak Republic, South Africa, Spain, Sweden, the United Kingdom, and the United States of America, concerning the export of nuclear material and of certain categories of equipment and other material [French] Le Directeur general de l'Agence internationale de l'energie atomique a recu des lettres datees du 15 novembre 1999 que les representants permanents des pays suivants lui ont adressees au sujet de l'exportation de matieres nucleaires et de certaines categories d'equipements et d'autres matieres : Afrique du Sud, Allemagne, Argentine, Australie, Autriche, Belgique, Bulgarie, Canada, Coree (Republique de), Danemark, Espagne, Etats-Unis d'Amerique, Finlande, France, Grece, Hongrie, Irlande, Italie, Japon, Luxembourg, Norvege, Pays-Bas, Pologne, Portugal, Republique slovaque, Republique tcheque, Roumanie, Royaume-Uni, Suede, Suisse, Turquie et Ukraine.

  3. Transport of radioactive materials of the C. A. E. [CEA (France)]. Le transport des matieres radioactives au C.E.A.

    Energy Technology Data Exchange (ETDEWEB)

    Labrousse, M.

    1974-03-15

    Since the publication, in 1967, of the two issues of the Bull. Inform. Sci. Tech. devoted to the transport of radioactive materials, an important evolution has taken place, bearing both on the nature of the transports--where natural uranium hexafluoride, irradiated fuel, and wastes are becoming comparatively more important than miscellaneous small packages--and the construction of packagings, which are becoming more and more elaborate. This evolution appears in the reports selected for the BIST that are briefly introduced. (8 fig.)

  4. Radioactive decay pattern of actinides present in waste from Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Goro; Dellamano, José Claudio, E-mail: hiromoto@ipen.br, E-mail: jcdellam@ipen.br [Instituto de PesquisasEnergéticas e Nucleares (GRR/IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Rejeitos Radioativos

    2017-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of LEU targets to meet the present national demand of {sup 99m}Tc. The {sup 99}Mo activity planned at the end of irradiation is 5000 Ci (185 TBq) per weekly cycle, in order to meet the present demand of 1000 Ci (37 TBq) per week, after target cooling and processing. To predict the activities that will be handled in the waste treatment facility, the computational code SCALE 6.0 was used to simulate the irradiation of the uranium targets and the decay of radioactive products. This study presents the findings of this research, mainly focused on the actinides activity that will be present in the waste and the respective radioactive decay pattern over a period of one hundred thousand years. (author)

  5. Survey of radiation protection programmes for transport; Etude des programmes de radioprotection pour les transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  6. Radioactive contamination in the Arctic - Present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, P.

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In 1991, the International Arctic Environmental Protection Strategy (IAEPS) was launched and the Arctic Monitoring and Assessment Programme (AMAP) established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (author)

  7. A study on environmental pollution caused by radioactive substances and its countermeasure techniques. Part 2. Present situation of radioactive pollution and decontamination

    International Nuclear Information System (INIS)

    Nozaki, Atsuo; Kakuma, Takayuki; Narita, Yasunori; Yoshino, Hiroshi

    2012-01-01

    In present research, in order to clarify the actual condition of contamination, the radioactive concentration of the soil and the plant in Koriyama city was measured. It turned out that the radioactive concentration of soil or plants were heavily polluted by caesium-134 and 137, and iodine-131 was already disappeared by its lifetime. Especially, cesium-134 + 137 was ranged 3400 Bq/kg at the surface of soil in garden, however, it was remarkably decreased in the deeper point at 10 cm and ranged 23 Bq/kg, and we cannot detect the cesium at 15 cm. It is necessary for people in Fukushima to decontaminate for reducing radioactivity level. And it turned out that the evergreen plants have been polluted at high radioactive concentration and decontamination by cutting down the plant was decreased by 14% average. Most of radioactive material is removed by removing soils. (author)

  8. Regulations concerning radiation protection and survey; Donnees de la surveillance et regles qui en resultent en matiere de protection contre les rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel,; Lavie,; Fitoussi, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    will only be considered with regard to recuperation of uranium after simple machining. (author) [French] 1. L'utilisation croissante de l'energie nucleaire sous toutes ses formes a des fins pacifiques pose des problemes de securite vis-a-vis des travailleurs, des populations et des sites en general. Une etude comparee des risques d'irradiation auxquels le personnel du Commissariat a l'Energie atomique (CEA) a ete expose au cours de l'annee 1957 et des resultats du controle des radiations par les moyens de detection collectifs ou individuels montre que les installations du CEA ont une influence negligeable sur la sante, en raison de la surveillance exercee. 2. Cependant, quelques incidents de contamination et d'irradiation - sommairement indiques ainsi que la maniere dont ils ont ete regles - rendent necessaire l'elaboration d'une reglementation precise definissant les responsabilites respectives, au sein d'un etablissement nucleaire, des services utilisateurs et du Service charge de la Protection contre les Radiations, en matiere de prevention de la contamination. 3. Un ensemble coherent de regles pratiques de prevention et de protection relatives a la detention, la manipulation, le transport et le stockage de sources radioactives scellees ou non scellees, est presente. A cette fin, a partir des recommandations de la Commission Internationale de Protection Radiologique et compte tenu: - de leur nocivite radioactive; de leur activite specifique par unite de masse et du risque de contamination; les radioelements ont ete classes suivant le danger qu'ils presentent par rapport au plutonium. 4. Le Service charge de la Protection contre les Radiations intervient comme conseiller des la conception des laboratoires specialises et veille ensuite a ce que les prescriptions reglementaires de securite soient observees. 5. Des donnees elaborees, indispensables a la protection contre les rayonnements, sont mises a la disposition des utilisateurs en particulier: - table des radio

  9. National inventory of radioactive wastes and valorizable materials. Synthesis report; Inventaire national des dechets radioactifs et des matieres valorisables. Rapport de synthese

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  10. The transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the French national plan for the management of radioactive materials and wastes (PNGMDR - Plan national de gestion des matieres et dechets nucleaires), its elaboration process, its content in terms of nuclear fuel cycle. Then, it describes the control by the ASN of the nuclear fuel cycle, the associated installations, the concerned transports, the 'cycle consistency' approach and its limitations. Propositions are stated aiming at the improvement of the transparency associated with the fuel cycle: to use the PNGMDR, to extend the investigation on the cycle consistency to imported materials and wastes, to improve the transparency on radioactive material transport

  11. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  12. Elaboration of an alpha-numeric classification for file of matters of the documentation service of the CEA; Elaboration d'une classification alfha-numerique pour le fichier matieres du service de documentation du Commissariat a l'Energie Atomique

    Energy Technology Data Exchange (ETDEWEB)

    Braffort, P [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    We give the principles of a classification of matters to square basis, suiting the needs of the Service, of Documentation of the C.E.A. We present the detail of the categories in the order of the 'columns', likewise the big scientific subdivisions at the CEA. (authors) [French] On donne les principes d'une classification matieres a base carree, convenant aux besoins du Service de Documentation du C.E.A. On presente ensuite le detail des rubriques dans l'ordre des ''colonnes'', c'est-a-dire, des grandes subdivisions scientifiques du C.E.A. (auteurs)

  13. Radioactive wastes: present problems and future prospects

    International Nuclear Information System (INIS)

    Gauvenet, Andre

    1975-01-01

    The main characteristics of radioactive wastes are described and the present problems arising from liquid or gas effluents are considered. It is concluded that nuclear power stations are considerably less pollutant, at equal capacity, than conventional power stations. Programs of investigation are now being developed to meet with the foreseeable increase of activity. The problem is: first, to maintain absorbed doses at their present level and second, to study the problem of long-lived elements the storage of which would, in the long run create a nuisance on a world scale. The different waste storage techniques now in use are described and current investigations and works are exposed some of which, like vitrification, have already begun to be put into application. After having noted that the problem of wastes constitutes doubtless a difficulty in the technical field and, maybe even more so in the psychological field, the conditions are defined which will have to be met in order that this problem should not hinder the short- and long-term development of nuclear energy [fr

  14. National Inventories and Management Strategies for Spent Nuclear Fuel and Radioactive Waste. Methodology for Common Presentation of Data

    International Nuclear Information System (INIS)

    Volckaert, Geert; George, Mathews; Kugel, Karin; Garamszeghy, Miklos; Leclaire, Arnaud; Dionisi, Mario; Deryabin, Sergey; Lebedev, Vladimir; ); Lemmens, A.; Cairns, B.; Neri, E.G.

    2016-01-01

    Radioactive waste inventory data are an important element in the development of a national radioactive waste management programme since these data affect the design and selection of the ultimate disposal methods. Inventory data are generally presented as an amount of radioactive waste under various waste classes, according to the waste classification scheme developed and adopted by the country or national programme in question. Various waste classification schemes have thus evolved in most countries, and these schemes classify radioactive waste according to its origin, to criteria related to the protection of workers or to the physical, chemical and radiological properties of the waste and the planned disposal method(s). The diversity in classification schemes across countries has restricted the possibility of comparing waste inventories and led to difficulties in interpreting waste management practices, both nationally and internationally. To help improve this situation, the Nuclear Energy Agency proposed to develop a methodology that would ensure consistency of national radioactive waste inventory data when presenting them in a common scheme. This report provides such a methodology and presenting scheme for spent nuclear fuel and for waste arising from reprocessing. The extension of the methodology and presenting scheme to other types of radioactive waste and corresponding management strategies is envisaged in a second phase. (authors)

  15. Professional Nuclear Materials Management; Gestion Industrielle des Matieres Nucleaires; Obrashchenie s yadernymi materialami na professional'nom urovne; Administracion Eficiente de Materiales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Forcella, A. A.; O' Leary, W. J. [Allis-Chalmers Manufacturing Company, Bethesda, MD (United States)

    1966-02-15

    . (author) [French] Le memoire expose en quoi consiste la gestion des matieres nucleaires dans une centrale nucleaire type, aux Etats-Unis. Comme le reacteur en question est partiellement finance a l'aide de capitaux prives, l'une des principales obligations de l'exploitant est d'assurer la protection et la rentabilite des investissements. Etant donne que les matieres nucleaires sont d'une valeur intrinseque elevee, il faut constamment proceder a des controles appropries allant au-dela des mesures de securite et de la comptabilite interessant les matieresnucleaires proprement dites afin de reduire les pertes au minimum. Il faut faire preuve de clairvoyance et planifier judicieusement pour prevenir toute perte supplementaire de capital provenant de frais inutiles ou d'un manque a gagner dans divers secteurs de l'exploitation. C'est ainsi que le gestionnaire de matieres nucleaires doit prendre des dispositions pour garantir la bonne marche des operations et assurer le respect des plans d'execution par une liaison et un controle constants, dans les domaines suivants? a) acquisition du combustible et des elements combustibles, b) utilisation des elements combustibles dans le reacteur et c) recuperation, dans le combustible irradie, des produits et matieres presentant de l'interet. Pendant la periode qui precede l'utilisation du reacteur, il faut faire une place importante dans la planification et les travaux preparatoires aux considerations d'economie dans la conception des elements combustibles, en ce qui concerne leur fabrication, leur manutention, leur transport et leur remplacement. Les differentes etapes de la fabrication doivent etre planifiees de facon a reduire au minimum le manque a gagner du a des periodes improductives d'entreposage de matieres tres couteuses. Pendant la marche du reacteur, il faut assurer une combustion maximale de la matiere fissile par des redistributions appropriees du combustible dans le coeur du reacteur. Parallelement, les temps morts dus a

  16. Taking into account the dissemination risk of radioactive materials in the French fuel cycle factories; La prise en compte du risque de dissemination des matieres radioactives dans les usines du cycle du combustible en France

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J

    1994-12-31

    In this text the conception principles retained for treating the dissemination risk of radioactive matters in the French fuel cycle factories are presented. For taking into account this risk successives containment systems are used with respects to the ventilation regulations and fire protection.

  17. National plan of radioactive wastes and matters 2007-2009; Plan national de gestion des matieres et des dechets radioactifs 2007-2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    This Plan aims to propose a global framework allowing the management of radioactive wastes, whatever the producers in order to control the safety and the choice of adapted disposal sites. The first part is devoted to the description of solutions of radioactive wastes management for existing or engaged wastes. The second part concerns radioactive materials of the nuclear industry which are not considered as wastes, but as recycling materials for future nuclear reactors. For instance, this part discusses the particular case of the depleted uranium. The third part examines the different channels of the long dated management. The last part brings together the all data and in particular problematic points which must be discussed and analyzed in a logic framework. Propositions and recommendations are provided. (A.L.B.)

  18. Non-destructive analysis of major components in plant materials by mean of 14-MeV neutrons; Analyse ''non destructrice'' des principaux constituants de la matiere vegetale apres irradiation aux neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Although reactors are an important source of neutrons for activation analysis, it is sometimes convenient to have recourse to other, less expensive neutron sources. The Centre d'Etudes Nucleaires at Grenoble has small electrostatic accelerators which generate fast neutrons of 14 MeV energy. These SAMES-type generators are used for directing a deuton beam at 150 kV onto a tritiated target, the resulting flux of monoenergetic neutrons attaining 5 x 10{sup 11} ns{sup -1} in 4 {pi} geometry by the {sup 3}H(d,n){sup 4}He reaction. Numerous elements found in plant material can be activated in this flux, mainly by (n,p), (n,{alpha}) and (n,2n) reactions. Current research is directed towards making use of the entire gamma spectrum of activated plant matter. A computer is used to break down the spectrum into seven main spectral regions by the least-squares method. As a first approximation, these regions are those obtained from aluminium, calcium, potassium, magnesium, phosphorus, silicon and chlorine standards in standard activation and radioactive decay conditions. The wanted advantage of this way of analysis is not acute sensibility, but great fastness. Therefore radioactivation with 14 MeV neutrons is particularly well adapted to quick and simultaneous dosages of useful elements in agronomy. (author) [French] Bien que les reacteurs constituent une source de neutrons importante en analyse par activation, il est parfois commode de recourir a d'autres sources neutronigenes exigeant un investissement moindre. Le Centre d'Etudes Nucleaires de Grenoble dispose de petits accelerateurs electrostatiques generateurs de neutrons rapides de 14 MeV. Ces generateurs, de type SAMES, accelerent un faisceau de deutons sous 150 kV vers une cible tritiee. Celle-ci fournit un flux de neutrons mono-energetiques atteignant 5 x 10{sup 11} n/s/4 {pi} par la reaction {sup 3}H(d,n){sup 4}He. De nombreux elements composant les matieres vegetales s'activent dans ce flux principalement par reactions

  19. Radioactivity made understandable. A common language presentation; Radioaktivitaet - verstaendlich. Eine moeglichst allgemein verstaendliche Darstellung

    Energy Technology Data Exchange (ETDEWEB)

    Traebert, E.

    2007-07-01

    The word ''radioactivity'' has something scary about it; it makes us think of something intangable, creeping dangers, the mysterious ticking of Geiger counters, reactor disasters, dirty bombs, nuclear contamination and destruction. True: Whole landscapes were made uninhabitable by accidents involving radioactive material such as Windscale, Sellafield and Chernobyl and others that were kept largely secret from the public. While to some they brought premature death, for the great majority of the world population their effects have so far been insignificant. By contrast, how little known is the fact that natural radioactivity has been around since human beginnings and that the cells of the human body have always been equipped to repair damage from radioactive radiation or other causes provided such damage does not occur too frequently. Elmar Traebert presents the physics underlying radioactivity without resorting to formulas and explains in an easily understandable manner the different types of radiation, their measurement and sources (in medicine, power plants, and weapons technology) and how they should be handled. He describes nuclear power plants and the safety problems they involve, sunburn, radiation therapy, uranium ammunition and uranium mining. Whoever knows about these things can more early cope with his own fears and maybe allay some of them. He can also see through statements made by different interest groups with regard to radioactive material and duly form his own opinion.

  20. Report on the evaluation of the national plan on radioactive wastes and materials management; Rapport sur l'evaluation du plan national de gestion des matieres et des dechets radioactifs (PNG-MDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    This document constitutes the evaluation of the first edition of the National Plan on radioactive wastes and materials management. It presents the definitive or temporary solutions for the radioactive wastes management, the national plan juridical framework defined by the laws of 1991 and 2006 and the first evaluation and perspectives. (A.L.B.)

  1. Report on the evaluation of the national plan on radioactive wastes and materials management; Rapport sur l'evaluation du plan national de gestion des matieres et des dechets radioactifs (PNG-MDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    This document constitutes the evaluation of the first edition of the National Plan on radioactive wastes and materials management. It presents the definitive or temporary solutions for the radioactive wastes management, the national plan juridical framework defined by the laws of 1991 and 2006 and the first evaluation and perspectives. (A.L.B.)

  2. The radioactive component of air pollution in uranium mines. Present data

    International Nuclear Information System (INIS)

    Renoux, A.; Madelaine, G.; Zettwoog, P.

    1982-01-01

    An efficient radiation protection of uranium mine workers requires that the radioactive component of the mine aerosol be well known. Investigations were developed to that purpose in the Fanay mine, La Crouzille near Limoges. Carried out mainly on radon 222 daughters, whose potential hazard is demonstrated to be the main one, they considered the radioactive desequilibrium between radon and its daughter-products, the free fraction, the particle size distribution and the electric charge of the mine radioactive aerosol [fr

  3. National Inventories and Management Strategies for Spent Nuclear Fuel and Radioactive Waste. Extended Methodology for the Common Presentation of Data

    International Nuclear Information System (INIS)

    Volckaert, Geert; Dionisi, Mario; Heath, Maurice; Kugel, Karin; Garamszeghy, Miklos; Leclaire, Arnaud; Deryabin, Sergey; Hedberg, Bengt; Dapei, Dominic; Lebedev, Vladimir; )

    2017-01-01

    Radioactive waste inventory data are an important element in the development of a national radioactive waste management program since these data affect the design and selection of the ultimate disposal methods. Inventory data are generally presented as an amount of radioactive waste under various waste classes, according to the waste classification scheme developed and adopted by the country or national program in question. Various waste classification schemes have evolved in most countries, and these schemes classify radioactive waste according to its origin, to criteria related to the protection of workers or to the physical, chemical and radiological properties of the waste and the planned disposal method(s). The diversity in classification schemes across countries has restricted the possibility of comparing waste inventories and led to difficulties in interpreting waste management practices, both nationally and internationally. To help improve this situation, the Nuclear Energy Agency developed a methodology that ensures consistency of national radioactive waste and spent fuel inventory data when presenting them in a common scheme in direct connection with accepted management strategy and disposal routes. This report is a follow up to the 2016 report that introduced the methodology and presenting scheme for spent fuel, and it now extends this methodology and presenting scheme to all types of radioactive waste and corresponding management strategies

  4. The Management of Nuclear Materials in a Research Establishment; Gestion des Matieres Nucleaires dans un Centre de Recherche; Uchet yadernykh materialov v nauchno-issledovatel'skom uchrezhdenii; Administracion de Sustancias Nucleares en un Centro de Investigaciones

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W. J.; Hocking, D. R. [Australian Atomic Energy Commission Research Establishment, Lucas Heights, NSW (Australia)

    1966-02-15

    The functions of a nuclear materials management scheme are reviewed in relation to the activities of research establishments. Since these activities are normally non-repetitive, there is little opportunity to establish statistical quality and quantity control. The risks of an error in the material accounts must therefore be established from relatively few analytical measurements and the implications of this are discussed. Similar arguments are applied to illustrate the difficulties of quality control on suppliers when a large variety of materials are being purchased in small quantities. (author) [French] Les auteurs examinent le role d'un systeme de gestion des matieres nucleaires applique aux activites des centres de recherche. Comme ces activites ne sont normalement pas appelees a se repeter, il n'est guere possible d'organiser un controle statistique quantitatif et qualitatif. Il faut donc determiner les possibilites d'erreurs dans la comptabilite matieres en s'appuyant sur un nombre relativement restreint de mesures analytiques et les auteurs examinent les conclusions a tirer de cette situation. Ils recourent a une argumentation analogue pour illustrer les difficultes inherentes au controle de la qualite des matieres livrees par les fournisseurs lorsqu'il doit porter sur une grande diversite de matieres en petites quantites. (author) [Spanish] Los autores examinan el funcionamiento de un sistema de administracion de materiales nucleares en relacion con las actividades de los centros de investigaciones. Como estas actividades son por lo comun muy diversas, hay pocas oportunidades de establecer un control estadistico de la calidad y la cantidad. Por ello es necesario determinar los riesgos de error en la contabilidad de los materiales partiendo de un numero relativamente reducido de mediciones analiticas; en la memoria se examinan las consecuencias de este hecho. Los autores aplican razonamientos analogos para poner de manifiesto las dificultades con que, en el

  5. Radioactive contamination of some rubber or plastic surfaces by fission products. Decontamination tests; Contamination radioactive de quelques surfaces en caoutchouc ou en matiere plastique par des produits de fission. Essais de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.; Sautiez, N.

    1957-10-15

    With the objective of notably addressing the contamination and decontamination of gloves and floor covering, this report first presents some characteristics of contaminating radioactive materials (nature, physical and chemical condition), of contaminated surfaces (surface condition, surface nature), and of decontamination processes (physical, chemical or mechanical action). It describes the operational modality implemented to test decontamination processes on various glove or flooring materials: sample preparation, counting, decontamination, reproducibility of decontamination tests, results in terms of activity reduction. It more precisely describes the tested samples: short gloves, gloves from glove boxes, floor and wall coverings. Results are presented and discussed in terms of sample susceptibility to contamination, and of decontamination, but also for re-contamination tests after a Nab-based decontamination (susceptibility to contamination, decontamination gain)

  6. Radioactive wastes and valorizable materials in France: summary of the 2004 national inventory; Dechets radioactifs et matieres valorisables en France: resume de l'inventaire national 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The French national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. This summary document contains: 1 - general introduction; 2 - classification of radioactive wastes: the 5 main categories; 3 - origin of the wastes; 4 - processing and conditioning; 5 - inventory of existing wastes: geographical inventory, inventory per category; 6 - prospective inventory: prospective scenarios, forecasting of waste production; 7 - valorizable radioactive materials; 8 - synthesis and perspective; 9 - glossary. (J.S.)

  7. Radioactivity. From the discovery until Fukushima. Populary-scientific presentation of the radiation effect. 2. enl. ed.

    International Nuclear Information System (INIS)

    Abel, Hemut; Erzgraeber, Gudrun

    2012-01-01

    Coal, oil, and natural gas are as energy sources temporarily yet only limitedly available. The technological state of development for the temporarily unlimited availability of solar energy and wind energy allows an energy change. Wishing to accelerate it by stimulus words like climatic catastrophe or radioactivity can lead to essential dangers and additional risks. Radioactivity became for the publicity a stimulus word for thinking immediately of cancer. In the report of the United Nations about the effects of the Chernobyl reactor catastrophe it is accentuated that myths and misconceptions about radioactivity and cancer have lead the affected population to a ''paralyzing fatalism'' and have became in view of the mental health to the ''greatest public problem of health''. For a decade also in Germany nuclear-energy facilities will be in operation, and world-wide they are several hundred facilities. Accidents cannot certainly be excluded, irrational fears worsen the consequences. Radioactivity serves otherwise in medicine a million time to save life. Irrational fears can only be prevented by education. To this concern the present brochure is dedicated.

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  9. N.590 National assembly. Law project of program relative to the sustainable management of radioactive materials and wastes; N. 590 Assemblee Nationale. Projet de loi de programme relatif a la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents the different articles of the law text n. 590 on the management of the radioactive wastes and materials. It concerns the obligations and the liabilities of producers and users of radioactive spent fuels and wastes. (A.L.B.)

  10. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  11. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  12. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area; Guide relatif aux exigences reglementaires applicables au transport des matieres radioactives en zone aeroportuaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  13. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  14. Economic Criteria Applied to Nuclear Materials Management; Criteres Economiques Applicables a la Gestion des Matieres Nucleaires; Ehkonomicheskie kriterii, primenyaemye pri kontrole i uchete yadernykh materialov; Criterios Economicos Aplicados a la Administracion de Materiales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Shelley, W. J.; Kuehn, M. N. [Mallinckrodt Chemical Works, St. Charles, MS (United States)

    1966-02-15

    vols, d'erreurs d'affectation ou de detournements. Cette selection rigoureuse des donnees de gestion des matieres nucleaires en fonction de leur necessite doit etre egalement appliquee aux donnees complementaires. Les procedures, les methodes, le personnel et les procedes sont continuellement soumis a des controles pour s'assurer que la gestion des matieres nucleaires est effectuee dans les meilleures conditions possibles. Certains principes generaux ont ete definis en vue de calculer les couts au plus juste en fonction des exigences d'un controle efficace des matieres nucleaires. Il est tres important de determiner les besoins reels en ce qui concerne l'enregistrement et la presentation des donnees. On peut realiser de serieuses economies en confiant a un seul service la responsabilite de la gestion des matieres nucleaires, du controle de la production et de la determination des couts. Il faut alors faire confiance a ce personnel qui doit accepter, comprendre et assumer ces taches. Ce personnel selectionne doit recevoir une formation tres poussee et etre pleinement conscient de l'importance de ses activites. Les responsables de la gestion des matieres nucleaires doivent faire continuellement attention aux plus petites defaillances affectant la qualite et le rendement du personnel, des operations, des systemes, des'procedures et des techniques. Ce n'est qu'au prix de cette vigilance et de cette aptitude a corriger pour perfectionner que l'on peut realiser un equilibre optimal entre les couts et le service a assurer. (author) [Spanish] La administracion de materiales nucleares tiene que estar siempre supeditada a la finalidad primordial que se persigue con el tratamiento de dichos materiales, a saber, la generacion de energia o la produccion y fabricacion de productos finales. Las personas encargadas de esa administracion deben tener pues siempre presentes las necesidades de la produccion y adaptar a ese proceso los sistemas empleados a fin de poder llevar a cabo su

  15. Criteria for Special Nuclear Materials Inventory and Control Procedures; Criteres a Suivre Pour Proceder a l'Inventaire des Matieres Nucleaires Speciales et aux Mesures de Controle; Kriterii dlya inventarizatsii spetsial'nykh yadernykh materialov i metody ucheta; Criterios a Que Deben Ajustarse los Procedimientos de Inventario y Control de los Materiales Nucleares Especiales

    Energy Technology Data Exchange (ETDEWEB)

    Kinderman, E. M.; Tarrice, R. R. [Stanford Research Institute, Menlo Park, CA (United States)

    1966-02-15

    and the total inventory of these special nuclear materials. A matrix of solutions to the management and inventory control of special nuclear materials will be presented. The multiplicity and relative effectiveness of varied techniques at key stages of the materials supply, utilization and recovery are assessed. (author) [French] L'un des plus importants problemes qui, dans le domaine nucleaire et notamment dans l'exploitation commerciale de l'energie d'origine nucleaire, se posera aux societes d'investissement, aux directeursetaux exploitants est celui du controle efficace de l'inventaire des matieres nucleaires dont la valeur depassera, d'ici 1980, 5 milliards de dollars des Etats-Unis. Comparativement a la plupart des matieres utilisees commercialement, les matieres nucleaires speciales sont couteuses; aux Etats-Unis par exemple, l'uranium enrichi a 90%, l'uranium enrichi a 3% sous forme d'hexa- fluorure et l'eau lourde coutent respectivement 10808 dollars, 254 dollars et 61,60 dollars le kilo. En outre, ces matieres sont frequemment soumises, pour des raisons de protection sanitaire et de securite, a des controles gouvernementaux speciaux sans rapport direct avec leur valeur monetaire. En depit de leur prix eleve, ces matieres sont destinees a etre utilisees en grandes quantites; par exemple, on utilisera de 50 a 75 t de combustible enrichi a 3{sup o}{r_brace}o dans un reacteur de 500 MW modere a l'eau ordinaire et 200 a 300 reacteurs de cette puissance fonctionneront vraisemblablement dans le monde en 1980. L'experience acquise a permis la mise au point et l'application de methodes speciales pour le controle commercial de grandes quantites de matieres de faible valeur comme le charbon ou le minerai de fer ou de petites quantites de matieres de grande valeur comme les metaux precieux. Tout en ayant des prix comparables a ces derniers, les matieres nucleaires speciales sont de nature differente et seront utilisees en quantites beaucoup plus importantes que les

  16. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  17. IRSN statement of four studies presented within the frame of the radioactive material and waste management national plan (PNGMDR)

    International Nuclear Information System (INIS)

    2009-01-01

    This document contains the comments and assessments by the IRSN (the French Institute for radioprotection and nuclear safety) on studies which were respectively dealing with: the warehousing of tritiated waste, the sustainable management of used sealed radioactive sources and the possibility of storing other types of wastes with graphite and radiferous wastes, studies of valorization of radioactive materials without any present use. For the first one (tritiated wastes), this report describes the context, specifies the various considered wastes and their characteristics and properties, specifies the storage requirements, and outlines the environmental impacts of such a warehousing. For the second one (sealed radioactive sources and other graphite and radiferous wastes) it specifies and comments the considered wastes and the storage technical options in both cases. For the third one (valorization of radioactive materials) it reviews the available processes for uranium, plutonium, and thorium, and gives a brief assessment of the experience performed by the Rhodia company in La Rochelle

  18. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  19. Present status of marine environmental radioactivity survey in the sea of Japan

    International Nuclear Information System (INIS)

    Matsuoka, H.

    1994-01-01

    Science and Technology Agency has been conducting some Marine Environmental Radioactivity Surveys around Japan in cooperation with the relevant organizations (Maritime Safety Agency, Japan Meteorological Agency, Fishery Agency, National Institute of Radiological Sciences, Japan Marine Science and Technology Center, Japan Chemical Analysis Center and Marine Ecology Research Institute). Several artificial radionuclides have been detected but the main origin is supposed to be fall-out. The level trend of marine environmental radioactivity has no anomalies excepting the effect of Chernobyl Accident. The data summarized here are as follows. 1. Marine Environmental Survey of Fisheries near the Nuclear Power Stations, 2. Past Data of Marine Environmental Radioactivity around Japan (Apr. 1982 - Mar. 1991), 3. Marine Environmental Survey of the Sea of Japan (spring, 1993), 4. Marine Environmental Survey of the Sea of Japan (autumn, 1993). In addition, JAPAN-KOREA-RUSSIA JOINT EXPEDITION in the Sea of Japan will start in the middle of March. We are expecting to get valuable data through the EXPEDITION. (J.P.N.)

  20. RIKEN radioactive isotope beam factory project – Present status and ...

    Indian Academy of Sciences (India)

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis ... RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ...

  1. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  4. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  5. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  6. National plan for the radioactive and recyclable wastes management of the national inventory of the radioactive and recyclable wastes to an account and a prospective outlook of the pathways of long dated management of radioactive wastes in France; Plan national de gestion des dechets radioactifs et des matieres valorisables de l'inventaire national des dechets radioactifs et des matieres valorisable a un bilan et une vision prospective des filieres de gestion a long terme des dechets radioactifs en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-15

    The introduction recalls the context of the development of the national plan of radioactive and recyclable wastes management (PNGDR-MV), its objectives and its position in the today studies on radioactive wastes. The first part is devoted to the description of existing radioactive wastes management solutions, or engaged by today activities. The second part concerns the radioactive materials of the nuclear industry, which are not considered as wastes, but which can be recyclable because of their high energy potential as fuels for reactors of the future. The third part examines the pathways coherence. The last part is a synthesis of the evaluation, with more attention on the identifies problems. (A.L.B.)

  7. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition); Reglement de transport des matieres radioactives. Edition de 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  8. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  9. Radioactive consumer products

    International Nuclear Information System (INIS)

    Sato, Otomaru

    1981-01-01

    Present situation of utilizing the radioactive consumer products and exposure dose were reviewed with published data. Practically, consumer products are divided into three categories, (1) radioactive nuclides intentionally incorporated into radioluminous dye, ionization chambers for smoke detector, eliminator of static electricity, and glow lamp (2) natural radioactive nuclides contained in false teeth, porcelain, glass, and gas mantle (3) natural radioactive nuclides accumulated as industrial waste at the consumption of coal, petroleum, and natural gas or in fertilizer and materials for construction. (Nakanishi, T.)

  10. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  11. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  12. Present situation and issues for the French radioactive waste management agency

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2009-01-01

    This series of slides makes a status of the radioactive waste management in France: 1 - Planned disposal facilities: A - Low level long lived waste (LL-LL: Graphite Waste And Radium Bearing Waste): Implementation within a shallow clay formation (between 15 and 200 m in depth). For graphite waste: a 'repository with an intact cover' as a reference option. For radium-bearing waste: a 'repository with a reworked cover' under investigation. The required footprint on ground surface is in the order of 100 ha. Siting approach: June 2, 2008: letter from the Minister of State to the Chairman of ANDRA; June 2008: file addressed by ANDRA to the mayors of 3,115 communes. Until the end of October 2008: expression of interest by local communities. Possibility to confirm their application in late 2010. December 2008: assessment report by ANDRA and proposal of ranked zones to the government. Beginning of 2009: government decision concerning the pre-selection still pending. 2009-2010: geological surveys, consultations, territorial projects. B - High level and Intermediate level long lived waste (HL and IL-LL): Preparing disposal in a clay formation. 2012: public debate, 2013: site selection, 2015: application, 2025: start up. The Meuse Haute Marne Underground Research Laboratory Siting: the disposal facility (drilling campaigns), Construction of a Visitors' Centre designed to present the waste-repository project and its technological aspect. Inauguration scheduled in June 2009. 2 - Operated disposal facilities: A - Low and intermediate level short lived waste (LIL-SL) and Very low level waste (VLL). LIL-SL Manche Centre: 1969: start up, 1994: end of operation, 2003: institutional control period, Disposed volume (1969-1994): 527,000 m 3 , Impact of the facility ∼0,65 μSv/year (2008). Institutional control period monitoring: Radiological and chemical monitoring (Discharges, Underground water, Surface water), Capping system monitoring (Water-tightness performances, Rainfall water

  13. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  14. Axillary sentinel node identification in breast cancer patients: degree of radioactivity present at biopsy is critical

    DEFF Research Database (Denmark)

    Nielsen, Kristina R; Oturai, Peter S; Friis, Esbern

    2011-01-01

    The radioactivity present in the patient (Act(rem) ) at sentinel node (SN) biopsy will depend on injected activity amount as well as on the time interval from tracer injection to biopsy, which both show great variations in the literature. The purpose of this study was to analyse the influence...... of varying Act(rem) levels on the outcome of axillary SN biopsy in patients with breast cancer (BC)....

  15. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  16. Study of 222Rn emanation levels present in naturally occurring radioactive materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis; Lima, Clara Teresa S.

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas installations, is usual in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. The segregation of contaminated residues although necessary, is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the installation with controlled access. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scales are mixtures of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporate 226 Ra and 228 Ra in their structures. The objective of this work was to measure the emanations of the radon present in NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of α particle tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Since the number of those tracks resulted proportional to the emanation rate of 222 Rn this methodology allowed the comparison of contamination levels in analyzed samples. (author)

  17. Radwaste - Multimedia presentation

    International Nuclear Information System (INIS)

    2000-01-01

    Radioactivity is a part of the Nature since the creation of the Earth. We have learned how to use radioactivity in medicine, power industry, and in other areas of life. Similarly as in other activities, waste is generated. We offer you basic information about radioactivity and radioactive waste (radwaste) in four films: Radioactivity, Source of radwaste, Management of radwaste. In the glossary are video presentations: Container (Castor) for radioactive waste; Deep underground repository; Transport vehicle; WWER type reactor. Encyclopedic part of the program contains detailed theoretical and practical information about use of radioactivity and radioactive waste. You will find the explanation in the part Glossary. (authors)

  18. The present state and future prospects of the radioactive waste and spent fuel management in Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.

    2001-01-01

    The Ignalina nuclear power plant (NPP) is the main source of the spent fuel and the radioactive waste (RW) in Lithuania. Now Lithuania is fully responsible for the management and disposal of its RW and spent fuel. The present scheme of spent fuel, solid, and liquid waste treatment is incomplete. The Department of Thermal and Nuclear Energy at Kaunas University of Technology proposed the new idea - cellular foam apparatus for the concentration of the liquid waste at Ignalina NPP. Some data and main results of the investigation of such apparatus are presented here. (author)

  19. The control of water radioactivity

    International Nuclear Information System (INIS)

    Bovard, P.; Graubey, A.

    1962-01-01

    This report presents the different apparatuses and devices used to control and adjust routine releases, to detect accidental pollutions, and to identify the origins of an increased radioactivity. The objective is to perform permanent and continuous sampling and measurement. Samplers and measurement devices (Geiger probes, resin-based integrators, dry aerosol radioactivity recorders and dry sample radioactivity recorders) are presented. Water control stations are presented: these stations are either fixed, or mobile or floating

  20. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  1. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  2. Environmental radioactivity 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Environmental Radioactivity in New Zealand and Rarotonga : annual report 1996 was published in May this year. The 1996 environmental radioactivity monitoring programme included, as usual, measurements in New Zealand and the Cook Islands of atmospheric, deposited and dairy product radioactivity. The environment in the New Zealand and Cook Island regions has now virtually returned to the situation in the 'pre-nuclear' era. The contination of monitoring, although at a reduced level of intensity, is basically to ensure that any change from the present state, due to any source of radioactivity does not go undetected or unquestioned. (author)

  3. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  4. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  5. Present state of the design and realization of regional radioactive waste depositories and waste acceptance criteria for disposal

    International Nuclear Information System (INIS)

    Kortus, J.

    1988-01-01

    Surface type regional depositories for radioactive wastes from nuclear power plants are described in detail. The depository of the Mochovce nuclear power plant is located near the plant, that of the Dukovany nuclear power plant is directly on the premises of the plant. Particular attention is paid to the design of the monolithic reinforced concrete pits, draining of rainwater from their surface, draining of seeping rainwater from the pit environment by means of a double drainage system, and insulation of the pits against water. The construction of the Mochovce depository started in 1987; some experience gained from this activity is presented. The radioactive waste acceptance criteria for depositories of this kind, based on safety analysis, are given. (author). 2 figs

  6. National plan for the radioactive and recyclable wastes management of the national inventory of the radioactive and recyclable wastes to an account and a prospective outlook of the pathways of long dated management of radioactive wastes in France; Plan national de gestion des dechets radioactifs et des matieres valorisables de l'inventaire national des dechets radioactifs et des matieres valorisable a un bilan et une vision prospective des filieres de gestion a long terme des dechets radioactifs en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-15

    The introduction recalls the context of the development of the national plan of radioactive and recyclable wastes management (PNGDR-MV), its objectives and its position in the today studies on radioactive wastes. The first part is devoted to the description of existing radioactive wastes management solutions, or engaged by today activities. The second part concerns the radioactive materials of the nuclear industry, which are not considered as wastes, but which can be recyclable because of their high energy potential as fuels for reactors of the future. The third part examines the pathways coherence. The last part is a synthesis of the evaluation, with more attention on the identifies problems. (A.L.B.)

  7. Radioactivity in consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  8. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  9. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  10. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management; Saisine de la commission nationale du debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  11. Program law n. 2006-739 of the 28 June 2006 relative to the sustainable management of radioactive materials and wastes: presentation by article

    International Nuclear Information System (INIS)

    2006-01-01

    The french law of 1991, decided to define management solutions in the radioactive wastes management policy, is now over. The results of researches led to the promulgation of a new planing act, the law of the 28 June 2006. This law concerns the sustainable management of radioactive materials and wastes. It takes also in account a public debate, organized in September 2005 by the National Commission for Public Debate. The Law project architecture can be described in three main points: the implementing of a national policy of radioactive materials and wastes, a better transparency and democratic control and the implementing of specific modalities for the organization and the financing of spent fuels and radioactive wastes management. This document presents what is in the different articles, with a special attention to the contributions of the parliamentary debate. (A.L.B.)

  12. Radioactivity and food

    International Nuclear Information System (INIS)

    Olszyna-Marzys, A.E.

    1990-01-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references

  13. Organizing a complex transport while guaranteeing safety and transparency: the example of vitrified wastes sent back to Germany

    International Nuclear Information System (INIS)

    Krochmaluk, Julie; Lebrun, Marc; Delmestre, Alain; Barbey, Pierre; Bonvalot, Vanessa; Belleville, Didier; Rollinger, Patrice; Alter, Ulrich

    2012-01-01

    This chapter is made of several small articles entitled: - 'Les controles avant le depart du convoi franco-allemand' (Controls before the departure of the French-German convoy); - 'La supervision des transports de matieres radioactives: une approche extensive de la surete des operations' (The supervision of radioactive material transports: an extended approach of operation safety); - 'Le dispositif d'information du public sur le transport des substances radioactives mis en place par l'ASN' (The plan implemented by the ASN for public information on nuclear materials transport); - 'Le recours de l'ASN a l'expertise de l'ACRO sur le convoi de colis de dechets vitrifies vers l'Allemagne' (The appeal of the ASN to the ACRO's expertise on the vitrified parcel convoy to Germany); - 'La participation du collectif STOP-EPR a l'inspection de l'ASN du convoi de colis de dechets vitrifies vers l'Allemagne' (The participation of the STOP-EPR collective to the control by the ASN of the vitrified parcel convoy to Germany); - 'La securite et la surete: des valeurs que le Groupe SNCF partage' (Security and safety: values which are shared by the SNCF Group); - 'Le transport de matieres nucleaires entre la France et l'Allemagne au cours des 40 dernieres annees' (Transport of nuclear materials between France and Germany during the last 40 years). Addressing the case of vitrified wastes transported back to Germany, the articles indicate the controls performed in France before convoy departure, discuss the approach adopted for the safety of radioactive material transport, comment the management of public information by the ASN for such transports, comment the intervention of the ACRO (Association for the control of radioactivity in western France) on the request of the ASN and the participation of a collective group (STOP-EPR) to the inspection of a convoy, outline the commitment of the French Railways (SNCF) in terms of security and safety, and give a qualitative and quantitative

  14. Radioactivity; La radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  15. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  16. The Management of the Solid Radioactive Waste and Used (Spent) Fuel in South Africa: An Overview of Past, Present and Future Practices

    International Nuclear Information System (INIS)

    Maree, V.

    2015-01-01

    As a country with a nuclear program, the Republic of South Africa (RSA) generates radioactive waste through numerous activities. Radioactive waste, for legal and regulatory purposes, is defined as “material that contains or is contaminated with radio-nuclides at concentrations or activities greater than clearance levels as established by the regulatory body and for which no use is foreseen”. The RSA recognises the importance of the safe management of spent fuel and radioactive waste, for this reason the country is a contracting party to the International Atomic Energy Agency (IAEA) Joint Convention on the Safety of Spent Nuclear Fuel Management and Safety of Radioactive Waste Management. South Africa fulfils its obligations under the Joint Convention by the establishment of a Radioactive Waste Management Policy and Strategy for the Republic of South Africa (Policy and Strategy). It lists the principles and provides direction relating to solid radioactive waste management. Although all key players i.e. government agencies and the private sector are participating to implement the national commitment in a coordinated and cooperative manner, huge uncertainty remains. This poster presents the South African National Radioactive Waste Management Model with a description of – the radioactive waste generated, – the hierarchy of waste management options, – the waste classification scheme adopted, – the current disposal option, – the current management of used (spent) fuel. Good intentions have not always been matched by action and measures are still needed to improve safety especially to integrate the lessons learnt from the Fukushima accident, management of legacy waste, monitoring of disused sealed sources, recovery of orphan sources and additional waste due to operation of potential new nuclear power plants etc. This poster also addresses current discussions and ideas relating to the above challenges. (author)

  17. Nuclear Materials Management and its Relationship to Nuclear Safety and Criticality Control; La Gestion des Matieres Nucleaires et ses Rapports avec la Securite Nucleaire et le Controle de la Criticite; Obrashchenie s yadernymi materialami i ego svyaz' s yadernoj bezopasnost'yu i kontrolem nad kritichnost'yu; La Administracion de Materiales Nucleares y sus Relaciones con la Seguridad Nuclear y el Control de la Criticidad

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, F. H. [Phillips Petroleum Company, Idaho Falls, ID (United States)

    1966-02-15

    dictated by the technical considerations and familiar with the operational limitations. The administrative problems are solved through procedural restrictions placed by the supervisor. The NMM office can be most valuable in further support to the supervisor in these activities. The primary responsibility of this office is to alert responsible supervision to potentially hazardous situations as indicated either from information made available through the routine processing of accountability data or from material balance calculations. Any information pertaining to criticality studies as requested from the NMM office must be accurate and precise. A vigorous inventory management policy must be pursued to lessen the problems presented by accumulation of fissile materials. Internal audit by the NMM staff of inventory holdings can also serve to verify adherence to safeguard procedures. A vigorous orientation programme can be implemented by the NMM staff in its dealing with those individuals handling nuclear materials to make them more aware of the hazards involved. The integration of the NMM group into the general criticality safeguard problems at the NRT and has provided an effective system for assisting the line supervision in discharging this very important responsibility. (author) [French] Il est essentiel pour tous ceux qui travaillent dans l'industrie nucleaire de savoir comment eviter que des matieres nucleaires ne se trouvent rassemblees en quantites, selon une geometrie ou dans un milieu tels qu'elles puissent donner lieu a une reaction neutronique en chaine. Ceci interesse tout particulierement ceux qui, dans l'exercice de leurs fonctions, sont responsables de la manipulation, du transfert et de l'entreposage des matieres fissiles. Ces memes personnes participent au systeme de gestion des matieres nucleaires. Elles ont au premier chef la responsabilite de fournir et de recevoir les donnees comptables par l'intermediaire du service de gestion des matieres nucleaires

  18. Evaluation of dose due to the liberation of the radioactive content present in systems of final disposal of radioactive residues

    International Nuclear Information System (INIS)

    Amado, V.; Lopez, F.

    2006-01-01

    The disposal systems of radioactive residuals well-known as repositories near to the surface, are used to dispose residuals that can contain high concentrations of radionuclides of period of short semi disintegration, which they would decay at levels radiologically insignificant in some few decades or in some centuries: and acceptably low concentrations of radionuclides of period of long semi disintegration. The dose that would receive the critic group due to these systems it could be increased by cause of discreet events that affect the foreseen retard time, or by the gradual degradation of the barriers. To this last case it contributes the presence of water, because it implies leaching and dissolution that can give place to radionuclide concentrations in the underground water greater to the prospective ones. The dosimetric evaluation is important because it offers useful objective information to decide if a given repository is adjusted to the purposes of its design and it fulfills the regulatory requirements. In this work a simplified evaluation of the dose that would receive the critic group due to the liberation of contained radionuclides in a hypothetical system of final disposition of radioactive residuals is presented. For it, they are considered representative values of the usually contained activities in this type of systems and they are carried out some approaches of the source term. The study is developed in two stages. In the first one, by means of the Radionuclide pollutant scattering pattern in phreatic aquifers (DRAF) it is considered the scattering of the pollutants in the phreatic aquifer, until the discharge point in the course of the nearest surface water. This model, developed originally in the regulatory branch of the National Commission of Argentine Atomic Energy (CNEA); it solves the transport equation of solutes in porous means in three dimensions, by the finite differences method having in account the soil retention and the radioactive

  19. Report on air and water radioactivity measurement presented to the Commission for Protection against Ionizing Radiations of the State Secretary for Public Health (sessions of the 6 January and 18 February 1957). Report on the determination of radioactivity of mineral waters presented to High Council for Thermal cures of the State Secretary for Public Health (6 February 1957)

    International Nuclear Information System (INIS)

    Fallot, P.; Bugnard, L.

    1957-06-01

    The first part of this document discusses radioactivity measurement techniques which seem to be recommended for the monitoring of the release of radio-elements by civil and military applications of nuclear energy. These methods first concern air radioactivity due to uranium ore extraction, ore storage, air-cooling of piles, uranium fuel sheath failure, plutonium extraction and fission product processing, and nuclear explosion. Methods are discussed for the measurement of gas or aerosol radioactivity. The measurement of water radioactivity is then addressed by distinguishing measurements performed on rainfalls or snow, on effluents from nuclear plants. The second part discusses the determination of radioactivity of mineral waters. The authors describe the three main principles on which measurement methods are based: direct measurement of radioactivity of gases contained by water, direct measurement of gas radioactivity by the active deposit method, and measurement of alpha and beta radiations of the evaporation residue or of water precipitation product. Notably about radon measurement in waters, the instrumentation, dosing procedure, measurement sensitivity and precision are presented and discussed

  20. Becquerel and natural origin radioactivity

    International Nuclear Information System (INIS)

    2011-01-01

    After a brief presentation of the Becquerel as radioactivity measurement unit, this document briefly explains the origin of natural radioactivity (Earth formation and cosmic rays), gives and comments the evolution of radioactivity of some radionuclides (U 238 and descendants, Th 232 and descendants, K 40 ) between 4.5 billions yeas ago and nowadays. It also gives assessments of natural radioactivity due to radon in the atmosphere and in the soil, of natural radioactivity in building materials, coals, ashes, seawater and food. Some remarkable figures are then given

  1. Present trends in radioactive waste management policies in OECD countries, and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years, waste management has received increased attention at the national level and also internationally, to harmonize to some extent the policies and practices to be followed and to continue to achieve a high safety standard. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems, covering not only the treatment and storage aspects for the short-term but also the longer-term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition, a significant effort is also being initiated on research and development. The disposal problem has been given priority, particularly regarding high-level waste and alpha-bearing wastes. Close international co-operation has been initiated in this sector as well as on the conditioning of high-level radioactive waste. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities. (author)

  2. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  3. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  4. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  5. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  6. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  7. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  8. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    on these substrata. Oceollo!ogica Acta. 1990, 13,4,471-474. -~----~-------- I.• ABSTRACT --,- RESUME Composition de la matiere organique particulaire adsorbee sur un substrat solide La matiere organique particulaire adsorb&: sur des panneaux d'aluminium et de verre... immerges dans un estuaire a ete analysce: bacteries, chlorophylle a, poids sec, matiere organique, carbone organique, azote, proteines, glueides et lipides. Aucune difference n'a etc dccelee dans lacomposition de la matiere organique et dans les...

  9. Presentation of the policy bill of program on the radioactive materials and wastes management by Francois Loos, Ministry delegate to the Industry, National Assembly; Presentation du projet de loi de programme sur la gestion des matieres et dechets radioactifs par Francois Loos, ministre delegue a l'Industrie, Assemblee Nationale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This document provides the text of the presentation of Francois Loos. The bill institutes a national radioactive materials and waste management plan and defines a programme and calendar for research and work leading to implementation of this plan, which will comprise three major points: with a view to looking to reduce the quantity of waste, spent nuclear fuels taken from the nuclear power plants will be reprocessed for recycling in the plants; waste which cannot be recycled will be packaged in a robust matrix and then temporarily stored on the surface; after interim storage, waste which cannot be finally disposed of in a surface facility, will be placed in a deep geological reversible repository. In order to monitor each step in this plan, the bill strengthens independent assessment of research and involves greater information of the public. With regard to financing, the bill clarifies the fact that economic development of the departments concerned by research into disposal options and the research itself will be financed by additional taxes on the operators of nuclear installations. (A.L.B.)

  10. Radioactively labelled vitamin B12

    International Nuclear Information System (INIS)

    Charlton, J.C.; Hamilton, A.L.

    1978-01-01

    The application concerns the manufacture of radioactive forms of vitamin B-12 in which the cobalt atom present in the vitamin B-12 molecule is replaced with a radioactive isotope of cobalt, usually cobalt-57 or cobalt-58. Such radioactive forms of B-12 are used extensively in the diagnosis of B-12 deficiency states

  11. Tritium in Meteorites and in Recovered Satellite Material; Tritium dans les meteorites et dans les matieres provenant d'un satellite recupere; Tritij v meteoritakh i v vozvrashchennom sputnike; Tritio en meteoritos y en el material de un satelite recuperado

    Energy Technology Data Exchange (ETDEWEB)

    Fireman, E L [Smithsonian Astrophysical Observatory, Cambridge, MA (United States)

    1962-01-15

    Tritium was measured in separated phases and in whole rock samples of the Bruderheim chondritic meteorite and in samples of lead and iron material of recovered satellites. Radioactive isotopes of argon were also measured. The tritium and argon radioactivity in the Bruderheim meteorite can be reasonably well explained by the interaction of cosmic ray particles of some thousand million volts energy with the meteoritic material. The tritium content of the recovered satellite material was more than a factor of a hundred too large to be explained by the interactions of cosmic rays or by the interactions of solar flare particles with the satellite. The high tritium content of the satellite material must result from a flux of incident tritium particles that stop in the satellite. (author) [French] Tritium dans les meteorites et dans les matieres provenant d'un satellite recupere. On a mesure la teneur en tritium d'echantillons de diverses parties et de l'ensemble de la roche formant la chondrite de Bruderheim, ainsi que celle d'echantillons de plomb et de fer preleves sur des satellites recuperes. On a egalement mesure la teneur en radioargon dans la meteorite de Bruderheim. La presence de tritium et de radioargon peut fort bien s'expliquer par l'interaction d'elements de la meteorite et de rayons cosmiques corpusculaires ayant une energie de l'ordre du milliard de volts. La teneur en tritium des satellites recuperes etait plus de cent fois trop elevee pour pouvoir etre expliquee par une interaction entre les rayons cosmiques ou les particules provenant d'eruptions solaires et le satellite etudie. La forte teneur en tritium des matieres provenant des satellites est certainement due a un flux incident de particules de tritium qui sont retenues dans le satellite. (author) [Spanish] Se midieron las concentraciones de tritio en fases separadas y en muestras enteras de roca del meteorito condritico de Bruderheim, y en muestras de plomo y de hierro de satelites recuperados

  12. Radioactive elements in Pennsylvania waters

    International Nuclear Information System (INIS)

    Rose, A.W.

    1990-01-01

    The first recognition of radioactive elements in natural waters dates back many years, but interest has accelerated in recent years with the advent of concern about the health effects of radioactivity. At the present time, extensive monitoring of public water supplies for radioactive substances is mandated by federal and state law, and monitoring near nuclear facilities is required by federal regulations, so that a great deal of information is accumulating on the amount and distribution of radioactivity in natural waters. These results reveal that small amounts of radioactive elements are universally present in natural waters, and that the concentration vary over an appreciable range as a result of natural processes and human activities. The purpose of this paper is to summarize the origin, behavior, abundance and hazard of the main radioactive species in Pennsylvania surface and ground waters. This treatment is intended to provide background to the interested reader in comprehending questions such as the hazard of radon in homes with private wells and pollution related to the nuclear power cycle

  13. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  14. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  15. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  16. Travel in the depth of radioactivity

    International Nuclear Information System (INIS)

    1996-09-01

    This educational booklet gives a general presentation of radioactivity: origin of natural radioactivity, characteristics of atoms and isotopes, the radioactivity phenomenon, its decay and measurement units, the radiations and their use in medicine, industry, agriculture and food industry, biology etc.. (J.S.)

  17. Andra. Everything on the management of radioactive wastes

    International Nuclear Information System (INIS)

    2014-08-01

    This publication briefly presents the ANDRA, the French National Agency for the management of radioactive wastes, its mission, its activities, its financing, and some key figures. It briefly presents the phenomenon of radioactivity, radioactive wastes and their storage. It presents the different classes of radioactive wastes (very-low-level, low- and intermediate-level and short-lived, low-level and long-lived, high-level and intermediate-level and long-lived) and their storage principles. It sketches the pathway followed by a waste from its production to its storage. It presents the various ANDRA sites

  18. Present situation of radioactive contamination in and around the former Soviet Union's Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Yamamoto, M.; Hoshi, M.; Takada, J.; Tsukatani, T.; Oikawa, S.; Yoshikawa, I.; Takatsuji, T.; Sekerbaev, A. Kh.; Gusev, B.I.

    2001-01-01

    Field missions were sent to the Semipalatinsk regions to investigate the present radioecological situation as a result of the radioactive fallout from nuclear test explosions carried out at the former Soviet Union's Semipalatinsk nuclear test site (SNTS). For this purpose, surface and core soil samples were collected at more than 60 sites, including several settlements such as Dolon, Chagan and Sarzhal, within and outside the SNTS territory. The radioactivities of long-lived radionuclides, 137 Cs, 238 Pu and 239,240 Pu, and the atomic ratio of 240 Pu/ 239 Pu were determined in combination with non-destructive g-ray spectrometric method and radiochemical separation followed by a-particle spectrometric and/or ICP-MS methods. The results showed a distinction of 137 Cs and 239,240 Pu inventories in soil depending on a sampling sites. Although 137 Cs was within typical environmental levels except for the area near the first nuclear test site and Balapan, 239,240 Pu was at elevated levels in all areas we visited. This high Pu contamination was recognized to be due to the weapons-grade Pu from the SNTS by the measurement of 240 Pu/ 239P u atomic ratio in soil samples. (author)

  19. Radioactivity of tobacco

    International Nuclear Information System (INIS)

    Nashawati, A.; Al-Dalal, Z.; Al-Akel, B.; Al-Masri, M. S.

    2002-04-01

    This report shows the results of studies related to radioactivity in tobacco and its pathways to human being. Tobacco contains high concentrations of natural radioactive materials especially polonium 210 and lead 210, which may reach a value of 27 mBq/g. The amount of polonium 210 in tobacco is related to the concentration of radon (the main source of polonium 210 in the agricultural areas) in addition to the over use of phosphate fertilizers for tobacco plantation. Radioactive materials present in tobacco enter the human body through smoking where 210 Po concentrates in the Alveolar lung; this may cause health risks including lung cancer. In addition, radiation doses due to smoking have been reported and some results of the studies carried out for radioactivity in tobacco at the Syrian Atomic Energy Commission. (author)

  20. The natural radioactivity of the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pertsov, L A

    1967-07-01

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case.

  1. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  2. The natural radioactivity of the biosphere

    International Nuclear Information System (INIS)

    Pertsov, L.A.

    1967-01-01

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case

  3. Radioactivity of Consumer Products

    Science.gov (United States)

    Peterson, David; Jokisch, Derek; Fulmer, Philip

    2006-11-01

    A variety of consumer products and household items contain varying amounts of radioactivity. Examples of these items include: FiestaWare and similar glazed china, salt substitute, bananas, brazil nuts, lantern mantles, smoke detectors and depression glass. Many of these items contain natural sources of radioactivity such as Uranium, Thorium, Radium and Potassium. A few contain man-made sources like Americium. This presentation will detail the sources and relative radioactivity of these items (including demonstrations). Further, measurements of the isotopic ratios of Uranium-235 and Uranium-238 in several pieces of china will be compared to historical uses of natural and depleted Uranium. Finally, the presenters will discuss radiation safety as it pertains to the use of these items.

  4. Natural radioactivity in groundwater--a review.

    Science.gov (United States)

    Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw

    2011-12-01

    The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.

  5. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  6. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  7. Jeans criteria and stars formation in the Omnes matter-anti-matter supermassive star model; Critere de Jeans et formation d'etoiles dans le modele d'etoile supermassive matiere-antimatiere d'Omnes

    Energy Technology Data Exchange (ETDEWEB)

    Montmerle, Thierry

    1971-10-08

    This research thesis reports the study of the formation of stars in a quasar nucleus by using the Jeans criterion, and by adopting a model made of a super-massive star comprising an anti-matter nucleus surrounded by a matter envelope. After an overview of different observation results, and a presentation of different existing quasar models, the author details the Omnes model and its related problems. He reports the study of opacities to thermal photons (scattering and continuous absorption), and to γ radiation (absorption mechanism, creation of pairs in the interaction between γ rays and medium or between photons). The study of γ radiation transfer in a completely ionised gas is then reported (transfer equations, transfer equation coupling, heating of the semi-infinite medium, application to the nucleus with a plane approximation). Sound speed is then studied without γ (physical conditions, adiabatic case, non relativistic case, relativistic case), and in presence of γ. In the last chapter, the author discusses the application of the Jeans instability criterion to a medium governed by radiation. Results are discussed as well as consequences for the Omes model and for multiple-star models [French] Nous nous proposons d'etudier la formation d'etoiles dans le noyau d'un quasar au moyen du critere de Jeans. Nous adoptons un modele constitue d'une etoile supermassive (M> 10{sup 5} Mo) comprenant un noyau d'antimatiere entoure d'une enveloppe de matiere ('modele d'Omnes'). Apres avoir fait un bref tour d'horizon des divers resultats d'observation obtenus a ce jour et expose les differents modeles de quasar actuellement proposes (chapitre 1), nous decrirons en detail le modele d'Omnes. Nous exposerons un certain nombre de problemes qui lui sont lies, et nous donnerons la motivation du present travail (chapitre 2). Examinant plus particulierement l'opacite du milieu aux photons thermiques et aux photons γ (issus de l'annihilation matiere-antimatiere, nous etablirons

  8. 49 CFR 175.705 - Radioactive contamination.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  9. Radioactivity in Dutch consumer products

    CERN Document Server

    Janssen, M P M

    2002-01-01

    This study took place within the framework of a general update of the average radiation dose for the Dutch population. It focuses on consumer products in which radionuclides have been intentionally incorporated and on radiation-emitting devices that can be supplied to members of the public without special surveillance. Eleven consumer products were studied in more detail. The radiation from these products determined 90% of the total collective dose due to consumer products in the Netherlands in 1988. Individual and collective doses are presented here for each product. The total collective dose has decreased from 130 personSv in 1988 to 4.6 personSv at present. This reduction was attributed to: a decrease in the number of radioactive products (gas mantles), lower estimates of the number of radioactive products present in the Netherlands thanks to new information (camera lenses, smoke detectors containing Ra-226), replacement of radioactive by non-radioactive products (gas mantles, dental protheses), and a lowe...

  10. Natural and artificial radioactivity in the area of the Mochovce regional radioactive waste store

    International Nuclear Information System (INIS)

    Bezak, J.; Daniel, J.; Moravek, J.

    2000-01-01

    The results of monitoring of natural and artificial radioactivity in the area of the Mochovce regional radioactive waste store before commission are presented. The concentrations of uranium, thorium, potassium, and cesium, as well as radon volume activity were measured

  11. Study of the emanation levels of 222Rn present in Naturally Occurring Radioactive Materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria de Fatima da Encarnacao Sa

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas facilities, is a common fact in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. Thus, contaminated residues need to be segregated but, this is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the facility whose access is controlled. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scale is a mixture of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporates 226 Ra and 228 Ra in its structures. The objective of this work was to measure the emanations of the radon present in these NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of particle alpha tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Being that the emanation rate of 222 Rn was proportional to the number of these tracks the methodology permitted the comparison of contamination levels of the analyzed samples. (author)

  12. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  13. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  14. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  15. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  16. Radioactive waste management information for 1993 and record-to-date

    International Nuclear Information System (INIS)

    Taylor, K.A.

    1994-07-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1993. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System

  17. Radioactive waste management information for 1990 and record-to-date

    International Nuclear Information System (INIS)

    Litteer, D.L.; Peterson, C.N.; Sims, A.M.

    1991-07-01

    This document presents detailed data and graphics on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1990. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System (RWMIS)

  18. Radioactivity. What has to be known. A generally understandable presentation; Radioaktivitaet. Was man wissen muss. Eine allgemeinverstaendliche Darstellung

    Energy Technology Data Exchange (ETDEWEB)

    Traebert, Elmar

    2011-07-01

    The book includes contributions to the following topics: Natural radioactivity. High-energy radiation in science, medicine and everyday life. Nuclear weapons and politics. Civil nuclear power. Benefits and hazards of radioactivity.

  19. Naturally Occurring Radioactive Materials (NORM)

    International Nuclear Information System (INIS)

    Gray, P.

    1997-01-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training)

  20. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  1. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  2. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  3. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  4. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs

  5. Non-radioactive stand-in for radioactive contamination. I. Non-radioactive tests

    International Nuclear Information System (INIS)

    Rohe, M.J.; Rankin, W.N.; Postles, R.L.

    1985-01-01

    Candidate non-radioactive materials for use as a stand-in for radioactive contamination during application of a high-pressure, hot water decontamination were identified and evaluated. A stand-in for radioactive contamination is needed to evaluate the decontaminability of replacement canyon cranes at the manufacturers location where actual radioactive contamination cannot be used. This evaluation was conducted using high-pressure, hot-water at 420 psi, 190 0 F, and 20 gal/min through a 1/8-in.-diam nozzle, the decontamination technique preferred by SRP Separations Department for this application. A non-radioactive stand-in for radioactive contamination was desired that would be removed by direct blast stream contact but would remain intact on surfaces where direct contact does not occur. This memorandum describes identification of candidate non-radioactive stand-in materials and evaluation of these materials in screening tests and tests with high-pressure, hot-water blasting. The following non-radioactive materials were tested: carpenter's line chalk; typing correction fluid; dye penetrant developer; latex paint with attapulyite added; unaltered latex paint; gold enamel; layout fluid; and black enamel. Results show that blue layout fluid and gold enamel have similar adherence that is within the range expected for actual radioactive contamination. White latex paint has less adherence than expected for actual radioactive contamination. The film was removed at a rate of 2 . Black enamel has more adherence than expected from actual radioactive contamination. In these tests ASTM No. 2B surfaces were harder to clean than either ASTM No. 1 or electropolished surfaces which had similar cleaning properties. A 90 0 blast angle was more effective than a 45 0 blast angle. In these tests there was no discernible effect of blast distance between 1 and 3 ft

  6. Elements to diminish radioactive accidents

    International Nuclear Information System (INIS)

    Cortes I, M.E.; Ramirez G, F.P.

    1998-01-01

    In this work it is presented an application of the cause-effect diagram method or Ichikawa method identifying the elements that allow to diminish accidents when the radioactive materials are transported. It is considered the transport of hazardous materials which include radioactive materials in the period: December 1996 until March 1997. Among the identified elements by this method it is possible to mention: the road type, the radioactive source protection, the grade driver responsibility and the preparation that the OEP has in the radioactive material management. It is showed the differences found between the country inner roads and the Mexico City area. (Author)

  7. Estimation of global inventories of radioactive waste and other radioactive materials

    International Nuclear Information System (INIS)

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  8. Low Radioactivities Center. Report presented to the Scientific Committee, July 19, 1994

    International Nuclear Information System (INIS)

    1994-07-01

    This document is the annual report of the Low Radioactivities Center for the year 1994. The Center is a joint CEA-CNRS laboratory devoted to biogeochemical, climate and Earth science studies. It has developed refined methods for the measurement of small amounts of stable and radioactive isotopes (lead, thorium, cesium, radium, radon, polonium, potassium, argon, beryllium, carbon, oxygen, helium..), in particular isotope dating methods such as K/Ar and C14 methods. The research activities are regrouped in four topics: the study and modelling of great biogeochemical cycles (troposphere physico-chemistry, carbon cycle, mass transfers between atmosphere, ocean and sediments); the evolution of climate (thermohaline circulation and heat transfers); the interactions between the internal activity of the Earth and the Earth's surface (magnetic field instabilities, oceanic volcanism, geodynamics of orogenic domains, active volcanism); the outstanding events of the Earth's history (Cretaceous-Tertiary boundary, cosmic phenomena, Quaternary evolution of the fossil man and of its environment). A complete list of the laboratory publications is given in the appendix together with a listing of the other activities (teaching, external collaborations, oceanic campaigns, seminars..). (J.S.). 659 refs., 39 figs., 1 tab., 3 photos., 4 appends

  9. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  10. Presence of radioactivity in a sewage system: a proposal for radioactivity control

    International Nuclear Information System (INIS)

    Serradell, Vicente; Ballesteros, Luisa; Ortiz, Josefina

    2008-01-01

    Most hospitals use radioisotopes in diagnostics and to a lesser extent in therapy. The liquid residues thus generated are usually subjected to treatment before being discharged into the sewage system. Nevertheless, a certain amount of these residues escape from the treatment system and are poured directly into the sewer. In addition, other radioactive products used for research and industrial purposes may also be disposed of in the same way. The waste waters in many sewage systems can therefore be expected to be radiologically contaminated and the need for at least a basic control system in such situations seems obvious. When designing a procedure to measure radioactivity, certain conditions should be borne in mind: 1) The control program has to be simple and inexpensive; 2) Samples must be taken from the appropriate places; 3) Short life radionuclides will probably be present in significant amounts, so that specific recipes should be prepared; 4) Iodine is also frequently present. Special precautions should be taken to keep it in solution. In recent years, the Environmental Radioactivity Laboratory of the Universidad Politecnica de Valencia (Spain) has carried out a series of tests on the Valencia city sewage system and sewage treatment plant in order to design a permanent program to control radioactive contamination of the city's sewage system. This paper presents a proposal which we believe can provide the answer to this problem. (author)

  11. Radioactivity and foods

    International Nuclear Information System (INIS)

    Olszyna-Marzys, A.E.

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undesirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chernobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods

  12. A laboratory activity for teaching natural radioactivity

    Science.gov (United States)

    Pilakouta, M.; Savidou, A.; Vasileiadou, S.

    2017-01-01

    This paper presents an educational approach for teaching natural radioactivity using commercial granite samples. A laboratory activity focusing on the topic of natural radioactivity is designed to develop the knowledge and understanding of undergraduate university students on the topic of radioactivity, to appreciate the importance of environmental radioactivity and familiarize them with the basic technology used in radioactivity measurements. The laboratory activity is divided into three parts: (i) measurements of the count rate with a Geiger-Muller counter of some granite samples and the ambient background radiation rate, (ii) measurement of one of the samples using gamma ray spectrometry with a NaI detector and identification of the radioactive elements of the sample, (iii) using already recorded 24 h gamma ray spectra of the samples from the first part (from the Granite Gamma-Ray Spectrum Library (GGRSL) of our laboratory) and analyzing selected peaks in the spectrum, students estimate the contribution of each radioactive element to the total specific activity of each sample. A brief description of the activity as well as some results and their interpretation are presented.

  13. Measurement of radioactivity in steel

    International Nuclear Information System (INIS)

    Wachtendonk, H.-J. von; Luengen, S.; Wilke, N.

    1999-01-01

    Even after the control of scrap deliveries, there remains a small risk that the radioactive contaminated scrap passes the detecting devices. Therefore, the chemical laboratory takes a role to measure each heat for the absence of artificial radioactive nuclides with a gamma spectrometer equipped with NaI-detector. As the measurement must be performed in sequence with the steel production process, the allowable time for the measurement is quite limited. On the other hand, there could be still some possibility that background radiation might be present as the samples may contain some natural radioactivity. The task is how to differentiate the nature of radioactivity between naturally remaining radioactivity within safe limit and artificial nuclides present in the sample at a low level even though a very small amount of radioactivity could be detected in short time in both cases. We have set the alarm limit to 0.1 Bq/g for Co-60 as indicating nuclide. This limit is set more than 4 s (s = standard deviation) from the average background radiation. Therefore, false alarms are quite improbable. Strategy: The NaI gamma spectrometer performs a gross gamma measurement but it can not differentiate the nature of the nuclides present. If the alarm limit is hurt, the sample is measured on a high resolution gamma spectrometer with Ge-detector for identification of the gamma emitting nuclides. Calibration: Even though no appropriate international standards are adapted and no commercial measuring equipment is commercially available, the desired standard should contain Co-60 in the order of 1 to 100 Bq/g. The presence of other gamma emitting nuclides is desirable. In the Workshop we will present how to surmount this difficulty. (author)

  14. Background radioactivity in environmental materials

    International Nuclear Information System (INIS)

    Maul, P.R.; O'Hara, J.P.

    1989-01-01

    This paper presents the results of a literature search to identify information on concentrations of 'background' radioactivity in foodstuffs and other commonly available environmental materials. The review has concentrated on naturally occurring radioactivity in foods and on UK data, although results from other countries have also been considered where appropriate. The data are compared with established definitions of a 'radioactive' substance and radionuclides which do not appear to be adequately covered in the literature are noted. (author)

  15. National radioactive wasterRepository Mochovce

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the scheme of the Mochovce National radioactive waste repository for the Slovak Republic is presented. The National radioactive waste repository in Mochovce is a surface type storage facility. It is intended for final disposal of solid and solidified low and intermediate radioactive waste produced during the operation of nuclear power plants and institutions located within the territory of the Slovak Republic. The Repository site is situated about 2 km northwest to the Mochovce NPP

  16. The main evolutions brought by the parliamentary examination to the program law relative to the sustainable management of radioactive materials and wastes; Les principales evolutions apportees par l'examen parlementaire a la loi de programme relative a la gestion durable des matieres et dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The french law of 1991, decided to define management solutions in the radioactive wastes management policy, is now over. The results of researches led to the promulgation of a new planing act, the law of the 28 June 2006. This law concerns the sustainable management of radioactive materials and wastes. It takes also in account a public debate, organized in September 2005 by the National Commission for Public Debate. The Law project architecture can be described in three main points: the implementing of a national policy of radioactive materials and wastes, a better transparency and democratic control and the implementing of specific modalities for the organization and the financing of spent fuels and radioactive wastes management. After the parliamentary examination, the text prepared by the Government was modified. This document presents the main four themes of modification. (A.L.B.)

  17. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  18. Influence of non-radioactive payload parameters on radioactive shipping packages

    International Nuclear Information System (INIS)

    Drez, P.E.; Murthy, D.V.S.; Temus, C.J.; Quinn, G.J.; Ozaki, C.

    1989-01-01

    The transport of radioactive waste materials in radioactive material (RAM) packages involves two components: the packaging used for transportation, and the waste which forms the payload. The payload is usually comprised of non-radioactive materials contaminated with radionuclides. The non-radionuclide payload characteristics can often be a controlling factor in determining the restrictions imposed on the certification of the package. This paper describes these package/payload interactions and the limiting parameters for the Transuranic Package Transporter-II (TRUPACT-II), designed for the transportation of Contact Handled Transuranic (CH-TRU) waste. The parameters discussed include the physical and chemical form of the payload, the configuration of the waste, and resulting gas generation and gas release phenomena. Brief descriptions of the TRUPACT-II package and its payload are presented initially

  19. Tobacco radioactivity and cancer in smokers

    International Nuclear Information System (INIS)

    Martell, E.A.

    1975-01-01

    The recent finding that 210 Pb, which also is present in inhaled mainstream smoke, is highly concentrated in a small number of insoluble smoke particles changes the whole complexion of the problem of possible health effects of the inhaled radioactivity in cigarette smoke. Because 210 Pb has a radioactive half-life of 22 years, the body burden of the radioactive 210 Pb and its radioactive daughter products 210 Bi and 210 Po can continue to build up throughout the period of smoking. Alpha interactions with chromosomes of cells surrounding these insoluble radioactive smoke particles may cause cancer and contribute to early atherosclerosis development in cigarette smokers. (U.S.)

  20. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  1. Radioactive rare gas recoverying device

    International Nuclear Information System (INIS)

    Kasai, Shigeo

    1989-01-01

    The apparatus of the present invention comprises a vessel for containing coolants, an introduction valve and an introduction pipe for introducing radioactive rare gases and an adsorption floor disposed in the coolants. A josephson device is disposed being immersed in the coolants between a radiation detector for detecting the radioactive level adsorbed to the adsorption floor and a driving section for driving the introduction valve by the signal from the detector. With this constitution, radioactive rare gases introduced into the coolants and then cooled and liquefied are recovered by the adsorption floor. As the adsorption proceeds and when the radioactivity level exceeds a maximum level in the effective shielding range of the recovery apparatus, the signal current from the radiation detector also exceeds a predetermined level. If radioactivity exceeds the maximum level, the electrical resistance of the josephson device is increased infinitely by the josephson effect to close the introduction valve. Accordingly, the radioactivity is not absorbed beyond the effective shielding range. (I.S.)

  2. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  3. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  4. Radioactivity measurements principles and practice

    CERN Document Server

    Mann, W B; Spernol, A

    2012-01-01

    The authors have addressed the basic need for internationally consistent standards and methods demanded by the new and increasing use of radioactive materials, radiopharmaceuticals and labelled compounds. Particular emphasis is given to the basic and practical problems that may be encountered in measuring radioactivity. The text provides information and recommendations in the areas of radiation protection, focusing on quality control and the precautions necessary for the preparation and handling of radioactive substances. New information is also presented on the applications of both traditiona

  5. Hygienic assessment of radioactive iodine isotopes

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1987-01-01

    Sources of radioactive iodine isotopes and their biological significance depending on the way of intake are discussed. The degree of food contamination by radioactive iodine as well as products, which serve as the source of its intake into the human body, and results of their processing are considered. The danger of radioactive iodine intake by different groups of population as well as thyroid irradiation effects are discussed. Description of activities, directed to the human body protection against radioactive iodine and assessment of these protection measures efficiency is presented

  6. Radioactivity of the JINR site environment

    International Nuclear Information System (INIS)

    Alenitskaya, S.I.; Bamblevskij, V.P.; Kargin, A.N.; Komochkov, M.M.

    1977-01-01

    The results of the study of the existing levels of enviromental radioactivity in the JINR region for 1971-1975; content of radioactive products in the grass and surface soil layer, levels of the total alpha - and beta-radioactivity of water of open reservoirs as well as the background of the gamma-radiation and charged particles are presented. The study testifies, that the operation of the JINR nuclear-physical installations does not significantly affect the radioactivity of the environment which is mainly conditioned by the products of the natural origin and the global fallouts

  7. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  8. 2009 National inventory of radioactive material and wastes. In short

    International Nuclear Information System (INIS)

    2009-01-01

    This booklet gives a summary of the national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). Intended for public information, the booklet explains the basics of radioactive materials and wastes and waste management, and gives some data on present and future waste volumes, information about radioactive waste classification, the geographical distribution of waste sites in France, etc. The various types of radioactive wastes are described (classified by their lifetime and activity level) as well as historical storage sites, polluted areas where wastes are stored, radioactive objects, etc. and their respective management approaches are presented

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  10. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  11. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  12. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  13. Radioactive waste management; the realities as against the myths

    International Nuclear Information System (INIS)

    Williams, I.

    1980-01-01

    Nuclear power generation is now an essential requirement for the mankind in the current energy difficulties. The problem of radioactive waste management is arousing the opposition, but it must not inhibit the utilization of nuclear energy. Radioactive waste management concerns the whole course from its occurrence to its final disposal. The purpose of the management is then to protect absolutely the human beings of present and future generations from the danger of radioactivity. Radioactive wastes are varied much in their kinds and natures. While the management technology is nearly all established, the amounts of wastes are increasing. The following matters are described. Definition of radioactive waste management, fundamental strategies of the management, kinds of radioactive wastes, the present situation of radioactive waste management, and problems in the management. (J.P.N.)

  14. Technically enhanced naturally occurring radioactive materials; identification, characterization and treatment

    International Nuclear Information System (INIS)

    Aly, H.F.

    2001-01-01

    Radioactive materials (TENORM) is produced in a relatively large amount with relatively small radioactivity, however in many instances the radioactivity levels exceeds that permissible. In this presentation, the different industries where enhanced levels of natural radioactivity is identified and characterized will be given. The different approaches for treatment of this enhanced radioactivity will be addressed. Finally, our research and development activities in characterization and treatment of TENORM produced from the oil fields in Egypt will be presented. (authors)

  15. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.

    1985-01-01

    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  16. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  17. Environmental radioactivity surveillance programme 1994-1996

    International Nuclear Information System (INIS)

    Pollard, D.; Smith, V.; Howett, D.; Hayden, E.; Fegan, M.; O'Colmain, M.; Cunningham, J.D.

    1997-12-01

    This report presents the results of the terrestrial monitoring programme implemented by the Radiological Protection Institute of Ireland during the period 1994 to 1996. This monitoring programme includes the routine sampling and testing for radioactivity of samples of air, rainwater, drinking water and milk. Atmospheric concentrations of krypton-85 continued to rise over the period. No abnormal readings were observed for gamma dose rate, radioactivity in airborne particulates or radioactivity in rainwater. Significant variation in the concentrations of natural radioactivity was observed between drinking water supplies.The levels of anthropogenic radioactivity recorded during this reporting period in air, rainwater, drinking water and milk continue to be insignificant from a radiological safety point of view

  18. Bases for safety of shipping radioactive materials

    International Nuclear Information System (INIS)

    Frejman, Eh.S.; Shchupanovskij, V.D.; Kaloshin, V.M.

    1986-01-01

    Classification is presented and design of packaging containers for radioactive substance shipment is described. Standard documents and the main activities related to the shipment radiation safety provision are considered. Practical recommendations on environment and personnel protection during radioactive cargo shipment by all types of vehicles are presented

  19. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  20. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  1. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  2. Investigation of radioactive contamination at non-radioactive drains of the Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Koide, Hiroaki; Imanaka, Tetsuji; Ebisawa, Toru; Kawano, Shinji; Kobayashi, Keiji.

    1982-05-01

    In April, 1981, it was disclosed that a drainage area at the Tsuruga Nuclear Power Station was so much contaminated with radioactivites. Although Ministry of International Trade and Industry (MITI) officially provided an explanation of a process that resulted in the contamination, many problems remain unsolved on account of insufficient and limited investigations. The authors collected mud samples from contaminated manholes and examined radioactivities in them through the measurement of #betta#- and #betta#-spectra. Chemical separation of the samples was carried out in order to obtain precise concentration of radioactive cesium. Results are as follows: i) the concentration of radioactivities does not show monotonous decrease along the stream line but an anomalous peak at downstream manholes, ii) at the manhole specified No. 6 located rather downstream, 137 Cs concentration is significantly high and the composition of radioactive nuclides is quite different from that in the other manholes, and iii) additional radioactive contamination was observed in other manholes of non-radioactive drains which would not be influenced by the accident explained by MITI. Our present work has provided much more data than by MITI and made it clear that the overall data cnnot be consistent with the simple MITI explanation; a single radioactive release accident caused the disclosed contamination. It is concluded that non-radioactive water drains at the Tsuruga Nuclear Power Station had been under continual contamination. (author)

  3. Present trends in radioactive waste management policies in OECD countries and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years waste management has received increased attention not only at the national level but also internationally in order to harmonise to some extent the policies and practices to be followed and to continue to achieve a high safety standard in this field. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems covering not only the treatment and storage aspects for the short term but also the longer term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition to the discussion of policies and practices, a significant effort is also being initiated on research and development. The disposal problem has been given priority particularly as far as high level waste and alpha bearing wastes are concerned. Close international co-operation has been initiated in this sector as well as on the conditioning of high level radioactive waste. As a result of these efforts an international R and D programme is being established at the site of the Eurochemic reprocessing plant on the incorporation of high level waste into metal matrices. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes in detail the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities [fr

  4. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  5. Radioactivity and foods

    International Nuclear Information System (INIS)

    Olszyna Marzys, A.E.

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food-on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undesirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chernobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods. 14 refs, 4 tabs

  6. Accounting Systems for Heavy Water and Fissionable Materials; Comptabilite de l'Eau Lourde et des Matieres Fissiles; Sistema ucheta tyazheloj vody i delyashchikhsya materialov; Sistemas de Contabilidad para el Agua Pesada y los Materiales Fisionables

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, G. W.; Reid, H. B.; Jenkinson, W. G. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1966-02-15

    ] Les aureurs du memoire decrivent les methodes de gestion comptable utilisees par l'Atomic Energy of Canada Ltd (AECL) pour assurer l'enregistrement et le controle des stocks d'eau lourde et de matieres fissiles; ils decrivent egalement les fonctions et les responsabilites de ceux qui sont charges d'administrer ce systeme. Ils determinent la valeur de ces methodes et etudient dans quelle mesure elles sont adaptables et applicables aux programmes de recherche et de production d'energie qui se developpent rapidement; ils examinent en particulier les avantages du systeme electronique de traitement des donnees. Un comite de gestion a la responsabilite d'assurer la bonne marche du systeme de comptabilite, d'etablissement des rapports et de controle des matieres fissiles. A la Division des operations du Laboratoire nucleaire de Chalk River, le service de planification et de controle de la production est responsable envers le comite de la tenue de tous les registres et du fonctionnement general du systeme. Les differentes taches que cela implique sont decrites en detail dans le memoire. Le systeme de comptabilite des matieres fissiles est divise en un certain nombre de sections comptables dont 15 sont du ressort des differents departements de l'AECL et les autres confiees a des industries canadiennes et a des organismes de recherche. Pour chaque section, le service de planification et de controle de la production tient un livre; ces sections ont toutefois la responsabilite de preparer des etats comptables detailles pour toutes les matieres soumises a leur controle. Les principales methodes comptables utilisees pour enregistrer les transferts de matieres d'une section a l'autre, les transformations subies par les matieres dans une meme section, le traitement des gains et les pertes de matieres, l'elimination des dechets, sont exposees dans le memoire. La transcription de ces donnees sur carte IBM, leur traitement final a l 'aided'une calculatrice IBM 1401 et la preparation des

  7. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  8. ECOLOGICAL AND TECHNICAL REQUIREMENTS OF RADIOACTIVE WASTE UTILISATION

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2013-01-01

    Full Text Available The paper presents a survey of radioactive waste disposal technologies used worldwide in terms of their influence upon natural environment. Typical sources of radioactive waste from medicine and industry were presented. In addition, various types of radioactive waste, both liquid and solid, were described. Requirements and conditions of the waste’s storage were characterised. Selected liquid and solid waste processing technologies were shown. It was stipulated that contemporary methods of radioactive waste utilisation enable their successful neutralisation. The implementation of these methods ought to be mandated by ecological factors first and only then economical ones.

  9. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  10. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  11. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  12. Internal radioactive contamination treatment

    International Nuclear Information System (INIS)

    Tobajas, L. M.

    1998-01-01

    In a radiological emergency, the internal radioactive contamination becomes a therapeutic urgency and must be established as fast as possible. Just when a radioactive contamination accident occurs, it is difficult to know exactly the amount of radioactive materials absorbed and to estimate the dose received.. The decision to be taken after the incorporation of the radioactive material depends on the method and on the Radiological Protection Department collaboration. Any treatment achieving a reduction of the doses received or expected will be useful. The International Radiological Protection Commission doesn't recommend the use of the dose limit, to decide about the intervention necessity. However the LIA can be used as the reference point to establish the necessity and reach of the treatment. The object of the present work, is to introduce the general principles to carry out the internal people decontamination, under the last international recommendations. (Author) 4 refs

  13. Cleanup of radioactivity contamination in environment

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    1994-01-01

    Environmental radioactivity cleanup is needed under a large scale accident in a reactor or in an RI irradiation facility which associates big disperse of radioactivities. Here, the fundamental concept including a radiation protection target, a period classification, planning, an information data base, etc. Then, the methods and measuring instruments on radioactivity contamination and the cleanup procedure are explained. Finally, the real site examples of accidental cleanup are presented for a future discussion. (author)

  14. Radioactivity. Centenary of radioactivity discovery

    International Nuclear Information System (INIS)

    Charpak, G.; Tubiana, M.; Bimbot, R.

    1997-01-01

    This small booklet was edited for the occasion of the exhibitions of the celebration of the centenary of radioactivity discovery which took place in various locations in France from 1996 to 1998. It recalls some basic knowledge concerning radioactivity and its applications: history of discovery, atoms and isotopes, radiations, measurement of ionizing radiations, natural and artificial radioactivity, isotope dating and labelling, radiotherapy, nuclear power and reactors, fission and fusion, nuclear wastes, dosimetry, effects and radioprotection. (J.S.)

  15. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  16. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  17. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  18. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  19. New type of natural radioactivity

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Chechev, V.P.; Yavshits, S.G.

    1987-01-01

    Consideration is being given in popular form to investigations of a new type of natural radioactivity - spontaneous emission of fragments, more massive than α-particles, by heavy element nuclei, called f-decay by analogy with known α and γ decays. Some data on radioactivity, origin of the decay are presented. Possibilities of f-decay, predictions and hypotheses are discussed. The reason of late discovery of f-decay lies in low f-decay probability 10 -9 with respect to α-decay and in a certain sluggishness of settled knowledge about possible types of radioactive decay. The idea of f-decay is presented. It differs from the idea about a new type of decay as modification of asymmetric fission and contains an attempt to explain the intermediate position of f-decay between α-decay and

  20. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  1. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  2. Management and control of radioactive wastes in Ghana | Gbadago ...

    African Journals Online (AJOL)

    ... is responsible for monitoring and tracking all radioactive materials imported, stored or exported. The profile of radioactive sources in active use are also presented, in addition to spent radioactive sources currently in the custody of the NRWMC as part of the inventory for creating databases on radioactive wastes in Ghana.

  3. Treatment of short-lived radioactive wastes

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri

    1976-01-01

    Recently short life nuclides have come to be utilized increasingly as diagnostic radioisotopes, and Tc-99m (half-life; 6.05 hours) and Ga-67 (half-life 7.79 hours) are replacing the most nuclides fomerly used in vivo test. Such development of radioactive products inevitably causes the rapid increase of their wastes. At present, the radioactive wastes produced by hospitals and university laboratories in Japan are collected by the Japan Radioisotope Association, and treated by the Japan Atomic Energy Research Institute. These wastes are divided into combustibles and incombustibles to store in the store house in the Japan Atomic Energy Research Institute. The present law in Japan contains the contradiction which treats the matter with one several millionth of radioactivity after decay same as the original radioactive matter. Thus solid must be stored permanently, while gas and liquid can be discharged after dilution. (Kobatake, H.)

  4. Mental Models of Radioactivity and Attitudes towards Radioactive Waste

    International Nuclear Information System (INIS)

    Zeleznik, N.

    2010-01-01

    Siting of a radioactive waste repository presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. Previous research on people's perception of the LILW repository construction, their attitudes towards radioactive waste, their willingness to accept it, indicated significant differences in answers of experts and lay persons, mainly regarding evaluation of the consequences of repository construction. Based on the findings of pilot investigations a mental model approach to the radioactivity, radioactive waste and repository was used as a method for development better risk communication strategies with local communities. The mental models were obtained by adjustment of the method developed by Morgan and co-workers where expert model of radioactivity is compared with mental model of lay people obtained through individual opened interviews. Additional information on trust, risk perception, role of main actors in the site selection process and their credibility was gained with the overall questionnaire on the representative sample of Slovenian population. Results of the survey confirm some already known findings, in addition we gained new cognitions and with analyses obtained the relationships and ratios between different factors, which are characteristics both for the general public and for the public, which is involved in the site selection process for a longer period and has been living beside a nuclear power plant for one generation. People have in general negative associations regarding the repository, the perceived risk for nuclear facilities is high, and trust in representatives of governmental institutions is low. Mental models of radioactivity, radioactive waste and the LILW repository are mostly irregular and differ from the experts' models. This is particularly valid for the models of radioactivity and the influences of

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  6. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  7. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  8. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  9. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  10. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  11. Effects of natural radioactivity on food radioactivity measurement

    International Nuclear Information System (INIS)

    Ennyu, Atsuhito

    2012-01-01

    Since the accident of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Company, groups and individuals including local governments, food manufacturers, distribution circles, retail circles, and citizens are eager to measure the radioactivity of food, in order to confirm the safety of food from the concerns about radioactive contamination. The measurement of radioactivity of food is done by quantitatively determining gamma rays due to radioactive cesium that was incorporated into the biosphere cycle after having been released into the environment. As for the radioactivity measurement of food using gamma-ray spectrometry with a potassium iodide scintillation detector, which is very commonly used, this paper describes the handling method of obtained data, the principle of erroneous detection of radioactive cesium and iodine interrupted by natural radionuclides, and countermeasures for it. Major natural radioactivity sources are uranium series and thorium series. This paper explains gamma rays, which are characteristic in the decay process of uranium series and often affect the measurement of radioactive cesium in food and water. (O.A.)

  12. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  13. Surveillance of the environmental radioactivity

    International Nuclear Information System (INIS)

    Schneider, Th.; Gitzinger, C.; Jaunet, P.; Eberbach, F.; Clavel, B.; Hemidy, P.Y.; Perrier, G.; Kiper, Ch.; Peres, J.M.; Josset, M.; Calvez, M.; Leclerc, M.; Leclerc, E.; Aubert, C.; Levelut, M.N.; Debayle, Ch.; Mayer, St.; Renaud, Ph.; Leprieur, F.; Petitfrere, M.; Catelinois, O.; Monfort, M.; Baron, Y.; Target, A.

    2008-01-01

    The objective of these days was to present the organisation of the surveillance of the environmental radioactivity and to allow an experience sharing and a dialog on this subject between the different actors of the radiation protection in france. The different presentations were as follow: evolution and stakes of the surveillance of radioactivity in environment; the part of the European commission, regulatory aspects; the implementation of the surveillance: the case of Germany; Strategy and logic of environmental surveillance around the EDF national centers of energy production; environmental surveillance: F.B.F.C. site of Romans on Isere; steps of the implementation 'analysis for release decree at the F.B.F.C./C.E.R.C.A. laboratory of Romans; I.R.S.N. and the environmental surveillance: situation and perspectives; the part of a non institutional actor, the citizenship surveillance done by A.C.R.O.; harmonization of sampling methods: the results of inter operators G.T. sampling; sustainable observatory of environment: data traceability and samples conservation; inter laboratories tests of radioactivity measurements; national network of environmental radioactivity measurement: laboratories agreements; the networks of environmental radioactivity telemetry: modernization positioning; programme of observation and surveillance of surface environment and installations of the H.A.-M.A.V.L. project (high activity and long life medium activity); Evolution of radionuclides concentration in environment and adaptation of measurements techniques to the surveillance needs; the national network of radioactivity measurement in environment; modes of data restoration of surveillance: the results of the Loire environment pilot action; method of sanitary impacts estimation in the area of ionizing radiations; the radiological impact of atmospheric nuclear tests in French Polynesia; validation of models by the measure; network of measurement and alert management of the atmospheric

  14. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  15. SE-VYZ - Decommissioning of Nuclear Installations, Radioactive Waste and Spent Fuel Management

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    In this presentations processes of radioactive waste treatment in the Bohunice Radioactive Waste Processing Center (SE-VYZ), Jaslovske Bohunice are presented. Decommissioning of the A-1 NPP is also presented. Disposal of conditioned radioactive waste in fibre concrete containers (FCC) are transported to Mochovce from Jaslovske Bohunice by the transport truck where are reposited in the National radioactive waste repository Mochovce. The Interim spent fuel storage facility (ISFSF) is included into this presentation

  16. Processing method for radioactive liquid waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1991-01-01

    Drainages, such as water after used for washing operators' clothes and water used for washing hands and for showers have such features that the radioactive concentration is extremely low and detergent ingredients and insoluble ingredients such as waste threads, hairs and dirts are contained. At present, waste threads are removed by a strainer. Then, after measuring the radioactivity and determining that the radioactivity is less than a predetermined concentration, they are released to circumstances. However, various organic ingredients such as detergents and dirts in the liquid wastes are released as they are and it is not preferred in respect of environmental protection. Then, in the present invention, activated carbon is filled in a container orderly so that the diameter of the particles of the activated carbon is increased in the upper layer and decreased in the lower layer, and radioactive liquid wastes are passed through the container. With such a constitution. Both of soluble substances and insoluble substances can be removed efficiently without causing cloggings. (T.M.)

  17. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  18. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  19. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  20. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Rajib, Mohammad; Akiyoshi, Masafumi; Kobayashi, Taishi; Takagi, Ikuji; Fujii, Toshiyuki; Zaman, Md. Mashrur

    2015-01-01

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of 40 K. The maximum values of 232 Th and 238 U, estimated from the radioactivity of 208 Tl and 234 Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed

  1. Present situation of radioactive contamination in and around the former Soviet Union's Semipalatinsk nuclear test site

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M. [Kanazawa Univ., Low Level Radioactivity Laboratory, Ishikawa (Japan); Hoshi, M.; Takada, J. [Hiroshima Univ., Research Institute for Radiation Biology and Medicine, Hiroshima (Japan); Tsukatani, T. [Kyoto Univ., Kyoto Institute of Economic Research, Kyoto (Japan); Oikawa, S. [Japan Chemical Analytical Center, Inage, Chiba (Japan); Yoshikawa, I.; Takatsuji, T. [Nagasaki Univ., Faculty of Environmental Studies, Nagasaki (Japan); Sekerbaev, A. Kh.; Gusev, B.I. [Kazakh Scientific Research Institute for Radiation Medicine and Ecology, Semipalatinsk (Kazakhstan)

    2001-03-01

    Field missions were sent to the Semipalatinsk regions to investigate the present radioecological situation as a result of the radioactive fallout from nuclear test explosions carried out at the former Soviet Union's Semipalatinsk nuclear test site (SNTS). For this purpose, surface and core soil samples were collected at more than 60 sites, including several settlements such as Dolon, Chagan and Sarzhal, within and outside the SNTS territory. The radioactivities of long-lived radionuclides, {sup 137}Cs, {sup 238}Pu and {sup 239,240}Pu, and the atomic ratio of {sup 240}Pu/{sup 239}Pu were determined in combination with non-destructive g-ray spectrometric method and radiochemical separation followed by a-particle spectrometric and/or ICP-MS methods. The results showed a distinction of {sup 137}Cs and {sup 239,240}Pu inventories in soil depending on a sampling sites. Although {sup 137}Cs was within typical environmental levels except for the area near the first nuclear test site and Balapan, {sup 239,240}Pu was at elevated levels in all areas we visited. This high Pu contamination was recognized to be due to the weapons-grade Pu from the SNTS by the measurement of {sup 240}Pu/{sup 239P}u atomic ratio in soil samples. (author)

  2. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  3. National Inventory of Radioactive Wastes, Edition 1998

    International Nuclear Information System (INIS)

    Pallard, Bernard; Vervialle, Jean Pierre; Voizard, Patrice

    1998-01-01

    The National Radioactive Waste Inventory is an annual report of French National Agency for Radioactive Waste Management (ANDRA). The issue on 1998 has the following content: 1. General presentation; 2. Location of radioactive wastes in France; 3. Regional file catalogue; 4. Address directory; 5. Annexes. The inventory establishes the producer and owner categories, the French overseas waste sources, location of pollutant sides, spread wastes (hospitals, universities and industrial sector), railways terminals

  4. Using radioactivity

    International Nuclear Information System (INIS)

    1982-10-01

    The leaflet discusses the following: radioactivity; radioisotopes; uses of ionising radiations; radioactivity from (a) naturally occurring radioactive elements, and (b) artificially produced radioisotopes; uses of radioactivity in medicine, (a) clinical diagnostic, (b) therapeutic (c) sterilization of medical equipment and materials; environmental uses as tracers; industrial applications, e.g. tracers and radiography; ensuring safety. (U.K.)

  5. Environmental pollution by radioactive effluents: present situation facing the 21 Century. Part 2

    International Nuclear Information System (INIS)

    Nunez, Juan C.

    2005-01-01

    The awareness of the need to preserve the environment in the local, regional and international spheres has produced a large number of control and prevention rules that constitute the Environmental Law. The contamination of the sea has been the last field to be considered by the States. Since few years ago, marine pollution is appraised as an issue that affects all the States, taking account of its interdependency and the need to establish between governments a greater cooperation network. The radioactive contamination, i.e. the pollution produced by the discharge of radioactive wastes into the sea, is one of the types of contamination. Several discharge systems have been designed, so it is necessary to select in each case the most suitable one taking into account the type of wastes and other factors as the economy and the effectiveness of the method and the application of the radiation protection principles. International rules have evolved to solve different issues since the first United Nation Convention on the Law of the Sea in 1945 to the third Conference in 1982 that produced the United Nation Convention on the Law of the Sea and four Resolutions. The Convention and the Resolutions form an inseparable whole that show the evolution of the international cooperation in this field [es

  6. Environmental pollution by radioactive effluents: present situation facing the 21 Century. Part 1

    International Nuclear Information System (INIS)

    Nunez, Juan C.

    2005-01-01

    The awareness of the need to preserve the environment in the local, regional and international spheres has produced a large number of control and prevention rules that constitute the Environmental Law. The contamination of the sea has been the last field to be considered by the States. Since few years ago, marine pollution is appraised as an issue that affects all the States, taking account of its interdependency and the need to establish between governments a greater cooperation network. The radioactive contamination, i.e. the pollution produced by the discharge of radioactive wastes into the sea, is one of the types of contamination. Several discharge systems have been designed, so it is necessary to select in each case the most suitable one taking into account the type of wastes and other factors as the economy and the effectiveness of the method and the application of the radiation protection principles. International rules have evolved to solve different issues since the first United Nation Convention on the Law of the Sea in 1945 to the third Conference in 1982 that produced the United Nation Convention on the Law of the Sea and four Resolutions. The Convention and the Resolutions form an inseparable whole that show the evolution of the international cooperation in this field [es

  7. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  8. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  9. SPERA 98: radioactivity and the environment, environmental radioactivity and its application in environmental studies: conference papers

    International Nuclear Information System (INIS)

    1998-01-01

    The 1998 workshop of the South Pacific Environmental Radioactivity Association (SPERA) was held in Christchurch, New Zealand. Presentations were grouped around the themes of soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways and foodchains, sediment studies and atmospheric radon. This volume contains extended abstracts. A list of participants is also included

  10. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  11. Present situation and influence of new ICRP recommendations on radioactive material transport regulations

    International Nuclear Information System (INIS)

    Hamard, J.; Ringot, C.

    1991-01-01

    The publication of new ICRP recommendations will involve the revision of IAEA standards and consequently the revision of transport regulations for radioactive materials. Transport regulations are briefly reviewed and application for radiation protection of workers and public is examined. Influence of new recommendations on transport regulations and eventual modifications on classification and transport of materials, packaging design and permissible exposure for workers and public in the prospect of regulation revision forecasted for 1995

  12. The Barents Sea, its fisheries and past and present status of radioactive contamination, and its impacts on fisheries

    International Nuclear Information System (INIS)

    Foeyn, L.; Svaeren, I.

    1995-01-01

    For Norway and Russia the fisheries in the Barents Sea is of great importance. When the Chernobyl accident happened, almost two decades had passed without any systematic monitoring of the radioactivity in the Sea. The accident initiated new activity in this field at the Norwegian Institute of Marine Research. In 1990 a programme of sampling sediments, biota and water was started for, in the first hand, determination of radiocesium. The obtained results have shown that the fish resources as such of the Barents Sea have not yet been affected by anthropogenic radioactivity, neither during the nuclear bomb tests in the fifties and sixties, nor during recent years due to accidental releases. The fisheries may, however, be dramatically affected by the fact that the focus of media on radioactive contamination frightens people from eating fish. 11 refs., 1 fig

  13. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1998-01-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector. (author)

  14. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1997-04-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector

  15. 1. round table - Nuclear wastes and radioactive materials. 2. round table - risks linked with nuclear wastes and materials. 3. round table - the problem of long-term management of medium-high activity and long lived wastes. The process defined by the 1991 law; 1. table ronde - dechets nucleaires et matieres radioactives. 2. table ronde - Les risques des dechets et matieres nucleaires. 3. table ronde - Le probleme de la gestion a long terme des dechets a MA/HAVL. Le processus defini par la loi de 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the debates of the first round table of Paris about the problems raised by nuclear wastes in the case of the geologic disposal option. Four families of questions have been tackled: 1 - the exhaustiveness of ANDRA's inventory, the solutions foreseen for the different types of wastes; 2 - the high-medium activity wastes and their processing; 3 - the management of non-reprocessed spent MOX fuels; 4 - the safety and security standards used and their establishment. Four presentations are attached to these proceedings and deal with: the measured and estimated inventory of all radioactive wastes; the inventory and management of radioactive wastes and the place of citizens; the point of view of the nuclear safety authority; conditioning and storage. (J.S.)

  16. ''New ' technology of solidification of liquid radioactive waste'

    International Nuclear Information System (INIS)

    Sytyl, V.A.; Svistova, L.M.; Spiridonova, V.P.

    1998-01-01

    It is generally accepted that the best method of processing of radioactive waste is its solidification and then storage. At present time, three methods of solidification of radioactive waste are widely used in the world: cementation, bituminous grouting and vitrification. But they do not solve the problem of ecologically processing of waste because of different disadvantages. General disadvantages are: low state of filling, difficulties in solidification of the crystalline hydrated forms of radioactive waste; particular sphere of application and economical difficulties while processing the great volume of waste. In connection with it the urgent necessity is emerging: to develop less expensive and ecologically more reliable technology of solidification of radioactive waste. A new method of solidification is presented with its technical schema. (N.C.)

  17. JEF-2.2 radioactive decay data

    International Nuclear Information System (INIS)

    1994-08-01

    This work deals with the JEF-2.2 radioactive decay data and is divided into four tables. The first table presents the origin of the JEF-2.2 radioactive decay data and subsequent modifications. The second one is a summary of the JEF-2.2 radioactive decay data file. The third one describes the JEF-2.2 fission products and the main decay and fission yield data. The last one consists of the main decay parameters from the JEF-2.2, ENDF/B-VI and JNDC-2.0 libraries. (O.L.). 100 figs., 4 tabs

  18. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  19. Radioactive sources in chemical laboratories

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2007-01-01

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96/29/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware of radiation characteristics of sources. The material inventories of chemical laboratories are typical and most frequent example where radioactive sources could be found. Five different types of sources could be identified. The most frequent type are chemicals, namely thorium and uranium compounds. They are used not due to their radioactivity but due to their chemical properties. As for all other sources a stringent control is necessary in order to assure their safe use. Around hundred of stored radioactive chemical items were found during inspections of such laboratories performed by the Slovenian Nuclear Safety Administration or qualified experts in a period December 2006 - July 2007. Users of such chemicals are usually not aware that thorium and uranium chemicals are radioactive and, as unsealed sources, they could be easily spilled out and produce contamination of persons, surfaces, equipment etc. The external exposure as well as the internal exposure including exposure due to inhalation could be present. No knowledge about special precautions is usually present in laboratories and leads to underestimating of a potential risk and unintentional exposure of the laboratory personnel, students etc. Due to the long decay times in decay series of Th -232, U-238 and U- 235 the materials are also radioactive today. Even more, in case of thorium chemicals the radioactivity increased substantially from the time of their production. The implementation of safety measures has been under way and includes a survey of the qualified experts, establishment of organizational structure in a

  20. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  1. Computed tomography of radioactive objects and materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Murphy, R.V.; Tosello, G.; Reynolds, P.W.; Romaniszyn, T.

    1990-01-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uranium: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly. (orig.)

  2. α-amylase assay and action pattern determination using radioactive substrate, HPLC, and a radioactive flow detector

    International Nuclear Information System (INIS)

    Marsili, R.T.; Ostapenko, H.

    1987-01-01

    A new assay system is presented for the analysis of α-amylase. The disappearance of 14 C-labeled starch substrate and the appearance of its radioactive degradation products were monitored by HPLC and a radioactive flow detector/integrator. The hydrolysis of radioactive substrate was proportional to enzyme concentration when two commercially available α-amylase preparations of Bacillus subtilis origin were studied. The method demonstrated an average recovery of 101.7 +/- 6.5% when modified food starch was spiked with amylase and analyzed. In addition, the method was shown to be useful for predicting detailed action patterns of various types of amylases

  3. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  4. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  5. Radioactive Decay

    Science.gov (United States)

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  6. Radioactive nuclides in the living environment

    International Nuclear Information System (INIS)

    Ueno, Kaoru; Hoshi, Michio.

    1993-09-01

    There are several radioactive nuclides in the living environment, such as those existing since the creation of the earth, those coming from experimental nuclear explosions, and radiations of the cosmic rays. A lesson on these radioactive nuclides was considered useful for understanding the place of nuclear technology, and have been made on the title of 'Radioactive Nuclides in the Living Environment' in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. When the curriculum of the general course was modified in 1993, the lesson was left in a changed form. Thus, the textbook of the lesson is presented in this report. The contents are natural and artificial radioactive nuclides in the living environment and where they have come from etc. (author)

  7. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  8. Radioactive source

    International Nuclear Information System (INIS)

    Drabkina, L.E.; Mazurek, V.; Myascedov, D.N.; Prokhorov, P.; Kachalov, V.A.; Ziv, D.M.

    1976-01-01

    A radioactive layer in a radioactive source is sealed by the application of a sealing layer on the radioactive layer. The sealing layer can consist of a film of oxide of titanium, tin, zirconium, aluminum, or chromium. Preferably, the sealing layer is pure titanium dioxide. The radioactive layer is embedded in a finish enamel which, in turn, is on a priming enamel which surrounds a substrate

  9. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  10. Environmental Radioactive Pollution Sources and Effects on Man

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1999-01-01

    The sources of environmental radioactivity are essentially the naturally occurring radionuclides in the earth,s crust and the cosmogenic radionuclides reaching the environmental ecosystems. The other sources of environmental radioactivity are the man made sources which result from the radioactive materials in human life. The naturally occurring environmental radioactivity is an integral component of the terrestrial and extraterrestrial creation, and therefore it is not considered a source of radioactive pollution to the environment. The radioactive waste from human activities is released into the environment, and its radionuclide content becomes incorporated into the different ecosystems. This results in a situation of environmental radioactive pollution. This review presents the main features of environmental radioactive pollution, the radionuclide behaviour in the ecosystems, pathway models of radionuclides in the body and the probability of associated health hazards. The dose effect relationship of internal radiation exposure and its quantitative aspects are considered because of their relevance to this subject

  11. Studies on radioactivity distribution and radioactive mineral identification in uranium ores from Espinharas (PB), Brazil

    International Nuclear Information System (INIS)

    Oliveira, G.N.M. de.

    1979-01-01

    Studies about the identification of radioactive minerals in uranium bearing rocks from Espinharas (PB), Brazil are presented. Autoradiography with α-sensitive nuclear emulsions was utilized for determining radioctivity distributions and for localizing radioactive minerals, in combination with microscopy, X-ray diffractometry, PIXE and eletron microprobe analysis for its identification. Mineralized gneisse and feldspatic rock, the two principal samples studied, show distinct differences in radioactive distribution patterns, however the main carriers for U and Th seem to be the same. Microanalysis shows that elements are associated with Si, Ca, Fe and Al an some trace elements like Y, Zr, Ti, etc. U and Th are distributed uniformly in feldspatic rock and inhomogeneously in mineralized gneisse, indicating that the zonary structure of the radioactive cristals, frequently observed in gneisse, could be due to variable U:Th ratios. Chemical analysis, X-ray diffraction datas and microscopic studies indicates that the principal carrier for radioactivity in the rocks of Espinharas is a silicate mineral of U and Th, probably situaded in the series of transition: Coffinite -> uraninite, thorogummite -> thorianite. Some additional experiments about leachability of uranium with diluted sulfuric acid are reported, which confirm the different nature of radioactivity distribution in feldspatic and gneissic rocks. (author) [pt

  12. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takayuki, E-mail: sasaki@nucleng.kyoto-u.ac.jp [Kyoto University, Department of Nuclear Engineering (Japan); Rajib, Mohammad [Bangladesh Atomic Energy Commission, Nuclear Minerals Unit, Atomic Energy Research Establishment (Bangladesh); Akiyoshi, Masafumi; Kobayashi, Taishi; Takagi, Ikuji [Kyoto University, Department of Nuclear Engineering (Japan); Fujii, Toshiyuki [Kyoto University, Research Reactor Institute (Japan); Zaman, Md. Mashrur [Bangladesh Atomic Energy Commission, Nuclear Minerals Unit, Atomic Energy Research Establishment (Bangladesh)

    2015-06-15

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of {sup 40}K. The maximum values of {sup 232}Th and {sup 238}U, estimated from the radioactivity of {sup 208}Tl and {sup 234}Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.

  13. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  14. The storage center of very-low level radioactive wastes

    International Nuclear Information System (INIS)

    2008-01-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  15. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  16. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    A dedicated National Centre for RIB (NCRIB) proposed discussed at several forums is presented. The production of (RIB) radioactive ion beams and applications of beams leading to competitive studies in nuclear structure, nuclear reactions, condensed matter, bio-science and radioactive isotope production etc. are mentioned

  17. Eighteenth annual report of: The Radioactive Waste Management Advisory Committee

    International Nuclear Information System (INIS)

    1998-07-01

    This annual report reviews the RWMAC's work programme and progress made in 1997-1998; discusses operational and administrative matters including financial management and policy review; and presents the 1998 RWMAC work programme. Particular chapters are devoted to the management of intermediate and high level radioactive waste and spent fuel; the Dounreay Nuclear Establishment; the radioactive waste discharge authorisations. The document presents the RWMAC's review of the Ministry of Defence's radioactive waste management practices. A separate chapter is devoted to the study of radioactive waste management practices in Spain. Annexes to the report include terms of reference and membership of the Radioactive Waste Management Advisory Committee; RWMAC financial statement; declaration and register of member's interests; the RWMAC's 1998 work programme; the RWMAC's response to the Government on Proposals for the control and remediation of radioactively contaminated land

  18. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  19. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  20. Treatment of hyperthyroidism with radioactive iodine

    International Nuclear Information System (INIS)

    Bell, R.L.

    1974-01-01

    While radioactive iodine is clearly the therapy of choice for Graves' disease (even in younger patients) the use of radioactive iodine for therapy of the toxic multinodular or uninodular goiter presents an entirely different problem. Although these two entities can be treated with radioactive iodine provided there is some suppression of the tissue that is not autonomous, transient release of thyroid hormone may induce symptoms of thyroid storm in the very large multinodular toxic goiter treated with radioiodine therapy. These toxic nodules generally require much larger doses of radioiodine than is commonly used for classical Graves' disease and may either require fractional administration of radioisotopes or concomitant use of antithyroid drugs and iodides. In general, surgery remains the treatment of choice for large toxic multinodular goiters, after proper preparation by medical means including radioactive iodine. Radioactive iodine therapy for hyperthyroidism is contraindicated in pregnancy and generally is not used in children below five years of age. (U.S.)

  1. The discovery of radioactivity: the centenary

    International Nuclear Information System (INIS)

    Patil, S.K.

    1995-01-01

    In the last decade of the nineteenth century, a number of fundamental discoveries of outstanding importance were made unexpectedly which marked the beginning of a new era in physics. A cascade of spectacular discoveries began with the announcement of the discovery of x-rays by Roentgen followed by the discoveries, in quick succession, of radioactivity by Becquerel, of Zeeman effect, of electron by J.J. Thomson, and of polonium and radium by the Curies. Both x-rays and radioactivity have wide applications in scientific, medical and industrial fields and have made outstanding contribution to the advancement of human knowledge and welfare. Radioactivity is well known and no other discovery in the field of physics or chemistry has had a more profound effect on our fundamental knowledge of nature. Present article, on the occasion of the centenary of the discovery of radioactivity, makes an attempt to describe some glimpses of the history of radioactivity. (author). 59 refs

  2. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  3. Halftone display, particularly for a high resolution radioactivity distribution detection system

    International Nuclear Information System (INIS)

    Grenier, R.P.

    1977-01-01

    A device is described for presenting a halftone pictorial presentation composed of dot picture elements by selectively controlling the number of dot picture elements per unit area at locations on a display. In a high resolution radioactivity distribution detection system, the number of detected radioactive elements at XY locations of an array of sensing devices are fed to a computer and stored at corresponding address locations. The number of radioactive events detected at each address location is normalized into Gray scale coded signals as a function of the greatest number of radioactive events detected at any one address location. The normalized Gray scale coded signals are applied to a display for controlling the number of dot picture elements per unit area presented at corresponding XY locations on the display. The number of radioactive events detected at XY locations of the array are presented on the display as a halftone pictorial representation; the greatest number of picture dot elements per unit are being presented as a brighter image

  4. The radioactive waste management program of The Commission of the European Communities: Past, present, and future trends

    International Nuclear Information System (INIS)

    Orlowski, S.M.

    1983-01-01

    The radioactive waste management program started in the mid-1970s is being carried out by the Commission of European Communities (CEC) Joint Research Centre and by research bodies within the European community under CEC coordination and partial financing. The program deals with the management of the radioactive waste resulting from uranium-plutonium fuel cycle. During its first phase (1973-1979), various treatment and conditioning processes were investigated; high temperature incineration and acid digestion of alpha-bearing waste, immobilization of highly active waste in borosilicate glasses, inter alia, appeared promising. Geological disposal was recognized as a feasible option; transmutation of long-lived products did not appear to be an advantageous alternative to geological disposal, and the studies were discontinued. The second phase (1980-1984) of the program is a followup to the first. The needs of the European nuclear industry and of the national radioactive waste agencies or operators recently created are, however, taken into account. The continuity of the RandD effort is ensured by a ''Community plan of action on waste management,'' (1980-1992). A third phase, 1984-1989, should demonstrate the availability and validity of the waste management techniques and be convincing about their safety

  5. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  6. Inventory of radioactive material entering the marine environment: Sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    1991-03-01

    Variable amounts of packaged low level radioactive waste have been disposed at more than 50 sites in the northern parts of the Atlantic and Pacific Oceans. The last known disposal operation was in 1982, at a site about 550 km off the European continental shelf in the Atlantic Ocean. Since 1957, the IAEA has provided specific guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. In 1972, the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter designated the IAEA as the competent international authority in matters related to sea disposal of radioactive waste. The Contracting Parties requested the IAEA to develop an inventory of radioactive wastes entering the marine environment from all sources as an information base with which the impact of radioactive materials from disposal operations can be more adequately assessed. The continuous compilation of these data could ensure that the IAEA recommendations on the disposal rate in a single basin are not overstepped. The inventory shows that between 1946 to 1982 an estimated 46 PBq 1 (1.24 MCi) of radioactive waste coming from research, medicine, the nuclear industry and military activities were packaged, usually in metal drums lined with a concrete or bitumen matrix, and disposed of at sea. This inventory includes some unpackaged wastes and liquid wastes which were disposed of from 1950 to 1960. Beta-gamma emitters represent more than 98% of the total radioactivity of the waste and tritium alone represents one third of the total radioactivity disposed at the North East Atlantic sites. The other beta-gamma emitters radionuclides include 90 Sr, 137 Cs, 55 Fe, 58 Co, 60 Co, 125 I and 14 C. The wastes also contain low quantities of alpha-emitting nuclides with plutonium and americium isotopes representing

  7. Radioactivity Monitoring of the Irish Environment 2009

    International Nuclear Information System (INIS)

    McGinnity, P.; Currivan, L.; Dowdall, A.; Fegan, M.; Hanley, O.; Kelleher, K.; McKittrick, L.; Somerville, S.; Wong, J.; Pollard, D.

    2010-12-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) during 2009. The RPII has routinely monitored levels of radioactivity in the environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually so as to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The principal aims of the RPII's monitoring programme are; to assess the level of radioactivity to which the Irish population is exposed as a result of radioactivity in the environment; to study trends and establish the geographical distribution of contaminating radionuclides so as to better understand the long term behaviour of artificial radioactivity in the food chain and the environment; to ensure that any increase in radiation levels resulting from an accidental release of radioactivity to the environment is detected and assessed rapidly. During 2009 radioactivity was measured in a wide range of foods and environmental materials including: air, water, milk, seafood, foodstuffs and complete meals. The most significant source of artificial radioactivity in the Irish marine environment is the discharge of low level liquid radioactive waste from the Sellafield Nuclear Fuel Reprocessing Plant on the north east coast of England. In order to assess the exposure arising from the source extensive sampling of fish and shellfish landed at ports along the north east coast of Ireland is undertaken. The most exposed group of individuals to discharges from Sellafield have been identified as commercial oyster and mussel farmers working along the north east coastline and their families. Manmade radioactivity is also present in the terrestrial environment due primarily to residual global fallout arising primarily from atmospheric testing of nuclear

  8. Radioactivity Monitoring of the Irish Environment 2008

    International Nuclear Information System (INIS)

    Fegan, M.; Currivan, L.; Dowdall, A.; Hanley, O.; Hayden, E.; Kelleher, K.; Long, S.; McKittrick, L.; Somerville, S.; Wong, J.; Pollard, D.

    2010-01-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) during 2008. The RPII has routinely monitored levels of radioactivity in the environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually so as to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The principal aims of the RPII's monitoring programme are; to assess the level of radioactivity to which the Irish population is exposed as a result of radioactivity in the environment; to study trends and establish the geographical distribution of contaminating radionuclides so as to better understand the long term behaviour of artificial radioactivity in the food chain and the environment; to ensure that any increase in radiation levels resulting from an accidental release of radioactivity to the environment is detected and assessed rapidly. During 2008 radioactivity was measured in a wide range of foods and environmental materials including: air, water, milk, seafood, foodstuffs and complete meals. The most significant source of artificial radioactivity in the Irish marine environment is the discharge of low level liquid radioactive waste from the Sellafield Nuclear Fuel Reprocessing Plant on the north east coast of England. In order to assess the exposure arising from the source extensive sampling of fish and shellfish landed at ports along the north east coast of Ireland is undertaken. The most exposed group of individuals to discharges from Sellafield have been identified as commercial oyster and mussel farmers working along the north east coastline and their families. Manmade radioactivity is also present in the terrestrial environment due primarily to residual global fallout arising primarily from atmospheric testing of nuclear

  9. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  10. Regulation of naturally occurring radioactive materials in non-nuclear industries

    International Nuclear Information System (INIS)

    Scott, L.M.

    1997-01-01

    The volume and concentrations of naturally occurring radioactive material is large across a variety of industries commonly thought not to involve radioactive material. The regulation of naturally occurring radioactive material in the United States is in a state of flux. Inventory of naturally occurring radioactive materials is given, along with a range of concentrations. Current and proposed regulatory limits are presented. (author)

  11. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  12. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  13. Radioactive waste and transport. Chapter 6

    International Nuclear Information System (INIS)

    1978-01-01

    A brief definition of the nature of radioactive waste is followed by a more detailed discussion of high level waste, its composition the amounts involved, storage in liquid and in solid form and the storage of non-reprocessed spent fuel. The final disposal of high level waste in deep geological structures is then described, based on the Swedish KBS study. The effectiveness of the artificial and natural barriers in preventing the radioactive substances from reaching the biosphere is discussed. American and Swedish risk analyses are briefly discussed, and practical experience presented. Low and medium level wastes are thereafter treated in a similar, though briefer manner. Transport of radioactive materials, fresh fuel, spent fuel and waste is then dealt with. Regulations for the containers and their tests are briefly presented and the risk of accidents, theft and sabotage during transport are discussed. (JIW)

  14. Induced radioactivity in LDEF components

    Science.gov (United States)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  15. The Application of Existing Oceanographic Knowledge to the Problem of Radioactive Waste Disposal into the Sea; Applicationdes Connaissances Oceanographiques Actuelles au Probleme de l'Elimination de Dechets Radioactifs dans la Mer; 0418 0421 041f 0414 ; Aplicacion de los Conocimientos Oceanograficos Actuales al Problema de la Evacuacion de Desechos Radiactivos en el Mar

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D. W. [Johns Hopkins University, Baltimore, MD (United States)

    1960-07-01

    This paper is presented in three major sections. In the first section the general approach to the overall problem of disposal of radioactive materials into the sea is presented. Those areas where oceanographic knowledge is required are indicated, and a general outline of the status of our present knowledge in these areas is presented. In the second section existing oceanographic knowledge is applied to waste disposal problems, including physical, chemical and biological aspects. It is shown that, on the basis of existing oceanographic knowledge, fairly large amounts (megacuries per year) of packaged wastes can be disposed of into the deep sea without endangering man's safe uses of the sea. Low-level packaged wastes of the order of several hundred curies per year per disposal site could be safely disposed of on the continental shelf. Discharge of several hundred curies with the spent ion-exchange beds from nuclear-powered ships can be made into surface layers of the open sea without undue risk. The special aspects of near-shore and estuarine environments with respect to nuclear ship operation are discussed. In the third section of the paper a brief discussion is given of some of the oceanographic research activities now under way in the United States applicable to the radioactive waste disposal problem. (author) [French] Ce memoire comprend trois parties principales. Dans la premiere, l'auteur expose la maniere dont on envisage le probleme general de l'elimination de matieres radioactives dans la mer. Il precise les domaines dans lesquels des connaissances oceanographiques sont indispensables et il expose, d'une facon generale, le niveau actuel de notre science en cette matiere. Dans la deuxieme partie, les connaissances oceanographiques actuelles sont appliquees aux problemes d'elimination des dechets, notamment aux aspects physiques, chimiques et biologiques. L'auteur montre que, selon les connaissances oceanographiques actuelles, on peut eliminer en haute mer des

  16. Radioactivity in foodstuffs 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The average intake of radioactivity via foodstuffs remained relatively constant at about 10000 Bq per annum during the entire period elapsing since the Chernobyl accident. However, the dose received by especially exposed population groups has been considerably higher. In particular, the intake of radioactivity through the consumption of reindeer meat and freshwater fish has been high among certain groups (hunters and angler, and Sami reindeer herdsmen in southern and mid-Norway). Studies show that their dietary radionuclide exposure was highest during the second year post Cernobyl. The existing intervention levels were also applied in 1989. These are, with the exception of the limit of 6000 Bq/kg for reindeer meat, game meat and freshwater fish, identical with the maximum levels laid down by the EC. The present report reviews the data concerning radioactivity levels in dairy products, meat and fish recorded during 1989. Overall, it may be concluded that levels were considerable lower than the previous year. An important reason for this was the almost complete absence, in outlying pastures, of various types of fungi eaten by grazing livestock, such fungi being a major source of radioactivity. 4 figs., 3 tabs

  17. Radioactivity in foodstuffs 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The average radioactivity dose level to which the Norwegian population was exposed through the ingestion of food in 1988 was between 0.10 and 0.15 mSv. This was about the same as in 1987. The radioactivity dose to which individuals with certain special dietary habits (large proportions of freshwater fish and reindeer meat in the diet) were exposed, was, however, up to three times higher in 1988 than in 1987. This was due firstly to the fact that reindeer meat which had been produced prior to the Chernobyl accident was no longer available, and secondly, to dietary advice not being followed as closely as before. The cost-benefit ratio of the measures introduced to reduce radioactivity levels in food, i.e. resources employed compared with the actual reduction in radioactivity levels achieved, has proved to be reasonably satisfactory, both in 1987 and 1988. Action levels and dietary advice remained unchanged in 1988. The present report summarizes results of analyses performed in 1988, and describes the measures introduced concerning various categorites of foods. Measures introduced were, as in 1987, primarily focused on the production of sheep meat (mutton/lamb) and on reindeer farming. 4 figs., 1 tab

  18. Abstracts of the papers presented at the workshop 'synthesis and application of radioactively labelled organic compounds'

    International Nuclear Information System (INIS)

    1988-10-01

    The abstracts of the 12 papers read at the Rossendorf workshop comprise syntheses and radioactive labelling of organic compounds such as herbicides, steroids, peptides and others and their application as tracers, above all in kinetic studies

  19. Socioeconomic aspects and public opinion concerning radioactive wastes

    International Nuclear Information System (INIS)

    Gonzalez, Valentin

    1997-01-01

    Nuclear energy aspects in Spain are presented. The role of ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.) a public company, that manages low and intermediate-level radioactive wastes in Spain is discussed. ENRESA activities such as radioactive wastes transportation and processing, radioactive wastes disposal, decommissioning of an uranium plant, environmental recovery procedures, geological studies, information dissemination of nuclear energy, sponsoring of conferences, courses, etc, are briefly reported

  20. Method of reducing the volume of radioactive waste

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burrill, K.A.; Desjardins, C.D.; Salter, R.S.

    1984-01-01

    There is provided a method of reducing the volume of radioactive waste, comprising: pyrolyzing the radioactive waste in the interior of a vessel, while passing superheated steam through the vessel at a temperature in the range 500 to 700 degrees C, a pressure in the range 1.0 to 3.5 MPa, and at a flow rate in the range 4 to 50 mL/s/m 3 of the volume of the vessel interior, to cause pyrohydrolysis of the waste and to remove carbon-containing components of the pyrolyzed waste from the vessel as gaseous oxides, leaving an ash residue in the vessel. Entrained particles present with the gaseous oxides are filtered and acidic vapours present with the gaseous oxides are removed by solid sorbent. Steam and any organic substances present with the gaseous oxides are condensed and the ash is removed from the vessel. The radioactive waste may be deposited upon an upper screen in the vessel, so that a substantial portion of the pyrolysis of the radioactive waste takes place while the radioactive waste is on the upper screen, and pyrolyzed waste falls through the upper screen onto a lower screen, where another substantial portion of the pyrohydrolysis takes place. The ash residue falls through the lower screen

  1. Radioactivity concentration measuring device for radiation waste containing vessel

    International Nuclear Information System (INIS)

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  2. The United States Atomic Energy Commission Programme of Nuclear Materials Management; Le Programme de Gestion des Matieres Nucleaires Applique par L'USAEC; Programma komissii po atomnoj ehnergii ssha v oblasti obrashcheniya s yadernymi materialami; El Programa de Administracion de Materiales Nucleares de la Comision de Energia Atomica de los Estados Unidos

    Energy Technology Data Exchange (ETDEWEB)

    George, D. E. [United States Atomic Energy Commission, Washington, DC (United States)

    1966-02-15

    Nuclear materials management as conceived by the US Atomic Energy Commission is defined and its development traced from 1943 to the present time. The general programme is outlined and its principal features discussed. Emphasis is placed on administration of those portions of the USAEC programme which pertain to the development and maintenance of quantity data, the establishment of internal controls and the evaluation of performance. The current techniques whereby transfer data are recorded and processed within the USAEC are discussed in some detail, as are the techniques for presentation of material balance reports which periodically summarize the transactions and the results of operations. The techniques used by the USAEC to ascertain the effectiveness of the nuclear materials management programmes of its operating contractors are also discussed. In addition to material being held by contractors which operate USAEC-owned plants and laboratories, there are large quantities of special nuclear material held under a wide variety of financial and administrative arrangements, e.g. under lease, private ownership, under contract with the USAEC where the user is financially liable for losses, as well as those where the risk of losses is taken by the USAEC. This divergence of circumstances causes significant variation in the emphasis and approach used by the AEC and this variation is noted. A brief summary of unresolved problem areas concludes the presentation. (author) [French] L'auteur definit la gestion des matieres nucleaires telle qu'elle est concue par l'USAEC et decrit son evolution depuis 1943 jusqu'a nos jours. Il expose le programme general et discute ses principales caracteristiques. Le memoire souligne les aspects administratifs des parties du programme qui ont trait a la preparation et la tenue a jour des donnees relatives aux quantites, a l'application de controles internes et a l'evaluation de l'efficacite des mesures prises. L'auteur commente en detail la

  3. Import/Export Service of Radioactive Material and Radioactive Sources Service

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export Service of radioactive material (http://cern.ch/service-rp-shipping/ - e-mail : service-rp-shipping@cern.ch) and the Radioactive Sources Service (http://cern.ch/service-radioactive-sources - e-mail : service-radioactive-sources@cern.ch) at bldg. 24/E-024 will be closed on FRIDAY 10 SEPTEMBER 2004. Tel. 73171

  4. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  5. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  6. Radioactive waste management in Lebanon

    International Nuclear Information System (INIS)

    Assi, Muzna

    2011-01-01

    The disused sealed radioactive sources including orphan sources in Lebanon, along with the growing industry of sealed radioactive sources in medical, industrial and research fields have posed a serious problem for authorities as well as users due to the lack of a national store for disused radioactive sources. Assistance from the International Atomic Energy Agency (IAEA) was requested to condition and store disused radium needles and tubes present at two facilities. The mission took place on July 25, 2001 and was organized by the IAEA in cooperation with the Lebanese Atomic Energy Commission (LAEC). Other disused radioactive sources were kept in the facilities till a safer and securer solution is provided; however orphan sources, found mainly during export control, were brought and stored temporarily in LAEC. The necessity of a safe and secure store became a must. Prior to October 2005, there was no clear legal basis for establishing such store for disused radioactive sources, until the ministerial decree no 15512 dated October 19, 2005 (related to the implementation of decree-law no 105/83) was issued which clearly stated that 'The LAEC shall, in cooperation with the Ministry of Public Health, establish a practical mechanism for safe disposal of radioactive waste'. Following this, the work on inventory of disused sealed sources along with collecting orphan sources and placing them temporarily in LAEC was legally supported. Moreover, several missions were planned to repatriate category I and II sources, one of which was completed specifically in August 2009; other missions are being worked on. In 2008, a national technical cooperation project with the IAEA was launched. Under the Technical Cooperation (TC) project with reference number LEB3002, the project was entitled 'Assistance in the establishment of a safe temporary national storage at the LAEC for orphan sources and radioactive waste' which cycle is 2009-2011. Under this project, a national store for

  7. Management of radioactive wastes (solids and liquids) of CDTN

    International Nuclear Information System (INIS)

    Prado, M.A.S. do; Reis, L.C.A.

    1984-01-01

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  8. Infrared thermography applied to monitoring of radioactive waste drums

    International Nuclear Information System (INIS)

    Kelmer, P.; Camarano, D.M.; Calado, F.; Phillip, B.; Viana, C.; Andrade, R.M.

    2013-01-01

    The use of thermography in the inspection of drums containing radioactive waste is being stimulated by the absence of physical contact. In Brazil the majority of radioactive wastes are compacted solids packed in metal drums stored temporarily for decades and requires special attention. These drums have only one qualitative indication of the radionuclides present. However, its structural condition is not followed systematically. The aim of this work is presents a methodology by applying thermography for monitoring the structural condition of drums containing radioactive waste in order to detect degraded regions of the drums. (author)

  9. Radioactivity in the environment

    International Nuclear Information System (INIS)

    Valkovic, V.

    2000-01-01

    Numerous sources of ionizing radiation can lead to human exposure: natural sources, nuclear explosions, nuclear power generation, use of radiation in medical, industrial and research purposes, and radiation emitting consumer products. Before assessing the radiation dose to a population one requires a precise knowledge of the activity of a number of radionuclides. The basis for the assessment of the dose to a population from a release of radioactivity to the environment, the estimation of the potential clinical heath effects due to the dose received and, ultimately, the implementation of countermeasures to protect the population, is the measurement of radioactive contamination in the environment after the release. It is the purpose of this book to present the facts about the presence of radionuclides in the environment, natural and man made. There is no aspect of radioactivity, which has marked the passing century, not mentioned or discussed in this book. refs

  10. Public perceptions of aspects of radioactive waste management

    International Nuclear Information System (INIS)

    1985-04-01

    The paper concerns a study of peoples' attitude towards the siting of radioactive waste repositories, carried out by the University of Surrey, United Kingdom. The work has been commissioned by the Department of the Environment as part of its radioactive waste management research programme. The people taking part were asked to mark on a map of Great Britain places they felt radioactive waste repositories would be least objectionable. The degree to which people worried about the technology and the management of radioactive waste disposal was monitored. Questions were asked about storage, disposal and transportation aspects, and about present and future worries. (UK)

  11. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  12. Treatment and disposal of radioactive wastes from nuclear power plants. Research programs

    International Nuclear Information System (INIS)

    1992-09-01

    The report presents programs for research, development and demonstration concerning radioactive waste disposal in underground facilities. The main topics are: Radioactive waste management, radioactive waste storage, capsules, environmental impacts, risk assessment, radionuclide migration, radioactive waste disposal, decommissioning, cost, and international cooperation. (129 refs.)

  13. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  15. Technological progress in the management of radioactive waste

    International Nuclear Information System (INIS)

    Proost, J.; Frognet, J.P.

    1980-01-01

    The present report is the second part of a study which is aimed at evaluating the present situation and selecting the most interesting fields for research and development work on radioactive waste handling. It gives a detailed analysis on various techniques in the development stage or which can be envisaged in order to bring improvements in particular fields of radioactive waste handling and disposal

  16. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  17. Radioactive situation in Kyrgyzstan: problems and perspectives

    International Nuclear Information System (INIS)

    Karimov, K.A.

    2000-01-01

    One of the major problems of the environment contamination in Kyrgyzstan is the development of radioactive and toxic pollution caused by nuclear tests, technogene accidents which took place in neighboring countries, and breach of safe storage and destruction of uranium and hazardous waste tailings. Long-term nuclear tests in various areas of the world and the accident at the NPP have caused the origin of stratospheric deposit of artificial radionuclides, the fallout of which have led to radioactive pollution of the biosphere. Maximum fallout have been observed in the latitudinal zone of 40-60 degrees and in the mountainous regions. As a result of many years of research the main sources of radioactive contamination have been established. It is shown that stratospheric or tropospheric and local fallout have permanently exposed the territory of Kyrgyzstan to the pollution by radionuclides. A brief description of radioactive contamination of the environment in Kyrgyzstan from remote external sources and atmospheric mechanisms of its transfer delineated on the basis of long-term observation of geophysical and atmospheric parameters and regular radiation monitoring have been presented. The investigated mechanisms can be used to interpret the sharp increase of the radioactive background and to estimate the risk to the environment and human health. Some methodological questions about the influence of geophysical conditions on the territorial distribution of contamination have bee considered. The tropospheric mechanism of contamination transfer for different seasons of year has been suggested. The uranium tailings located in mountain regions near densely populated areas and and groundwater basins are the internal sources of radioactive contamination in Kyrgyzstan. Waste products of uranium production present a real treat for the environment and public health. The problem of environment security in connection with destruction of uranium tailings has been discussed. Till now

  18. Radioactive discharges and monitoring of the environment 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This annual report on Radioactive Discharges and Monitoring the Environment, 1988, summarises the programmes of Sellafield, Drigg, Chapelcross, Springfields and Capenhurst for monitoring the discharges of radioactive materials to the sea and the environment. Critical groups and environmental exposure pathways are identified and collective doses to these groups estimated. The disposal of radioactive wastes at each site is discussed. Certificates of authorisation are presented. A summary of recommended doses of specific radionuclides is given. (Author)

  19. Radioactive anomaly discrimination from spectral ratios

    Science.gov (United States)

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  20. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  1. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    Murakami, Susumu; Kuroda, Noriko; Matsumoto, Hiroyo.

    1991-01-01

    The present device comprises a radioactive liquid wastes concentration means for circulating radioactive liquid wastes between each of the tank, a pump and a film evaporator thereby obtaining liquid concentrates and a distilled water recovery means for condensing steams separated by the film evaporator by means of a condenser. It further comprises a cyclizing means for circulating the resultant distilled water to the upstream after the concentration of the liquid concentrates exceeds a predetermined value or the quality of the distilled water reaches a predetermined level. Further, a film evaporator having hydrophilic and homogeneous films is used as a film evaporator. Then, the quality of the distilled water discharged from the present device to the downstream can always satisfy the predetermined conditions. Further, by conducting operation at high concentration while interrupting the supply of the processing liquids, high concentration up to the aimed concentration can be attained. Further, since the hydrophilic homogeneous films are used, carry over of the radioactive material accompanying the evaporation is eliminated to reduce the working ratio of the vacuum pump. (T.M.)

  2. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  3. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  4. Response to Illicit Trafficking of Radioactive Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Two response paths are discussed in the presentation. Reactive response follows when an alarm of a border monitor goes off or a notification is received about an incident involving or suspected to involve radioactive materials. The response can also be the result of the finding of a discrepancy between a customs declaration form and the corresponding actual shipment. Proactive response is undertaken upon receipt of intelligence information suggesting the illicit trafficking of radioactive materials, notification about the discovery of non-compliance with transport regulations or if discrepancies are found in an inventory of radioactive materials.

  5. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  6. Radioactivity telemetry

    International Nuclear Information System (INIS)

    Bouras, Florent; Legrand, Bernard; Montigaud, Jean-Marie; Grandin, Marc

    1969-05-01

    The authors present an assembly which aims at radio-transmitting from mobile stations information on radioactivity. It comprises 20 mobile stations which can be located within the Cadarache Centre or outside of it within a 10 km radius, and a central station which centralises information. The report proposes a general presentation of these stations, their characteristics and principles of operation. It describes operation sequences, central station functions (call programmer, address and memory management, recording, peripherals) and its energy supply, and mobile station functions. The last part presents the installation, its start-up and exploitation, its threshold devices and its safety device

  7. Methods for Characterisation of unknown Suspect Radioactive Samples

    International Nuclear Information System (INIS)

    Sahagia, M.; Grigorescu, E.L.; Luca, A.; Razdolescu, A.C.; Ivan, C.

    2001-01-01

    Full text: The paper presents various identification and measurement methods, used for the expertise of a wide variety of suspect radioactive materials, whose circulation was not legally stated. The main types of examined samples were: radioactive sources, illegally trafficked; suspect radioactive materials or radioactively contaminated devices; uranium tablets; fire detectors containing 241 Am sources; osmium samples containing radioactive 185 Os or enriched 187 Os. The types of analyses and determination methods were as follows: the chemical composition was determined by using identification reagents or by neutron activation analysis; the radionuclide composition was determined by using gamma-ray spectrometry; the activity and particle emission rates were determined by using calibrated radiometric equipment; the absorbed dose rate at the wall of all types of containers and samples was determined by using calibrated dose ratemeters. The radiation exposure risk for population, due to these radioactive materials, was evaluated for every case. (author)

  8. Principle of natural and artificial radioactive series equivalency

    International Nuclear Information System (INIS)

    Vasilyeva, A.N.; Starkov, O.V.

    2001-01-01

    In the present paper one approach used under development of radioactive waste management conception is under consideration. This approach is based on the principle of natural and artificial radioactive series radiotoxic equivalency. The radioactivity of natural and artificial radioactive series has been calculated for 10 9 - years period. The toxicity evaluation for natural and artificial series has also been made. The correlation between natural radioactive series and their predecessors - actinides produced in thermal and fast reactors - has been considered. It has been shown that systematized reactor series data had great scientific significance and the principle of differential calculation of radiotoxicity was necessary to realize long-lived radioactive waste and uranium and thorium ore radiotoxicity equivalency conception. The calculations show that the execution of equivalency principle is possible for uranium series (4n+2, 4n+1). It is a problem for thorium. series. This principle is impracticable for neptunium series. (author)

  9. Determination of beta and gamma radioactivity on the coal

    International Nuclear Information System (INIS)

    Suhardi; Mulyono; Sutanto WW; Rosidi

    2013-01-01

    Radioactivity in coal, botton ash and fly ash. This determination was carried out to know each the radioactivity of β gross, γ gross on the coal, botton ash and fly ash, which accommodation of environment data the present in PLTU Paiton Probolinggo. Samples taken preparation and analysis based on the procedures of environmental radioactivity analysis. The radioactivity on the PLTU Paiton Probolinggo detected by beta gross Spectrometer with Geiger Muller (GM) and gamma Spectrometer with Ge(Li) detector. The result indicates that radioactivity concentration of beta and gamma gross are (95,57-308,26) Bq/kg and (1,374 - 31,677) Bq/kg respectively. (author)

  10. An analysis on the management system of radioactive waste in China

    International Nuclear Information System (INIS)

    Qu Zhimin; Chen Haicheng; Teng, Lijun

    2000-01-01

    The paper presents an overview on the management of radioactive wastes in China. Addressed are: radioactive waste classification, sources of radioactive waste, principles, legal framework, institutional control and financing. Suggestions are made for further progress in this field. (author)

  11. Measurements of natural radioactivity in historical glasses

    International Nuclear Information System (INIS)

    Kierzek, J.; Kunicki-Goldfinger, J.J.; Kasprzak, A.J.

    2000-01-01

    Natural radioactive components of historical glasses and two methods of the respective measurement of the radioactivity are discussed. The evaluation of radioactivity of glass objects using a Geiger-Mueller counter and high-resolution gamma ray spectrometry is presented. A survey of the Warsaw National Museum glass collection with a Geiger-Mueller counter allowed distinguishing the vessels made of potassium and sodium glass by their level of natural radioactivity. Gamma spectrometry, on the other hand, enables estimating a specific radionuclide content. Special attention is given to uranium glasses. One 19th century Bohemian vessel, coloured with a uranium compound, was carefully examined using gamma spectrometry. K 2 O and U content were estimated to be 16.2 and 0.33%, respectively. (orig.)

  12. Extraction apparatus used in the treatment of irradiated fuels; Les appareils d'extraction utilises dans le traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P; Talmont, X [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The two qualities necessary in an extractor in the case of solvent extraction of radioactive materials are that they should occupy little space and require little maintenance. In this paper various types of apparatus designed to this effect are examined: firstly mixer-decanter types with mechanical shaking and with shaking and decantation ultrasonically accelerated; then pulsed columns; finally hydro-cyclones. The chemical engineering studies peculiar to the running, supply and control of each of these extractors are described in detail. In certain cases some results obtained on radioactive solutions on a pilot scale are given. (author) [French] Faible encombrement, peu d'entretien, telles sont les deux qualites qu'un extracteur doit posseder dans le cas d'extraction par solvant de matieres radioactives. Dans ce texte seront examines differents types d'appareils concus dans cet esprit: d'abord les appareils typez melangeurs-decanteurs a agitation mecanique, a agitation et decantation accelerees aux ultra-sons; puis les colonnes pulsees; enfin les hydrocyclones. Pour chacun de ces extracteurs seront detaillees les etudes de genie chimique propres a son fonctionnement, a son alimentation, a son controle. Pour certains seront notes quelques resultats obtenus sur des solutions radioactives a l'echelle pilote. (auteur)

  13. The natural radioactivity in 10 episodes

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Charmasson, S.; Foulquier, L.; Germain, P.; Klein, D.; Levrard, J.; Livolsi, P.; Lochard, J.; Lombard, J.; Masson, M.; Maubert, H.; Metivier, H.; Rannou, A.; Tort, V.

    2011-01-01

    Illustrated by drawings, strip cartoons, and graphs, this publication presents, describes and gives assessments of the different environments where natural radioactivity is present: in soils where many radionuclides are present, in water (notably in river reappearances), in the air (radon, notably in buildings), in the food chain (mainly potassium 40), in sea water and therefore in fishes and shells (potassium 40 and rubidium 87), in the interstellar space (cosmic rays), in cosmic rays in relationship with the Earth magnetic field, in the atmosphere because of cosmic rays (notably at high altitudes), in all kind of things (radioactivity is then used for dating purposes, i.e. carbon dating), and in the human body

  14. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  15. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  16. Radioactive wastes handling problems in Venezuela

    International Nuclear Information System (INIS)

    Ramirez, R.; Venegas, R.

    1984-07-01

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  17. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  18. Formulation and Presentation of Risk Assessments to Address Risk Targets for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Wilmot, R.D.

    2002-10-01

    The Swedish regulators have been active in the field of performance assessment of radioactive waste disposal facilities for many years and have developed sophisticated approaches to the development of scenarios and other aspects of assessments. These assessments have generally used dose as the assessment end-point. Regulations recently established in Sweden (SSI FS 1998:1) have introduced a risk criterion for radioactive waste disposal: the annual risk of harmful effects after closure of a disposal facility should not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. This report evaluates different approaches to the definition and use of probabilities in the context of risk assessments, and examines the presentation of the results of risk assessments in safety cases to meet risk targets. The report illustrates the strengths and weaknesses of different possible approaches to risk assessment by reference to assessments in other countries, and provides suggestions for future activity and development in this area by the Swedish regulators. The review of experience in other countries has led to a number of key observations relevant to the conduct of regulatory work on risk assessments and preparations for review. These highlight the importance of developing a protocol for conducting calculations, and linking such a protocol to the requirements of risk assessment calculations and to existing code and model capabilities. There are a number of decisions and assumptions required in developing a risk assessment methodology that could potentially affect the calculated results. These assumptions are independent of the analysis of performance, and relate to issues such as the expectation value of risk, risk dilution, the definition of probability density functions and achieving convergence. A review of a proponent's risk assessment should address these issues in determining the appropriateness and validity of the results presented

  19. Formulation and Presentation of Risk Assessments to Address Risk Targets for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, R.D. [Galson Sciences Ltd, Oakham (United Kingdom)

    2002-10-01

    The Swedish regulators have been active in the field of performance assessment of radioactive waste disposal facilities for many years and have developed sophisticated approaches to the development of scenarios and other aspects of assessments. These assessments have generally used dose as the assessment end-point. Regulations recently established in Sweden (SSI FS 1998:1) have introduced a risk criterion for radioactive waste disposal: the annual risk of harmful effects after closure of a disposal facility should not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk. This report evaluates different approaches to the definition and use of probabilities in the context of risk assessments, and examines the presentation of the results of risk assessments in safety cases to meet risk targets. The report illustrates the strengths and weaknesses of different possible approaches to risk assessment by reference to assessments in other countries, and provides suggestions for future activity and development in this area by the Swedish regulators. The review of experience in other countries has led to a number of key observations relevant to the conduct of regulatory work on risk assessments and preparations for review. These highlight the importance of developing a protocol for conducting calculations, and linking such a protocol to the requirements of risk assessment calculations and to existing code and model capabilities. There are a number of decisions and assumptions required in developing a risk assessment methodology that could potentially affect the calculated results. These assumptions are independent of the analysis of performance, and relate to issues such as the expectation value of risk, risk dilution, the definition of probability density functions and achieving convergence. A review of a proponent's risk assessment should address these issues in determining the appropriateness and validity of the results presented

  20. Literature in focus: The history of radioactivity

    CERN Document Server

    2006-01-01

    René Bimbot, an expert in nuclear physics, will be coming to present his book - The History of Radioactivity. The work provides a summary of our accumulated knowledge of radioactivity and its applications, from its discovery to the present day. Presented in layman's terms, and backed by plenty of illustrations, the work creates the link between the rudimentary knowledge available in the times of Becquerel and the Curies and contemporary physics. It takes us on a great physics adventure, from the nucleus to the quark, from artificial radioactivity to radiotherapy, from the discovery of fission to nuclear reactors, not forgetting dating methods. Finally, the work provides a wealth of practical information on radiation and on matters relating to nuclear waste. A former Research Director at the CNRS, a heavy-ion physicist at the Orsay Nuclear Physics Institute, René Bimbot is no stranger to CERN. At the beginning of the 1980s, he worked on the CERN Synchrocyclotron, before joining the GANIL experiment in 1985...

  1. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  2. Analysis of the Institutional Framework for Radioactive Waste Management in Bangladesh

    OpenAIRE

    Mollah, A. S.; Sattar, S.; Hossain, M. A.; Jahangir, M.H.; Salahuddin, A.Z. M.

    2016-01-01

    Bangladesh utilizes radioactive materials and radiation sources for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education. At present, Bangladesh does not have nuclear power plant (NPP), so that the radioactive waste is mainly coming from above mentioned fields. Although Bangladesh has quite good infrastructure for the management of present radioactive waste, it needs improvement especially for the disposal program of the existing and future radioactiv...

  3. Radioactive wastes and spent fuels management in Argentina

    International Nuclear Information System (INIS)

    Maset, Elvira R.

    2006-01-01

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author) [es

  4. Introduction to radioactive waste management issues in Wisconsin

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This brief focused on wastes from commercial production of electricity and various industrial, medical and research applications of radioactive materials. Only traditionally solid wastes are dealt with. It was organized into five parts. Part I presented an introduction to radioactivity - what it is and the biological hazards associated with it. Federal regulation of the management of radioactive wastes was discussed in Part II. Existing state laws and bills currently before the Wisconsin Legislature were described in Part III. Part IV gave background information on specific areas of potential inquiry related to radioactive wastes in Wisconsin. Part V summarized the issues identified in the brief. 2 figures, 7 tables

  5. Results of radioactivity measurements on foodstuffs in Romania

    International Nuclear Information System (INIS)

    Ferdes, O.; Cojocariu, T.

    1996-01-01

    There are presented the results of gamma-spectrometric measurements performed between 1986-1995 on: milk and dairy products; meat and meat products; fish; wheat flour; fresh fruits and vegetables. The foodstuffs are sampled from some representative areas like: Bucharest, Bechet (affected by Kozloduj NPP, Bulgaria), Cernavoda, middle of Transylvania, Neamt. The radioactivity measurements are performed by high-resolution γ-ray spectrometry. There are identified and analysed mainly 134 Cs, 137 Cs, 40 K and, sometimes, other radionuclides. There are pointed out: the constancy of natural radionuclides amounts; the drastic increasing in radioactive concentration in May 1986; the seasonal variation of radioactivity in some food items; the time - exponential diminution of radioactivity in 1991-1995; and the maximum permitted levels of radioactive contamination of foodstuffs following a nuclear accident. (author)

  6. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  7. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  8. Radioactivity in the Romanian sector of the Black Sea

    International Nuclear Information System (INIS)

    Osvath, I.; Dovlete, C.; Bologa, A.

    2004-01-01

    The study of marine radioactivity in Romanian waters has been performed jointly by the Romanian marine research institute (RMRI) and the environmental radioactivity research laboratory of the Institute of meteorology and hydrology, presently the environmental radioactivity laboratory (ERL) of the Institute of environmental research and engineering, along two directions: 1. Marine radioactivity monitoring, 2. Studied on the distribution of radionuclides among the components of the marine environment and its time evolution. Assessment of distribution coefficients and concentration factors for radionuclides in the marine environment. Identification and study of the bioindicator species

  9. Considerations about radioactive events and their psycho social effects

    International Nuclear Information System (INIS)

    Vasconcelos, Laercia Abreu

    1995-01-01

    This study presents some behavioral patterns which are observed in the context of a radioactive accident. Comparing three different situations involving radioactive elements, Three Mile Island (USA), Chernobyl (ISC) and Goiania (Brazil), it is observed that, despite the differences in radiological levels, the populations involved show similar response characteristics. The impact of the radioactive events on health has been the main concern of the exposed population, and the response patterns observed in the different radioactive events seem to be less variable than it was proposed in the first studies. (author)

  10. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book II. Nuclear Chemistry, Process Technology, and Radioactive Waste Processing and Environment

    International Nuclear Information System (INIS)

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is second part of two books published for the meeting contains papers on nuclear chemistry, process technology, and radioactive waste management and environment. There are 62 papers indexed individually. (ID)

  11. Radioactivity Monitoring of the Irish Environment 2010-2011

    International Nuclear Information System (INIS)

    McGinnity, P.; Currivan, L.; Dowdall, A.; Hanley, O.; Kelleher, K.; McKittrick, L.; Pollard, D.; Somerville, S.; Wong, J.; McMahon, C.

    2012-11-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland RPII during 2010 and 2011. The RPII has routinely monitored levels of radioactivity in the Irish environment since 1982 and this is the latest in the RPII's series of environmental monitoring reports. The RPII reviews and updates its environmental programme annually to ensure it remains relevant and continues to focus on the most important sources of radioactivity in the environment. The data presented in this report confirm that while the levels of artificial radioactivity in the Irish environment are detectable, they are low. They do not pose a significant risk to the human health of the Irish population. Trace amounts of radioactive isotopes consistent with the Fukushima nuclear accident were detected in air, rainwater and milk samples during the period March to May 2011. These increases in levels of radioactivity were not of concern from a public health point of view. For the remainder of the reporting period, activity concentrations of radionuclides in airborne particles were low and consistent with measurements made in recent years. Radioactivity levels in milk, mixed diet and a wide range of foodstuffs were low and, for the majority of samples, below the detection limits. All drinking waters tested were found to be in compliance with the total indicative dose defined in national and EU legislation. The doses incurred by the Irish public in 2010 and 2011 as a result of artificial radioactivity in the marine environment are small when compared to dose limits or to natural radiation doses received by the Irish public. The doses to the most exposed individuals, members of the oyster and mussel farmers critical group, were approximately 0.02 per cent and 0.05 per cent of the annual dose limit of 1000 microsieverts for members of the public from practices involving controllable sources of radiation in 2010 and

  12. Environmental radioactivity. Measurement and monitoring

    International Nuclear Information System (INIS)

    2009-11-01

    The contribution on environmental radioactivity covers the following issues: natural and artificial radioactivity; continuous monitoring of radioactivity; monitoring authorities and measurement; radioactivity in the living environment; radioactivity in food and feeding stuff; radioactivity of game meat and wild-growing mushrooms; radioactivity in mines; radioactivity in the research center Rossendorf.

  13. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  14. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  15. Radioactivity in the northern seas of europe

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.; Madruga, Maria Jose; Oliveira, Joao M.; Gouveia, Jorge M.; Silva, Lidia

    2004-01-01

    The recent accidents with nuclear powered Russian submarines, such as the Kursk and the K-159, that took place in the Arctic Seas, give rise to high concerns of the public and the media about the radioactive contamination of marine ecosystems and radiological safety of the European population. Those accidents were preceded by decades of discharges of radioactive liquid effluents into coastal seas of Europe and the dumping of packed radioactive waste into the North Atlantic. Being Portugal one country with high consumption rate of seafood caught in its own coastal waters as well as in far seas including the Ar tic seas, the investigation of the radioactive contamination of fish was investigated. Analysis of fish from the Sea of Labrador, Sea of Iceland and Barents Sea, has shown that gamma-emitting radionuclides of artificial origin are in general not detected. The only gamma emitting radionuclide present is Cs-137, in concentrations not higher than 0.3 Bq/kg. This radionuclide originates in the deposition of radioactive fallout following nuclear weapon tests performed in the fifties and sixties. Radionuclides in fish from northern regions and in fish from the Portuguese coast generally are present in concentrations lower than those currently reported for fish from the Irish Sea and the Baltic Sea, impacted with the discharges of radioactive waste from Sellafield and the deposition of fallout from Chernobyl, respectively. Nevertheless, the potential for future accidents and the radioactive waste dumped into the North Atlantic may in the future modify this scenario and potentially increase the currently very low radionuclide concentration in fish included in the Portuguese diet. Therefore, the research and radiological surveillance must be maintained in order to monitor the radiological risk and to ensure the quality of food available to consumers. (author)

  16. Ionization chamber for monitoring radioactive gas

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.

    1992-01-01

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs

  17. Ionization chamber for monitoring radioactive gas

    Energy Technology Data Exchange (ETDEWEB)

    Kotrappa, P; Dempsey, J

    1992-09-22

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs.

  18. Proceedings of the Scientific Meeting and Presentation on Basic Researchin Nuclear Science and Technology part II: Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Karmanto, Eko-Edy; Suradjijo, Ganang

    2000-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Scienceand Technology is an annual activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings. These are the second part of the proceedings that contain 71 articles in the fields of nuclear chemistry, process technology, radioactive waste management, and environment (PPIN).

  19. Radioactive materials

    International Nuclear Information System (INIS)

    Sugiura, Yoshio; Shimizu, Makoto.

    1975-01-01

    The problems of radioactivity in the ocean with marine life are various. Activities in this field, especially the measurements of the radioactivity in sea water and marine life are described. The works first started in Japan concerning nuclear weapon tests. Then the port call to Japan by U.S. nuclear-powered naval ships began. On the other hand, nuclear power generation is advancing with its discharge of warm water. The radioactive pollution of sea water, and hence the contamination of marine life are now major problems. Surveys of the sea areas concerned and study of the radioactivity intake by fishes and others are carried out extensively in Japan. (Mori, K.)

  20. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  1. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  2. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  3. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  4. Present stage of the use of radioactive tracers in studies carried out at Companhia de Tecnologia de Saneamento Ambiental, SP, Brazil, in the field of environmental engineering

    International Nuclear Information System (INIS)

    Sanchez, W.; Agudo, E.G.

    1979-01-01

    Studies using radioactive tracers in the field of environmental engineering, carried out at Companhia de Tecnologia de Saneamento Ambiental, SP, Brazil, from 1975 to 1978 are presented. Future research to be developed in this area is also discussed. (M.A.) [pt

  5. Radioactivity Monitoring of the Irish Environment 2006

    International Nuclear Information System (INIS)

    Smith, V.; Dowdall, A; Fegan, M.; Hayden, E.; Kelleher, K.; Long, S.; McEvoy, I.; Somerville, S.; Wong, J.; Pollard, D.

    2007-10-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) in 2006. This programme aims to assess the exposure of the Irish population to artificial radioactivity in the environment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. Radioactivity is present in the environment due to natural processes, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl in Ukraine and the routine discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the north-west of England, which are licensed by the UK Environment Agency, continue to be the dominant source of artificial radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII in 2006 included; assessment of ambient radioactivity based on measurements of radioactivity in air and of external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and various ingredients; assessment of levels of radioactivity in the Irish marine environment based on sampling and measurement of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at ten stations located throughout the country. One of these stations is equipped with a high volume sampler, which allows concentrations of caesium-137 to be measured; another is equipped to detect the presence of the gas krypton-85. This gas is released into the environment primarily as a result of the

  6. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  7. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  8. Environmental Radioactivity. Chapter 4

    International Nuclear Information System (INIS)

    Muhamat Omar; Ismail Sulaiman; Zalina Laili

    2015-01-01

    This chapter explains several things which consist radioactivity measurements, regular and high background radioactivity, radioactive contaminated soil and radioactivity in fertilizers, rocks, building materials, food, water, environments, sediments, flora and fauna. Besides, the natural radioactive gas concentration of radon and toron in the environment also been discussed specifically in this chapter.

  9. Partial monitoring system Radioactivity of the Environment, 2006

    International Nuclear Information System (INIS)

    Melicherova, T.

    2007-01-01

    In this report the Partial monitoring system 'Radioactivity of the Environment' for the year 2006 is presented. International co-operation of the Slovak Hydrometeorological Institute in the Partial monitoring system 'Radioactivity of the Environment' of the Slovak Republic, international co-operation as well as financial data are reviewed

  10. National policy for control of radioactive sources and radioactive waste from non-power applications in Lithuania

    International Nuclear Information System (INIS)

    Klevinskas, G.; Mastauskas, A.

    2001-01-01

    According to the Law on Radiation Protection of the Republic of Lithuania (passed in 1999), the Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for the radiation protection of public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources from the beginning of their 'life cycle', when they are imported in, used, transported and placed as spent into the radioactive waste storage facilities. For the effective control of sources there is national authorization system (notification- registration-licensing) based on the international requirements and recommendations introduced, which also includes keeping and maintaining the Register of Sources, controlling and investigating events while illegally carrying on or in possession of radioactive material, decision making and performing the state radiation protection supervision and control of users of radioactive sources, controlling, within the limits of competence, the radioactive waste management activities in nuclear and non-nuclear power applications. According to the requirements set out in the Law on Radiation Protection and the Government Resolution 'On Establishment of the State Register of the Sources of Ionizing Radiation and Exposure of Workers' (1999) and supplementary legal acts, all licence-holders conducting their activities with sources of ionizing radiation have to present all necessary data to the State Register after annual inventory of sources, after installation of new sources, after decommissioning of sources, after disposal of spent sources, after finishing the activities with the generators of ionizing radiation. The information to the Radiation Protection Centre has to be presented every week from the Customs Department of the Ministry of Finance about all sources of ionizing radiation imported to or exported from Lithuania and the information about the companies performed these

  11. Public debate on the general options relative to the management of high-medium activity and long-lived radioactive wastes; Debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. This document presents the organizational aspects of the debate: origin, organization committee (mission, members, commitments), framework (the December 31, 1991 law, technical enlargement, society aspects), topics (summary of the debate in ten questions), organization modalities (4 main steps, schedule, venues), objectives and perspectives (sharing information, decision making processes to be implemented by 2006). (J.S.)

  12. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    Directory of Open Access Journals (Sweden)

    Vinod Vellora Thekkae Padil

    2014-01-01

    Full Text Available Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  13. Statistic methods for searching inundated radioactive entities

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Krivokhatskij, A.S.; Khramov, N.N.

    1993-01-01

    The problem of searching flooded radioactive object in a present area was considered. Various models of the searching route plotting are discussed. It is shown that spiral route by random points from the centre of the area examined is the most efficient one. The conclusion is made that, when searching flooded radioactive objects, it is advisable to use multidimensional statistical methods of classification

  14. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  15. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  16. Evaluation of gross radioactivity in foodstuffs

    International Nuclear Information System (INIS)

    Zorer, Oezlem Selcuk; Oeter, Cigdem

    2015-01-01

    The paper presents the results of radiological investigations of food products sampled in the summer and fall of 2011 and 2012 in different parts of Van, Turkey. Gross radioactivity measurements in food products were evaluated. Food items were divided into eight groups: (1) water, (2) fish, (3) cheese products, (4) fruits, (5) vegetables, (6) herbs, (7) walnut and (8) rock salt. The levels of the gross alpha and gross beta radioactivity in all food samples varied widely ranging from 0.070 to 10.885 Bq/g and from 0.132 to 48.285 Bq/g on dry mass basis, respectively. In one sample, gross alpha and gross beta activity concentrations were found to be relatively high according to the other samples and in all samples, the gross alpha radioactivity was measured lower than the gross beta radioactivity. The gross α and gross β activities were measured by using α/β counter of the multi-detector low background system (PIC MPC-9604).

  17. CACAO facility. Radioactive targets at Orsay

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon-Thevenet, V.; Mottier, J.; Lefort, H.; Durnez, A.; Fortuna, F.

    2014-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a new laboratory dedicated to the fabrication and characterization of radioactive targets. It is supported by the radiochemistry group and the stable target service of the IPNO. The recurring needs of physicists working in the nuclear fuel cycle physics and the growing difficulties to obtain radioactive targets elsewhere were the main motivating factors behind the construction of this new laboratory. The first targets of 235,238 U and 232 Th have already been prepared although the full operating licenses still need to be obtained. In this paper, the installation and the equipment of CACAO will be described. An extensive study of a U test target fabricated by the CACAO laboratory has been performed and results are reported here. The different techniques used to characterize the deposit are presented and the outcome is discussed. (author)

  18. Radioactivity. From radioelements to scientific applications

    International Nuclear Information System (INIS)

    2002-09-01

    Radioactivity was not invented by man. It was discovered just over a century ago, in 1896, by the French physicist Henri Becquerel. He was attempting to find out whether the rays emitted by fluorescent uranium salts were the same as the X-rays discovered in 1895 by the German physicist Wilhelm Roentgen. He thought that the uranium salts, after being excited by light, emitted these X-rays. Imagine his surprise when, in Paris in March 1896, he discovered that photographic film had been exposed without 'Radioactivity was not invented by man. It is a natural phenomenon that was discovered at the end of the 19. century'. He concluded that uranium emitted invisible radiation, different from X-rays, spontaneously and inexhaustibly. The phenomenon he discovered was named radioactivity (from the Latin radius, meaning ray). Following Henri Becquerel's work, in 1898 Pierre and Marie Curie isolated polonium and radium, unknown radioactive elements present in uranium ore. (authors)

  19. Evaluation of gross radioactivity in foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Zorer, Oezlem Selcuk; Oeter, Cigdem [Yuzuncu Yil Univ., Van (Turkey). Dept. of Chemistry

    2015-05-15

    The paper presents the results of radiological investigations of food products sampled in the summer and fall of 2011 and 2012 in different parts of Van, Turkey. Gross radioactivity measurements in food products were evaluated. Food items were divided into eight groups: (1) water, (2) fish, (3) cheese products, (4) fruits, (5) vegetables, (6) herbs, (7) walnut and (8) rock salt. The levels of the gross alpha and gross beta radioactivity in all food samples varied widely ranging from 0.070 to 10.885 Bq/g and from 0.132 to 48.285 Bq/g on dry mass basis, respectively. In one sample, gross alpha and gross beta activity concentrations were found to be relatively high according to the other samples and in all samples, the gross alpha radioactivity was measured lower than the gross beta radioactivity. The gross α and gross β activities were measured by using α/β counter of the multi-detector low background system (PIC MPC-9604).

  20. Public debate on radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  1. Guide for the control and recording of radioactive wastes

    International Nuclear Information System (INIS)

    1987-01-01

    This guide present the aspects related to the control and recording of radioactive wastes in their points of origin. Then it is of great importance to fulfill these instructions so as to achieve a successful management of radioactive waste

  2. Treatment and conditioning of radioactive organic liquids

    International Nuclear Information System (INIS)

    1992-07-01

    Liquid organic radioactive wastes are generated from the use of radioisotopes in nuclear research centres and in medical and industrial applications. The volume of these wastes is small by comparison with aqueous radioactive wastes, for example; nevertheless, a strategy for the effective management of these wastes is necessary in order to ensure their safe handling, processing, storage and disposal. A aqueous radioactive wastes may be discharged to the environment after the radioactivity has decayed or been removed. By contrast, organic radioactive wastes require management steps that not only take account of their radioactivity, but also of their chemical content. This is because both the radioactivity and the organic chemical nature can have detrimental effects on health and the environment. Liquid radioactive wastes from these applications typically include vacuum pump oil, lubricating oil and hydraulic fluids, scintillation cocktails from analytical laboratories, solvents from solvent extraction research and uranium refining, and miscellaneous organic solvents. The report describes the factors which should be considered in the development of appropriate strategies for managing this class of wastes from generation to final disposal. Waste sources and characterization, treatment and conditioning processes, packaging, interim storage and the required quality assurance are all discussed. The report is intended to provide guidance to developing Member States which do not have nuclear power generation. A range of processes and procedures is presented, though emphasis is given to simple, easy-to-operate processes requiring less sophisticated and relatively inexpensive equipment. 31 refs, 16 figs, 3 tabs

  3. A survey of the environmental radioactivity in the east sea related to the Russian ocean dumping of the radioactive waste

    International Nuclear Information System (INIS)

    Kim, Kyehoon; Kim, Changkyu; Lee, Mosung

    1994-01-01

    From October 24 - December 30, 1993 a joint survey by the Office of Fisheries, Korea Institute of Nuclear Safety, Korea Ocean Research and Development Institute, and several other governmental institutes which was supervised by Ministry of Science and Technology was carried out to investigate present marine environmental radioactivity of the East Sea where former USSR and Russia had dumped radioactive waste since 1957. Exposure rate was measured and the radioactivity of seawater, both surface and deep water, bottom sediment, fish, and planktonic organisms from the areas around the dumping sites and the East Sae were analyzed. Results showed that the radioactivities of Cs-137 in the sea water from dumping sites were less than 0.0038 Bq/L, which was similar to the background level of the East Sea. The radioactivity level of fish and bottom sediment from dumping sites also did not increased. A detailed Ocean Environmental Monitoring Plan, however, should be established and the monitoring must be carried out continuously to protect people from potential radioactive hazards

  4. Development of an application simulating radioactive sources; Conception d'une application de simulation de sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)

    2011-05-15

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  5. Results of radioactivity measurements on foodstuffs in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ferdes, O [National Agency for Atomic Energy, Bucharest (Romania); Cojocariu, T [Institute for Food Research, Bucharest (Romania)

    1997-12-31

    There are presented the results of gamma-spectrometric measurements performed between 1986-1995 on: milk and dairy products; meat and meat products; fish; wheat flour; fresh fruits and vegetables. The foodstuffs are sampled from some representative areas like: Bucharest, Bechet (affected by Kozloduj NPP, Bulgaria), Cernavoda, middle of Transylvania, Neamt. The radioactivity measurements are performed by high-resolution {gamma}-ray spectrometry. There are identified and analysed mainly {sup 134}Cs, {sup 137}Cs, {sup 40}K and, sometimes, other radionuclides. There are pointed out: the constancy of natural radionuclides amounts; the drastic increasing in radioactive concentration in May 1986; the seasonal variation of radioactivity in some food items; the time - exponential diminution of radioactivity in 1991-1995; and the maximum permitted levels of radioactive contamination of foodstuffs following a nuclear accident. (author). 2 figs., 2 tabs., 8 refs.

  6. Factors affecting the release of radioactivity to the biosphere during deep geologic disposal of radioactive solids through underground water

    International Nuclear Information System (INIS)

    Solomah, A.G.

    1984-01-01

    The chemical alteration formed by ground water on the solidified radioactive waste during deep geologic disposal represents the most likely mechanism by which dangerous radioactive species could be reintroduced into the biosphere. Knowing the geologic history of the repository, the chemistry of the ground water and the mechanisms involved in the corrosion of the radioactive solids can provide help to predict the long-term stability of these materials. The factors that must be considered in order to assess the safety and the risk associated with such a disposal strategy are presented. The leaching behavior of a solidified radioactive waste form called SYNROC-B (SYNthetic ROCks) is discussed. Different simulated ground water brines similar to those of the repository sites were prepared and used as the leaching media in leaching experiments

  7. Connection of comparator circuit for pseudocoincidence counting of radioactive aerosols

    International Nuclear Information System (INIS)

    Fukatko, T.; Hajek, P.; Vidra, M.

    1985-01-01

    A block diagram is presented of the radioactive aerosol measuring instrument. The first counter records electric pulses corresponding to gross alpha activity and the second indicates pseudocoincidences derived from natural radioactivity. Data from the counters are converted to analog voltages which in the comparator circuit are compared such that the mean value of the output voltage is zero insofar as artificial radioactivity is not present on the filter. The designed connection of the comparator circuit allows the permanent adjustment of the whole measuring equipment to maximum sensitivity. (E.S.)

  8. Inventory of accidents and losses at sea involving radioactive material

    International Nuclear Information System (INIS)

    2001-09-01

    The present report describes the content of the inventory of accidents and losses at sea involving radioactive material. It covers accidents and losses resulting in the actual release of radioactive materials into the marine environment and also those which have the potential for release. For completeness, records of radioactive materials involved in accidents but which were recovered intact from the sea are also reported. Information on losses of sealed sources resulting in actual or potential release of activity to the marine environment nad of sealed sources that were recovered intact is also presented

  9. Focus on radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M

    1989-01-01

    Written for children, this book looks at the nature of radioactive materials, how they were discovered, what they are used for and how they affect the environment around us. The emphasis is on the benefits of radioactive materials, particularly in nuclear power stations, in medical diagnostics and radiotherapy, in industry and in agriculture. Nuclear fission and fusion are explained, how radioactive materials are handled and naturally occurring radioactivity are included. (UK).

  10. Classification of radioactive wastes produced by the nuclear industry

    International Nuclear Information System (INIS)

    2013-01-01

    This document first indicates the origins of radioactive wastes (mainly electronuclear industry), and the composition of spent fuel, and that only fission products and minor actinides are considered as radioactive wastes whereas uranium and plutonium can be used as new fuel after recycling. The classification of radioactive wastes is indicated in terms of radioactivity level and radionuclide half-life: high level (0.2 per cent of the total waste volume but 96 per cent of total waste radioactivity), medium level long life (3 per cent of volume, 4 per cent of radioactivity), low level long life (7 per cent of volume, 0.1 per cent of radioactivity), low and medium level and short life (63 per cent of volume and 0.02 per cent of radioactivity), very low level (27 per cent of volume and less than 0.01 per cent of radioactivity). An overview of radioactive waste processing and storage in France is presented for each category. Current and predicted volumes are indicated for each category. The main challenges are briefly addressed: spent fuel recycling, waste valorisation by fourth-generation reactors. Processing locations in France and in the World are indicated. Some key figures are provided: 2 kg of radioactive waste are produced per inhabitant and per year, and waste management costs represent 5 per cent of the total cost of produced electricity

  11. Labelling of olive oil with radioactive iodine and radioactive technetium

    International Nuclear Information System (INIS)

    Al-Dayel, O.A.F.

    1988-03-01

    Investigates labelling of olive oil with 125 iodine and with the radioactive 99mTC. A radio analytical study for 99Mo-99mTC generator is also presented. Iodine monochloride and chlormine-T methods are used for labelling olive oil and oleic acid with radioactive iodine. Diethyl ether, benzene and n-heptane have been used as solvents, with diethyl ether giving best results using iodine monochloride method. Infrared spectroscopic studies show that labelling took place at the double bond. Use of milked 99mTc gave very low yield only. A fairly higher labelling yield was achieved when 20 mg of tin chloride has been added in acetone medium than diethyl ether medium. Thin layer chromatography and paper chromatography technique were used as quality control systems. The labelled oil can be used for diagnostic and study purposes. 140 Ref

  12. Radioactive waste management information, 1982 summary and record-to-date

    International Nuclear Information System (INIS)

    Cassidy, G.B.

    1983-07-01

    This document summarizes radioactive waste data records for the Idaho National Engineering Laboratory (INEL) compiled since 1952. Kinds of information include volume, radioactivity, isotopic identity, origin, and decay status. The radioactive waste data presented was obtained from the INEL Radioactive Waste Management Information System (RWMIS). This report is updated annually to incorporate waste management data for the current year and reflects changes in previous annual reports. Changes are made to more accurately reflect the current status of waste operations at the INEL

  13. Regulatory criteria for final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Petraitis, E.; Ciallella, N.; Siraky, G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. It also presents the criteria developed by the Nuclear Regulatory Authority (ARN) to assess the long-term safety of final disposal systems for high level radioactive wastes. (author)

  14. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  15. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  16. Radioactive sedimentary deposits concerning the coasts of the Camargue

    International Nuclear Information System (INIS)

    2000-01-01

    CRII-RAD has detected abnormal levels of radioactivity on some beaches situated near the Espiguette lighthouse in the south-east coast of France. This document presents the in-situ measurements performed by IPSN. These results confirm a relevant increase of gamma radiation in sedimentary deposits. Chemical analyses have shown that this radioactivity is due to potassium 40 and radionuclides from thorium and uranium series. There is no doubt about the natural origin of this radioactivity but thorough geo-chemical studies are necessary to see whether these radioactive sands are a consequence of nearby industrial activities concerning ore dressing. (A.C.)

  17. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  18. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  19. Radioactive preparation of defects in solids; Creation de defauts dans les solides au moyen de radioisotopes; Ispol'zovanie radioaktivnosti dlya obrazovaniya defektov v tverdykh telakh; Creacion de deiectos en los solidos mediante radioisotopos

    Energy Technology Data Exchange (ETDEWEB)

    Lambe, J [Physics Department, Ford Motor Company, Scientific Laboratory, Dearborn, MI (United States)

    1962-01-15

    One of the major areas of interest in solid state physics is the study of defects in nearly perfect crystals. The controlled formation of such defects is thus an important aspect of these studies. Chemical additions and radiation damage are among the techniques which have been widely used to make such defects. In the present work some possibilities have been examined of using radioactive decay to form defects in solids. The technique is simply to make as perfect a material as possible but with some of the host crystal atoms radioactive. When these atoms decay the daughter product essentially forms the defect. As a simple means of testing the feasibility of this technique, it was used to prepare tritium atoms trapped in a crystal of solid molecular tritium. The experiments indicate that the technique is feasible and should have particular application to the preparation of free radicals in organic materials which are fairly resistant to radiation damage. (author) [French] L'etude des defauts que presentent les cristaux presque parfaits revet un interet primordial pour la physique de l'etat solide. La formation controlee de defauts de ce genre constitue ainsi un aspect important des travaux dans cette branche de la physique. Parmi les techniques frequemment employees a cette fin, figurent l'addition de produits chimiques et l'induction de dommages par exposition a des rayonnements. Au cours de leurs travaux, les auteurs ont etudie la possibilite de recourir a la desintegration radioactive de plusieurs manieres pour creer des defauts dans les solides. Le procede consiste simplement a produire une matiere ayant une structure aussi parfaite que possible mais dont certains cristaux renferment des atomes radioactifs. Lorsque ces atomes se desintegrent, le defaut est constitue essentiellement par le produit de filiation. Pour explorer par un moyen simple la possibilite d'utiliser ce procede, l'auteur a prepare des atomes de tritium fixes dans un cristal de tritium

  20. An Assessment of Radioactivity of Selected Industrial Waste

    International Nuclear Information System (INIS)

    Huwait, M. A.; ElMongy, S.A.; Abdo, A.A.A.; Hassan, M.H.

    1999-01-01

    phosphogypsum (phph) is a by-product in the manufacture of phosphoric acid for the artificial fertilizer industry. In the present work, qualitative and quantitative radioactive analysis are carried for phph of National Company of Abuzabal for chemical fertilizers. Gamma ray spectroscopy techniques are applied. The present study reveals that the radioactivity resulted from these wastes is out of the international standards, and it is strongly not recommended to be used as a construction material or for dwellings

  1. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  2. Measurement of gross beta radioactivity in high-level liquid waste

    International Nuclear Information System (INIS)

    Lu Feng; Lin Cansheng; Zhang Xianzi; Chen Guoan; Zhang Chonghai

    1992-01-01

    Using beta plastic scintillation counter of low level background, gross beta radioactivity of twelve samples for high-level liquid waste is determined directly. Beta efficiency curves of plastic scintillation counter for four mass thickness are calibrated in advance. Determining gross beta radioactivity, gross efficiency of the scintillation counter for various energy beta ray is calculated via weighted mean method with the ratio of radioactivity for each nuclide. The ratio of radioactivity for nuclides which have gamma disintegration is determined in terms of the radioactivity measured by gamma spectrometer. The ratio of the radioactivity for 90 Sr which has purity beta disintegration is calculated in terms of half life time approximation. The ratio of the radioactivity for 147 Pm which also has purity disintegration is calculated by means of apparent cooling-time approximation. The uncertainty of results for the present work is about +-15%

  3. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  4. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  5. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  6. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  7. Applicant guide for the demands of expedition and agreement approval of the parcel or radioactive matter models for civil use transported on the public highway; Guide du requerant pour les demandes d'approbation d'expedition et d'agrement des modeles de colis ou de matieres radioactives a usage civil transportes sur la voie publique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This guide applies to the models of parcels or radioactive materials for which an approval of the competent authorities is required by the regulations of the dangerous goods transportations. It is about models used for: radioactive materials under special shape, lowly dispersible radioactive materials, packages containing 0.1 kg or more of uranium hexafluoride, any package containing fissile materials, the B(U) type packages, and the B(M) type packages; the C type packages. (N.C.)

  8. Treatment and disposal of radioactive wastes and countermeasures

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    1990-01-01

    The treatment and disposal of radioactive wastes are one of important subjects, together with the development of dismantling techniques accompanying the decommissioning measures for nuclear power plants and the development of reprocessing techniques for nuclear fuel cycle. About 25 years have elapsed since the beginning of commercial nuclear power generation in 1966, and the time that the solution of the problems of waste treatment and disposal must be tackled on full scale has come. The features and the amount of generation of radioactive wastes, the way of thinking on the treatment and disposal, and the present status of the treatment and disposal are outlined. For securing the stable supply of energy and solving the environmental problem of the earth such as acid rain and warming, nuclear power generation accomplishes important roles. The objective of waste treatment is based on the way of thinking of 'as low as reasonably achievable (ALARA)'. The radioactive wastes are classified into alpha waste and beta-gamma waste. The present status of RI wastes, the techniques of treating radioactive wastes, the nuclide separation, extinction treatment and the disposal in strata of high level radioactive wastes and the disposal of low level wastes are reported. (K.I.)

  9. Discharges of radioactive materials to the environment in Argentina

    CERN Document Server

    Curti, A R

    2003-01-01

    The International Atomic Energy Agency (IAEA) is creating a database of information on radioactive discharges to atmospheric and aquatic environments from nuclear and radioactive installations, and from facilities using radionuclides in medicine, industry and research. The database is expected to facilitate the analysis of worldwide trends in discharge levels and provide a basis for assessing the impact of the discharges on humans and on the environment. In November 2002 took place the first meeting of national contact points and the Nuclear Regulatory Authority (ARN in Spanish) was present as the counterpart for the provision of discharge data from Argentina. This paper, presented in the above mentioned meeting, is a general overview of the radioactive discharges control in Argentina including the legal infrastructure, the population dose assessment methodology and the main characteristics of the facilities in the country with radioactive discharges to the environment. It is mentioned their location, release...

  10. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  11. Radioactive waste management at Institute for Nuclear Research (ICN) - Pitesti

    International Nuclear Information System (INIS)

    Bujoreanu, C.

    2004-01-01

    The amounts of liquid and solid wastes accumulated at the Radioactive Wastes Treatment Plant are given. The technologies used for the treatment and conditioning of radioactive wastes are presented. The final product is metallic drum-concrete-radioactive wastes (type A package) for the final disposal at the National Repository Baita, Bihor. The facilities for radioactive waste management at ICN Pitesti are: Plant for treatment, with uranium recovery of liquid radioactive waste resulting from the fabrication of CANDU type nuclear fuel; Plant for treatment of low-active liquid wastes; Plant for conditioning in concrete of the radioactive concentrate obtained during the evaporation treatment of liquid radioactive waste; Plant for incineration of solid radioactive waste contaminated with natural uranium; Plant for treatment and conditioning of organic liquid radioactive waste with tritium content. This wastes are generated by Cernavoda-NPP operation; Plant for conditioning into bitumen of spent ion exchangers at TRIGA reactor. The existing Facility is Baita repository - with two rock cavities of an uranium mine and the total capacity of 21000 containers (200 l drums)

  12. Evaluation of dose due to the liberation of the radioactive content present in systems of final disposal of radioactive residues; Evaluacion de la dosis debida a la liberacion del contenido radiactivo presente en sistemas de disposicion final de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Amado, V; Lopez, F [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, Ciudad Autonoma de Buenos Aires (C1429BNP) (Argentina)

    2006-07-01

    The disposal systems of radioactive residuals well-known as repositories near to the surface, are used to dispose residuals that can contain high concentrations of radionuclides of period of short semi disintegration, which they would decay at levels radiologically insignificant in some few decades or in some centuries: and acceptably low concentrations of radionuclides of period of long semi disintegration. The dose that would receive the critic group due to these systems it could be increased by cause of discreet events that affect the foreseen retard time, or by the gradual degradation of the barriers. To this last case it contributes the presence of water, because it implies leaching and dissolution that can give place to radionuclide concentrations in the underground water greater to the prospective ones. The dosimetric evaluation is important because it offers useful objective information to decide if a given repository is adjusted to the purposes of its design and it fulfills the regulatory requirements. In this work a simplified evaluation of the dose that would receive the critic group due to the liberation of contained radionuclides in a hypothetical system of final disposition of radioactive residuals is presented. For it, they are considered representative values of the usually contained activities in this type of systems and they are carried out some approaches of the source term. The study is developed in two stages. In the first one, by means of the Radionuclide pollutant scattering pattern in phreatic aquifers (DRAF) it is considered the scattering of the pollutants in the phreatic aquifer, until the discharge point in the course of the nearest surface water. This model, developed originally in the regulatory branch of the National Commission of Argentine Atomic Energy (CNEA); it solves the transport equation of solutes in porous means in three dimensions, by the finite differences method having in account the soil retention and the radioactive

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  14. Radioactive wastes in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nagaike, Tadakatsu; Emura, Satoru; Matsumoto, Akira; Morisawa, Shinsuke.

    1978-01-01

    Recent topics concerning radioactive water management and disposal are widely reviewed. As the introduction, various sources of radioactivity including uranium mining, fuel fabrication, reactor operation and fuel reprocessing and their amount of wastes accumulated per 1000 MWe year operation of a LWR are presented together with the typical methods of disposal. The second section discusses the problems associated with uranium fuel fabrication and with nuclear power plants. Typical radioactive nuclides and their sources in PWRs and BWRs are discussed. The third section deals with the problems associated with reprocessing facilities and with mixed oxide fuel fabrication. Solidification of high-level wastes and the methods of the disposal of transuranic nuclides are the main topics in this section. The fourth section discusses the methods and the problems of final disposal. Various methods being proposed or studied for the final disposal of low- and high-level wastes and transuranic wastes are reviewed. The fifth section concerns with the risk analysis of waste disposal. Both deterministic and probabilistic methods are treated. As the example, the assessment of the risk due to floods is explained. The associated event tree and fault three are presented together with the estimated probability of the occurrence of each constituent failure. In the final section, the environmental problems of radioactive wastes are widely reviewed. (Aoki, K.)

  15. Standardization of radioactive waste categories

    International Nuclear Information System (INIS)

    1970-01-01

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  16. Radioactivity Monitoring of the Irish Environment 2007

    International Nuclear Information System (INIS)

    Fegan, M.; Dowdall, A.; Hanley, O.; Hayden, E.; Kelleher, K.; Long, S.; Smith, V.; Somerville, S.; Wong, J.; Pollard, D.

    2008-10-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) in 2007. This programme aims to assess the exposure of the Irish population to artificial radioactivity in the envorinment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. In additiopn, some natural radioactivity exposure pathways are included in the programme including radioactivity in surface and ground drinking water. Radioactivity is present in the environment due to natural oprocesses, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl in the Ukraine and the routine discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the north-west of England continue to be the dominant source of artificial radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII in 2007 included; assessment of ambient radioactivity based on measurements of radioactivity in air and of external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and various ingredients; assessment of levels of radioactivity in the Irish marine environment based on sampling and measurement of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at twelve stations located throughout the country. One of these stations is equipped with a high volume sampler, which allows background concentrations of caesium-137 to be measured; another is equipped to

  17. Where are the radioactive wastes in France? 2006 geographic inventory of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents, by region, the localization of existing radioactive wastes in France at the date of December 31, 2004. In addition to the geographic situation, this inventory is presented by site and by category of waste producer or owner. The collection of these data is based on the free declaration made by waste owners or producers. The gathered information has been reformatted and homogenized and is reported in a synthetic way in the form of tables and files. Thus, 899 sites have been indexed, among which 159 are presented in the form of a detailed file. For each region, a table details the registered sites by category of producer/owner and the location of the main ones is reported on a regional map. The registered waste producers are radionuclide users belonging to 4 specific domains: medical, research, industry and national defense. The corresponding wastes are in general modest both in quantity and activity. The sites polluted by radioactive substances are also mentioned, even if they are already decontaminated or not. (J.S.)

  18. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part III : Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Radioactive Waste Management and Environment and there are 25 papers which have separated index. The proceedings is the third part of the three parts which published in series. (PPIN)

  19. Diagnosis and treatment of radioactive poisoning. Proceedings of the scientific meeting on the diagnosis and treatment of radioactive poisoning

    International Nuclear Information System (INIS)

    1963-01-01

    The increasing use of atomic energy generated by nuclear fission is necessarily accompanied by the production of large quantities of radioactive isotopes. This, together with the growing use of radioactive materials in many fields, has given added importance to practical considerations of how best to deal with accidents - should they occur - involving radioactive contamination of individuals. Such considerations require knowledge of the metabolic behaviour of various radionuclides in man and of methods of increasing their elimination from the body. Information of this type is limited, and it is therefore essential to make maximum use of those data which, are available. Analyses of earlier accidents are one important source of such data; another is experience gained from the medical administration of radioisotopes for therapeutic or diagnostic purposes. The World Health Organization and the International Atomic Energy Agency jointly sponsored a scientific meeting on the Diagnosis and Treatment of Radioactive Poisoning, in Vienna from 15 to 18 October 1962. The aim of the meeting, which followed an earlier one (The Diagnosis and Treatment of Acute Radiation Injury) sponsored by the two organizations in 1960 on another aspect of radiation protection, was to review the present state of knowledge on the diagnosis, evaluation and treatment of persons who have accidentally incorporated radioactive materials. It brought together three groups of persons: those experienced in various methods of diagnosis and treatment of patients who have been exposed (occupationally or accidentally) to radioactive material; those engaged in the clinical administration of radionuclides and the study of their behaviour in man; and those working on related problems with experimental animals. In view of the great interest of many of the topics discussed at the meeting, it was felt desirable that the information presented in the papers and brought out in the ensuing discussions should be

  20. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  1. Travel in the depth of radioactivity; Voyage au coeur de la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This educational booklet gives a general presentation of radioactivity: origin of natural radioactivity, characteristics of atoms and isotopes, the radioactivity phenomenon, its decay and measurement units, the radiations and their use in medicine, industry, agriculture and food industry, biology etc.. (J.S.)

  2. The energy Review: the revision of british the energy policy and the radioactive wastes: the report of Committee on Radioactive Waste Management

    International Nuclear Information System (INIS)

    Daoudi, M.

    2006-07-01

    This report presents the british energy policy, in which the nuclear power has a real part. The report details: the reduction of the carbon emission by the energy conservation and the clean energies, the energy safety, the impacts of the Energy Review, the technology part to reach these objectives and some reactions. The second part is devoted to the radioactive wastes and a presentation of the report Committee on Radioactive Wastes. (A.L.B.)

  3. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  4. Analysis through indicators of the management of radioactive waste in a radioactive facility

    International Nuclear Information System (INIS)

    Amador Balbona, Zayda; Argudin Bocourt, William

    2013-01-01

    The evaluation of the management of radioactive waste in the center of isotopes of the Republic of Cuba is the objective of this work. To do so, all the operations of the management system are evaluated through indicators used by this radioactive facility over a decade ago. Available information is processed from 1996 until 2012. The major waste generators are identified through the indicator of annual generation of each working group by local and by worker and it were analyzed the available store radioactive inventory, the relationship between the variation of annual technological waste volume of waste and the annual total manipulated activity, the relationship generation-declassification and the percent of liquid effluents managed as waste. Indicators of unconditional clearance, as well as the of the gaseous and liquid discharges are presented. It is concluded, with all these indicators, that it is possible to determine where are the causes of the behavior in the generation of radioactive waste if it is an increase of manipulated activity int the places of work or of worker, or improper application of the procedures of collection. It is controlled not only management, but also determines in which aspects can work to achieve the objective of minimizing the formation of these wastes, to be able to reduce the production costs. National shedding environmental regulations are met and the results are acceptable)

  5. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  7. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  8. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vudakin, Z.

    1999-01-01

    Analytical method for solving radioactive transformations is presented in this paper. High accuracy series expansion of the depletion function and nonsingular Bateman coefficients are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Generality and simplicity of the method are found to be useful in evaluating nuclide chains with one hundred or more nuclides in the chain. Method enables evaluation of complete chain, without elimination of short-lives nuclides. It is efficient and accurate

  9. Radioactive waste management practices in India: achievements and challenges

    International Nuclear Information System (INIS)

    Wattal, P.K.; Basu, S.

    2013-01-01

    Safe and effective management of radioactive waste has been given utmost importance from the very inception of nuclear industry in India. This article gives an account of the basic principles, practices being followed in our country to achieve this objective. A brief description of the existing methods for management of diverse kinds of radioactive wastes including high level radioactive waste and also the research and development activities to address the future challenges is presented in the article. (author)

  10. 30 years of environmental radioactivity monitoring in Romania

    International Nuclear Information System (INIS)

    Sonoc, S.; Alexandrescu, M.; Dovlete, C.; Halasz, A.; Sonoc, N.

    1993-01-01

    A short history of environmental radioactivity monitoring in Romania is presented. Started in 1962 in a few number of sites this activity is performed now by the National Environmental Radioactivity Surveillance Network (NERSN) consisting in 44 local laboratories in each county of the country and a central laboratory, Environmental Radioactivity Laboratory (ERL). The measured values of fallout samples in six points of the network during the period 1962-1992 and the average values of the Cs-137 deposits on Romanian territory from 1977 to 1992 are also presented. The main scientific results of the staff of the central laboratory during the years are mentioned. All these results were possible only due to a persuasive work done during the years by all the staff of the local and central laboratories. (author). 7 figs., 14 refs

  11. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  12. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  13. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  14. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  15. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Nishi, Takashi; Baba, Tsutomu; Fukazawa, Tetsuo; Matsuda, Masami; Chino, Koichi; Ikeda, Takashi.

    1993-01-01

    As an adsorbent used for removing radioactive nuclides such as cesium and strontium from radioactive liquid wastes generated from a reprocessing plant, a silicon compound having siloxane bonds constituted by silicon and oxygen and having silanol groups constituted by silicon, oxygen and hydrogen, or an inorganic material mainly comprising aluminosilicate constituted with silicon, oxygen and aluminum is used. In the adsorbent of the present invention, since silica main skeletons are partially decomposed in an aqueous alkaline solution to newly form silanol groups having a cation adsorbing property, pretreatment such as pH adjustment is not necessary. (T.M.)

  16. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  17. On-line radioactivity detector for HPLC

    International Nuclear Information System (INIS)

    Kessler, M.J.

    1986-01-01

    Over the last ten years the technique of high performance liquid chromotography (HPLC) has become extensively employed for the separation and quantitation of various biological, organic, and inorganic substances. The use of HPLC for the separation of various metabolic compounds has become routine. The major problem of analyzing the metabolism process is that the quantitation is accomplished by the use of radioactive substrates. Until recently the only method to quantitate these radioactive compounds eluting from the HPLC was by collecting fractions at preset times, removing aliquots and quantitating in a liquid scintillation counter. Once the radioactivity present in each fraction was determined, the results were plotted on a graph and the area of each of the radioactive peaks was determined. This entire process required from 3-20 hours. The introduction of the flow through radioactivity detector enable the investigator to directly quantitate the radioactive peaks as they elute from the HPLC in real time and at about one-tenth the original cost of the previous methods. The detection limits of this technique are dependent on the residence time of the sample in the flow cell and the type of flow cell used for the analysis. Using a 2.5 ml liquid flow cell, (mixing with liquid scintillation solution), base line resolution can be obtained for peaks 1.5 minutes apart, and a sensitivity of 70 dpm for tritium and 30 dpm for carbon-14 can be achieved

  18. Programs of recovery of radioactive wastes from the trenches and land decontamination of the radioactive waste storage center

    International Nuclear Information System (INIS)

    Jimenez D, J.; Reyes L, J.

    1999-06-01

    In this report there are the decontamination program of the land of the Radioactive Waste Storage Center, the Program of Recovery of the radioactive waste of the trenches, the recovery of polluted bar with cobalt 60, the recovery of minerals and tailings of uranium and of earth with minerals and tailings of uranium, the recovery of worn out sealed sources and the waste recovery with the accustomed corresponding actions are presented. (Author)

  19. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  20. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  1. Marine sediments as a radioactive pollution repository in the world

    International Nuclear Information System (INIS)

    Navarrete, J.M.; Mueller, G.; Zuniga, M.A.; Camacho, M.; Espinosa, G.; Golzarri, J.I.

    2014-01-01

    During a time period little longer than 60 years, it has been created a radioactive pollution background over the natural one, which started in 1945 and it has been growing up since then, due to several nuclear tests, minor nuclear reactors failure and four major accidents: Wind Scale, Three Mile Island, Chernobyl and Fukushima. This radioactive polluting background can be easily detected through 137 Cs fission product, which by the effect of wind, river currents and rain has been accumulated in marine sediments, mainly because sea represents about 80 % of earth's surface. Since energy demand has been growing up with no interruption during last two centuries, and nuclear energy seems to be the largest available source, it is very likely a great expansion of nuclear energy during twenty-first century. So, this paper presents results obtained in strategic points of the two large littorals in Mexico: Gulf and Pacific Ocean, as an attempt to establish there some figure to evaluate the present radioactive pollution. An adequate figure to do it, seems to be the quotient of activity per gram of 137 Cs in marine sediments (Bq 137 Cs/g), divided by activity per gram of 40 K natural radioactivity (Bq 40 K/g). When this result is multiplied by 100 the percentage of polluting radioactivity ( 137 Cs) related to natural radioactivity ( 40 K) is obtained. This percentage seems to be useful to evaluate the importance of radioactive pollution from 4 points of view: a) calculate the extent of already radioactive pollution present in the seas of world; b) avoid the panic in case of nuclear accidents, c) what will be the growing up rate in the future; d) if it is possible to keep one decreasing rate at same decaying rate of 137 Cs (t 1/2 = 30.07 years), since from 1945, starting time of radioactive pollution, it has decayed only about 2.2 half lives. (author)

  2. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  4. Present situation and perspective of China's geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Zhang, H.

    2005-01-01

    The theme of the conference, 'Political and Technical Progress of Geologic Repositories', has drawn world-wide attention and remains a challenging topic facing the nuclear industry. I am delighted to attend this important conference and have the opportunity to state our views. And I would like to express my gratitude to our host Sweden and IAEA. The development of nuclear science and technology and the peaceful uses of nuclear energy is one of the greatest achievements of the mankind in the 20. century. The development and progress of nuclear technology, from application of fission energy to the exploration of fusion energy, embodies the mankind's expectation to the future. It will be the major energy of final settlement of the issue of global sustainable development. The safe and effective treatment and disposal of nuclear waste are of vital importance to the peaceful uses of nuclear energy and technology. The most dangerous and long-lived waste has to be contained and isolated from the human living environment. Construction of geologic repository in appropriate geological formation for radioactive waste disposal is being accepted as a suitable solution and being studied widely. In the International Conference on Geological Repositories held in Denver, U.S.A., in November 1999, senior governmental representatives from more than 20 countries stated related policies and decisions of their respective countries, which caught world-wide attention. I am convinced that this conference, an event about geologic repository following the Denver conference, will produce positive results for the safe and effective disposal of nuclear waste. Now I would like to take this opportunity to brief you on China's current situation and perspectives of geologic disposal of high-level radioactive waste. (author)

  5. Legal and regulator framework of radioactive waste

    International Nuclear Information System (INIS)

    Chavez Cassanello, Griselda; Mels Siningen, Celeste; Reina, Mariana; Vega, Hernan

    2009-01-01

    The present work intends to develop the legislative and regulatory framework in the matter of radioactive waste. The legal frame of the radioactive waste conformed by the National Constitution, the treaties and conventions, laws and decrees and regulatory norm in Argentine . The subject is approached from the international point of view considering the slogan of 36 The Annual Meeting of the Association Argentine de Nuclear Technology: 'The Nuclear Energy in the Present World'. This work also contains a special paragraph dedicated to the analysis of practical cases related to the subject and the activity of the National Commission of Atomic Energy. (author)

  6. Protection of environmental contamination by radioactive materials and remediation of environment

    International Nuclear Information System (INIS)

    2003-05-01

    This report consisted of the environmental contamination of radioactive and non-radioactive materials. 38 important accident examples of environmental contamination of radioactive materials in the world from 1944 to 2001 are stated. Heavily polluted areas by accidents are explained, for example, Chernobyl, atomic reactor accidents, development of nuclear weapon in USA and USSR, radioactive waste in the sea. The environmental contamination ability caused by using radioactive materials, medical use, operating reactor, disposal, transferring, crashing of airplane and artificial satellite, release are reported. It contains measurements and monitor technologies, remediation technologies of environmental contamination and separation and transmutation of radioactive materials. On the environmental contamination by non-radioactive materials, transformation of the soil contamination in Japan and its control technologies are explained. Protection and countermeasure of environmental contamination of radioactive and non-radioactive materials in Japan and the international organs are presented. There are summary and proposal in the seventh chapter. (S.Y.)

  7. Development of an application simulating radioactive sources

    International Nuclear Information System (INIS)

    Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.

    2011-01-01

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  8. Salivary gland dysfunction following radioactive iodine therapy

    International Nuclear Information System (INIS)

    Wiesenfeld, D.; Webster, G.; Cameron, F.; Ferguson, M.M.; MacFadyen, E.E.; MacFarlane, T.W.

    1983-01-01

    Radioactive iodine is used extensively for the treatment of thyrotoxicosis and thyroid carcinoma. Iodine is actively taken up by the salivary glands and, following its use, salivary dysfunction may result as a consequence of radiation damage. The literature is reviewed and a case is reported in which a patient presented with a significant increase in caries rate attributed to salivary dysfunction following radioactive iodine therapy for a thyroid carcinoma

  9. Some aspects concerning the relationship environmental radioactivity-population in Romania after 1986

    International Nuclear Information System (INIS)

    Constantinescu, B.; Dumitru, C.; Puscalau, M.

    1993-01-01

    The paper presents some results, obtained in the last six years, related to different aspects of environmental radioactivity. Thus, a synthesis of I-131, Cs-134, and Cs-137 post Chernobyl measurements on foodstuffs and human subjects is presented. Natural radioactivity (uranium, thorium, potassium-40) level determination in various geological-industrial samples (phosphates, gold and copper ores) are also summarized. There are described two facilities for radioactive contamination assessment: the Body Counter SGCU-S for whole body and thyroid, and a Phoswich Lung Counter. Energy and efficiency calibration procedures are presented. (Author)

  10. Decoding Environmental Processes Using Radioactive Isotopes for the Post-Radioactive Contamination Recovery Assessment

    Science.gov (United States)

    Yasumiishi, Misa; Nishimura, Taku; Osawa, Kazutoshi; Renschler, Chris

    2017-04-01

    slopes where the surface soil was scraped and litter was cleared, the scraping showed mixed results in radioactivity reduction. It is estimated that by the completion of soil decontamination in 2020, up to 22 million cubic meters of so-called 'contaminated soils' will have been scraped off in the affected areas and transferred to an underground storage. Understanding the radioactive isotope behaviors is crucial to assessing the financial and environmental consequences of such measures. As an example, a 30-year simulation of a 5-13 % hillslope under thick vegetation with GeoWEPP (the Geospatial interface for the Water Erosion Prediction Project) resulted in a very small soil loss on the hillslope. However, the results showed about five tons of soil loss through channels and as sediment discharge annually. On the hillslope, the radioactivity level in about the top 4.0 cm of the soil exceeded the 8,000 Bq/kg threshold which the Japanese government has set for surface soil removal. Referring to the case study data in Fukushima, this presentation will discuss how environmental decontamination measures (e.g. forest clearing) and monitoring methods should be considered and planned against dynamic environmental processes.

  11. Radiation protection rules for handling of sealed radioactive sources in medicine

    International Nuclear Information System (INIS)

    1985-02-01

    The rules presented here relate to the use of sealed radioactive sources in medical therapy, with the radioactive sources being temporarily or permanently incorporated into body cavities or body tissues, or fixed to the body surface. They also relate to radioactive sources with dimensions below 5 mm (as e.g. seeds). (orig./HP) [de

  12. Radioactivity monitoring in Ireland of air, deposition and water 1982-1987

    International Nuclear Information System (INIS)

    Sequeira, S.; McRandall, M.; Hayden, E.; Cunningham, J.D.

    1989-02-01

    The Nuclear Energy Board in conjunction with the Meteorological Service undertakes an environmental radioactivity monitoring programme with the objective of determining levels of artificially produced radioactivity in the Irish environment. The levels of radioactivity in airbourne dust, total fallout samples, precipitation and drinking water are presented for 1982, 1983, 1984, 1985, 1986 and 1987

  13. Transport of radioactivity and radiation

    International Nuclear Information System (INIS)

    De Beer, G.P.

    1988-01-01

    The movement of radioactivity and radiation is of prime importance in a wide variety of fields and the present advanced degree of knowledge of transport mechanisms is due largely to the application of sophisticated computer techniques

  14. The regulatory actions in the management of disuse radioactive sources

    International Nuclear Information System (INIS)

    Truppa, W.A.; Cordoba, M.F.; Poletti, M.; Calabria, M.A.; Pirez, C.

    2010-01-01

    During the last years, different incidents related to the discovery of inadvertent radioactive material have been reported through the international information systems available. From the analysis of the information received it can be concluded that those situations are derived from the inadequate application of concepts such as 'safety culture' and 'risk perception' or inadequate physical safety measures towards radioactive sources by the licensee. Among the activities that the regulators perform during the use of radioactive material, the most important are the ones related to avoiding the existence of disused radioactive sources. In this regard, the Nuclear Regulatory Authority (NRA) has implemented, through its Standards, regulatory mechanisms to adequately control and dispose of radioactive material. Concerning this matter, actions were taken in Argentina with the aim of disposing or keeping the custody in an authorized long term storage of every radioactive source used to measure thickness, humidity, level, weight, etc. that remained within the facilities without use and/or a suitable program to be reutilized within a period larger than six months. The objective of the present piece of work is to present the analysis and results of the actions fulfilled between 2002 and 2009, giving details about the regulatory activities performed in relation to the disposal and withdrawal of radioactive sources and the physical safety measures taken. (authors) [es

  15. Result of the survey about radioactivity and its logotype

    International Nuclear Information System (INIS)

    Velasco A, I.

    1993-01-01

    Those who for a long time have been performed studies with relation by affinity with radioactivity, have in mind that several basic concept to nuclear sciences are of public or general knowledge assuming that in the market there exist a wide stock of diffusion material. Nevertheless, for the attained results in this work, we have seen that there exist great disinformation about to radioactivity its peaceful uses and particularly with a logotype which indicate the presence of radioactive material. The study was carried out in the considering that a probabilistic sampling in the Mexico city will permit to estimate the proportion of the population who knows the International symbol which we are talking about and will give a representative opinion on radioactivity and will indicate the information means with a better acceptation. First of all we proceeded to the elaboration of a questionnaire which were presented to the required number of persons in order to get reliable results. Such a results are presented either in table or graph. In appendix C the required instrument for the sampling, as well as the used codification are presented. On the other hand, in the light of the answers, the restless for knowing the origin and evolution of the International symbol which indicate the presence of radioactive material made its apparition. We had a great surprise to found that its origins are lost in history. In appendix B we present the material which was feasible of rescue. Lastly, in appendix A the chronology for the evolution of radiological protection is presented as well as some definitions for the common terms. Appendix D is for bibliography with alphabetical arrangement. (Author)

  16. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  17. Analysis of radioactivity concentration in naturally occurring radioactive materials used in coal-fired plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geom; Kim, Si Young; Ji, Seung Woo; Park, Il; Kim, Min Jun; Kim, Kwang Pyo [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2⁓53 Bq kg{sup -1}, 3⁓64 Bq kg{sup -1}, and 14⁓431 Bq kg{sup -1} respectively in coal samples. For coal ashes, the radioactivity concentrations were 77⁓133 Bq kg{sup -1}, 77⁓105 Bq kg{sup -1}, and 252⁓372 Bq kg{sup -1} in fly ash samples and 54⁓91 Bq kg{sup -1}, 46⁓83 Bq kg{sup -1}, and 205⁓462 Bq kg{sup -1} in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were 3⁓5 Bq kg{sup -1}, 2⁓3 Bq kg{sup -1}, and 22⁓47 Bq kg{sup -1}. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2.1⁓11.3, 2.0⁓13.1, and 1.4⁓7.4 for fly ash and 2.0⁓9.2, 2.0⁓10.0, 1.9⁓7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fred power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

  18. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  19. Discharges of radioactive materials to the environment in Argentina

    International Nuclear Information System (INIS)

    Curti, Adriana R.

    2003-01-01

    The International Atomic Energy Agency (IAEA) is creating a database of information on radioactive discharges to atmospheric and aquatic environments from nuclear and radioactive installations, and from facilities using radionuclides in medicine, industry and research. The database is expected to facilitate the analysis of worldwide trends in discharge levels and provide a basis for assessing the impact of the discharges on humans and on the environment. In November 2002 took place the first meeting of national contact points and the Nuclear Regulatory Authority (ARN in Spanish) was present as the counterpart for the provision of discharge data from Argentina. This paper, presented in the above mentioned meeting, is a general overview of the radioactive discharges control in Argentina including the legal infrastructure, the population dose assessment methodology and the main characteristics of the facilities in the country with authorized radioactive discharges to the environment. It is mentioned their location, release mode, surface water body type, main radionuclides and typical annual release activities. (author)

  20. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  1. Review of the microbiological, chemical and radiolytic degradation of organic material likely to be present in intermediate level and low level radioactive wastes

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Rosevear, A.; Williams, S.J.

    1990-11-01

    A review has been made of the microbiological, chemical and radiolytic degradation of the solid organic materials likely to be present in intermediate-level and low-level radioactive wastes. Possible interactions between the three routes for degradation are also discussed. Attention is focussed on the generation of water-soluble degradation products which may form complexes with radioelements. The effects of complexation on radioelement solubility and sorption are considered. Recommendations are made for areas of further research. (author)

  2. Radioactivity handbook. Volume 2: radioactive disintegrations, radiations-matter interactions, applications of radioactivity

    International Nuclear Information System (INIS)

    Foos, J.; Bonfand, E.; Rimbert, J.N.

    1994-01-01

    This volume is the second one of a group of three. The first one exposed nuclides, with neutrons and protons in a stable building: atomic nucleus. Here is the second one with unstable, radioactive nucleus. After the description of different kinds of disintegrations, it is justified to follow radiations in matter and modifications attached to them; different uses of radioactivity are developed in medicine, age determination, industrial utilization and biology

  3. Radioactivity and environment: example of the Brest roads

    International Nuclear Information System (INIS)

    Le Roux, J.M.

    2000-01-01

    In this work, the author makes, first, an inventory of the natural and artificial sources of radiations. Then, in a second chapter, he presents the characteristics, origin and management of radioactive wastes. Chapter 3 treats of the radiological monitoring of the environment with the example of the Brest gulf (Brittany, Western France). The last chapter presents the role of pharmacists in the supply of potassium iodide tablets, in public information and in the participation to consultation networks about the risks of nuclear energy and radioactivity. (J.S.)

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  5. Low Radioactivities Center. Report presented to the Scientific Committee, July 19, 1994; Centre des Faibles Radioactivites. Rapport presente au Comite Scientifique, 19 juillet 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    This document is the annual report of the Low Radioactivities Center for the year 1994. The Center is a joint CEA-CNRS laboratory devoted to biogeochemical, climate and Earth science studies. It has developed refined methods for the measurement of small amounts of stable and radioactive isotopes (lead, thorium, cesium, radium, radon, polonium, potassium, argon, beryllium, carbon, oxygen, helium..), in particular isotope dating methods such as K/Ar and C14 methods. The research activities are regrouped in four topics: the study and modelling of great biogeochemical cycles (troposphere physico-chemistry, carbon cycle, mass transfers between atmosphere, ocean and sediments); the evolution of climate (thermohaline circulation and heat transfers); the interactions between the internal activity of the Earth and the Earth`s surface (magnetic field instabilities, oceanic volcanism, geodynamics of orogenic domains, active volcanism); the outstanding events of the Earth`s history (Cretaceous-Tertiary boundary, cosmic phenomena, Quaternary evolution of the fossil man and of its environment). A complete list of the laboratory publications is given in the appendix together with a listing of the other activities (teaching, external collaborations, oceanic campaigns, seminars..). (J.S.). 659 refs., 39 figs., 1 tab., 3 photos., 4 appends.

  6. Radioactive sources in trade and industry

    International Nuclear Information System (INIS)

    Vroom, H.; Bolt, R.; Lange, H. de.

    1989-04-01

    An inventory has been drawn up of the most important applications of radioactive sources in the Netherlands, with emphasis on nuclear measuring instruments for industrial use. This inventory has been supplemented with a brief survey of the most important legal demand (among which, the 'decree radiation protection') with regard to the use of such instruments and some data about the construction of the radioactive source present in the instrument. Also the processing of exhausted sources is discussed briefly. (author). 14 refs.; 3 figs.; 6 tabs

  7. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  8. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  9. Centennial of the discovery of radioactivity - 1896-1898/1996-1998

    International Nuclear Information System (INIS)

    Bimbot, R.; Casse, M.

    2009-01-01

    This document summarizes the impacts that the discovery of radioactivity in 1896 has had on the scientific world: 1 - historical aspects (biographies of Henri Becquerel, Pierre Curie and Marie Curie-Sklodowska; context; history of radioactivity discovery; examples of radioactive half-lives); 2 - development of matter sciences (radiochemistry; nuclear and particle physics; nuclear and particle astrophysics); 3 - dating and energy applications: isotope dating; power generation (fission, fusion, nuclear reactor components, reactor types, radioactive wastes); 4 - biological, medical and agronomic applications (biological researches, medical diagnosis, clinical exploration and therapies, man's exposure to ionizing radiations, natural and artificial radioactivity, sources, doses and radiation effects, radioactivity in the Saclay area, radioactivity changes with places, research tool in plants biology and agronomic. Reprints of original communications presented by H. Becquerel and P. and M. Curie at the sessions of the French Academy of Sciences between 1896 and 1906, as well as the talks given at the Academy for the funerals of H. Becquerel, are attached to the document. (J.S.)

  10. Combustible radioactive waste treatment by incineration and chemical digestion

    International Nuclear Information System (INIS)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-01-01

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste

  11. Safe and environmentally sound management of radioactive wastes in India

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.M.; Mishra, U.C.

    1999-09-01

    It was recognised quite early in India's nuclear power programme that the safe management of radioactive waste is vital for its success. An entirely self-sustained fuel cycle based on indigenous resources necessitated evaluation of hazard potential vis-a-vis radioactive wastes generated at different stages of the cycle, starting from mining and milling; fuel fabrication and through the stages of reactor operation and finally spent fuel reprocessing. Emphasis was laid on studies related to impact of radioactivity in the environment and on developing technologies to effectively isolate and contain them. The radiological safety assessment for a radioactive waste management practice is a regulatory mandate and it requires quantitative estimate of the maximum burden to the present and future generation. Safety assessment models are employed to derive this estimate that could be compared with regulatory criteria to ensure the safety of the public. Decades of experience have proved that the present practices are safe, yet there is a constant endeavour to use new technologies to further restrict the releases so that ultimate goal of radioactive waste management should go beyond merely satisfying prevailing regulations. The comprehensive system of waste management, from water generation to its disposal developed in India, is briefly presented in this report. (author)

  12. Marine radioactivity studies in the World Oceans (MARS)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory is carrying out from 1996 a project with international participation 'Marine Radioactivity Studies in the World Oceans (MARS)'. The main objectives of the project are to provide new data on marine radioactivity and to develop a better understanding of the present radionuclide distribution in the open ocean. Within the framework of the project, various research activities are being carried out to fulfill the objectives: Coordinated Research Programme (CRP), scientific expeditions to the open ocean, development of a database for marine radioactivity, evaluation of radionuclide distributions and dose assessments. (author)

  13. Ionising radiations, radioactive materials and the fire services

    International Nuclear Information System (INIS)

    Button, J.C.E.

    1981-05-01

    Extensive experience has shown that ionizing radiations and radioactive materials can be used safely in a wide variety of applications, provided a number of precautions are implemented. Transport of radioactive materials is common and regulations designed to ensure safety in such transport have resulted in an excellent safety record. Pre-planning for fire situations in buildings where radioactive materials are known to be present is very desirable. An Australian Standard, AS2243, recommends that Station Officers of the local fire brigade be appraised of the hazards and the need to take particular care in areas marked with ionizing radiation warning signs

  14. The effect of radioactive aerosols on fog formation

    International Nuclear Information System (INIS)

    Ali, G.; Khan, E.U.; Ali, N.; Khan, H.A.; Waheed, A.

    2011-01-01

    This research study has been carried out to explore the dependence of fog formation on radioactive aerosols. The aerosols containing radioactive nuclides are called radioactive aerosols. A large number of radioactive nuclides are present in the atmosphere among which the two most important nuclides, 7Be and 210Pb are considered here in this study. Results for Activity Concentrations of these radio-nuclides in air samples in clear and foggy conditions were comparatively analyzed. About 19% increase in Activity concentration for 210Pb and about 23% increase in Activity Concentration for 7Be was recorded during fog as compared to clear conditions. This increase in Activity Concentration during fog indicates that the presence of aerosols laden with these radio-nuclides is also one of the so many factors responsible for fog formation

  15. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  16. Law project adopted by the National Assembly, after urgency declaration, of the program relative to the sustainable management of radioactive materials and wastes; Projet de loi adopte par l'Assemblee Nationale, apres declaration d'urgence, de programme relatif a la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The document presents the different articles of the law project dealing with the terminology, the radioactive wastes storage and disposal, the safety and the transport, the financing, the liabilities, the control and the sanctions. (A.L.B.)

  17. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  18. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  19. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  20. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  1. Decision theory applied to radioactive repository construction

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Pontedeiro, Elizabeth May

    2001-01-01

    The objective of this article is to present, through the presentation of an example, the applicability of the decision theory on the selection and construction of a repository for low and intermediate radioactive waste. (author)

  2. Elements to diminish radioactive accidents; Elementos para disminuir accidentes radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Cortes I, M.E.; Ramirez G, F.P. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, C.P. 07730 Mexico D.F. (Mexico)

    1998-12-31

    In this work it is presented an application of the cause-effect diagram method or Ichikawa method identifying the elements that allow to diminish accidents when the radioactive materials are transported. It is considered the transport of hazardous materials which include radioactive materials in the period: December 1996 until March 1997. Among the identified elements by this method it is possible to mention: the road type, the radioactive source protection, the grade driver responsibility and the preparation that the OEP has in the radioactive material management. It is showed the differences found between the country inner roads and the Mexico City area. (Author)

  3. Environmental radioactive contamination and its control for nuclear power plants

    International Nuclear Information System (INIS)

    Shi Zhongqi; Qu Jingyuan; Cui Yongli

    1998-01-01

    The environmental radioactive releases and exposure to human being due to operation of nuclear power plants in the world and in China, environmental contamination and consequences caused by severe nuclear power plant accidents in the history, control of the radioactive contamination in China, and some nuclear laws on the radioactive contamination control established by international organizations and USA etc. are described according to literature investigation and research. Some problems and comments in radioactive contamination control for nuclear power plants in China are presented. Therefore, perfecting laws and regulations and enhancing surveillances on the contamination control are recommended

  4. Environmental monitoring for radioactivity in Scotland: 1981 to 1985

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-01

    A bulletin, prepared by Her Majesty's Industrial Pollution Inspectorate (HMIPI) of the Scottish Development Department (SDD), contains a summary of the environmental monitoring for radioactivity carried out in Scotland as part of the statutory procedure for ensuring the safety of radioactive waste disposals from nuclear facilities. The monitoring results for discharges to both the atmosphere and the sea over the period 1981 to 1985 are presented for BNFL's Chapelcross and Sellafield Works, UKAEA Dounreay Nuclear Power Development Establishment, SSEB Hunterston Power Station and MOD Naval Installations. It is concluded that public radiation exposure in Scotland from environmental radioactivity arising from radioactive waste disposal has been well within the internationally recommended limits.

  5. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-01-01

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  6. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  7. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  8. Public and political issues in radioactive waste management in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Neis, A.

    1993-01-01

    The Federal Government's radioactive waste management concept and regulations governing formal public participation in licensing procedures for radioactive waste management facilities are presented. The paper focuses on public and political issues arising from widely diverging views in different social groups on nuclear energy and on radioactive waste management. The resulting conflict between Federal and Laender (Federal constituent states) authorities and the actual course of public participation in a licensing procedure are illustrated with the example of planned final disposal of radioactive waste in the Konrad mine. Major national efforts to overcome the unsatisfying present situation are presented and the role of international consensus is briefly touched. Concluding remarks will particularly justify admissibility and emphasize the need to discuss and eventually decide on radioactive waste management issues regardless of diverging views on nuclear energy

  9. Relocation of radioactive residuals store: environment effects statement

    International Nuclear Information System (INIS)

    1984-11-01

    This Environment Effects Statement describes and assesses the likely environmental effects of the proposal to relocate the Health Commission's existing radioactive residuals store to a site within the established Dutson Downs waste disposal area, located 20 km south-east of Sale and 225 km east of Melbourne. The information presented demonstrates that the siting and construction of the proposed radioactive residuals store and the procedures to be adopted for the handling and storage of materials will not present an unacceptable risk to public health and safety, nor will it involve any significant adverse environmental effects

  10. Radioactive contamination of workers. General recommendation and procedures

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Santos, O.R. dos; Silva, E.N.D.; Santos, A.J. dos.

    1987-09-01

    The present publication has an objective to provide data and information to be used by workers who handle with or eventually could enter in touch with radioactives substances. The authors have made a compilation of subjects got from the literature on several aspects about radiocontamination, physical and chemical characteristics of radioisotopes, main sources of radioactive contamination, biological basis and treatement of internal and external decontamination. Special attention was paid to iodine and actinides contamination, particularly to uranium and plutonium. The conclusion are presented as general recommendation and synoptic tables. (Author) [pt

  11. Development of radioactivity estimation system considering radioactive nuclide movement

    International Nuclear Information System (INIS)

    Fukumura, Nobuo; Miyamoto, Yoshiaki

    2010-01-01

    A radioactivity estimation system considering radioactive nuclide movement is developed to integrate the established codes and the code system for decommissioning of sodium cooled fast reactor (FBR). The former are the codes for estimation of radioactivity movement in sodium coolant of fast reactor which are named SAFFIRE, PSYCHE and TTT. The latter code system is to estimate neutron irradiation activity (COSMARD-RRADO). It is paid special attention to keep the consistency of input data used among these codes and also the simplification of their interface. A new function is added to the estimation system, to estimate minor FP inventory caused by the fission of impurities contained in the coolant and slight fuel material attached on the fuel cladding. To check the evaluation system, the system is applied with radioactivity data of the preceding FBR such as BN-350, JOYO and Monju. Agreement between the analysis results and the measurement is well satisfactory. The uncertainty of the code system is within several tens per cent for the activation of primary coolant (Na-22) and factor of 2-4 for the estimation of radioactivity inventory in sodium coolant. (author)

  12. Thermodynamic stability of radioactivity standard solutions

    International Nuclear Information System (INIS)

    Iroulard, M.G.

    2007-04-01

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  13. Thermodynamic stability of radioactivity standard solutions

    Energy Technology Data Exchange (ETDEWEB)

    Iroulard, M.G

    2007-04-15

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  14. Measurement of liquid radioactive materials for monitoring radioactive emissions

    International Nuclear Information System (INIS)

    1977-10-01

    This draft regulation applies to measuring equipment for liquid radioactive materials for the monitoring of the radioactive discharges from stationary nuclear power plants with LWR and HTR reactors. Demands made on the measuring procedure, methods of concentration determination, balancing, indication of limiting values, and inspections are layed down. The draft regulation deals with: 1) Monitoring liquid radioactive discharges: Water and similar systems; radionuclides and their detection limits, radioactively contaminated water (waste water); secondary cooling water; power house cooling water; primary cooling water; flooding water; 2) Layout of the measuring and sampling equipment and demands made on continuous and discontinuous measuring equipment; demands made on discontinuous α and β measuring equipment; 3) Maintenance and repair work; inspections; repair of defects; 4) Demands made on documentation; reports to authorities; 5) Supplement: List of general and reference regulations. (orig./HP) [de

  15. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level (radioactive) waste (HLW) as (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel...that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission...determines...requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph B. The approach also results in definitions of other wastes classes, i.e., transuranic (TRU) and low-level waste (LLW). The basic waste classification scheme that results from the quantitative definitions of highly radioactive and requires permanent isolation is depicted. The concentrations of radionuclides that correspond to these two boundaries, and that may be used to classify radioactive wastes, are given

  16. Continuous Tracking of RFID Tagged Radioactive Sources

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Gabay, Y.; Miron, E.; Seif, R.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.

    2008-01-01

    The prevention of radiation hazards due to radioisotopes is one of the concerns of the Atomic Energy Agency (IAEA). In a series of international conferences held in the last five years) this issue was discussed thoroughly. One of the conclusions was that strict management of radioactive sources is essential. The management of radioactive sources would help to prevent transference of radioactive materials to unauthorized personal. For this purpose, states should make a concerted effort to follow the principles of the Code of Conduct on the Security of Radioactive Sources(2). In this context, the identification of roles and responsibilities of governments, licensees and international organizations is vital(3). The referred activities are primarily related to control over radioactive sources and enhance the tracking ability of radiation sources . In this paper, a proposed Radioactive Sources Tracking System is presented. This system facilitates real time monitoring capability of fixed and mobile radiation sources. The system provides the location of the source and indication whether the source is inside or outside the shielding container. The information about the sources location and condition can be used to coordinate a fast response in case of any attempt to steal or tamper with a source. These goals are achieved by using GPS (Global Positioning System), RFID (Radio Frequency Identification) and control and management software

  17. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  18. Disposal of radioactive waste. Some ethical aspects

    International Nuclear Information System (INIS)

    Streffer, Christian

    2014-01-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  19. Experiment of decontamination of radioactive liquid by a biological method

    International Nuclear Information System (INIS)

    Wormser, G.

    1962-01-01

    The author reports experiments of treatment of radioactive liquid effluents by percolation on a bacterial bed like the one used for the treatment of sewer wastewaters. He also reports results obtained in other countries in terms of reduction of effluent radioactivity for various radioactive ions. The installation is described and results are presented in terms of variation of contamination of an effluent with respect to its recycling on a bacterial bed [fr

  20. The history of radioactivity: evolution of a concept and its applications

    International Nuclear Information System (INIS)

    Bimbot, R.

    2006-01-01

    This book presents the historical aspects of the radioactivity from 1896 to today. It reveals the importance of the Chemistry in this history, details the main actors, but also presents the applications of the radioactivity: the medical applications, the dating for the archaeology, the electric power production and the atomic bomb. (A.L.B.)

  1. The deterministic computational modelling of radioactivity

    International Nuclear Information System (INIS)

    Damasceno, Ralf M.; Barros, Ricardo C.

    2009-01-01

    This paper describes a computational applicative (software) that modelling the simply radioactive decay, the stable nuclei decay, and tbe chain decay directly coupled with superior limit of thirteen radioactive decays, and a internal data bank with the decay constants of the various existent decays, facilitating considerably the use of program by people who does not have access to the program are not connected to the nuclear area; this makes access of the program to people that do not have acknowledgment of that area. The paper presents numerical results for typical problem-models

  2. Semiconductor studies by radioactive probe atoms

    International Nuclear Information System (INIS)

    Wichert, Thomas

    2003-01-01

    There are a growing number of experimental techniques that have in common the usage of radioactive isotopes for the characterization of semiconductors. These techniques deliver atomistic information about identity, formation, lattice environment, and electronic structure, as well as dynamics of defects and defect complexes. The results obtained by different hyperfine techniques are discussed in context with the study of intrinsic and extrinsic defects, i.e. of vacancies or self-interstitials and dopant or impurity atoms, respectively. In addition, the employment of electrical and optical techniques in combination with radioactive isotopes is presented

  3. Experimental studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.

    1991-01-01

    The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs

  4. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  5. Major unresolved issues preventing a timely resolution to radioactive waste disposal

    International Nuclear Information System (INIS)

    1978-01-01

    GAO surveyed a portion of the literature on radioactive waste management and identified those major issues which could impede the timely and comprehensive removal of obstacles to demonstrating a national radioactive waste disposal program. Presently, U.S. radioactive waste policy goals are unclear in that there is no clear differentiation of management, regulation (licensing), and research, development, and demonstration functions. Decisions on such important issues as regulatory responsibility over radioactive wastes, criteria for radioactive waste form and performance, method of final disposition, and repository site locations must be made, and made soon, in order to assure public health and safety and adequate management of these potentially hazardous materials

  6. Radioactivity of some dried fruits

    International Nuclear Information System (INIS)

    Akhmedova, G.; Mamatkulov, O.B.; Hushmuradov, Sh.H.

    2004-01-01

    Full text: Radioactivity radiation from natural and artificial sources often acts at the same time in complicated combinations and without exception on all inhabitants of our planet. Natural and artificial radioactive isotopes pass into living organism by biological chain: soil-water-air-plants-foodstuffs-person and can be sources of inside irradiation. Accumulation of radionuclides in living organism in large quantities limit permissible concentration (LPC) can lead to pathological changes in organism. With above mentioned at the radioecological investigations, researches and control of changes of radionuclides concentration in environmental objects have important interests. Investigations of determination of radioactivity of environmental objects, which began in 1960 by professor Muso Muminov are continued in the department of nuclear physics of Samarkand State University. We work out semiconducting gamma-spectrometric method of determination of radionuclides concentration in weak -active environmental samples. We investigated radioactivity of different samples of natural environment and generalized results. In this work the results of investigation of radioactivity of same dried fruits are presented. The spectra of γ-radiation of following dried fruits as grapes, apricot, apple and peach was investigated. In measured gamma-radiation spectra of these samples gamma-transitions of 226 Ra, 232 Th, 40 K natural radionuclides and product of 137 Cs division. The specific gamma-activities these radionuclides were determined. The 40 K have most specific activity and 137 Cs - least. The calculated quantities of specific gamma-activity of radionuclides in gamma-spectra of investigated samples can replace to following row: 40 K > 232 Th > 226 Ra > 137 Cs

  7. Handbook of radioactivity analysis. Second edition

    International Nuclear Information System (INIS)

    L'Annunziata, M.

    2003-07-01

    This updated and much expanded Second Edition is an authoritative handbook providing the principles, practical techniques, and procedures for the accurate measurement of radioactivity from the very low levels encountered in the environment to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, fuel cycle facilities, and in the implementation of nuclear safeguards. The book describes the preparation of samples from a wide variety of matrices, assists the investigator or technician in the selection and use of appropriate radiation detectors, and presents state-of-the-art methods of analysis. Fundamentals of radioactivity properties, radionuclide decay, the calculations involved, and methods of detection provide the basis for a thorough understanding of the analytical procedures. The Handbook of Radioactivity Analysis, Second Edition is suitable as a teaching text for university and professional training courses

  8. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  9. Security of radioactive sources and materials

    International Nuclear Information System (INIS)

    Rodriguez, C.; D'Amato, E.; Fernandez Moreno, S.

    1998-01-01

    The activities involving the use of radiation sources and radioactive materials are subject to the control of the national bodies dedicated to the nuclear regulation. The main objective of this control is to assure an appropriate level of radiological protection and nuclear safety. In Argentina, this function is carried out by the 'Nuclear Regulatory Authority' (ARN) whose regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection scheme. The system is designed to keep track of such materials and to allow taking immediate corrective actions in case some incident occurs. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials, the specialized national and international community has begun to evaluate the adoption of supplementary measures to those of 'safety' guided to its prevention and detection (i.e. 'security measures'). This paper presents a view on when the adoption of complementary 'security' measures to those of 'safety' would be advisable and which they would be. This will be done through the analysis of two hypothesis of illicit traffic, the first one with sources and radioactive materials considered as 'registered' and the second, with the same materials designated as 'not registered'. It will also describe succinctly the measures adopted by the ARN or under its analysis regarding the 'security' measures to sources and radioactive materials. (author)

  10. Krypton-85 and other airborne radioactivity measurements throughout Ireland

    International Nuclear Information System (INIS)

    Smith, K.J.; Murray, M.; Wong, J.; Sequeira, S.; Long, S.C.; Rafferty, B.

    2004-01-01

    In compliance with articles 35 and 36 of the EURATOM Treaty, the Radiological Protection Institute of Ireland (RPII) undertakes a comprehensive programme of radioactivity monitoring in the Irish terrestrial environment. Radioactivity is present in the terrestrial environment due to natural processes, the testing of nuclear weapons in the atmosphere, accidents such as the Chernobyl accident and the routine discharge of radionuclides from nuclear installations. The RPII monitors airborne radioactivity concentrations at ten stations throughout Ireland, of which, nine are equipped with low volume particulate samplers and one, in Dublin, with a high volume particulate sampler. The low volume particulate samples are assessed for total beta activity and high volume samples for gamma emitting radionuclides such as caesium-137 and beryllium-7. In addition, air sampled at the RPII laboratory in Dublin, is monitored for krypton-85, a radioactive noble gas, released into the environment primarily as a result of the reprocessing of nuclear fuel at installations such as Sellafield in the UK and La Hague in France. Since the inception of the krypton measurements in 1993 a trend of increasing atmospheric concentrations has been observed. The results of the krypton-85 monitoring, as well as the airborne radioactivity concentration measurements, will be presented and discussed in this paper. (author)

  11. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  12. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  13. The regulatory control of radioactive sources in Argentina

    International Nuclear Information System (INIS)

    Rojkind, Roberto Hector

    1997-01-01

    Argentina has been conducting nuclear activities for more than forty years, and as early as in 1956 established a Regulatory Authority. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations had been set in Argentina, before the accident in Goiania. The conclusions drawn from that accident encouraged in Argentina the improvement of some regulatory procedures and helped to enhance the quality of the regulatory process. Therefore, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain improved. Some lessons learned in Argentina from the accident in Goiania and the main characteristics of an effective enforcement program helpful to prevent radiological accidents in industrial, medical, research and teaching uses of radioactive sources are presented. (author)

  14. Issues in recycling and disposal of radioactively contaminated materials

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.; Roberts, R.; Phillips, J.W.

    1993-01-01

    The Department of Energy's present stock of potentially re-usable and minimally radioactively contaminated materials will increase significantly as the Department's remediation activities expand. As part of its effort to minimize wastes, the Department is pursuing several approaches to recover valuable materials such as nickel, copper, and steel, and reduce the high disposal costs associated with contaminated materials. Key approaches are recycling radioactively contaminated materials or disposing of them as non-radioactive waste. These approaches are impeded by a combination of potentially conflicting Federal regulations, State actions, and Departmental policies. Actions to promote or implement these approaches at the Federal, State, or Departmental level involve issues which must be addressed and resolved. The paramount issue is the legal status of radioactively contaminated materials and the roles of the Federal and State governments in regulating those materials. Public involvement is crucial in the debate surrounding the fate of radioactively contaminated materials

  15. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  16. Technological progress in the management of radioactive waste

    International Nuclear Information System (INIS)

    Proost, J.; Frognet, J.P.

    1980-01-01

    The expansion of industrial nuclear activities gives rise to increasing amounts of radioactive waste. In addition criticisms on nuclear energy are being focused on the management of radioactive waste. In this context the Commission of European Communities has set up major 'indirect' programmes for the promotion, financial support and coordination of various R and D activities for the period 1975-1979. For the definition of its future policies in this field, it is interesting to evaluate the state of the art and the impact of present and future development work. The study should help in selecting those areas where further research is necessary and in defining priorities for developing new waste disposal techniques. The present report, gives a review of the present situation in Europe. It covers: - general considerations on waste management and policies adopted or proposed in various countries; - major sources of radioactive waste with detailed analysis of the quantities and types of waste generated by reference facilities for the LWR fuel cycle; - evaluation of the techniques as applied at present on an industrial scale in Europe at reactor plants or waste handling centres

  17. Guidance on the import and export of radioactive sources

    International Nuclear Information System (INIS)

    2005-03-01

    The IAEA Code of Conduct on the Safety and Security of Radioactive Sources, published in January 2004 with the symbol IAEA/CODEOC/2004, provides guidance on how States can safely and securely manage radioactive sources that may pose a significant risk. The concept of such an international undertaking on the safety and security of radioactive sources was highlighted in the major findings of the International Conference on the Safety of Radiation Sources and Security of Radioactive Materials held in Dijon, France, in September 1998. Following that conference, the IAEA Board of Governors requested the Director General to initiate exploratory discussions relating to an international undertaking in the areas of the safety and security of radiation sources. This request was reflected in an Action Plan on the Safety of Radiation Sources and Security of Radioactive Materials, with the Secretariat organizing a series of open-ended meetings of technical and legal experts nominated by Member States to further explore the concept of such an undertaking. Noting comments made in the Board of Governors, the experts agreed that any international undertaking should, for the present, be in the form of a 'code of conduct'. The text of a Code of Conduct on the Safety and Security of Radioactive Sources was accordingly developed. Steps to strengthen the provisions of the Code were subsequently initiated following the International Conference of National Regulatory Authorities with Competence in the Safety of Radiation Sources and the Security of Radioactive Material held in Buenos Aires in December 2000. Moreover, growing international concern about the security of radioactive sources after the events of 11 September 2001 led to a number of issues being considered further by technical and legal experts. Furthermore, the International Conference on Security of Radioactive Sources held in Vienna in March 2003 made recommendations regarding additional actions that might be needed. In June

  18. Present state of backend in Taiwan

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    As Taiwan is poor in its energy source as well as Japan is, nuclear power generation is one of important energy sources. Management and disposal (backend) of radioactive wastes accompanied with application to nuclear generation is a large problem for Taiwan which had 36,000 square kilometer of national area (about twice area of Shikoku in Japan) than that for Japan. In Taiwan, as the radioactive waste management policy (RWMP) was established in 1977 to arrange a basic indication of the backend policy, final disposal sites for both low and high level radioactive wastes (spent fuel) are not specified yet. For management of low level radioactive waste, the Taiwan Electric Power Corp. (TPC) reported the most promising area for the final disposal site to Taiwan Committee of Atomic Energy on February, 1998. And, for the high level radioactive waste, TPC intends to specify the final disposal site in 2016, to be under selection of site on aiming at beginning of its operation on 2032. And, on the backend policy in Taiwan its reprocessing option has not been abandoned yet, to remain feasibility of option in disposal of the low level radioactive waste on abroad. Here was introduced on present condition of the backend in Taiwan. (G.K.)

  19. Assessment of radioactivity in soil from Nyala

    International Nuclear Information System (INIS)

    Yuosif, M. E.

    2013-07-01

    In this study investigation of radioactivity of soil from Nyala city has been carried out. Thirty samples of soil are collected across the city randomly and measured, using gamma ray spectrometry system located in Khartoum. The investigations identify naturally occurring radionuclides from 238 U and 232 Th series in addition to to 40 K. The activity concentration of 238 U, 232 Th and 40 Krange 15.9-84.5, 35.3-213.2 and 429.09-1630.5 Bq/Kg respectively. When compared with global data (UNSCEAR 2000), these values are relatively high. The investigation presents a preliminary survey of radioactivity content of a region (South Darfur State) which may be used baseline data for construction of maps of radioactivity of Sudan.(Author)

  20. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt