WorldWideScience

Sample records for mathematics study process

  1. A Case Study on Pre-Service Secondary School Mathematics Teachers' Cognitive-Metacognitive Behaviours in Mathematical Modelling Process

    Science.gov (United States)

    Sagirli, Meryem Özturan

    2016-01-01

    The aim of the present study is to investigate pre-service secondary mathematics teachers' cognitive-metacognitive behaviours during the mathematical problem-solving process considering class level. The study, in which the case study methodology was employed, was carried out with eight pre-service mathematics teachers, enrolled at a university in…

  2. Metacognition Process of Students with High Mathematics Anxiety in Mathematics Problem-Solving

    OpenAIRE

    Patrisius Afrisno Udil; Tri Atmojo Kusmayadi; Riyadi Riyadi

    2017-01-01

    This study aims to find out students’ metacognition process while solving the mathematics problem. It focuses on analyzing the metacognition process of students with high mathematics anxiety based on Polya’s problem solving phases. This study uses qualitative research with case study strategy. The subjects consist of 8 students of 7th grade selected through purposive sampling. Data in the form of Mathematics Anxiety Scale (MAS) result and recorded interview while solving mathematics problems ...

  3. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  4. Abandoning mathematics. Reconstructing the process in the context of the social perception of mathematics

    Directory of Open Access Journals (Sweden)

    Anna Baczko-Dombi

    2018-02-01

    Full Text Available Mathematics, as no other school subject, evokes conflicting emotions and contradictory attitudes – from “the gate to a career” and “the queen of science” to the widespread acceptance of mathematical ignorance in society. The process of studying mathematics requires systematic work and patience, as mathematical knowledge has a cumulative nature. In the case of mathematics education, some students abandon mathematics at quite early levels of education and begin to consider themselves “humanists”, which results in serious consequences for future educational and career choices. In this paper, I propose a description of the process of escaping from mathematics in the context of students’ perceptions of this subject, using the results of two studies – one qualitative and the other quantitative.

  5. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  6. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  7. Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students' mathematical literacy

    Directory of Open Access Journals (Sweden)

    Sunisa Sumirattana

    2017-09-01

    This study was based on research and development design. The main purposes of this study were to develop an instructional process for enhancing mathematical literacy among students in secondary school and to study the effects of the developed instructional process on mathematical literacy. The instructional process was developed by analyzing and synthesizing realistic mathematics education and the DAPIC problem-solving process. The developed instructional process was verified by experts and was trialed. The designated pre-test/post-test control method was used to study the effectiveness of the developed instructional process on mathematical literacy. The sample consisted of 104 ninth grade students from a secondary school in Bangkok, Thailand. The developed instructional process consisted of five steps, namely (1 posing real life problems, (2 solving problems individually or in a group, (3 presenting and discussing, (4 developing formal mathematics, and (5 applying knowledge. The mathematical literacy of the experimental group was significantly higher after being taught through the instructional process. The same results were obtained when comparing the results of the experimental group with the control group.

  8. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    Science.gov (United States)

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

  9. An Emergent Framework: Views of Mathematical Processes

    Science.gov (United States)

    Sanchez, Wendy B.; Lischka, Alyson E.; Edenfield, Kelly W.; Gammill, Rebecca

    2015-01-01

    The findings reported in this paper were generated from a case study of teacher leaders at a state-level mathematics conference. Investigation focused on how participants viewed the mathematical processes of communication, connections, representations, problem solving, and reasoning and proof. Purposeful sampling was employed to select nine…

  10. The Process of Student Cognition in Constructing Mathematical Conjecture

    Science.gov (United States)

    Astawa, I. Wayan Puja; Budayasa, I. Ketut; Juniati, Dwi

    2018-01-01

    This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the…

  11. The (Mathematical) Modeling Process in Biosciences.

    Science.gov (United States)

    Torres, Nestor V; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.

  12. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  13. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  14. Universal Gestational Age Effects on Cognitive and Basic Mathematic Processing: 2 Cohorts in 2 Countries

    Science.gov (United States)

    Wolke, Dieter; Strauss, Vicky Yu-Chun; Johnson, Samantha; Gilmore, Camilla; Marlow, Neil; Jaekel, Julia

    2015-01-01

    Objective To determine whether general cognitive ability, basic mathematic processing, and mathematic attainment are universally affected by gestation at birth, as well as whether mathematic attainment is more strongly associated with cohort-specific factors such as schooling than basic cognitive and mathematical abilities. Study design The Bavarian Longitudinal Study (BLS, 1289 children, 27-41 weeks gestational age [GA]) was used to estimate effects of GA on IQ, basic mathematic processing, and mathematic attainment. These estimations were used to predict IQ, mathematic processing, and mathematic attainment in the EPICure Study (171 children mathematic attainment scores by 2.34 (95% CI: −2.99, −1.70) and 2.76 (95% CI: −3.40, −2.11) points, respectively. There were no differences among children born 34-41 weeks GA. Similarly, for children born mathematic processing scores decreased by 1.77 (95% CI: −2.20, −1.34) points with each lower GA week. The prediction function generated using BLS data accurately predicted the effect of GA on IQ and mathematic processing among EPICure children. However, these children had better attainment than predicted by BLS. Conclusions Prematurity has adverse effects on basic mathematic processing following birth at all gestations mathematic attainment mathematic processing scores from one cohort to another among children cared for in different eras and countries suggests that universal neurodevelopmental factors may explain the effects of gestation at birth. In contrast, mathematic attainment may be improved by schooling. PMID:25842966

  15. Mathematizing Process of Junior High School Students to Improve Mathematics Literacy Refers PISA on RCP Learning

    International Nuclear Information System (INIS)

    Wardono; Mariani, S; Hendikawati, P; Ikayani

    2017-01-01

    Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are

  16. A Pilot Study in the Application of the Analytic Hierarchy Process to Predict Student Performance in Mathematics

    Science.gov (United States)

    Warwick, Jon

    2007-01-01

    The decline in the development of mathematical skills in students prior to university entrance has been a matter of concern to UK higher education staff for a number of years. This article describes a pilot study that uses the Analytic Hierarchy Process to quantify the mathematical experiences of computing students prior to the start of a first…

  17. Mathematical modelling of the process of quality control of construction products

    Directory of Open Access Journals (Sweden)

    Pogorelov Vadim

    2017-01-01

    Full Text Available The study presents the results of years of research in the field of quality management of industrial production construction production, based on mathematical modelling techniques, process and results of implementing the developed programme of monitoring and quality control in the production process of the enterprise. The aim of this work is the presentation of scientific community of the practical results of mathematical modelling in application programs. In the course of the research addressed the description of the applied mathematical models, views, practical results of its application in the applied field to assess quality control. The authors used this mathematical model in practice. The article presents the results of applying this model. The authors developed the experimental software management and quality assessment by using mathematical modeling methods. The authors continue research in this direction to improve the diagnostic systems and quality management systems based on mathematical modeling methods prognostic and diagnostic processes.

  18. Mathematical foundations of image processing and analysis

    CERN Document Server

    Pinoli, Jean-Charles

    2014-01-01

    Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes a bridg

  19. The Study of the Relation between Comprehension Process and Cognitive Capacities of Students in Mathematics

    Directory of Open Access Journals (Sweden)

    Afsaneh Poorang

    2014-03-01

    Full Text Available In the creation of substances for developing and thinking of cognitive levels in mathematics from elementary course and recognizing effective variables of all external factors of mathematics, researchers have considered through designing hypothesis and effort to find the relation of reading literacy level and cognitive levels in mathematics of fourth grade among girls and boys and cognitive capacities of them in Tehran. The evaluation of reading literacy with the definition of comprehension process as index in surface layers spectrum such as focusing and reviewing information that are be stated in text and directive induction has organized. On other hands, mathematics evaluation has implemented for both content and cognitive dimensions. Research process has formed with selecting eight schools and in two tests. Reading literacy tests with the aim of evaluation of comprehension process and math test with the aim of the evaluation of cognitive levels have implemented for two classes of each schools. Research hypotheses have tested based on researching positive correlative between surface layers of comprehension with cognitive levels in mathematics meaningfully that have organized in three levels of knowing, application and reasoning. Instrumentation of the performance of comprehension have included two literary-information texts of PIRLS test 2011 and the collection of two respected notebooks and instrumentation of performance of cognitive levels in mathematics such as on notebook of TIMSS 2011. The procedure of testing hypotheses with Spearman correlative coefficient method have performed that all hypotheses have accepted meaningfully. Therefore, there is significant and directive relation between comprehension processes as reading literacy with cognitive capacities of students in mathematics of fourth grade.

  20. Intentional and Automatic Numerical Processing as Predictors of Mathematical Abilities in Primary School Children

    Directory of Open Access Journals (Sweden)

    Violeta ePina

    2015-03-01

    Full Text Available Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1 to 6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved.

  1. Processes of Learning with Regard to Students’ Learning Difficulties in Mathematics

    Directory of Open Access Journals (Sweden)

    Amalija Zakelj

    2014-06-01

    Full Text Available In the introduction, we write about the process of learning mathematics: the development of mathematical concepts, numerical and spatial imagery on reading and understanding of texts, etc. The central part of the paper is devoted to the study, in which we find that identifying the learning processes associated with learning difficulties of students in mathematics, is not statistically significantly different between primary school teachers and teachers of mathematics. Both groups expose the development of numerical concepts, logical reasoning, and reading and understanding the text as the ones with which difficulties in learning mathematics appear the most frequently. All the processes of learning that the teachers assessed as the ones that represent the greatest barriers to learning have a fairly uniform average estimates of the degree of complexity, ranging from 2.6 to 2.8, which is very close to the estimate makes learning very difficult.

  2. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  3. Engaging Elementary Students in the Creative Process of Mathematizing Their World through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Jennifer M. Suh

    2017-06-01

    Full Text Available This paper examines the experiences of two elementary teachers’ implementation of mathematical modeling in their classrooms and how the enactment by the teachers and the engagement by students exhibited their creativity, critical thinking, collaboration and communication skills. In particular, we explore the questions: (1 How can phases of mathematical modeling as a process serve as a venue for exhibiting students’ critical 21st century skills? (2 What were some effective pedagogical practices teachers used as they implemented mathematical modeling with elementary students and how did these promote students’ 21st century skills? We propose that mathematical modeling provides space for teachers and students to have a collective experience through the iterative process of making sense of and building knowledge of important mathematical ideas while engaging in the critical 21st century skills necessary in our complex modern world.

  4. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  5. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  6. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  7. Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills.

    Science.gov (United States)

    Kim, Helyn; Duran, Chelsea A K; Cameron, Claire E; Grissmer, David

    2018-03-01

    This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years. Associations were dynamic, with more reciprocal transactions occurring in kindergarten than in the later grades. Specifically, visuomotor integration and mathematics exhibited ongoing reciprocity in kindergarten and first grade, attention contributed to mathematics in kindergarten and first grade, mathematics contributed to attention across the kindergarten year only, and fine motor coordination contributed to mathematics indirectly, through visuomotor integration, across kindergarten and first grade. Implications of examining the hierarchical interrelations among processes underlying the development of children's mathematics skills are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  8. Teachers’ learning and assessing of mathematical processes with emphasis on representations, reasoning and proof

    Directory of Open Access Journals (Sweden)

    Satsope Maoto

    2018-03-01

    Full Text Available This article focuses mainly on two key mathematical processes (representation, and reasoning and proof. Firstly, we observed how teachers learn these processes and subsequently identify what and how to assess learners on the same processes. Secondly, we reviewed one teacher’s attempt to facilitate the learning of the processes in his classroom. Two interrelated questions were pursued: ‘what are the teachers’ challenges in learning mathematical processes?’ and ‘in what ways are teachers’ approaches to learning mathematical processes influencing how they assess their learners on the same processes?’ A case study was undertaken involving 10 high school mathematics teachers who enrolled for an assessment module towards a Bachelor in Education Honours degree in mathematics education. We present an interpretive analysis of two sets of data. The first set consisted of the teachers’ written responses to a pattern searching activity. The second set consisted of a mathematical discourse on matchstick patterns in a Grade 9 class. The overall finding was that teachers rush through forms of representation and focus more on manipulation of numerical representations with a view to deriving symbolic representation. Subsequently, this unidirectional approach limits the scope of assessment of mathematical processes. Interventions with regard to the enhancement of these complex processes should involve teachers’ actual engagements in and reflections on similar learning.

  9. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  10. Investigating the Representational Fluency of Pre-Service Mathematics Teachers in a Modelling Process

    Science.gov (United States)

    Delice, Ali; Kertil, Mahmut

    2015-01-01

    This article reports the results of a study that investigated pre-service mathematics teachers' modelling processes in terms of representational fluency in a modelling activity related to a cassette player. A qualitative approach was used in the data collection process. Students' individual and group written responses to the mathematical modelling…

  11. Mathematical modelling in economic processes.

    Directory of Open Access Journals (Sweden)

    L.V. Kravtsova

    2008-06-01

    Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.

  12. Mathematical modeling of a process the rolling delivery

    Science.gov (United States)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  13. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  14. Algorithmic information theory mathematics of digital information processing

    CERN Document Server

    Seibt, Peter

    2007-01-01

    Treats the Mathematics of many important areas in digital information processing. This book covers, in a unified presentation, five topics: Data Compression, Cryptography, Sampling (Signal Theory), Error Control Codes, Data Reduction. It is useful for teachers, students and practitioners in Electronic Engineering, Computer Science and Mathematics.

  15. Secondary Mathematics Pre-Service Teachers' Processes of Selection and Integration of Technology

    Science.gov (United States)

    Uzan, Erol

    2017-01-01

    This study investigated secondary mathematics pre-service teachers' (PSTs) knowledge of resources in terms of digital technologies, and explored the processes of both selection and integration of technology into their lesson plans. This study employed a case study design. Participants were six secondary mathematics PSTs who enrolled in a methods…

  16. Examination Of Gifted Students’ Probability Problem Solving Process In Terms Of Mathematical Thinking

    Directory of Open Access Journals (Sweden)

    Serdal BALTACI

    2016-10-01

    Full Text Available It is a widely known fact that gifted students have different skills compared to their peers. However, to what extent gifted students use mathematical thinking skills during probability problem solving process emerges as a significant question. Thence, the main aim of the present study is to examine 8th grade gifted students’ probability problem-solving process related to daily life in terms of mathematical thinking skills. In this regard, a case study was used in the study. The participants of the study were six students at 8th grade (four girls and two boys from the Science and Art Center. One of the purposeful sampling methods, maximum variation sampling was used for selecting the participants. Clinical interview and problems were used as a data collection tool. As a results of the study, it was determined that gifted students use reasoning and strategies skill, which is one of the mathematical thinking skills, mostly on the process of probability problem solving, and communication skills at least.

  17. Mathematical problems in image processing

    International Nuclear Information System (INIS)

    Chidume, C.E.

    2000-01-01

    This is the second volume of a new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics. This volume contains the lecture notes given by A. Chambolle during the School on Mathematical Problems in Image Processing. The school consisted of two weeks of lecture courses and one week of conference

  18. Mathematics Education as a Proving-Ground for Information-Processing Theories.

    Science.gov (United States)

    Greer, Brian, Ed.; Verschaffel, Lieven, Ed.

    1990-01-01

    Five papers discuss the current and potential contributions of information-processing theory to our understanding of mathematical thinking as those contributions affect the practice of mathematics education. It is concluded that information-processing theories need to be supplemented in various ways to more adequately reflect the complexity of…

  19. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  20. Mathematical methods in time series analysis and digital image processing

    CERN Document Server

    Kurths, J; Maass, P; Timmer, J

    2008-01-01

    The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.

  1. Adding Structure to the Transition Process to Advanced Mathematical Activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  2. Mathematical methods for diffusion MRI processing

    International Nuclear Information System (INIS)

    Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)

  3. Visual Processing in Generally Gifted and Mathematically Excelling Adolescents

    Science.gov (United States)

    Paz-Baruch, Nurit; Leikin, Roza; Leikin, Mark

    2016-01-01

    Little empirical data are available concerning the cognitive abilities of gifted individuals in general and especially those who excel in mathematics. We examined visual processing abilities distinguishing between general giftedness (G) and excellence in mathematics (EM). The research population consisted of 190 students from four groups of 10th-…

  4. Fermentation process diagnosis using a mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, L; Volesky, B; Votruba, J

    1988-09-01

    Intriguing physiology of a solvent-producing strain of Clostridium acetobutylicum led to the synthesis of a mathematical model of the acetone-butanol fermentation process. The model presented is capable of describing the process dynamics and the culture behavior during a standard and a substandard acetone-butanol fermentation. In addition to the process kinetic parameters, the model includes the culture physiological parameters, such as the cellular membrane permeability and the number of membrane sites for active transport of sugar. Computer process simulation studies for different culture conditions used the model, and quantitatively pointed out the importance of selected culture parameters that characterize the cell membrane behaviour and play an important role in the control of solvent synthesis by the cell. The theoretical predictions by the new model were confirmed by experimental determination of the cellular membrane permeability.

  5. Mathematical SETI Statistics, Signal Processing, Space Missions

    CERN Document Server

    Maccone, Claudio

    2012-01-01

    This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part...

  6. Middle School Mathematics Students' Perspectives on the Study of Mathematics

    Science.gov (United States)

    Vaughn, Christy H.

    2012-01-01

    This qualitative study addressed the perceptions toward the study of mathematics by middle school students who had formerly been in a remedial mathematics program. The purpose of the study was to explore the past experiences of nine students in order to determine what is needed for them to feel successful in mathematics. The conceptual framework…

  7. Mathematical Modeling: A Structured Process

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  8. Investigating Pre-service Mathematics Teachers’ Geometric Problem Solving Process in Dynamic Geometry Environment

    Directory of Open Access Journals (Sweden)

    Deniz Özen

    2013-03-01

    Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers

  9. Mathematical modelling a case studies approach

    CERN Document Server

    Illner, Reinhard; McCollum, Samantha; Roode, Thea van

    2004-01-01

    Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...

  10. Outlooks for mathematical modelling of the glass melting process

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1997-12-31

    Mathematical modelling is nowadays a standard tool for major producers of float glass, T.V. glass and fiberglass. Also for container glass furnaces, glass tank modelling proves to be a valuable method to optimize process conditions. Mathematical modelling is no longer just a way to visualize the flow patterns and to provide data on heat transfer. It can also predict glass quality in relation to process parameters, because all chemical and physical phenomena are included in the latest generation of models, based on experimental and theoretical research on these phenomena.

  11. MATHEMATICAL SIMULATION OF CONCURRENT TWO-SIDED LENS PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Kozeruk

    2015-01-01

    Full Text Available The purpose of the paper is to modernize technology for obtaining high-accuracy lenses with fine centre. Presently their operating surfaces are fixed  to an accessory with the help of adhesive substance that leads to elastic deformation in glass and causes local errors in lens parts.A mathematical model for concurrent two-sided processing of high-accuracy optical parts with spherical surfaces has been developed in the paper. The paper presents analytical expressions that permit to calculate sliding speed at any point on the processed spherical surface depending on type and value of technological equipment settings. Calculation of parameter Q = Pv in a diametric section of the convexo-concave lens has been carried out while using these expressions together with functional dependence of pressure on contact zone еarea of tool and part bedding surfaces.Theoretical and experimental investigations have been carried out with the purpose to study changes in Q parameter according to the processed lens surface for various setting parameters of the technological equipment and their optimum values ensuring preferential stock removal in the central or boundary part zone or uniform distribution of the removal along the whole processed surface have been determined in the paper.The paper proposes a machine tool scheme for concurrent two-sided grinding and polishing of lenses while fixing their side (cylindrical surface. Machine tool kinematics makes it possible flexibly and within wide limits to change its setting parameters  that significantly facilitates the control of form-building process of parts with highly-precise spherical surfaces.Methodology for investigations presupposes the following: mathematical simulation of highly-precise spherical surface form-building process under conditions of forced closing, execution of numerical and experimental studies.  

  12. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  13. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  14. Mathematical modeling of a convective textile drying process

    Directory of Open Access Journals (Sweden)

    G. Johann

    2014-12-01

    Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.

  15. Mathematical modelling of the laser processing of compose materials

    International Nuclear Information System (INIS)

    Gromyko, G.F.; Matsuka, N.P.

    2009-01-01

    Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)

  16. A REFINED MATHEMATICAL MODEL OF MULTIPHYSICS PROCESSES FOR MAGNETIC PULSE TREATMENT OF MATERIALS

    Directory of Open Access Journals (Sweden)

    E.I. Baida

    2015-04-01

    Full Text Available Introduction. The complexity of the theoretical description of the magnetic pulse treatment of the material is in the mutual coupled processes of electromagnetic and thermal fields with plastic deformation of the material and processes in an electrical circuit. The paper deals with the combined transient mathematical model of the system of equations of the electromagnetic field, theory of elasticity, thermal conductivity and electrical circuit. Purpose. Research and testing of the developed mathematical model and assess the impact of various parameters on the process of deformation of the work piece. Methodology. Investigation of nonlinear mathematical model is carried out by the finite element method using a special software package. Results. The resulting solution of the transient mathematical model allows studying the influence of parameters of the circuit, the speed and the characteristics of the material to plastic deformation and heating of the work piece, which allows to select the optimum process parameters. Originality. This is an integrated approach to the development of a mathematical model, which includes the electromagnetic field equations, the theory of elasticity, thermal conductivity and electrical circuit equations with a storage capacitor. Conclusions. A comprehensive mathematical model and its solution are obtained. It is established a small effect of heating temperature on the amount of strain. Currents caused by movement of the work piece must be taken into account in the calculations. Inertial forces significantly affect the nature of the deformation. During the deformation it is necessary to consider the nonlinearity of elasticity modulus. Thermal deformation of the work piece is much less mechanical strain and opposite in sign to them, but the surface temperature stresses due to the high temperature gradient equal to 20 % of the yield strength of the work piece.

  17. Mathematics of Information Processing and the Internet

    Science.gov (United States)

    Hart, Eric W.

    2010-01-01

    The mathematics of information processing and the Internet can be organized around four fundamental themes: (1) access (finding information easily); (2) security (keeping information confidential); (3) accuracy (ensuring accurate information); and (4) efficiency (data compression). In this article, the author discusses each theme with reference to…

  18. Mathematical Processes: A Viewpoint-oriented Manipulation Perspective

    DEFF Research Database (Denmark)

    Badie, Farshad

    2008-01-01

    View-point oriented manipulation of concepts can be helpful for generating new ideas in basic sciences and in the meantime, justifying the processes that are principally meaningful to the related disciplines. Mathematics, as a major ground for basic sciences, seems to be an appropriate exemplar t...

  19. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

    1996-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  20. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)

    1997-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  1. Mathematics of shape description a morphological approach to image processing and computer graphics

    CERN Document Server

    Ghosh, Pijush K

    2009-01-01

    Image processing problems are often not well defined because real images are contaminated with noise and other uncertain factors. In Mathematics of Shape Description, the authors take a mathematical approach to address these problems using the morphological and set-theoretic approach to image processing and computer graphics by presenting a simple shape model using two basic shape operators called Minkowski addition and decomposition. This book is ideal for professional researchers and engineers in Information Processing, Image Measurement, Shape Description, Shape Representation and Computer Graphics. Post-graduate and advanced undergraduate students in pure and applied mathematics, computer sciences, robotics and engineering will also benefit from this book.  Key FeaturesExplains the fundamental and advanced relationships between algebraic system and shape description through the set-theoretic approachPromotes interaction of image processing geochronology and mathematics in the field of algebraic geometryP...

  2. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  3. Classroom-Based Integration of Text-Messaging in Mathematics Teaching-Learning Process

    Science.gov (United States)

    Aunzo, Rodulfo T., Jr.

    2017-01-01

    A lot of teachers are complaining that students are "texting" inside the classroom even during class hours. With this, this research study "on students' perception before the integration and the students' attitude after the integration of text messaging inside the classroom during the mathematics teaching-learning process was…

  4. Mathematical modeling and hydrodynamics of Electrochemical deburring process

    Science.gov (United States)

    Prabhu, Satisha; Abhishek Kumar, K., Dr

    2018-04-01

    The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.

  5. Experimentally supported mathematical modeling of continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette

    and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing......The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and mass transfer in a butter cookie product, and evaluation of quality assessment methods. The pilot plant oven is a special batch oven designed to emulate continuous convection tunnel oven baking. The design, construction, and validation of the oven has been part of the project and is described...

  6. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis.

    Science.gov (United States)

    Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Susan Schmidt, S; Stricker, Johannes; De Smedt, Bert

    2017-05-01

    Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent the strength of these associations differs systematically between non-symbolic and symbolic magnitude comparison tasks and whether age, magnitude comparison measures or mathematical competence measures are additional moderators. We investigated these questions by means of a meta-analysis. The literature search yielded 45 articles reporting 284 effect sizes found with 17,201 participants. Effect sizes were combined by means of a two-level random-effects regression model. The effect size was significantly higher for the symbolic (r = .302, 95% CI [.243, .361]) than for the non-symbolic (r = .241, 95% CI [.198, .284]) magnitude comparison task and decreased very slightly with age. The correlation was higher for solution rates and Weber fractions than for alternative measures of comparison proficiency. It was higher for mathematical competencies that rely more heavily on the processing of magnitudes (i.e. mental arithmetic and early mathematical abilities) than for others. The results support the view that magnitude processing is reliably associated with mathematical competence over the lifespan in a wide range of tasks, measures and mathematical subdomains. The association is stronger for symbolic than for non-symbolic numerical magnitude processing. So symbolic magnitude processing might be a more eligible candidate to be targeted by diagnostic screening instruments and interventions for school-aged children and for adults. © 2016 John Wiley & Sons Ltd.

  7. Specialization of the Right Intraparietal Sulcus for Processing Mathematics During Development.

    Science.gov (United States)

    Schel, Margot A; Klingberg, Torkel

    2017-09-01

    Mathematical ability, especially perception of numbers and performance of arithmetics, is known to rely on the activation of intraparietal sulcus (IPS). However, reasoning ability and working memory, 2 highly associated abilities also activate partly overlapping regions. Most studies aimed at localizing mathematical function have used group averages, where individual variability is averaged out, thus confounding the anatomical specificity when localizing cognitive functions. Here, we analyze the functional anatomy of the intraparietal cortex by using individual analysis of subregions of IPS based on how they are structurally connected to frontal, parietal, and occipital cortex. Analysis of cortical thickness showed that the right anterior IPS, defined by its connections to the frontal lobe, was associated with both visuospatial working memory, and mathematics in 6-year-old children. This region specialized during development to be specifically related to mathematics, but not visuospatial working memory in adolescents and adults. This could be an example of interactive specialization, where interacting with the environment in combination with interactions between cortical regions leads from a more general role of right anterior IPS in spatial processing, to a specialization of this region for mathematics. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Pre-Service Mathematics Teachers’ Problem Solving Processes with Geometer’s Sketchpad: Mirror Problem

    OpenAIRE

    ÖÇAL, Mehmet Fatih; ŞİMŞEK, Mertkan

    2016-01-01

    Problem solving skill is the core of mathematics education and its importance cannot be denied. This study specifically examined 56 freshmen pre-service mathematics teachers’ problem solving processes on a specific problem with the help of Geometer’s Sketchpad (GSP). They were grouped into two-person teams to solve a problem called "the mirror problem". They were expected to solve it by means of GSP. According to their works on GSP and related reflections, there appeared two differe...

  9. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  10. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  11. Examining the Mathematical Modeling Processes of Primary School 4th-Grade Students: Shopping Problem

    Science.gov (United States)

    Ulu, Mustafa

    2017-01-01

    The purpose of this study is to identify primary school students' thinking processes within the mathematical modeling process and the challenges they encounter, if any. This is a basic qualitative research study conducted in a primary school in the city of Kütahya in the academic year of 2015-2016. The study group of the research was composed of…

  12. Mathematic filters and digital processing in nuclear medicine

    International Nuclear Information System (INIS)

    Dimentein, R.

    1992-01-01

    The mathematic filters used in nuclear medicine were evaluated. Tomographic processing of a Jaszczak phantom, using separately Hanning, Butterworth and Wiener filters were presented. For each type of filter were made simulation, where the cut frequency and extenuation grade values were changed. (C.G.C.)

  13. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  14. Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat

    2017-01-01

    This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…

  15. Implementing the National Council of Teachers of Mathematics Standards: A slow process

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2004-10-01

    Full Text Available The purpose of this study was to look at inservice teachers’ pedagogical beliefs about the National Council of Teachers of Mathematics Standards (1989 & 2000.  The Standards’ Belief Instrument (Zollman and Mason, 1992 was administered on teachers.  An ANOVA was used to look for a significant difference between teachers with five years or less experience of teaching mathematics, and those with more than five years teaching experience. One expectation was  that teachers who are recent graduates of teacher education programmes may have more training  on the NCTM Standards. Although there were no statistically significant differences between the two groups, this study did support the expectation. Current training with in-service teachers shows that many of the teachers are familiar with neither the National Council of Teachers of Mathematics nor their Standards.  It seems then from this study that the implementation process of the NCTM Standards, and  perhaps any standards or best practices and new curriculum implementation, is very sluggish.

  16. The mathematical theory of signal processing and compression-designs

    Science.gov (United States)

    Feria, Erlan H.

    2006-05-01

    The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.

  17. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  18. Gesture analysis of students' majoring mathematics education in micro teaching process

    Science.gov (United States)

    Maldini, Agnesya; Usodo, Budi; Subanti, Sri

    2017-08-01

    In the process of learning, especially math learning, process of interaction between teachers and students is certainly a noteworthy thing. In these interactions appear gestures or other body spontaneously. Gesture is an important source of information, because it supports oral communication and reduce the ambiguity of understanding the concept/meaning of the material and improve posture. This research which is particularly suitable for an exploratory research design to provide an initial illustration of the phenomenon. The goal of the research in this article is to describe the gesture of S1 and S2 students of mathematics education at the micro teaching process. To analyze gesture subjects, researchers used McNeil clarification. The result is two subjects using 238 gesture in the process of micro teaching as a means of conveying ideas and concepts in mathematics learning. During the process of micro teaching, subjects using the four types of gesture that is iconic gestures, deictic gesture, regulator gesturesand adapter gesture as a means to facilitate the delivery of the intent of the material being taught and communication to the listener. Variance gesture that appear on the subject due to the subject using a different gesture patterns to communicate mathematical ideas of their own so that the intensity of gesture that appeared too different.

  19. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  20. Historical behavior of the teaching process learning of the basic mathematical contents in the initial formation of the Mathematics teacher

    Directory of Open Access Journals (Sweden)

    Yamila Medina-Sánchez

    2017-04-01

    Full Text Available The pedagogical universities in their different denominations, whether as Pedagogical Higher Institutes, Pedagogical Sciences Universities or Eastern University, have had in their center, the training of the teacher in their different specialties. The Mathematics teacher has been the result of training models and curricula in correspondence with the historical moment to which they have responded, all with the purpose of preparing them to impart the mathematical content in the educations that constitute action scenarios. The objective of this paper is to analyze the historical behavior of the learning process of the basic mathematical contents in the training process, because it is understood as the fundamental basis for achieving the objectives. For its development were taken into account the logical historical method, the interview, the survey and the documentary analysis.

  1. Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.

    Science.gov (United States)

    Lauer, Jillian E; Lourenco, Stella F

    2016-10-01

    Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.

  2. Cognitive Processing and Mathematical Achievement: A Study with Schoolchildren between Fourth and Sixth Grade of Primary Education

    Science.gov (United States)

    Iglesias-Sarmiento, Valentin; Deano, Manuel

    2011-01-01

    This investigation analyzed the relation between cognitive functioning and mathematical achievement in 114 students in fourth, fifth, and sixth grades. Differences in cognitive performance were studied concurrently in three selected achievement groups: mathematical learning disability group (MLD), low achieving group (LA), and typically achieving…

  3. A Mathematical Experience Involving Defining Processes: In-Action Definitions and Zero-Definitions

    Science.gov (United States)

    Ouvrier-Buffet, Cecile

    2011-01-01

    In this paper, a focus is made on defining processes at stake in an unfamiliar situation coming from discrete mathematics which brings surprising mathematical results. The epistemological framework of Lakatos is questioned and used for the design and the analysis of the situation. The cognitive background of Vergnaud's approach enriches the study…

  4. The Development and Validation of Scores on the Mathematics Information Processing Scale (MIPS).

    Science.gov (United States)

    Bessant, Kenneth C.

    1997-01-01

    This study reports on the development and psychometric properties of a new 87-item Mathematics Information Processing Scale that explores learning strategies, metacognitive problem-solving skills, and attentional deployment. Results with 340 college students support the use of the instrument, for which factor analysis identified five theoretically…

  5. Mathematics, Language, and Learning: A Longitudinal Study of Elementary Teachers and Their Mathematics Teaching Practices

    OpenAIRE

    Yeh, Cathery

    2016-01-01

    Elementary school mathematics has gained increased attention in the last few decades. A growing field of research has studied the programmatic design and development of elementary mathematics teaching in teacher education, however, few studies have examined longitudinally the mathematics teaching of novice elementary teachers. Existing longitudinal studies on elementary mathematics teaching have generally focused on the effects of teacher preparation on their beginning practices and have exam...

  6. Mathematical modelling and numerical simulation of forces in milling process

    Science.gov (United States)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  7. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  8. Persisting mathematics and science high school teachers: A Q-methodology study

    Science.gov (United States)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  9. Mathematical modeling of the voloxidation process. Final report

    International Nuclear Information System (INIS)

    Stanford, T.G.

    1979-06-01

    A mathematical model of the voloxidation process, a head-end reprocessing step for the removal of volatile fission products from spent nuclear fuel, has been developed. Three types of voloxidizer operation have been considered; co-current operation in which the gas and solid streams flow in the same direction, countercurrent operation in which the gas and solid streams flow in opposite directions, and semi-batch operation in which the gas stream passes through the reactor while the solids remain in it and are processed batch wise. Because of the complexity of the physical ahd chemical processes which occur during the voloxidation process and the lack of currently available kinetic data, a global kinetic model has been adapted for this study. Test cases for each mode of operation have been simulated using representative values of the model parameters. To process 714 kgm/day of spent nuclear fuel, using an oxidizing atmosphere containing 20 mole percent oxygen, it was found that a reactor 0.7 m in diameter and 2.49 m in length would be required for both cocurrent and countercurrent modes of operation while for semibatch operation a 0.3 m 3 reactor and an 88200 sec batch processing time would be required

  10. Mathematical model of silicon smelting process basing on pelletized charge from technogenic raw materials

    Science.gov (United States)

    Nemchinova, N. V.; Tyutrin, A. A.; Salov, V. M.

    2018-03-01

    The silicon production process in the electric arc reduction furnaces (EAF) is studied using pelletized charge as an additive to the standard on the basis of the generated mathematical model. The results obtained due to the model will contribute to the analysis of the charge components behavior during melting with the achievement of optimum final parameters of the silicon production process. The authors proposed using technogenic waste as a raw material for the silicon production in a pelletized form using liquid glass and aluminum production dust from the electrostatic precipitators as a binder. The method of mathematical modeling with the help of the ‘Selector’ software package was used as a basis for the theoretical study. A model was simulated with the imitation of four furnace temperature zones and a crystalline silicon phase (25 °C). The main advantage of the created model is the ability to analyze the behavior of all burden materials (including pelletized charge) in the carbothermic process. The behavior analysis is based on the thermodynamic probability data of the burden materials interactions in the carbothermic process. The model accounts for 17 elements entering the furnace with raw materials, electrodes and air. The silicon melt, obtained by the modeling, contained 91.73 % wt. of the target product. The simulation results showed that in the use of the proposed combined charge, the recovery of silicon reached 69.248 %, which is in good agreement with practical data. The results of the crystalline silicon chemical composition modeling are compared with the real silicon samples of chemical analysis data, which showed the results of convergence. The efficiency of the mathematical modeling methods in the studying of the carbothermal silicon obtaining process with complex interphase transformations and the formation of numerous intermediate compounds using a pelletized charge as an additive to the traditional one is shown.

  11. A MATHEMATICAL MODEL OF THE ROASTING CHESTNUTS PROCESS BY SUPERHEATED STEAM

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available The mathematic modeling for chestnuts roasting process by superheated steam is conducted. Diffusion and thermal diffusion coefficients are used for process description. Initial conditions and boundary conditions of the third kind for thermal conductivity and mass transfer equations are set.

  12. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

    Directory of Open Access Journals (Sweden)

    О. E. Prokopchenko

    2015-09-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  13. Mathematics education and comparative historical studies

    Directory of Open Access Journals (Sweden)

    Wagner RODRIGUES VALENTE

    2013-11-01

    Full Text Available This paper has as its aims: to characterize the area of research «history of mathematics education» and to defend the idea that mathematics education has constituted a privileged research theme within the field of comparative historical studies. To achieve these aims, the text includes references to a review of the literature concerning comparative studies, the analysis of two fundamental moments focused on attempts to internationalize the mathematics curriculum, both of which occurred during the 20th century, and, to end, a case study emanating from an international cooperation between researchers in Brazil and Portugal.

  14. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    Science.gov (United States)

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Role of Interactive Whiteboard on Motivating Learners in Mathematics Classes: A Case Study

    Directory of Open Access Journals (Sweden)

    Diana Mtchedlishvili

    2015-09-01

    Full Text Available The enhancement of motivation and enthusiasm by the use of interactive whiteboard has improved self- esteem, encouragement and success of many learners who have found mathematics difficult. This study aims to investigate whether the use of interactive whiteboard in mathematics classes promotes motivation of learners which facilitates learning process. 40 lecturers and 40 students were surveyed in the study and the results have been compared and it has been found that interactive whiteboard enhances interactivity, motivates learners and facilitates learning in mathematics classes.

  16. A fuzzy mathematics model for radioactive waste characterization by process knowledge

    International Nuclear Information System (INIS)

    Smith, M.; Stevens, S.; Elam, K.; Vrba, J.

    1994-01-01

    Fuzzy mathematics and fuzzy logic are means for making decisions that can integrate complicated combinations of hard and soft factors and produce mathematically validated results that can be independently verified. In this particular application, several sources of information regarding the waste stream have been compiled, including facility operating records, other waste generated from the facility in the past, laboratory analysis results, and interviews with facility personnel. A fuzzy mathematics model is used to interrelate these various sources of information and arrive at a defensible estimate of the contaminant concentration in the final waste product. The model accounts for the separate process knowledge-based contaminant concentrations by providing a weighted averaging technique to incorporate information from the various sources. Reliability estimates are provided for each of the component pieces of information and combined using the model into an estimate that provides a near-probabilistic value for contaminant concentration. The speadsheet accounts for the estimated uncertainty in the concentration on the basis of open-quotes reliability curves,close quotes which are derived from personal process knowledge as well as limited independent measurements

  17. Examination of Gifted Students' Probability Problem Solving Process in Terms of Mathematical Thinking

    Science.gov (United States)

    Baltaci, Serdal

    2016-01-01

    It is a widely known fact that gifted students have different skills compared to their peers. However, to what extent gifted students use mathematical thinking skills during probability problem solving process emerges as a significant question. Thence, the main aim of the present study is to examine 8th grade gifted students' probability…

  18. Enhancing mathematics teachers' quality through Lesson Study.

    Science.gov (United States)

    Lomibao, Laila S

    2016-01-01

    The efficiency and effectivity of the learning experience is dependent on the teacher quality, thus, enhancing teacher's quality is vital in improving the students learning outcome. Since, the usual top-down one-shot cascading model practice for teachers' professional development in Philippines has been observed to have much information dilution, and the Southeast Asian Ministers of Education Organization demanded the need to develop mathematics teachers' quality standards through the Southeast Asia Regional Standards for Mathematics Teachers (SEARS-MT), thus, an intensive, ongoing professional development model should be provided to teachers. This study was undertaken to determine the impact of Lesson Study on Bulua National High School mathematics teachers' quality level in terms of SEARS-MT dimensions. A mixed method of quantitative-qualitative research design was employed. Results of the analysis revealed that Lesson Study effectively enhanced mathematics teachers' quality and promoted teachers professional development. Teachers positively perceived Lesson Study to be beneficial for them to become a better mathematics teacher.

  19. A study of symbol segmentation method for handwritten mathematical formula recognition using mathematical structure information

    OpenAIRE

    Toyozumi, Kenichi; Yamada, Naoya; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Mase, Kenji; Takahashi, Tomoichi

    2004-01-01

    Symbol segmentation is very important in handwritten mathematical formula recognition, since it is the very first portion of the recognition, since it is the very first portion of the recognition process. This paper proposes a new symbol segmentation method using mathematical structure information. The base technique of symbol segmentation employed in theexisting methods is dynamic programming which optimizes the overall results of individual symbol recognition. The new method we propose here...

  20. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Dina Aleksandrovna Kirillova

    2015-12-01

    Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

  1. Studies in mathematics and mechanics

    CERN Document Server

    von Mises, Richard

    2013-01-01

    Studies in Mathematics and Mechanics is a collection of studies presented to Professor Richard von Mises as a token of reverence and appreciation on the occasion of his seventieth birthday which occurred on April 19, 1953. von Mises' thought has been a stimulus in many seemingly unconnected fields of mathematics, science, and philosophy, to which he has contributed decisive results and new formulations of fundamental concepts. The book contains 42 chapters organized into five parts. Part I contains papers on algebra, number theory and geometry. These include a study of Poincaré's representatio

  2. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  3. Orientations toward Mathematical Processes of Prospective Secondary Mathematics Teachers as Related to Work with Tasks

    Science.gov (United States)

    Cannon, Tenille

    2016-01-01

    Mathematics can be conceptualized in different ways. Policy documents such as the National Council of Teachers of Mathematics (NCTM) (2000) and the Common Core State Standards Initiative (CCSSI) (2010), classify mathematics in terms of mathematical content (e.g., quadratic functions, Pythagorean theorem) and mathematical activity in the form of…

  4. A Teacher Competency Enhancement Model based on the Coaching Processes to Increase Mathematical Reasoning Abilities of Lower-Secondary Students

    Directory of Open Access Journals (Sweden)

    Uaychai Sukanalam

    2017-09-01

    Full Text Available This research study aimed to: 1 investigate problems and needs for the learning management that helps increase capacities of mathematics teachers at the lower-secondary level, 2 develop a teacher competency enhancement model based on the coaching processes to enhance mathematical reasoning abilities of lower-secondary students, 3 find out the educational supervisors’ opinions on the model designed. The samples of the study comprised 212 mathematics teachers at the lower-secondary level from 60 schools under jurisdiction of the Office of Secondary Educational Service Area 27, who were selected through the simple random sampling technique ; and 201 educational supervisors in charge of the mathematics learning strand from 42 educational service areas, who were selected through the purposive sampling technique. This study was conducted in the academic year 2015. The research instruments included: 1 a teacher competency enhancement manual that illustrated the steps and procedures for increasing the teacher’s capacities based on the coaching processes in order to enhance mathematical reasoning abilities of lower-secondary students, 2 a survey on problems and needs for the learning management to enhance capacities of mathematics teachers at the lower-secondary level, 3 A questionnaire concerning the educational supervisor’s opinion on the model designed. The statistics used included percentage, mean, and standard deviation. The study results showed that: 1. According to the study and analysis of basic data, problems and needs, it was found that the needs for increasing capacities of mathematics teachers at the lower-secondary level was overall at the high level. In terms of identifying behaviors as “mathematical competencies”, there were some problems associated with thinking and reasoning abilities of the teachers, and their needs in developing the learning management were at the highest level. To solve such problems, it is suggested that

  5. A case study of pedagogy of mathematics support tutors without a background in mathematics education

    Science.gov (United States)

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors' provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.

  6. The Study of the Relationship between Mother's Studies with Study Skills and Mathematics Performance of Students

    Directory of Open Access Journals (Sweden)

    Behnoush Taheri

    2015-07-01

    Full Text Available Certainly teaching study skills of mathematics has special importance and plays important role in mathematics performance of students. As mothers spend more times with self-children then they can be effect on study and their mathematics performance. Present research implements to study of the relationship between mothers' studies with study skills and mathematics performance of their children. Population of this research is all girl students of first grade in high school at zone one of Tehran and sample is 97 people. For collecting data of this research through standard questionnaire of mathematics studies skills is used for measuring of study skill of mathematics and questions for studying information related to mothers' studies and a math exam for getting information of mathematics performance of students are used. The results indicated that there is not significant relationship between mothers' studies and study skill of mathematics among students. Also, it is indicated that there is positive significant relationship between mothers' studies and mathematic performance of students.

  7. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  8. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  9. Mathematics of the 19th century mathematical logic, algebra, number theory, probability theory

    CERN Document Server

    Yushkevich, A

    1992-01-01

    This multi-authored effort, Mathematics of the nineteenth century (to be fol­ lowed by Mathematics of the twentieth century), is a sequel to the History of mathematics fram antiquity to the early nineteenth century, published in three 1 volumes from 1970 to 1972. For reasons explained below, our discussion of twentieth-century mathematics ends with the 1930s. Our general objectives are identical with those stated in the preface to the three-volume edition, i. e. , we consider the development of mathematics not simply as the process of perfecting concepts and techniques for studying real-world spatial forms and quantitative relationships but as a social process as weIl. Mathematical structures, once established, are capable of a certain degree of autonomous development. In the final analysis, however, such immanent mathematical evolution is conditioned by practical activity and is either self-directed or, as is most often the case, is determined by the needs of society. Proceeding from this premise, we intend...

  10. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance

    Directory of Open Access Journals (Sweden)

    Bashirah Ibrahim

    2017-10-01

    Full Text Available We examine students’ mathematical performance on quantitative “synthesis problems” with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students’ mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students’ formulation and combination of equations. Several reasons may explain this difference, including the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  11. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  12. An Exploratory Study of Taiwanese Mathematics Teachers' Conceptions of School Mathematics, School Statistics, and Their Differences

    Science.gov (United States)

    Yang, Kai-Lin

    2014-01-01

    This study used phenomenography, a qualitative method, to investigate Taiwanese mathematics teachers' conceptions of school mathematics, school statistics, and their differences. To collect data, we interviewed five mathematics teachers by open questions. They also responded to statements drawn on mathematical/statistical conceptions and…

  13. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  14. Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders.

    Science.gov (United States)

    Moll, Kristina; Göbel, Silke M; Snowling, Margaret J

    2015-01-01

    As well as being the hallmark of mathematics disorders, deficits in number processing have also been reported for individuals with reading disorders. The aim of the present study was to investigate separately the components of numerical processing affected in reading and mathematical disorders within the framework of the Triple Code Model. Children with reading disorders (RD), mathematics disorders (MD), comorbid deficits (RD + MD), and typically developing children (TD) were tested on verbal, visual-verbal, and nonverbal number tasks. As expected, children with MD were impaired across a broad range of numerical tasks. In contrast, children with RD were impaired in (visual-)verbal number tasks but showed age-appropriate performance in nonverbal number skills, suggesting their impairments were domain specific and related to their reading difficulties. The comorbid group showed an additive profile of the impairments of the two single-deficit groups. Performance in speeded verbal number tasks was related to rapid automatized naming, a measure of visual-verbal access in the RD but not in the MD group. The results indicate that deficits in number skills are due to different underlying cognitive deficits in children with RD compared to children with MD: a phonological deficit in RD and a deficit in processing numerosities in MD.

  15. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  16. A preference for mathematical processing outweighs the selectivity for Arabic numbers in the inferior temporal gyrus.

    Science.gov (United States)

    Grotheer, Mareike; Jeska, Brianna; Grill-Spector, Kalanit

    2018-03-28

    A region in the posterior inferior temporal gyrus (ITG), referred to as the number form area (NFA, here ITG-numbers) has been implicated in the visual processing of Arabic numbers. However, it is unknown if this region is specifically involved in the visual encoding of Arabic numbers per se or in mathematical processing more broadly. Using functional magnetic resonance imaging (fMRI) during experiments that systematically vary tasks and stimuli, we find that mathematical processing, not preference to Arabic numbers, consistently drives both mean and distributed responses in the posterior ITG. While we replicated findings of higher responses in ITG-numbers to numbers than other visual stimuli during a 1-back task, this preference to numbers was abolished when participants engaged in mathematical processing. In contrast, an ITG region (ITG-math) that showed higher responses during an adding task vs. other tasks maintained this preference for mathematical processing across a wide range of stimuli including numbers, number/letter morphs, hands, and dice. Analysis of distributed responses across an anatomically-defined posterior ITG expanse further revealed that mathematical task but not Arabic number form can be successfully and consistently decoded from these distributed responses. Together, our findings suggest that the function of neuronal regions in the posterior ITG goes beyond the specific visual processing of Arabic numbers. We hypothesize that they ascribe numerical content to the visual input, irrespective of the format of the stimulus. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Intentional and automatic processing of numerical information in mathematical anxiety: testing the influence of emotional priming.

    Science.gov (United States)

    Ashkenazi, Sarit

    2018-02-05

    Current theoretical approaches suggest that mathematical anxiety (MA) manifests itself as a weakness in quantity manipulations. This study is the first to examine automatic versus intentional processing of numerical information using the numerical Stroop paradigm in participants with high MA. To manipulate anxiety levels, we combined the numerical Stroop task with an affective priming paradigm. We took a group of college students with high MA and compared their performance to a group of participants with low MA. Under low anxiety conditions (neutral priming), participants with high MA showed relatively intact number processing abilities. However, under high anxiety conditions (mathematical priming), participants with high MA showed (1) higher processing of the non-numerical irrelevant information, which aligns with the theoretical view regarding deficits in selective attention in anxiety and (2) an abnormal numerical distance effect. These results demonstrate that abnormal, basic numerical processing in MA is context related.

  18. Students Thinking Process in Compiling Mathematical Proof with Semantics Strategy

    Directory of Open Access Journals (Sweden)

    Abdussakir Abdussakir

    2015-03-01

    Full Text Available Proses Berpikir Mahasiswa dalam Menyusun Bukti Matematis dengan Strategi Semantik   Abstract: This study is aimed to reveal the thinking process in proof construction performed by students with semantic strategy. This study use descriptive-qualitative approach. The thinking process of students will be analyzed using theoretical framework of David Tall about the three worlds of mathematical thinking. The result are three ways of thinking in semantic strategy, namely (1 started from formal world  then move into the symbolic or embodied-symbolic world with possibility of more than once and ends within or outside of the formal world, (2 started from symbolic world or embodied-symbolic world then move to the formal world with possibility of more than once and ends within or outside of the formal world, and (3 all thinking processes performed outside of formal world that does not obtain formal proof. Key Words: thinking process, mathematical proof, semantic strategy   Abstrak: Penelitian ini bertujuan untuk menjelaskan proses berpikir mahasiswa dalam menyusun bukti matematis dengan strategi semantik. Penelitian ini menggunakan pendekatan deskiptif-kualitatif. Analisis data dilakukan dengan menggunakan kerangka kerja David Tall tentang tiga dunia berpikir matematik. Hasil penelitian menunjukkan bahwa terdapat enam kemungkinan jalur dalam strategi semantik ditinjau dari teori tiga dunia berpikir matematis. Hasil penelitian menunjukkan ada tiga jalur berpikir mahasiswa dalam menyusun bukti matematis dengan strategi semantik, yaitu (1 bermula dari dunia berpikir formal berpindah ke dunia berpikir wujud-simbolik atau dunia berpikir simbolik dengan proses perpindahan dimungkinkan lebih dari satu kali dan berakhir di dalam atau di luar dunia berpikir formal, (2 bermula dari dunia berpikir wujud simbolik atau dunia berpikir simbolik (non RSP lalu pindah ke dunia berpikir formal dengan proses perpindahan dimungkinkan lebih dari satu kali dan berakhir di

  19. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  20. EXPERIENCE OF INTRODUCTION IN EDUCATIONAL PROCESS OF COMPUTER SYSTEMS FOR FORMATION OF ACTIVE MATHEMATICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Shishko

    2012-03-01

    Full Text Available Annotation In this article is described the information an experience of introduction in educational process of pedagogical program systems of support of practical activities for example pedagogical software "Algebra, 8 class" and also aspect of formation of mathematical activity during algebra studying.

  1. Strategy for integration of coastal culture in learning process of mathematics in junior high school

    Science.gov (United States)

    Suyitno, H.; Zaenuri; Florentinus, T. S.; Zakaria, E.

    2018-03-01

    Traditional life in the fishing family is part of the local culture. Many School-age children in the fishing family drop-outs due to lack of parents motivation and the environment was less supportive. The problems were: (1) How the strategy of integration of local culture in learning process of mathematics in Junior High School (JHS)? (2) How to prepare the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, has international level, applicable, and in accordance with the current curriculum? The purposes of this research were: (1) to obtain the strategy of integration of local culture in learning process of mathematics in JHS, through FGD between UNNES and UKM; (2) to obtain the experts validation, through Focus Group Discussion (FGD) between UNNES and UKM toward the draft of the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture; (3) produces Mathematics Student’s Book for grade 7 SMP which based on coastal culture and has an ISBN, international, applicable, and in accordance with the curriculum. The research activity was a qualitative research, so that the research methods include: (1) data reduction, (2) display data, (3) data interpretation, and (4) conclusion/verification. The main activities of this research: drafting the Mathematics Student’s Book of Grade 7 which based on coastal culture; get the validation from international partners;conducting FGD at Education Faculty of Universiti Kebangsaan Malaysia through the program of visiting lecturers for getting the Mathematics Student’s Book of grade 7 which based on coastal culture, registering for ISBN, and publishing the reasearch results in International seminar and International Journals. The results of this research were as follows. (1) Getting a good strategy for integration of local culture in learning process of mathematics in JHS. (2) Getting the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture

  2. Research trends in mathematics teacher education

    CERN Document Server

    Lo, Jane-Jane; Zoest, Laura RVan

    2014-01-01

    Research on the preparation and continued development of mathematics teachers is becoming an increasingly important subset of mathematics education research. Such research explores the attributes, knowledge, skills and beliefs of mathematics teachers as well as methods for assessing and developing these critical aspects of teachers and influences on teaching.Research Trends in Mathematics Teacher Education focuses on three major themes in current mathematics teacher education research: mathematical knowledge for teaching, teacher beliefs and identities, and tools and techniques to support teacher learning. Through careful reports of individual research studies and cross-study syntheses of the state of research in these areas, the book provides insights into teachers' learning processes and how these processes can be harnessed to develop effective teachers. Chapters investigate bedrock skills needed for working with primary and secondary learners (writing relevant problems, planning lessons, being attentive to...

  3. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    Science.gov (United States)

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  4. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  5. The Development from Effortful to Automatic Processing in Mathematical Cognition.

    Science.gov (United States)

    Kaye, Daniel B.; And Others

    This investigation capitalizes upon the information processing models that depend upon measurement of latency of response to a mathematical problem and the decomposition of reaction time (RT). Simple two term addition problems were presented with possible solutions for true-false verification, and accuracy and RT to response were recorded. Total…

  6. The Kama Sutra, Romeo and Juliet, and Mathematics: Studying Mathematics for Pleasure

    Science.gov (United States)

    Padula, Janice

    2005-01-01

    The motivation of students is of great import to mathematics teachers. Such an abstract powerful language needs to be valued or students will not wish to study it. This article argues that mathematics may be better appreciated through the beauty of the language in which problems are written, respect for the cultures of others and through relevance…

  7. Mathematical Abstraction: Constructing Concept of Parallel Coordinates

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2017-09-01

    Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.

  8. Mathematical model with autoregressive process for electrocardiogram signals

    Science.gov (United States)

    Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de

    2018-04-01

    The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.

  9. Milestones of mathematical model for business process management related to cost estimate documentation in petroleum industry

    Science.gov (United States)

    Khamidullin, R. I.

    2018-05-01

    The paper is devoted to milestones of the optimal mathematical model for a business process related to cost estimate documentation compiled during construction and reconstruction of oil and gas facilities. It describes the study and analysis of fundamental issues in petroleum industry, which are caused by economic instability and deterioration of a business strategy. Business process management is presented as business process modeling aimed at the improvement of the studied business process, namely main criteria of optimization and recommendations for the improvement of the above-mentioned business model.

  10. Mathematical identification of homogenisation processes in argon stirred ladle

    Directory of Open Access Journals (Sweden)

    K. Michalek

    2009-10-01

    Full Text Available Mathematical models processed results of experimental investigation obtained during ladle gas argon bubbling realized by stir elements situated in the ladle bottom. Exact theoretical description of processes occurring at argon bubbling into steel would be very complex and it would lead to a system of non-linear partial differential equations describing transfer of momentum, heat, components, and with excitation function in the form of equation of so called deterministic chaos (argon bubbling. On the basis of pouring ladle model diagram and concentrations courses, the simplified linear physically adequate model was proposed, which described behavior of steel concentration in pouring ladle during its bubbling. The analysed process was understood in the form of a cybernetic model.

  11. Mathematical modeling and signal processing in speech and hearing sciences

    CERN Document Server

    Xin, Jack

    2014-01-01

    The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.

  12. Mathematics Pedagogical Standards: A Suggested Model of Instruction in Enhancing the Mathematics Teacher’s Quality of Instruction

    Science.gov (United States)

    Saad, N. S.; Jemali, M.; Zakaria, Z. Hj; Yusof, Q.

    2018-01-01

    The paper aims at identifying the standards for teaching and learning of mathematics based on National Council of Teacher of Mathematics (NCTM, 2000), The Australian Association of Mathematics Teachers (AAMT, 2006) and Training and Development Agency for School (TDA, 2007). These known standards were used as a guide in identifying the constructs of the mathematics teacher’s instruction in the classroom. The survey method used in which a questionnaire instrument encompassed on the four identified constructs on the standards for teaching and learning of mathematics, namely professional practices, professional attributes, professional knowledge, and professional instructional processes. The instrument was tested during a pilot study and a Cronbach’s Alpha reliability index of greater than 0.85 was obtained. The actual research was carried out in Peninsular Malaysia involving 224 secondary schools with 1.120 mathematics teachers and 108 primary schools with 540 mathematics teachers. From the selected schools, only 820 secondary mathematics teachers (73.2%) and 361 primary teachers (66.9%) gave a response to the mailed questionnaires. The findings of the study revealed that the secondary and primary mathematics teachers strongly agreed on three constructs; professional practices, professional attributes and professional instructional processes.

  13. Mathematics Anxiety and Prevention Strategy: An Attempt to Support Students and Strengthen Mathematics Education

    Directory of Open Access Journals (Sweden)

    Aweke Shishigu

    2018-02-01

    Full Text Available In the process of reaching a medium income country, science, mathematics and technology have become an emphasis of Ethiopia. But, currently, students' interest to study mathematics and ability in mathematics is declining. This study therefore aimed to investigate the prevalence of mathematics anxiety and its effect on students' current mathematics achievement. Additionally, by grounding on the literature, some strategies supposed to reduce the negative effects of math anxiety were identified for practice. The study was conducted on five randomly selected public secondary schools of East Shoa Zone in Oromia region. Math anxiety was measured using a validated instrument called Math Anxiety Rating Scale (MARS, whereas students' current mathematics achievement was measured using achievement test. Structural model was developed to examine causal relationship of the variables treated in the study. The finding revealed that there was a significant negative relationship between mathematics anxiety and achievement. There was also a statistically significant gender difference in mathematics anxiety and current math achievement, with effect size small and typical respectively. Based on the findings of the study, imperative implication for practice and future research were made.

  14. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  15. Development process of in-service training intended for teachers to perform teaching of mathematics with computer algebra systems

    Science.gov (United States)

    Ardıç, Mehmet Alper; Işleyen, Tevfik

    2018-01-01

    In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.

  16. Mathematics Anxiety in Young Children: An Exploratory Study

    Science.gov (United States)

    Harari, Rachel R.; Vukovic, Rose K.; Bailey, Sean P.

    2013-01-01

    This study explored the nature of mathematics anxiety in a sample of 106 ethnically and linguistically diverse first-grade students. Although much is known about mathematics anxiety in older children and adults, little is known about when mathematics anxiety first emerges or its characteristics in young children. Results from exploratory factor…

  17. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  18. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  19. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  20. Mathematics Student Teachers' Epistemological Beliefs about the Nature of Mathematics and the Goals of Mathematics Teaching and Learning in the Beginning of Their Studies

    Science.gov (United States)

    Viholainen, Antti; Asikainen, Mervi; Hirvonen, Pekka E.

    2014-01-01

    This article examines Finnish mathematics student teachers' epistemological beliefs concerning the nature of mathematics and the goals of mathematics teaching and learning solely in the beginning of their studies at university. A total of 18 students participated in a study consisting of a short questionnaire and interviews. The data was analyzed…

  1. MATHEMATICAL MODEL OF CATALYTIC PROCESSES AT MODIFIED ELECTRODES

    Directory of Open Access Journals (Sweden)

    Femila Mercy Rani Joseph

    Full Text Available A mathematical modeling of electrocatalytic processes taking place at modified electrodes is discussed. In this paper we obtained the approximate analytical solutions for the nonlinear equations under non steady state conditions using homotopy perturbation method. Simple and approximate polynomial expressions for the concentration of reactant, product and charge carrier were obtained in terms of diffusion coefficient and rate constant. In this work the numerical simulation of the problem is reported using Scilab program. In this manuscript analytical results are compared with simulation results and satisfactory agreement is noted.

  2. The Answering Process for Multiple-Choice Questions in Collaborative Learning: A Mathematical Learning Model Analysis

    Science.gov (United States)

    Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro

    2014-01-01

    In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…

  3. Development Mathematic Assessment to Increase Mathematical Prerequisite Ability on The Student with Learning Disabilities in Inclusive Elementary School

    Science.gov (United States)

    Robiansyah, S. T. U.; Nanang, F.; Hidayat

    2018-01-01

    The purpose of this study was to introduce about mathematic assessment is a process of obtaining data or information about the mastery of a student's mathematical skills as an ingredient in preparing a learning program. With this mathematics assessment can be known obstacles, difficulties and needs of students especially in the field of mathematic, so that the learning program will be in accordance with the potential students because it is tailored to what is required of students. This research study was conducted at elementary school of inclusive precisely at SDN Sukagalih I Bandung City based learning in setting of inclusive education. This research study is motivated by the existence of a first-grade student who has disabilities learning in mathematics, the ability of the mathematical prerequisite mastery of the classification of objects by color. The results of the research can provide a profile picture of student data information, the data obtained from the results of the development of systematic and formal mathematical assessment. After doing the development of mathematics assessment then the teacher gets important related information: 1. process the analysis of students’ learning needs, especially in the field of mathematics, 2. preparing the learning program planning according to student learning needs, 3. Designing procedural of method remedial program.

  4. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

    Science.gov (United States)

    Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

    2016-01-01

    Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

  5. Study guide for applied finite mathematics

    CERN Document Server

    Macri, Nicholas A

    1982-01-01

    Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate

  6. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  7. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  8. A Study of the Relationship between the ACT College Mathematics Readiness Standard and College Mathematics Achievement

    Science.gov (United States)

    Harwell, Michael; Moreno, Mario; Post, Thomas

    2016-01-01

    This study examined the relationship between the American College Testing (ACT) college mathematics readiness standard and college mathematics achievement using a sample of students who met or exceeded the minimum 3 years high school mathematics coursework recommended by ACT. According to ACT, a student who scores 22 or higher on the ACT…

  9. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  10. Program controlled system for mathematical processing the αp-experiment data

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Govorun, N.N.; Dirner, A.; Ivanov, V.G.; Kretov, A.P.; Mirolyubov, V.P.; Pervushov, V.V.; Shelontsev, I.I.

    1982-01-01

    ZEUS system which allows one mathematical processing of bubble chamber pictures for αp-experiment with computer control is descibed. The comparison and basic defect of traditional processing of film information is considered. The structure, operation and further development of this system are described. It consists of the monitoring programs, directory file, input request language, data bank and documentation. ZEUS system is developed for processing αp-experiment from JINR one-meter-hydrogen liquid chamber. It makes possible to eliminate big manual work at organization of mass data processing by a computer. The system is realized on the CDC-6500 computer

  11. Mayr, mathematics and the study of evolution

    Directory of Open Access Journals (Sweden)

    Crow James F

    2009-02-01

    Full Text Available Abstract In 1959 Ernst Mayr challenged the relevance of mathematical models to evolutionary studies and was answered by JBS Haldane in a witty and convincing essay. Fifty years on, I conclude that the importance of mathematics has in fact increased and will continue to do so.

  12. A Multisite Study of High School Mathematics Curricula and the Impact of Taking a Developmental Mathematics Course in College

    Science.gov (United States)

    Harwell, Michael; Dupuis, Danielle; Post, Thomas R.; Medhanie, Amanuel; LeBeau, Brandon

    2014-01-01

    The relationship between high school mathematics curricula and the likelihood of students who enroll in a developmental (non-credit bearing) course in college taking additional mathematics courses was studied. The results showed that high school mathematics curriculum, years of high school mathematics completed, and ACT mathematics scores were…

  13. Mathematical Formulation Requirements and Specifications for the Process Models

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

    2010-11-01

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments

  14. Mathematical Formulation Requirements and Specifications for the Process Models

    International Nuclear Information System (INIS)

    Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

    2010-01-01

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally

  15. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  16. On the study and difficulties of mathematics

    CERN Document Server

    De Morgan, Augustus

    2005-01-01

    One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks.Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the

  17. The written mathematical communication profile of prospective math teacher in mathematical proving

    Science.gov (United States)

    Pantaleon, K. V.; Juniati, D.; Lukito, A.; Mandur, K.

    2018-01-01

    Written mathematical communication is the process of expressing mathematical ideas and understanding in writing. It is one of the important aspects that must be mastered by the prospective math teacher as tool of knowledge transfer. This research was a qualitative research that aimed to describe the mathematical communication profile of the prospective mathematics teacher in mathematical proving. This research involved 48 students of Mathematics Education Study Program; one of them with moderate math skills was chosen as the main subject. Data were collected through tests, assignments, and task-based interviews. The results of this study point out that in the proof of geometry, the subject explains what is understood, presents the idea in the form of drawing and symbols, and explains the content/meaning of a representation accurately and clearly, but the subject can not convey the argument systematically and logically. Whereas in the proof of algebra, the subject describes what is understood, explains the method used, and describes the content/meaning of a symbolic representation accurately, systematically, logically, but the argument presented is not clear because it is insufficient detailed and complete.

  18. Developing a Study Orientation Questionnaire in Mathematics for primary school students.

    Science.gov (United States)

    Maree, Jacobus G; Van der Walt, Martha S; Ellis, Suria M

    2009-04-01

    The Study Orientation Questionnaire in Mathematics (Primary) is being developed as a diagnostic measure for South African teachers and counsellors to help primary school students improve their orientation towards the study of mathematics. In this study, participants were primary school students in the North-West Province of South Africa. During the standardisation in 2007, 1,013 students (538 boys: M age = 12.61; SD = 1.53; 555 girls: M age = 11.98; SD = 1.35; 10 missing values) were assessed. Factor analysis yielded three factors. Analysis also showed satisfactory reliability coefficients and item-factor correlations. Step-wise linear regression indicated that three factors (Mathematics anxiety, Study attitude in mathematics, and Study habits in mathematics) contributed significantly (R2 = .194) to predicting achievement in mathematics as measured by the Basic Mathematics Questionnaire (Primary).

  19. Rockefeller and the internationalization of mathematics between the two world wars document and studies for the social history of mathematics in the 20th century

    CERN Document Server

    Siegmund-Schultze, Reinhard

    2001-01-01

    Philanthropies funded by the Rockefeller family have been prominent in the social history of the twentieth century for their involvement in medicine and applied science. This book provides the first detailed study of their relatively brief but nonetheless influential foray into the field of mathematics. The careers of a generation of pathbreakers in modern mathematics, such as S.Banach, B.L.van der Waerden and André Weil, were decisively affected by their becoming fellows of the Rockefeller-funded International Education Board in the 1920s. To help promote cooperation between physics and mathematics Rockefeller funds supported the erection of the new Mathematical Institute in Göttingen between 1926 and 1929, while the rise of probability and mathematical statistics owes much to the creation of the Institut Henri Poincaré in Paris by American philanthropy at about the same time. This account draws upon the documented evaluation processes behind these personal and institutional involvements of philanthropies...

  20. Mathematical modeling of biomass fuels formation process

    International Nuclear Information System (INIS)

    Gaska, Krzysztof; Wandrasz, Andrzej J.

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task

  1. Relationships Among Student-body Composition, School Process, and Mathematics Achievement in Argentina’s High Schools

    Directory of Open Access Journals (Sweden)

    Rubén Alberto Cervini Iturre

    2003-05-01

    Full Text Available This is a study of the relationships between the student-body composition of the school, some characteristics of the scholastic process—culture and school climate—according to learners’ perceptions, and the mathematics achievement of students in the last year of high school in Argentina. The data used came from the 1998 National Census of High School Completion, carried out by the nation’s Ministry of Culture and Education. The file contains data for 135,000 students of 2,708 schools in 25 states. Multilevel linear modeling with three levels (student, school and state was applied. A strong relationship was detected between mathematics achievement and the variables student-body composition and school process. When both variables acted together, the effect of other variables experienced a pronounced descent. Although reduced, the variables of the process influenced the student’s achievement. There was identified for future works a reference model which would evaluate other institutional learning factors.

  2. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  3. THE FEATURES OF LASER EMISSION ENERGY DISTRIBUTION AT MATHEMATIC MODELING OF WORKING PROCESS

    Directory of Open Access Journals (Sweden)

    A. M. Avsiyevich

    2013-01-01

    Full Text Available The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown.

  4. Using Assessment for Learning Mathematics with Mobile Tablet Based Solutions

    Directory of Open Access Journals (Sweden)

    Ghislain Maurice Norbert Isabwe

    2014-03-01

    Full Text Available This article discusses assessment for learning in mathematics subjects. Teachers of large classes face the challenge of regularly assessing studentsཿ ongoing mathematical learning achievements. Taking the complexity of assessment and feedback for learning as a background, we have developed a new approach to the assessment for learning mathematics at university level. We devised mobile tablet technology supported assessment processes, and we carried out user studies in both Rwanda and Norway. Results of our study indicated that students found it fruitful to be involved in assessing other studentsཿ mathematics work, i.e. assessing fellow studentsཿ answers to mathematical tasks. By being involved in the assessment process, the students expected mathematical learning gains. Their providing and obtaining of feedback to/from their fellow students using technology supported tools were highly appreciated as regards their own mathematical learning process.

  5. Novel mathematic models for quantitative transitivity of quality-markers in extraction process of the Buyanghuanwu decoction.

    Science.gov (United States)

    Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long

    2018-06-01

    Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials

  6. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  7. Numerical study of a mathematical model of internal erosion of soil

    Science.gov (United States)

    Sibin, A.

    2017-10-01

    The process of internal erosion in a three-phase saturated soil is studied. A mathematical model describing the process consists of the equations of mass conservation, Darcy’s law and equation for capillary pressure. The original system of equations is reduced to a system of three equations for porosity, pressure and water saturation. Obtained equation for the water saturation is degenerate. The degenerate problem in an one-dimensional domain is solved numerically using the finite-difference method.

  8. Establishing a mathematical Lesson Study culture in Danish teacher education

    DEFF Research Database (Denmark)

    Skott, Charlotte Krog; Østergaard, Camilla Hellsten

    Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences......Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences...

  9. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  10. Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers

    Science.gov (United States)

    Ritter, Kristy L.

    2010-01-01

    The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…

  11. A Mathematical Model for the Non-Stationary Process of Compression Molding of Plates from Granulate of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Vladimir N. Vodyakov

    2017-12-01

    Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature

  12. Support of Study on Engineering Technology from Physics and Mathematics

    OpenAIRE

    Mynbaev, Djafar K.; Cabo, Candido; Kezerashvili, Roman Ya.; Liou-Mark, Janet

    2008-01-01

    An approach that provides students with an ability to transfer learning in physics and mathematics to the engineering-technology courses through e-teaching and e-learning process is proposed. E-modules of courses in mathematics, physics, computer systems technology, and electrical and telecommunications engineering technology have been developed. These modules being used in the Blackboard and Web-based communications systems create a virtual interdisciplinary learning community, which helps t...

  13. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    Energy Technology Data Exchange (ETDEWEB)

    AbdElHaleem, H S [Cairo Univ.-CivlI Eng. Dept., Giza (Egypt); EI-Ahwany, A H [CairoUlmrsity- Faculty ofEngincering - Chemical Engineering Department, Giza (Egypt); Ibrahim, H I [Helwan University- Faculty of Engineering - Biomedical Engineering Department, Helwan (Egypt); Ibrahim, G [Menofia University- Faculty of Engineering Sbebin EI Kom- Basic Eng. Sc. Dept., Menofia (Egypt)

    2004-07-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type.

  14. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    International Nuclear Information System (INIS)

    AbdElHaleem, H.S.; EI-Ahwany, A. H.; Ibrahim, H.I.; Ibrahim, G.

    2004-01-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type

  15. Enhancing Students’ Interest through Mathematics Learning

    Science.gov (United States)

    Azmidar, A.; Darhim, D.; Dahlan, J. A.

    2017-09-01

    A number of previous researchers indicated that students’ mathematics interest still low because most of them have perceived that mathematics is very difficult, boring, not very practical, and have many abstract theorems that were very hard to understand. Another cause is the teaching and learning process used, which is mechanistic without considering students’ needs. Learning is more known as the process of transferring the knowledge to the students. Let students construct their own knowledge with the physical and mental reflection that is done by activity in the new knowledge. This article is literature study. The purpose of this article is to examine the Concrete-Pictorial-Abstract approach in theoretically to improve students’ mathematics interest. The conclusion of this literature study is the Concrete-Pictorial-Abstract approach can be used as an alternative to improve students’ mathematics interest.

  16. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  17. Mathematics Placement Test: Typical Results with Unexpected Outcomes

    Science.gov (United States)

    Ingalls, Victoria

    2011-01-01

    Based on the results of a prior case-study analysis of mathematics placement at one university, the mathematics department developed and piloted a mathematics placement test. This article describes the implementation process for a mathematics placement test and further analyzes the test results for the pilot group. As an unexpected result, the…

  18. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Journal Home > African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  19. A study of students' learning styles and mathematics anxiety amongst form four students in Kerian Perak

    Science.gov (United States)

    Esa, Suraya; Mohamed, Nurul Akmal

    2017-05-01

    This study aims to identify the relationship between students' learning styles and mathematics anxiety amongst Form Four students in Kerian, Perak. The study involves 175 Form Four students as respondents. The instrument which is used to assess the students' learning styles and mathematic anxiety is adapted from the Grasha's Learning Styles Inventory and the Mathematics Anxiety Scale (MAS) respectively. The types of learning styles used are independent, avoidant, collaborative, dependent, competitive and participant. The collected data is processed by SPSS (Statistical Packages for Social Sciences 16.0). The data is analysed by using descriptive statistics and inferential statistics that include t-test and Pearson correlation. The results show that majority of the students adopt collaborative learning style and the students have moderate level of mathematics anxiety. Moreover, it is found that there is significant difference between learning style avoidant, collaborative, dependent and participant based on gender. Amongst all students' learning style, there exists a weak but significant correlation between avoidant, independent and participant learning style and mathematics anxiety. It is very important for the teachers need to be concerned about the effects of learning styles on mathematics anxiety. Therefore, the teachers should understand mathematics anxiety and implement suitable learning strategies in order for the students to overcome their mathematics anxiety.

  20. Multimodal Languaging as a Pedagogical Model—A Case Study of the Concept of Division in School Mathematics

    Directory of Open Access Journals (Sweden)

    Jorma Joutsenlahti

    2017-01-01

    Full Text Available The purpose of this study is to present a multimodal languaging model for mathematics education. The model consists of mathematical symbolic language, a pictorial language, and a natural language. By applying this model, the objective was to study how 4th grade pupils (N = 21 understand the concept of division. The data was collected over six hours of teaching sessions, during which the pupils expressed their mathematical thinking mainly by writing and drawing. Their productions, as well as questionnaire after the process, were analyzed qualitatively. The results show that, in expressing the mathematical problem in verbal form, most of the students saw it as a division into parts. It was evident from the pupils’ texts and drawings that the mathematical expression of subtraction could be interpreted in three different ways. It was found that the pupils enjoyed using writing in the solution of word problems, and it is suggested that the use of different modes in expressing mathematical thinking may both strengthen the learning of mathematical concepts and support the evaluation of learning.

  1. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  2. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Science.gov (United States)

    Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio

    2016-01-01

    This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…

  3. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    OpenAIRE

    M. V. Shaptala; D. E. Shaptala

    2014-01-01

    Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The m...

  4. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  5. LEARNING AND THOUGHT PROCESSES IN REALISTIC MATHEMATICS INSTRUCTION

    NARCIS (Netherlands)

    Nelissen, J.; Tomic, W.

    2008-01-01

    This article deals with the various different approaches to mathematics and the influence that these approaches have had on the teaching of this subject. In addition to the three generally known schools of mathematics instruction - the mechanistic, the structuralistic and the empirical - the article

  6. Ideation in mathematical writing

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2007-01-01

    This paper considers idea generation during the mathematical writing process. Two contrasting explanations of the creative potential in connection to writing is presented; writing as a process of setting and obtaining rhetorical goals and writing as a process of discovery. These views...... are then related to two empirically found categories of functions that writing serves researchers in the field of mathematics, concluding that both views contributes to understanding the creative potential in relation to mathematical writing....

  7. Mathematical Modeling of Acclimation Processes of the Photosynthetic Chain

    Directory of Open Access Journals (Sweden)

    S Heidari

    2016-10-01

    Full Text Available Introduction Photosynthetic energy conversion efficiency is characteristic of a system which is determined by interactions between various components of the system. The complex process of photosynthesis has been studied as a whole system which enables in silico examination of a large number of candidate genes for genetic engineering for a higher photosynthetic energy conversion efficiency. One of the most important environmental factors which influence the photosynthesis efficiency is light regime which can cause producing ROS components. To acclimate to such fluctuations, plants have evolved adaptive mechanisms to minimize damage of the photosynthetic apparatus excess light. A fast compatibility response to high light stresses is non-photochemical quenching process (NPQ, dissipating excessive energy to heat. Light harvested state switches into a quenched state by a conformational change of light harvesting complex (LHCII that regulated by xanthophylls and the PsbS protein within seconds. Low lumen pH activates xanthophyll synthesis via a xanthophyll cycle which consists of the de-epoxidation of violaxanthin to zeaxanthin by violaxanthin de-epoxidase in high light and inversely by zeaxanthin epoxidase in low light which occurs more slowly. Materials and Methods Thale cress (Arabidopsis thaliana (Chlombia-0 were grown on soil at 25/22 °C day/night temperature, with a 16/8 h photoperiod, and 40-70% (depend of plant species relative humidity. The light intensity was 150–200 µE m-2s-1 white light. Intensity of chlorophyll fluorescence was measured with PAM-2000 fluorometer (Heinz Walz, Germany and the manufacturer’s software (PamWin v.2. Results and Discussion In the present study, a dynamic kinetics amplified mathematical model was developed based on differential equations in order to predict short-term changes in NPQ in the process of adaptation to different light conditions. We investigated the stationary and dynamic behavior of the model

  8. The human body metabolism process mathematical simulation based on Lotka-Volterra model

    Science.gov (United States)

    Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur

    2017-08-01

    The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.

  9. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  10. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    Science.gov (United States)

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  11. Exploring Mathematical Definition Construction Processes

    Science.gov (United States)

    Ouvrier-Buffet, Cecile

    2006-01-01

    The definition of "definition" cannot be taken for granted. The problem has been treated from various angles in different journals. Among other questions raised on the subject we find: the notions of "concept definition" and "concept image", conceptions of mathematical definitions, redefinitions, and from a more axiomatic point of view, how to…

  12. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  13. Teachers' Perception of Social Justice in Mathematics Classrooms

    Science.gov (United States)

    Panthi, Ram Krishna; Luitel, Bal Chandra; Belbase, Shashidhar

    2017-01-01

    The purpose of this study was to explore mathematics teachers' perception of social justice in mathematics classrooms. We applied interpretive qualitative method for data collection, analysis, and interpretation through iterative process. We administered in-depth semi-structured interviews to capture the perceptions of three mathematics teachers…

  14. MATHEMATICAL MODELING OF ELECTROCHEMICAL PROCESSES IN LITHIUM-ION BATTERIES POTENTIALLY STREAMING METHOD

    Directory of Open Access Journals (Sweden)

    S. P. Halutin

    2014-01-01

    Full Text Available Mathematical models in the electrical parameters of physico-chemical processes in lithium-ion batteries are developed. The developed model parameters (discharge mode are identified out of family of discharging curve. By using of the parameters of this model we get the numerically model of lithium-ion battery.

  15. Mathematical Modelling Research in Turkey: A Content Analysis Study

    Science.gov (United States)

    Çelik, H. Coskun

    2017-01-01

    The aim of the present study was to examine the mathematical modelling studies done between 2004 and 2015 in Turkey and to reveal their tendencies. Forty-nine studies were selected using purposeful sampling based on the term, "mathematical modelling" with Higher Education Academic Search Engine. They were analyzed with content analysis.…

  16. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review.

    Science.gov (United States)

    Herzog, Sereina A; Blaizot, Stéphanie; Hens, Niel

    2017-12-18

    Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.

  17. Profile of mathematics anxiety of 7th graders

    Science.gov (United States)

    Udil, Patrisius Afrisno; Kusmayadi, Tri Atmojo; Riyadi

    2017-08-01

    Mathematics anxiety is one of the important factors affect students mathematics achievement. This present research investigates profile of students' mathematics anxiety. This research focuses on analysis and description of students' mathematics anxiety level generally and its dominant domain and aspect. Qualitative research with case study strategy was used in this research. Subject in this research involved 15 students of 7th grade chosen with purposive sampling. Data in this research were students' mathematics anxiety scale result, interview record, and observation result during both mathematics learning activity and test. They were asked to complete mathematics anxiety scale before interviewed and observed. The results show that generally students' mathematics anxiety was identified in the moderate level. In addition, students' mathematics anxiety during mathematics test was identified in the high level, but it was in the moderate level during mathematics learning process. Based on the anxiety domain, students have a high mathematics anxiety on cognitive domain, while it was in the moderate level for psychological and physiological domains. On the other hand, it was identified in low level for psychological domain during mathematics learning process. Therefore, it can be concluded that students have serious and high anxiety regarding mathematics on the cognitive domain and mathematics test aspect.

  18. Mathematical learning disabilities and attention deficit and/or hyperactivity disorder: A study of the cognitive processes involved in arithmetic problem solving.

    Science.gov (United States)

    Iglesias-Sarmiento, Valentín; Deaño, Manuel; Alfonso, Sonia; Conde, Ángeles

    2017-02-01

    The purpose of this study was to examine the contribution of cognitive functioning to arithmetic problem solving and to explore the cognitive profiles of children with attention deficit and/or hyperactivity disorder (ADHD) and with mathematical learning disabilities (MLD). The sample was made up of a total of 90 students of 4th, 5th, and 6th grade organized in three: ADHD (n=30), MLD (n=30) and typically achieving control (TA; n=30) group. Assessment was conducted in two sessions in which the PASS processes and arithmetic problem solving were evaluated. The ADHD group's performance in planning and attention was worse than that of the control group. Children with MLD obtained poorer results than the control group in planning and simultaneous and successive processing. Executive processes predicted arithmetic problem solving in the ADHD group whereas simultaneous processing was the unique predictor in the MLD sample. Children with ADHD and with MLD showed characteristic cognitive profiles. Groups' problem-solving performance can be predicted from their cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.

    Science.gov (United States)

    Wang, Lin-Wei; Qu, Ai-Ping; Yuan, Jing-Ping; Chen, Chuang; Sun, Sheng-Rong; Hu, Ming-Bai; Liu, Juan; Li, Yan

    2013-01-01

    The expending and invasive features of tumor nests could reflect the malignant biological behaviors of breast invasive ductal carcinoma. Useful information on cancer invasiveness hidden within tumor nests could be extracted and analyzed by computer image processing and big data analysis. Tissue microarrays from invasive ductal carcinoma (n = 202) were first stained with cytokeratin by immunohistochemical method to clearly demarcate the tumor nests. Then an expert-aided computer analysis system was developed to study the mathematical and geometrical features of the tumor nests. Computer recognition system and imaging analysis software extracted tumor nests information, and mathematical features of tumor nests were calculated. The relationship between tumor nests mathematical parameters and patients' 5-year disease free survival was studied. There were 8 mathematical parameters extracted by expert-aided computer analysis system. Three mathematical parameters (number, circularity and total perimeter) with area under curve >0.5 and 4 mathematical parameters (average area, average perimeter, total area/total perimeter, average (area/perimeter)) with area under curve nests could be a useful parameter to predict the prognosis of early stage breast invasive ductal carcinoma.

  20. Real-time control data wrangling for development of mathematical control models of technological processes

    Science.gov (United States)

    Vasilyeva, N. V.; Koteleva, N. I.; Fedorova, E. R.

    2018-05-01

    The relevance of the research is due to the need to stabilize the composition of the melting products of copper-nickel sulfide raw materials in the Vanyukov furnace. The goal of this research is to identify the most suitable methods for the aggregation of the real time data for the development of a mathematical model for control of the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace. Statistical methods of analyzing the historical data of the real technological object and the correlation analysis of process parameters are described. Factors that exert the greatest influence on the main output parameter (copper content in matte) and ensure the physical-chemical transformations are revealed. An approach to the processing of the real time data for the development of a mathematical model for control of the melting process is proposed. The stages of processing the real time information are considered. The adopted methodology for the aggregation of data suitable for the development of a control model for the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace allows us to interpret the obtained results for their further practical application.

  1. The Mathematical Miseducation of America's Youth: Ignoring Research and Scientific Study in Education.

    Science.gov (United States)

    Battista, Michael T.

    1999-01-01

    Because traditional instruction ignores students' personal construction of mathematical meaning, mathematical thought development is not properly nurtured. Several issues must be addressed, including adults' ignorance of math- and student-learning processes, identification of math-education research specialists, the myth of coverage, testing…

  2. A student's guide to the study, practice, and tools of modern mathematics

    CERN Document Server

    Bindner, Donald

    2010-01-01

    A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica® and Maple™ to MATLAB® and R. Along with a color insert, the text includes exercises and challenges to stimulate creativity and improve problem solving abilities.The first section of the book covers issues pertaining to studying mathematics. The authors explain how to write mathematical proofs and papers, how to perform

  3. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An Integrated Approach to Mathematical Modeling: A Classroom Study.

    Science.gov (United States)

    Doerr, Helen M.

    Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…

  5. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... on senior high school students' proficiency in solving linear equation word problems ... from parents and teachers' influence on students' mathematics-related self-beliefs ...

  6. Empowering Mathematical Practices

    Science.gov (United States)

    Coomes, Jacqueline; Lee, Hyung Sook

    2017-01-01

    Mathematics teachers want to empower students as mathematical thinkers and doers (NCTM 2000). Specific ways of thinking and doing mathematics were described in the Process Standards (NCTM 2000); they were further characterized as habits of mind (Mark, Goldenberg, and Sword 2010); and more recently, they were detailed in the Common Core's Standards…

  7. [Cambridge Conference on School Mathematics Feasibility Studies 9-13.

    Science.gov (United States)

    Cambridge Conference on School Mathematics, Newton, MA.

    These materials are a part of a series of studies sponsored by the Cambridge Conference on School Mathematics which reflects the ideas of CCSM regarding the goals and objectives for school mathematics K-12. Feasibility Studies 9-13 contain a wide range of topics. The following are the titles and brief descriptions of these studies. Number…

  8. A Study of Visualization for Mathematics Education

    Science.gov (United States)

    Daugherty, Sarah C.

    2008-01-01

    Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.

  9. Individual Differences in Working Memory, Nonverbal IQ, and Mathematics Achievement and Brain Mechanisms Associated with Symbolic and Nonsymbolic Number Processing

    Science.gov (United States)

    Gullick, Margaret M.; Sprute, Lisa A.; Temple, Elise

    2011-01-01

    Individual differences in mathematics performance may stem from domain-general factors like working memory and intelligence. Parietal and frontal brain areas have been implicated in number processing, but the influence of such cognitive factors on brain activity during mathematics processing is not known. The relationship between brain mechanisms…

  10. Progress in Industrial Mathematics at ECMI 96

    DEFF Research Database (Denmark)

    mathematicians get inspiration from industrial demands. The European Consortium for Mathematics in Industry aims to create contact between industry and academia, and to promote research in industrial mathematics. This book contains a broad spectrum of mathematics applied to industrial problems. Applied...... mathematics, case studies, and review papers in the following fields are included: Environmental modelling, railway systems, industrial processes, electronics, ships, oil industry, optimization, machine dynamics, fluids in industry. Applied mathematicians and other professionals working in academia...

  11. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    Science.gov (United States)

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  12. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  13. The Psychological Basis of Learning Mathematics.

    Science.gov (United States)

    Ruberu, J.

    1982-01-01

    Mathematics is a hierarchial build-up of concepts and the process of this systematic building up of concepts is of prime importance in the study of mathematics. Although discovery approaches are currently used, there are limitations. Ausubel's "meaningful learning" approach is suggested as an alternative to discovery learning in…

  14. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    Directory of Open Access Journals (Sweden)

    M. V. Shaptala

    2014-12-01

    Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.

  15. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  16. Mathematics education for social justice

    Science.gov (United States)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more

  17. Handbook of mathematics

    CERN Document Server

    Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner

    2015-01-01

    This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and  new paragraphs,  new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.

  18. Third International Mathematics and Science Study 1999 Video Study Technical Report: Volume 2--Science. Technical Report. NCES 2011-049

    Science.gov (United States)

    Garnier, Helen E.; Lemmens, Meike; Druker, Stephen L.; Roth, Kathleen J.

    2011-01-01

    This second volume of the Third International Mathematics and Science Study (TIMSS) 1999 Video Study Technical Report focuses on every aspect of the planning, implementation, processing, analysis, and reporting of the science components of the TIMSS 1999 Video Study. The report is intended to serve as a record of the actions and documentation of…

  19. Processes of negotiation of meanings on algebraic thinking in a community of practice of pre-service mathematics teacher education

    Directory of Open Access Journals (Sweden)

    Márcia Cristina de Costa Trindade Cyrino

    2011-12-01

    Full Text Available We presented in this paper results of a research which aimed to investigate how the community of practice context of pre-service mathematics teacher education collaborates for learning on algebraic thinking by these future teachers. We analyzed, taking into account the Social Theory of Learning developed by Wenger (1998 as a theoretical frame, processes of negotiation of meanings present in participants' algebraic thinking in the development of tasks in one of the actions of the project "Mathematical Education of Teachers of Mathematics" inside the program "Universidade sem Fronteiras". This analysis allowed us to define some forms of member participation and explicit reification of algebraic thinking, due to some interactions in the processes of negotiation of meanings, which revealed changes in the identity of participants in become teachers of mathematics.

  20. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  1. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  2. Study orientation and knowledge of basic vocabulary in Mathematics in the primary school

    Directory of Open Access Journals (Sweden)

    Marthie van der Walt

    2009-09-01

    Full Text Available Whatever the reason, underachievement in mathematics in South Africa is endemic and tantamount to a national disaster. Despite the transformation of education in South Africa, failure rates in mathematics at school and university remain unacceptably high, and the number of learners who leave Grade 12 with a pass mark in both mathematics and physical science is unacceptably low. Relatively little has been written about inadequate performance of Grade 4 to 7 learners in mathematics in South Africa, and even less about possible solutions to the problem. South African primary school learners’ lack of basic mathematics and vocabulary skills in particular is a source of major concern. In the first national systemic evaluation of learners’ skills in English, mathematics and science in 2001 Grade 3 learners achieved an average of 30% in mathematics. In the follow-up studies, Grade 6 learners achieved a national average of 27% in mathematices, in 2004, while nationally eighty percent of Grade 3 and 6 learners achieved less than 50 percent for mathematics and Languages in 2008. The finding that so many primary school learners today are not numerate or literate has a direct influence both on the teaching and the learning of mathematics. Everything possible needs to be done to change this situation. During the past 15 years, the research focus in mathematics has shifted to an examination of the influence of social, cognitive and metacognitive, conative and affective factors on achievement in mathematics. In this regard, it is of particular importance that an ongoing investigation into “other” aspects that impact on achievement in mathematics is launched, rather than to restrict the investigation to mere assessment of objectives that are aimed at continually evaluating cognitive progress in mathematics. There is sufficient empirical evidence that an adequate orientation to the study of mathematics correlates positively with high achievement in

  3. Emotions and Heuristics: The State of Perplexity in Mathematics

    Science.gov (United States)

    Gómez-Chacón, Inés M.

    2017-01-01

    Using data provided by an empirical exploratory study with mathematics undergraduates, this paper discusses some key variables in the interaction between affective and cognitive dimensions in the perplexity state in problem solving. These variables are as follows: heuristics, mathematical processes, appraisal processes [pleasantness, attentional…

  4. Didactic strategies through authentic performances in the Mathematics teaching process

    Directory of Open Access Journals (Sweden)

    Enrique Diaz Chong

    2016-09-01

    Full Text Available The main objective of this article is gather a set of Mathematic didactic strategies by improving the academic performance and acquiring skills and abilities through authentic performances during the teaching process. The investigation is going to realize with students of the first semester E and with a teacher of Commercial Studies career, applying the “learn to learn” method described in the fundaments since the application of the teaching strategy until the evaluation. Through this method, they acquire basic competence of the mentioned subject and the knowledge in order to use them as future professionals in any life circumstance. It will verify the obtained results by having a better motivation of the students and the discipline comprehension. It is important to highlight that those strategies could be applied in any other subject.

  5. Helping Children Learn Mathematics through Multiple Intelligences and Standards for School Mathematics.

    Science.gov (United States)

    Adams, Thomasenia Lott

    2001-01-01

    Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…

  6. The motivation of lifelong mathematics learning

    Science.gov (United States)

    Hashim Ali, Siti Aishah

    2013-04-01

    As adults, we have always learned throughout our life, but this learning is informal. Now, more career-switchers and career-upgraders who are joining universities for further training are becoming the major group of adult learners. This current situation requires formal education in courses with controlled output. Hence, lifelong learning is seen as a necessity and an opportunity for these adult learners. One characteristic of adult education is that the learners tend to bring with them life experience from their past, especially when learning mathematics. Most of them associate mathematics with the school subjects and unable to recognize the mathematics in their daily practice as mathematics. They normally place a high value on learning mathematics because of its prominent role in their prospective careers, but their learning often requires overcoming personal experience and motivating themselves to learn mathematics again. This paper reports on the study conducted on a group of adult learners currently pursuing their study. The aim of this study is to explore (i) the motivation of the adult learners continuing their study; and (ii) the perception and motivation of these learners in learning mathematics. This paper will take this into account when we discuss learners' perception and motivation to learning mathematics, as interrelated phenomena. Finding from this study will provide helpful insights in understanding the learning process and adaption of adult learners to formal education.

  7. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  8. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    Science.gov (United States)

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  9. Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model.

    Directory of Open Access Journals (Sweden)

    Anne C Skeldon

    Full Text Available Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and mathematical models are an important tool for probing proposed biological mechanisms. The most well-known mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show there are fundamental similarities between these two models. The implications are illustrated with two important sleep-wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep episodes can be classified as grazing bifurcations. This provides the theoretical underpinning for numerical results showing that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from study of the two-process model can be used to inform understanding of the behaviour of the mutual inhibition model. This is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters associated with the circadian and homeostatic processes are very different from those that have been experimentally measured in the context of the two-process model.

  10. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  11. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  12. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  13. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  14. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  15. Pre-service mathematics teachers’ ability in solving well-structured problem

    Science.gov (United States)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  16. Mathematical formulation and numerical simulation of bird flu infection process within a poultry farm

    Science.gov (United States)

    Putri, Arrival Rince; Nova, Tertia Delia; Watanabe, M.

    2016-02-01

    Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction.

  17. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  18. The Mathematical Model High Energy Collisions Process Hadron-Nucleus

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Strugalska-Gola, E.; Strugalski, Z.

    2002-01-01

    During the passage high energy hadron by the heavy nucleus emitted are nucleons and many other particles from which most more group are nucleons and mesons π + π - π 0 . in this work we will present the mathematical model which is a simplified description of basic processes in the interior of the nucleus during passing of the hadron by the nucleus. Result of calculations we will compare with experimental results. Experimental data are based on photographs of 180 litre xenon bubble chambers (180 1 KKP) of Institute of Theoretical and Experimental Physics in Moscow (ITEF, Moscow) irradiated with the beam of mesons π - with momentum 3.5 GeV/c. (author)

  19. Students, Computers and Mathematics the Golden Trilogy in the Teaching-Learning Process

    Science.gov (United States)

    García-Santillán, Arturo; Escalera-Chávez, Milka Elena; López-Morales, José Satsumi; Córdova Rangel, Arturo

    2014-01-01

    In this paper we examine the relationships between students' attitudes towards mathematics and technology, therefore, we take a Galbraith and Hines' scale (1998, 2000) about mathematics confidence, computer confidence, computer and mathematics interaction, mathematics motivation, computer motivation, and mathematics engagement. 164 questionnaires…

  20. The mathematical description of the process of drying the grain of millet in the device with active hydromechanical mode

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2016-01-01

    Full Text Available The basis for the creation of new designs dryers laid the mathematical description of the test process, taking into account the method of loading and handling of the product in the machine, how to supply coolant or other type of energy supply, the theoretical performance, and structural (geometric component of the apparatus. To simulate the process of our work was considered of cylindrical dryers with active hydrodynamic regime and microwave energy supply, one feature of which is the loading of the product in a stream tangential coolant flow. The object of the study was chosen millet grain, because of the high biological value and high prevalence in the southern regions of the Russian Federation. On the basis of theoretical analysis, it was decided to divide the mathematical model into two conditional components: the study of heat and mass transfer study of aerodynamic component of the drying process. In this paper, we have been disclosed in detail is the second part of the process. The basis of this model were the equations of motion of millet grains by Newton's second law. The coolant in the framework of the proposed model is considered to be a continuous medium, highly compressible and has an internal viscosity, described by the Navier-Stokes equations. The initial conditions of the mathematical model were the following assumptions: the speed of the mechanical motion elements are equal to zero, the initial density of the air environment in all nodes is the equilibrium density of the air, the initial velocity of the air quality in all nodes is zero. The boundary conditions can be described as the constancy of the flow temperature and humidity, and its displacement is directly design constraints of the drying chamber. This model will be useful for professionals engaged in the problems of calculation and design of drying equipment.

  1. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  2. Mathematical modeling of processes of nuclear fuel extraction reprocessing

    International Nuclear Information System (INIS)

    Rozen, A.M.; Zel'venskij, M.Ya.

    1977-01-01

    A mathematical model of extraction process in the mixer-settlers is given which describes both a simple step process and extraction complicated with chemical reactions. The extraction equilibrium is described on the basis of theoretical data on the extraction mechanism using the mass action law and contains one empirical constant. The equations for concentration extraction constants of uranium(6) and uranium(4), plutonium(3, 4, 6), neptunium(4, 6) and zirconium(4) depending on the solution ion strength are given, which are obtained by treatment of numerous experimental data. On the example of the reductive reextraction process it is shown that there is a good coincidence of the calculated results of the suggested model with the experimental ones by Mc-Kay. By the method of matematical modeling the uranium and plutonium separation processes without reducers are investigated. The purification improvement of uranium extract, for example, is followed by the deterioration of the data on the other end of cascade i.e. purification of plutonium reextract from uranium and vice versa. To obtain a high grade of separation is possible only in comparatively long cascades and, besides, the regime parameters should be precisely observed

  3. Mathematical control theory

    International Nuclear Information System (INIS)

    Agrachev, A.A.

    2002-01-01

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, robotics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume

  4. Mathematical control theory

    Energy Technology Data Exchange (ETDEWEB)

    Agrachev, A A [Steklov Mathematical Institute, Moscow (Russian Federation); SISSA, Trieste [Italy; ed.

    2002-07-15

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, tics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume contains

  5. Mathematical methods in biology and neurobiology

    CERN Document Server

    Jost, Jürgen

    2014-01-01

    Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

  6. Revitalising Mathematics Classroom Teaching through Lesson Study (LS): A Malaysian Case Study

    Science.gov (United States)

    Lim, Chap Sam; Kor, Liew Kee; Chia, Hui Min

    2016-01-01

    This paper discusses how implementation of Lesson Study (LS) has brought about evolving changes in the quality of mathematics classroom teaching in one Chinese primary school. The Japanese model of LS was adapted as a teacher professional development to improve mathematics teachers' teaching practices. The LS group consisted of five mathematics…

  7. Teacher Formation in the Mathematical Thinking through Problem Solving in the Second Phase of the CCyM Network of Reading Comprehension and Mathematics

    Directory of Open Access Journals (Sweden)

    LUZ STELLA LÓPEZ

    2008-12-01

    Full Text Available This article shares the design, implementation, and evaluation of theLesson Study process used for the professional development of teachers of mathematics, through the Red de Comprensión Lectora y Matemáticas – CCyM Network, in ways to teach mathematics through problem solving. The program began with a course on the implementation of the Thinking Classroom, followed by the semi-presencial Lesson Study process. An analysis of teacher interactions during the Lesson Study process yielded these categories of study: Group Collective Thinking, Mathematical Pedagogical Content Knowledge, Subject Matter Knowledge, Knowledge about Technology, and Expert Support. The analysis reflected variations in group interactions, in the command of concepts, in reflective practice, in the ability to make arguments and to propose changes in practice, and in the ability to self-regulate.

  8. Striking a Balance: Students' Tendencies to Oversimplify or Overcomplicate in Mathematical Modeling

    Science.gov (United States)

    Gould, Heather; Wasserman, Nicholas H.

    2014-01-01

    With the adoption of the "Common Core State Standards for Mathematics" (CCSSM), the process of mathematical modeling has been given increased attention in mathematics education. This article reports on a study intended to inform the implementation of modeling in classroom contexts by examining students' interactions with the process of…

  9. Mathematical experimental modeling for muffle furnace drying process of municipal sewage sludge in Beijing and Osaka

    International Nuclear Information System (INIS)

    Li, Xinyi; Takaoka, Masaki; Zhu, Fenfen; Oshita, Kazuyuki; Mizuno, Tadao; Morisawa, Shinsuke

    2010-01-01

    Over the past two decades, China has experienced rapid urbanization, which also leads to a lot of environmental problems including those of sewage sludge. As the amount of sewage sludge increases, conventional methods of treatment, such as compost and landfill, are facing the problems of limitations in demands or land. Considering that the demand of constructive materials in China keeps increasing, reusing municipal sewage sludge (MSS) in cement manufactory plant as fuels and raw materials is another practicable way to deal with it. The aim of this study is to describe the process of the heating of sewage sludge under different atmospheres of nitrogen and oxygen, and to find out some relation between the moisture of MSS and the heating time under different surrounding temperature by means of a mathematical model. In this study, we compared 4 kinds of MSS sampled in Beijing and Osaka. First of all, we defined the differences in those fundamental physical properties, such as concentration of various elements, calorific values and so on. Then the macroscopical thermal properties of the sludges were observed by means of thermogravimetric (TG) analysis. Both pyrolysis and combustion of 4 samples of MSS were studied by TG dynamic runs carried out at 10K/m. Visual observation of the heating profiles shows three stages in the heating process, which have been characterized. At last, we focused on batch processing drying tests using muffle furnace under temperature of 200, 250 and 300 degrees Celsius. The volatile matters loss besides moisture during heating process was evaluated and the experimental drying curves were matched with a mathematical model. (author)

  10. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  11. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  12. A Qualitative Study on Primary School Mathematics Lesson Evaluation

    Science.gov (United States)

    Zhao, Dongchen; Ma, Yunpeng

    2009-01-01

    Through the qualitative interviews of five implementers of primary school mathematics curriculum, this study addresses the ways in which mathematics lessons are evaluated. Results show that each evaluator recognizes different aspects of a "good lesson," however, among all criteria, the design of the lesson plan, realization of the lesson…

  13. The study of thermal processes in control systems of heat consumption of buildings

    Science.gov (United States)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  14. Mathematical modelling with case studies using Maple and Matlab

    CERN Document Server

    Barnes, B

    2014-01-01

    Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-

  15. Two-dimensional mathematical model for simulation of the drying process of thick layers of natural materials in a conveyor-belt dryer

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2017-01-01

    Full Text Available This paper presents the mathematical model and numerical analysis of the convective drying process of thick slices of colloidal capillary-porous materials slowly moving through conveyor-belt dryer. A flow of hot moist air was used as drying agent. The drying process has been analyzed in the form of a 2-D mathematical model, in two directions: along the conveyor and perpendicular on it. The mathematical model consists of two non-linear differential equations and one equation with a transcendent character and it is based on the mathematical model developed for drying process in a form of a 1-D thin layer. The appropriate boundary conditions were introduced. The presented model is suitable for the automated control of conveyor-belt dryers. The obtained results with analysis could be useful in predicting the drying kinetics of potato slices and similar natural products.

  16. Connecting Biology and Mathematics: First Prepare the Teachers

    Science.gov (United States)

    2010-01-01

    Developing the connection between biology and mathematics is one of the most important ways to shift the paradigms of both established science disciplines. However, adding some mathematic content to biology or biology content to mathematics is not enough but must be accompanied by development of suitable pedagogical models. I propose a model of pedagogical mathematical biological content knowledge as a feasible starting point for connecting biology and mathematics in schools and universities. The process of connecting these disciplines should start as early as possible in the educational process, in order to produce prepared minds that will be able to combine both disciplines at graduate and postgraduate levels of study. Because teachers are a crucial factor in introducing innovations in education, the first step toward such a goal should be the education of prospective and practicing elementary and secondary school teachers. PMID:20810951

  17. Connecting biology and mathematics: first prepare the teachers.

    Science.gov (United States)

    Sorgo, Andrej

    2010-01-01

    Developing the connection between biology and mathematics is one of the most important ways to shift the paradigms of both established science disciplines. However, adding some mathematic content to biology or biology content to mathematics is not enough but must be accompanied by development of suitable pedagogical models. I propose a model of pedagogical mathematical biological content knowledge as a feasible starting point for connecting biology and mathematics in schools and universities. The process of connecting these disciplines should start as early as possible in the educational process, in order to produce prepared minds that will be able to combine both disciplines at graduate and postgraduate levels of study. Because teachers are a crucial factor in introducing innovations in education, the first step toward such a goal should be the education of prospective and practicing elementary and secondary school teachers.

  18. A Study of Gender Differences in the Attitude of Mathematically ...

    African Journals Online (AJOL)

    The aim of the study is to investigate the differences in the attitude of boys and girls who are mathematically gifted or mathematically non-gifted in the Nigerian senior secondary schools. The population for the study was made up Senior Secondary Three students (SS3) of a school in Osun State. The study sample was made ...

  19. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  20. Project-Based Social Justice Mathematics: A Case Study of Five 6th Grade Students

    Science.gov (United States)

    McHugh, Maighread L.

    2015-01-01

    The purpose of this qualitative multiple case study was to explore how five sixth grade female students navigated the process of project-based learning as they designed and implemented their own project centered on mathematics while using a social justice lens. The theoretical frameworks of Authentic Intellectual Work and Social Justice…

  1. Modeling eBook acceptance: A study on mathematics teachers

    Science.gov (United States)

    Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad

    2014-12-01

    The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.

  2. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  3. Using Mental Imagery Processes for Teaching and Research in Mathematics and Computer Science

    Science.gov (United States)

    Arnoux, Pierre; Finkel, Alain

    2010-01-01

    The role of mental representations in mathematics and computer science (for teaching or research) is often downplayed or even completely ignored. Using an ongoing work on the subject, we argue for a more systematic study and use of mental representations, to get an intuition of mathematical concepts, and also to understand and build proofs. We…

  4. Successful Minority Pedagogy in Mathematics: US and Japanese Case Studies

    Science.gov (United States)

    Ahn, Ruth; Catbagan, Paula; Tamayo, Kristin; I, Ji Yeong; Lopez, Mario; Walker, Pamela

    2015-01-01

    This study examines best practices in teaching mathematics to minority students through two case studies conducted at high-minority junior high schools in the USA and Japan. Observations, interviews, and conversations with the teachers in both countries focused on the research question: how do teachers successfully teach mathematics to minority…

  5. Mathematics Teachers' Perceptions of Their Students' Mathematical Competence: Relations to Mathematics Achievement, Affect, and Engagement in Singapore and Australia

    Science.gov (United States)

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, drawing on data from the Trends in International Mathematics and Science Study (TIMSS) 2011, examined whether mathematics teachers' perceptions of their students' mathematical competence were related to mathematics achievement, affect toward mathematics, and engagement in mathematics lessons among Grade 8 students in Singapore and…

  6. Mathematics in ancient Greece

    CERN Document Server

    Dantzig, Tobias

    2006-01-01

    More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

  7. Pre-Service Teachers' Mathematics Self-Efficacy and Mathematics Teaching Self-Efficacy

    Science.gov (United States)

    Zuya, Habila Elisha; Kwalat, Simon Kevin; Attah, Bala Galle

    2016-01-01

    Pre-service mathematics teachers' mathematics self-efficacy and mathematics teaching self-efficacy were investigated in this study. The purpose was to determine the confidence levels of their self-efficacy in mathematics and mathematics teaching. Also, the study was aimed at finding whether their mathematics self-efficacy and teaching…

  8. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  9. Modelling Of Flotation Processes By Classical Mathematical Methods - A Review

    Science.gov (United States)

    Jovanović, Ivana; Miljanović, Igor

    2015-12-01

    Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.

  10. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  11. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  12. Persian architecture and mathematics

    CERN Document Server

    2012-01-01

    This volulme features eight original papers dedicated to the theme “Persian Architecture and Mathematics,” guest edited by Reza Sarhangi. All papers were approved through a rigorous process of blind peer review and edited by an interdisciplinary scientific editorial committee. Topics range from symmetry in ancient Persian architecture to the elaborate geometric patterns and complex three-dimensional structures of standing monuments of historical periods, from the expression of mathematical ideas to architectonic structures, and from decorative ornament to the representation of modern group theory and quasi-crystalline patterns. The articles discuss unique monuments Persia, including domed structures and two-dimensional patterns, which have received significant scholarly attention in recent years. This book is a unique contribution to studies of Persian architecture in relation to mathematics.

  13. A Multiple Intelligence Pedagogical Approach in Fifth Grade Mathematics: A Mixed Method Study

    Science.gov (United States)

    Davis, Claudine Davillier

    2012-01-01

    The need for mathematics intervention has increased tremendously over the years, particularly after the No Child Left Behind Act of 2001.Students who lack basic mathematics skills and students who experience mathematics difficulties greatly benefit from mathematics interventions. This study examined mathematics intervention through the use of the…

  14. Mathematics teachers’ reflective practice within the context of adapted lesson study

    Directory of Open Access Journals (Sweden)

    Barbara Posthuma

    2012-11-01

    Full Text Available There seems to be paucity of research in South Africa on mathematics teachers’ reflective practice. In order to study this phenomenon, the context of lesson study (in an adapted form was introduced to five mathematics teachers in a rural school in the Free State. The purpose was to investigate their reflective practice whilst they collaboratively planned mathematics lessons and reflected on the teaching of the lessons. Data were obtained through interviews, video-recorded lesson observations, field notes taken during the lesson study group meetings and document analyses (lesson plans and reflective writings. The adapted lesson study context provided a safe space for teachers to reflect on their teaching and they reported an increase in self-knowledge and finding new ways of teaching mathematics to learners. This finding has some potential value for planning professional learning programmes in which teachers are encouraged to talk about their classroom experiences, share their joys and challenges with one another and strive to build a community of reflective practitioners to enhance their learners’ understanding of mathematics.

  15. Working Memory, Attention, and Mathematical Problem Solving: A Longitudinal Study of Elementary School Children

    Science.gov (United States)

    Swanson, H. Lee

    2011-01-01

    The role of working memory (WM) in children's growth in mathematical problem solving was examined in a longitudinal study of children (N = 127). A battery of tests was administered that assessed problem solving, achievement, WM, and cognitive processing (inhibition, speed, phonological coding) in Grade 1 children, with follow-up testing in Grades…

  16. Mathematical modeling with multidisciplinary applications

    CERN Document Server

    Yang, Xin-She

    2013-01-01

    Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the

  17. The Turkish Adaptation of the Mathematical Resilience Scale: Validity and Reliability Study

    Science.gov (United States)

    Gürefe, Nejla; Akçakin, Veysel

    2018-01-01

    Persistent in mathematical studies is an important element allowing students to be successful in their STEM careers, and there is a need for affective measurement instruments to assess persistence in mathematics in spite of problems. For this reason, this study aims to adapt the Mathematical Resilience Scale developed to assess resilience, which…

  18. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  19. Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.

    Science.gov (United States)

    Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie

    2015-07-21

    A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.

  20. THE TYPES OF INDEPENDENT WORK OF STUDENTS OF ECONOMIC SPECIALTIES IN THE STUDY OF MATHEMATICAL DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Vita Horbach

    2016-09-01

    Full Text Available The article analyzes the types of independent work of students in higher school and determines the most appropriate ones for the students majoring in economics during their study of mathematical disciplines. There have been defined training and professional skills, which a future economist will gain in the process of self-study of mathematical disciplines. These skills have been proved to be the most determinative in formation of professional independence as a basic quality of a future economist. The scheme which reveals the relationship of classification bases of self work with its forms and types as well as educational skills which are formed in the course of its implementation to be transformed in the future into professional skills of economists has been worked out. It has been highlighted that the use of these types of self work will help create optimal conditions for efficient management of training and learning activities of students of economic specialties in the study of mathematical disciplines.

  1. Mathematical theories of distributed sensor networks

    CERN Document Server

    Iyengar, Sitharama S; Balakrishnan, N

    2014-01-01

    Mathematical Theory of Distributed Sensor Networks demonstrates how mathematical theories can be used to provide distributed sensor modeling and to solve important problems such as coverage hole detection and repair. The book introduces the mathematical and computational structure by discussing what they are, their applications and how they differ from traditional systems. The text also explains how mathematics are utilized to provide efficient techniques implementing effective coverage, deployment, transmission, data processing, signal processing, and data protection within distributed sensor networks. Finally, the authors discuss some important challenges facing mathematics to get more incite to the multidisciplinary area of distributed sensor networks.

  2. Mathematical thinking styles of undergraduate students and their achievement in mathematics

    Science.gov (United States)

    Risnanosanti

    2017-08-01

    The main purpose of this study is to analyze the role of mathematical thinking styles in students' achievement in mathematics. On the basis of this study, it is also to generate recommendation for classroom instruction. The two specific aims are; first to observe students' mathematical thinking styles during problem solving, the second to asses students' achievement in mathematics. The data were collected by using Mathematical Thinking Styles questionnaires and test of students' achievement in mathematics. The subject in this study was 35 students from third year at mathematics study program of Muhammadiyah University of Bengkulu in academic year 2016/2017. The result of this study was that the students have three mathematical thinking styles (analytic, visual, and integrated), and the students who have analytic styles have better achievement than those who have visual styles in mathematics.

  3. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  4. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  5. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  6. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  7. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  8. Computational mathematics and mathematical computer software. Vychislitel'naia matematika i matematicheskoe obespechenie EVM

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, A.N.; Samarskii, A.A.

    1985-01-01

    Various aspects of mathematical modeling and problem-oriented computer software are examined with reference to numerical methods in mathematical physics, methods for solving inverse problems, development of automatic systems for experimental data processing, and mathematical modeling in plasma physics. Papers are presented on some properties of difference schemes in one-dimensional gas dynamics, an algorithm for processing signals reflected from multipoint targets, and the application of simplified Navier-Stokes equations for calculating flow of a viscous gas past long bodies.

  9. Attitudes towards mathematics as a subject and mathematics learning and instruction in a trans-disciplinary engineering study

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Misfeldt, Morten; Timcenko, Olga

    2016-01-01

    This article explores student attitudes and preferences in learning and teaching of mathematics in engineering studies that transcend the division between technical, scientific and artistic disciplines. For observing such attitudes, we have developed a model that relates the attitude towards...... by a teacher. We propose that these findings inspire reforming mathematical education for such engineering students....

  10. Mathematical Modeling Using MATLAB

    National Research Council Canada - National Science Library

    Phillips, Donovan

    1998-01-01

    .... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...

  11. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  12. Implementing the National Council of Teachers of Mathematics Standards: A slow process

    OpenAIRE

    Joseph M. Furner

    2004-01-01

    The purpose of this study was to look at inservice teachers’ pedagogical beliefs about the National Council of Teachers of Mathematics Standards (1989 & 2000).  The Standards’ Belief Instrument (Zollman and Mason, 1992) was administered on teachers.  An ANOVA was used to look for a significant difference between teachers with five years or less experience of teaching mathematics, and those with more than five years teaching experience. One expectation was  that teachers who are recent graduat...

  13. A Mathematical Model for Reactions During Top-Blowing in the AOD Process: Validation and Results

    Science.gov (United States)

    Visuri, Ville-Valtteri; Järvinen, Mika; Kärnä, Aki; Sulasalmi, Petri; Heikkinen, Eetu-Pekka; Kupari, Pentti; Fabritius, Timo

    2017-06-01

    In earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon oxygen decarburization (AOD) process. In the preceding part "Derivation of the Model," a new mathematical model was proposed for reactions during top-blowing in the AOD process. In this model it was assumed that reactions occur simultaneously at the surface of the cavity caused by the gas jet and at the surface of the metal droplets ejected from the metal bath. This paper presents validation and preliminary results with twelve industrial heats. In the studied heats, the last combined-blowing stage was altered so that oxygen was introduced from the top lance only. Four heats were conducted using an oxygen-nitrogen mixture (1:1), while eight heats were conducted with pure oxygen. Simultaneously, nitrogen or argon gas was blown via tuyères in order to provide mixing that is comparable to regular practice. The measured carbon content varied from 0.4 to 0.5 wt pct before the studied stage to 0.1 to 0.2 wt pct after the studied stage. The results suggest that the model is capable of predicting changes in metal bath composition and temperature with a reasonably high degree of accuracy. The calculations indicate that the top slag may supply oxygen for decarburization during top-blowing. Furthermore, it is postulated that the metal droplets generated by the shear stress of top-blowing create a large mass exchange area, which plays an important role in enabling the high decarburization rates observed during top-blowing in the AOD process. The overall rate of decarburization attributable to top-blowing in the last combined-blowing stage was found to be limited by the mass transfer of dissolved carbon.

  14. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. Educational standardization and gender differences in mathematics achievement: A comparative study.

    Science.gov (United States)

    Ayalon, Hanna; Livneh, Idit

    2013-03-01

    We argue that between-country variations in the gender gap in mathematics are related to the level of educational system standardization. In countries with standardized educational systems both genders are exposed to similar knowledge and are motivated to invest in studying mathematics, which leads to similar achievements. We hypothesize that national examinations and between-teacher uniformity in covering major mathematics topics are associated with a smaller gender gap in a country. Based on Trends of International Mathematical and Science Study (TIMSS) 2003, we use multilevel regression models to compare the link of these two factors to the gender gap in 32 countries, controlling for various country characteristics. The use of national examinations and less between-teacher instructional variation prove major factors in reducing the advantage of boys over girls in mathematics scores and in the odds of excelling. Factors representing gender stratification, often analyzed in comparative gender-gap research in mathematics, are at most marginal in respect of the gap. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    Science.gov (United States)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  17. Representations of Mathematics, their teaching and learning: an exploratory study

    Directory of Open Access Journals (Sweden)

    Maria Margarida Graça

    2004-03-01

    Full Text Available This work describes an exploratory study, the first of the four phases of a more inclusive research, which aims at understanding the way to promote, in a Mathematics teachers’ group, a representational evolution leading to a practice that allows a Mathematical meaningful learning of Mathematics. The methodology of this study is qualitative. Data gathering was based on questioning; all the subjects of the sample (n=48 carried out a projective task (a hierarchical evocation test and answered a written individual questionnaire. Data analysis was based in a set of categories previously defined. The main purpose of this research was to identify, to characterize and to describe the representations of Mathematics, their teaching and learning, in a group of 48 subjects, from different social groups, in order to get indicators for the construction of the instruments to be used in to the next phases of the research. The main results of this study are the following: (1 we were able to identify and characterize different representations of the teaching and learning of Mathematics, in what respects its epistemological, pedagogical, emotional and sociocultural dimensions; (2 we were also able to identify limitations, difficulties and items to be included or rephrased in the instruments used.

  18. Study and Research Paths at Upper Secondary Mathematics Education

    DEFF Research Database (Denmark)

    Jessen, Britta Eyrich

    the scope of teaching at this level. With respect to mathematical modelling, links and gaps were identified between scholarly knowledge and knowledge to be taught in secondary school. It is suggested that SRP based teaching can bridge parts of the identified gaps. Finally, it is found that in order for SRP......In didactics of mathematics, researchers have for decades been interested in how to teach students to pose questions and solve problems. Several approaches rely on the idea, that students learn mathematics, when they are engaged in activities similar to research mathematicians. This PhD project...... touch upon these ideas from the perspective offered by the Anthropological Theory of Didactics (ATD ). Within ATD, teaching is proposed to be designed as Study and Research Paths (SRP). This thesis investigates how SRP's support the students' learning of mathematics in a bidisciplinary context involving...

  19. The Professional Learning Experiences of Non-Mathematics Subject Specialist Teachers: A Descriptive Study

    OpenAIRE

    Ho Younghusband, Alice Christine

    2017-01-01

    Certified teachers in British Columbia (BC) schools can be assigned to teach secondary mathematics without having a major, minor, or formal background in mathematics. This is known as out-of-field teaching. These non-mathematics subject specialist teachers (NMSSTs) must learn or relearn the subject matter of mathematics to teach secondary mathematics. This study investigates what professional learning activities NMSSTs participate in to gain subject matter content knowledge in mathematics, wh...

  20. Modern mathematics for the engineer second series

    CERN Document Server

    1961-01-01

    This volume and its predecessor were conceived to advance the level of mathematical sophistication in the engineering community. The books particularly focus on material relevant to solving the kinds of mathematical problems regularly confronted by engineers. Suitable as a text for advanced undergraduate and graduate courses as well as a reference for professionals, Volume Two's three-part treatment covers mathematical methods, statistical and scheduling studies, and physical phenomena. Contributions include chapters on chance processes and fluctuations by William Feller, Monte Carlo calculati

  1. Working Memory in Students with Mathematical Difficulties

    Science.gov (United States)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  2. The effect of integrating lab experiments in electronic circuits into mathematic studies - a case study

    Science.gov (United States)

    Sabag, Nissim

    2017-10-01

    The importance of knowledge and skills in mathematics for electrical engineering students is well known. Engineers and engineering educators agree that any engineering curriculum must include plenty of mathematics studies to enrich the engineer's toolbox. Nevertheless, little attention has been given to the possible contribution of examples from engineering fields for the clarification of mathematical issues.

  3. Course of Study for Consumer Mathematics.

    Science.gov (United States)

    Montgomery County Public Schools, Rockville, MD.

    Eleven units comprise this Consumer Mathematics course for secondary school students: Consumer Decision Making; Personal Transportation; Insurance; Credit; Banking; Investments; Income Taxes; Food, Clothing, Furniture, Appliances; Housing; Budgeting; and Travel. The introduction to the teaching guide for Consumer Mathematics includes a rationale…

  4. TEACHING MATHEMATICAL DISCIPLINES AT THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    V. Ya. Gelman

    2018-01-01

    Full Text Available Introduction.In programs of training of students of medical specialties, Mathematics is a subject of basic education, i.e. non-core discipline. However, studying Mathematics is extremely important for future physicians, as recently there has been an impetuous development of mathematization in the field of health care. Today, a set of the new medical devices, the equipment and high technologies are being developed based on the mathematical modeling, analysis and forecasting. Mathematical methods are widely applied to diagnostics, development of life-support systems and the description of various biological processes both at the molecular level,  and at the level of a whole organism, its systems, bodies and tissues. The solution of many medical tasks in the field of taxonomy, genetics, and organization of medical service is impossible without knowledge of mathematics. Unfortunately, along with the evident importance of mathematical preparation for a medical profession, its need is poorly realized not only by junior students, but even by some teachers of specialized departments of medical schools.The aim of the publication is to discuss the problems that arise in the teaching of mathematical disciplines to students at a medical school and to suggest possible solutions to these problems.Methodology and research methods. The study is based on the use of modeling of the educational process. The methods of analysis, generalization and the method of expert assessments were applied in the course of the research.Results and scientific novelty. The aspects of mathematical preparation at the university are considered on the basis of the application of the multiplicative model of training quality. It is shown that the main students’ learning difficulties in Mathematics are connected with the following factors: the initial level of mathematical preparation of students and their motivation; outdated methods of Mathematics teaching and academic content

  5. What Is Mathematical Modelling? Exploring Prospective Teachers' Use of Experiments to Connect Mathematics to the Study of Motion

    Science.gov (United States)

    Carrejo, David J.; Marshall, Jill

    2007-01-01

    This paper focuses on the construction, development, and use of mathematical models by prospective science and mathematics teachers enrolled in a university physics course. By studying their involvement in an inquiry-based, experimental approach to learning kinematics, we address a fundamental question about the meaning and role of abstraction in…

  6. MATHEMATICAL SIMULATION OF ARGON MIXING PROCESSES AND STEEL SATURATION WITH CARBON IN LADLE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The mathematical model for dissolution process of a powder material in steel melt is proposed in the paper. The model permits to take into account mixing hydrodynamics on the basis of the Navier-Stokes equations. One of the industrial out-of-furnace treatment schemes taken as an example demonstrates the opportunities to model a carbon dissolution in a ladle.

  7. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  8. Mathematical modelling of nonstationary processes in a regenerator with dissociating coolant at supercritical parameters

    International Nuclear Information System (INIS)

    Tashchilova, Eh.M.; Sharovarov, G.A.

    1985-01-01

    The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger

  9. A mathematical model for process cycle time - theory and case study

    Directory of Open Access Journals (Sweden)

    Filip Tošenovský

    2011-04-01

    Full Text Available The article focuses on derivation of a regression model which describes dependence of process cycle time on relevant factors entering the process. The analyzed processes are typical in that the coefficient of variation of times corresponding to a given level of influential factors remains stable if the level of the factors change. The derived model is subsequently applied to real industrial data which show that such a model is suitable for the description of relations. The paper has been published with support of Slovak Ministry of Education project KEGA 3/6411/08 „Transformation of the already existing study programme Management of production quality to an university-wide bilingual study programme“.

  10. A MATHEMATICAL MODEL FOR PROCESS CYCLE TIME - THEORY AND CASE STUDY

    Directory of Open Access Journals (Sweden)

    FILIP TOŠENOVSKÝ

    2010-12-01

    Full Text Available The article focuses on derivation of a regression model which describes dependence of process cycle time on relevant factors entering the process. The analyzed processes are typical in that the coefficient of variation of times corresponding to a given level of influential factors remains stable if the level of the factors change. The derived model is subsequently applied to real industrial data which show that such a model is suitable for the description of relations. The paper has been published with support of Slovak Ministry of Education project KEGA 3/6411/08 „Transformation of the already existing study programme Management of production quality to an university-wide bilingual study programme“.

  11. Mathematical visualization process of junior high school students in solving a contextual problem based on cognitive style

    Science.gov (United States)

    Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.

  12. Relationship of Study Habits with Mathematics Achievement

    Science.gov (United States)

    Odiri, Onoshakpokaiye E.

    2015-01-01

    The study examined the relationship of study habits of students and their achievement in mathematics. The method used for the study was correlation design. A sample of 500 students were randomly selected from 25 public secondary schools in Delta Central Senatorial District, Delta State, Nigeria. Questionnaires were drawn to gather data on…

  13. STEM Gives Meaning to Mathematics

    Science.gov (United States)

    Hefty, Lukas J.

    2015-01-01

    The National Council of Teachers of Mathematics' (NCTM's) "Principles and Standards for School Mathematics" (2000) outlines fi ve Process Standards that are essential for developing deep understanding of mathematics: (1) Problem Solving; (2) Reasoning and Proof; (3) Communication; (4) Connections; and (5) Representation. The Common Core…

  14. Point-driven Mathematics Teaching. Studying and Intervening in Danish Classrooms

    DEFF Research Database (Denmark)

    Mogensen, Arne

    secondary schools emphasize such points in their teaching. Thus, 50 randomly selected mathematics teachers are filmed in one grade 8 math lesson and the dialogue investigated. The study identifies large variations and many influential components. There seems to be room for improvement. In order to examine...... possibilities to strengthen the presence and role of mathematical points in teaching two intervention studies are conducted. First a focus group of 5 of the original 50 teachers from each school are offered peer coaching by the researcher. This study indicates that different teachers appreciate peer coaching...... be supported in significant changes to a point-oriented mathematics teaching. The teachers emphasized joint planning of study lessons, and they regarded the peer coaching after each of these lessons as valuable. The studies with the two teacher groups indicate different opportunities and challenges...

  15. Should I take Further Mathematics? Physics undergraduates’ experiences of post-compulsory Mathematics

    Science.gov (United States)

    Bowyer, Jessica; Darlington, Ellie

    2017-01-01

    It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students’ perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level Mathematics and Further Mathematics. The findings suggest that physics undergraduates would benefit from studying Further Mathematics and specialising in mechanics during their A-level studies. As both A-level Mathematics and Further Mathematics are being reformed, universities should look closely at the benefits of Further Mathematics as preparation for their physics courses and either increase their admissions requirements, or recommend that students take Further Mathematics.

  16. Didactital design of mathematics teaching in primary school

    Science.gov (United States)

    Nur’aeni, E.; Muharram, M. R. W.

    2018-05-01

    The fact that the low ability of geometrical understanding of primary school students is what triggers this study to be conducted. Thus, this research aimed to find out how to create a didactical design of students' mathematical understanding, particularly on one of geometry materials that is unit of length. A qualitative approach promoting Didactical Design Research (DDR) was administered in this study. Participants of the study were primary school students in Tasikmalaya, an city in West Java Province, Indonesia. The results show that there was a learning design based on learning obstacles found in the mathematics teaching and learning processes. The learning obstacles comprised students' difficulties in memorizing, relating, and operating the standards of unit of lengths. It has been proven that the most influential factor in the success of mathematics teaching and learning processes is the use of creative media.

  17. Mathematical modeling of olive mill waste composting process.

    Science.gov (United States)

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Study of the Relationship between Mothers' Anxiety with the Mathematical Performance and Students' Anxiety

    Directory of Open Access Journals (Sweden)

    Sepideh Moradpour

    2015-04-01

    Full Text Available Today mathematics stress have considered under interesting of many psychologists of mathematics education and cognitive psychologists too so that recognize emotion and mental stimulations of students in mathematics and to find scientific strategies for removing and controlling them. Anxiety is one of important and effective issues of 21th century. This study is done with aim of the study of relationship between mothers' anxiety with mathematics performance and anxiety of their children at first grade of high school at zone one of Tehran. Among population, 97 students and their mothers are chosen. Data of this research are collected by Cattell standard questionnaire for studying mothers' anxiety and standard questionnaire of mathematics anxiety for studying mathematics anxiety and a math exam for studying of students' performance. Research findings indicate that there is significant relationship between mothers' anxiety with mathematics anxiety and performance of students. Also it indicated that there is significant difference between students with high and low mathematics anxiety in term of mathematics performance.

  19. An explicit solution of the mathematical model for osmotic desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Yeon; Gu, Boram; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of)

    2013-09-15

    Membrane processes such as reverse osmosis and forward osmosis for seawater desalination have gained attention in recent years. Mathematical models have been used to interpret the mechanism of membrane processes. The membrane process model, consisting of flux and concentration polarization (CP) models, is coupled with balance equations and solved simultaneously. This set of model equations is, however, implicit and nonlinear; consequently, the model must be solved iteratively and numerically, which is time- and cost-intensive. We suggest a method to transform implicit equations to their explicit form, in order to avoid an iterative procedure. In addition, the performance of five solving methods, including the method that we suggest, is tested and compared for accuracy, computation time, and robustness based on input conditions. Our proposed method shows the best performance based on the robustness of various simulation conditions, accuracy, and a cost-effective computation time.

  20. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Science.gov (United States)

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  1. Mathematical logic foundations for information science

    CERN Document Server

    Li, Wei

    2014-01-01

    Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds...

  2. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

    Science.gov (United States)

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-03-14

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

  3. THE METHODICAL ASPECTS OF THE ALGEBRA AND THE MATHEMATICAL ANALYSIS STUDY USING THE SAGEMATH CLOUD

    Directory of Open Access Journals (Sweden)

    M. Popel

    2014-06-01

    Full Text Available The quality of mathematics education depends largely on the quality of education in general. The main idea may be summarized as follows: in order to educate the younger generation of people to be able to meet adequately the demands of the time, it is necessary to create conditions for the high-quality mathematics education. Improving the quality of mathematics education of pupils in secondary school is one of the most pressing problems. Contents of the school course of mathematics and its teaching method has always been the subject of undammed and sometimes stormy scientific debates. There are especially true methods of teaching algebra and the analisis in the high secondary school. Still in the study process the algebraic concepts and principles of analysis are given in such an abstract and generalized form that the student may has considerable difficulties to map these general abstract concepts to the certain concrete images, they are generalizations of. Improving education quality indicators can be achieved by using the appropriate computer technology. The article deals with the use of the cloud-oriented systems of computer mathematics (SCM. The prospects of development of the Web-SCM in terms of cloud-based learning environment are considered. The pedagogical features of the SageMath Cloud use as a tool for mathematics learning are revealed. The methodological aspects of algebra and elementary analysis teaching in a high profile school using the cloud-oriented the SCM SageMath Cloud are revealed.

  4. Learning Mathematics with Creative Drama

    Directory of Open Access Journals (Sweden)

    Baki Şahin

    2018-04-01

    Full Text Available In this study, a mathematics activity that used creative drama method to teach the fifth grade standard “Expresses a position with respect to another point using direction and unit” under geometry and measurement was implemented. Twenty students attending the fifth grade of a public school participated in the study. The lesson plan involved four activities in warm-up, role-play, and evaluation stages. Activities include processes that will ensure active participation of students. The activity lasted two lesson hours. Two prospective mathematics teachers and a mathematics teacher were available in the class during the activity to observe student participation and reactions. Additionally, 10 students were interviewed to learn their views about the lesson. Comments of the observers and the responses of the students to the interview questions indicate that the lesson was successful.

  5. Mathematical Modeling of the Sugar Cane Bagasse'Sprotein Enrichment Processes, in a Packed-Bed Bioreactor

    International Nuclear Information System (INIS)

    Julián-Ricardo, María Caridad; Ramos-Sánchez, Luís Beltrán; Gómez-Atanay, Angel Osvaldo

    2014-01-01

    The residues of the sugar industry have been used usually, natural or processed in the animal alimentation and have been developed a lot of investigations that are allowed obtain protein enrichment products by solid state fermentation (SSF). However, the technologies employed in the production have limitations that are restraining their commercialization. This investigation was directed to find solutions to the problems that are presented and was planted like objective: to obtain a mathematical model for the scale-up of the sugar cane bagasse´s protein enrichment process, using the Candida utilis yeast, in a packed-bed bioreactor. The experimental work was realized in a pilot plant that have an installation for the air accommodation that is supply for the bioreactor, with a temperature of 30 ºC and more than 95 % of relative humidity. Was used a mathematical model compose by a pseudohomogenous energy balance and the mass balances for the biomass overgrowth and the substrate consumption. The validation studies, was realized by the temperatures comparisons axially measure in 10 L and 100 L bioreactor and the temperatures calculated by simulation. The statistic treatment demonstrate that doesn´t exist big differences between the middle temperatures, for a confidence level of 95 %. The analysis realized to characterize the obtained product, allowed establish that it is accord to quality specifications of the protein enrichment feed. (author)

  6. The Mathematical State of the World

    DEFF Research Database (Denmark)

    Christensen, Ole Ravn; Skovsmose, Ole; Yasukawa, Keiko

    2009-01-01

    the concepts of “mathematical description” and “mathematical model” are inadequate to evaluate the use of mathematics in decision-making processes. As a result we develop a conceptual framework that is complex enough to match what goes on in scenarios involving applications of mathematics.......In this article we try to analyse the conditions for describing the world mathematically. We consider the role played by mathematics in discussing and analysing “the state of the world.” We use this discussion to clarify what it means to use a mathematical description. We illustrate why...

  7. Developmental Relations among Motor and Cognitive Processes and Mathematics Skills

    Science.gov (United States)

    Kim, Helyn; Duran, Chelsea A. K.; Cameron, Claire E.; Grissmer, David

    2018-01-01

    This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years.…

  8. Do mathematics textbooks cultivate shallow teaching? Applying the TIMSS Video Study criteria to Australian eighth-grade mathematics textbooks

    Science.gov (United States)

    Vincent, Jill; Stacey, Kaye

    2008-04-01

    Australian eighth-grade mathematics lessons were shown by the 1999 TIMSS Video Study to use a high proportion of problems of low procedural complexity, with considerable repetition, and an absence of deductive reasoning. Using definitions from the Video Study, this study re-investigated this `shallow teaching syndrome' by examining the problems on three topics in nine eighth-grade textbooks from four Australian states for procedural complexity, type of solving processes, degree of repetition, proportion of `application' problems and proportion of problems requiring deductive reasoning. Overall, there was broad similarity between the characteristics of problems in the textbooks and in the Australian Video Study lessons. There were, however, considerable differences between textbooks and between topics within textbooks. In some books, including the best-selling textbooks in several states, the balance is too far towards repetitive problems of low procedural complexity.

  9. The Importance of Dialogic Processes to Conceptual Development in Mathematics

    Science.gov (United States)

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…

  10. Pre-service mathematics teachers' attitudes towards learning English: A case study in Yogyakarta

    Science.gov (United States)

    Setyaningrum, Wahyu

    2017-08-01

    This study investigated attitudes of pre-service mathematics teachers towards English as one of the subject at the university. It is a qualitative study in which questionnaire and face-to-face interview were employed to collect the data. The participants of this study were sixty students of mathematics education department at one of the university in Yogyakarta. The main research question was concern with how pre-service mathematics teachers perceive the importance of learning English. This study found that most of the participants perceive English as an important language that should be acquired by mathematics teachers. Their beliefs about the importance of English were mostly due to instrumental orientation rather than integrative orientation, such as getting a good job, getting a scholarship and understanding learning sources that are written in English. The data also revealed some obstacles faced by pre-service mathematics teachers in learning English as an additional language for them. The main obstacles were related to the differences between English for mathematics and English in daily life including its vocabulary and structure. Most of the participants argued that several mathematics vocabularies had precise meaning and different from daily English. In addition, they found difficult to understand some sentences used in the paper journal due to its structure. This study therefore, provided an insight into the pre-service mathematics teachers' perception and obstacles when learning English that could be use in improving pre-service teachers' education.

  11. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  12. Mathematics for the liberal arts

    CERN Document Server

    Bindner, Donald; Hemmeter, Joe

    2014-01-01

    Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

  13. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    Science.gov (United States)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  14. Raising girls’ participation in A-level mathematics: initial findings from ‘good practice’ case studies

    OpenAIRE

    Smith, C.; Golding, J.

    2015-01-01

    Fewer girls than boys in England participate in post-compulsory mathematics and the recent increase in popularity of Mathematics and Further Mathematics (FM) at age 16 has not changed the gender balance. Previous studies have shown the significance to girls of their mathematics lessons and teachers, of discursive co-constructions of masculinity and mathematics, of the range of careers associated with mathematics and science, and family ‘science capital’. This study identifie...

  15. Managing of the baking bread process based on mathematical model of change crust color dynamics

    Directory of Open Access Journals (Sweden)

    V. K. Bitjukov

    2013-01-01

    Full Text Available In this article a support system of making decision about control of baking process of bread on the basis of estimating the quality ( the colors of the product surface and the mathematical model of the dynamics of change in this indicator is offered.

  16. The philosophical aspect of learning inverse problems of mathematical physics

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2018-12-01

    Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.

  17. Establishing Mathematics for Teaching within Classroom Interactions in Teacher Education

    Science.gov (United States)

    Ryve, Andreas; Nilsson, Per; Mason, John

    2012-01-01

    Teacher educators' processes of establishing "mathematics for teaching" in teacher education programs have been recognized as an important area for further research. In this study, we examine how two teacher educators establish and make explicit features of mathematics for teaching within classroom interactions. The study shows how the…

  18. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  19. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  20. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  1. Mathematical model of whole-process calculation for bottom-blowing copper smelting

    Science.gov (United States)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song

    2017-11-01

    The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.

  2. Current Mathematical Methods Used in QSAR/QSPR Studies

    Directory of Open Access Journals (Sweden)

    Peixun Liu

    2009-04-01

    Full Text Available This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP, Project Pursuit Regression (PPR and Local Lazy Regression (LLR have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR, Partial Least Squares (PLS, Neural Networks (NN, Support Vector Machine (SVM and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future.

  3. Integrating Mathematical Learning during Caregiving Routines: A Study of Toddlers in Swedish Preschools

    Science.gov (United States)

    Palmér, Hanna; Henriksson, Jenny; Hussein, Rania

    2016-01-01

    In recent years the interest in preschool mathematics has increased. However, studies seldom focus on children under the age of three and research is scarce on the early use of mathematics observed in natural settings. This article reports a study of mathematical possibilities during diaper changing in a preschool setting. A diaper change can be a…

  4. Pengaruh Kecemasan Matematika (Mathematics Anxiety) terhadap Kemampuan Koneksi Matematis Siswa SMP

    OpenAIRE

    Anita, Ika Wahyu

    2014-01-01

    Mathematics is considered a scourge for students to grow when students are dealing with anxiety. The study of anxiety has become one of the important factors to be studied. This study was to determine the relationship between math anxiety and influence the ability of mathematical connections. The data were processed using the method of multiple regression-correlation using math anxiety questionnaire instrument is divided into three criteria mathematics anxiety, test the ability to connect mat...

  5. Contextual approach using VBA learning media to improve students’ mathematical displacement and disposition ability

    Science.gov (United States)

    Chotimah, Siti; Bernard, M.; Wulandari, S. M.

    2018-01-01

    The main problems of the research were the lack of reasoning ability and mathematical disposition of students to the learning of mathematics in high school students in Cimahi - West Java. The lack of mathematical reasoning ability in students was caused by the process of learning. The teachers did not train the students to do the problems of reasoning ability. The students still depended on each other. Sometimes, one of patience teacher was still guiding his students. In addition, the basic ability aspects of students also affected the ability the mathematics skill. Furthermore, the learning process with contextual approach aided by VBA Learning Media (Visual Basic Application for Excel) gave the positive influence to the students’ mathematical disposition. The students are directly involved in learning process. The population of the study was all of the high school students in Cimahi. The samples were the students of SMA Negeri 4 Cimahi class XIA and XIB. There were both of tested and non-tested instruments. The test instrument was a description test of mathematical reasoning ability. The non-test instruments were questionnaire-scale attitudes about students’ mathematical dispositions. This instrument was used to obtain data about students’ mathematical reasoning and disposition of mathematics learning with contextual approach supported by VBA (Visual Basic Application for Excel) and by conventional learning. The data processed in this study was from the post-test score. These scores appeared from both of the experimental class group and the control class group. Then, performing data was processed by using SPSS 22 and Microsoft Excel. The data was analyzed using t-test statistic. The final result of this study concluded the achievement and improvement of reasoning ability and mathematical disposition of students whose learning with contextual approach supported by learning media of VBA (Visual Basic Application for Excel) was better than students who got

  6. A Case Study on Mathematical Literacy of Prospective Elementary School Teachers

    Science.gov (United States)

    Suharta, I. Gusti Putu; Suarjana, I. Made

    2018-01-01

    The purpose of this study is to describe Mathematical Literacy (ML) of Prospective Elementary School Teachers with attention to aspects of mathematical skills and gender. The type of research is qualitative with the research design of Case Study. Respondents are assigned 12 Prospective Elementary School Teachers, consisting of 6 men and 6 women.…

  7. Study on the Efficiency of Mathematics Distance Education

    Directory of Open Access Journals (Sweden)

    Abdollah Safavi

    2013-07-01

    Full Text Available In view of scientific and technological advancements, enthusiasm and need of the people for learning and the phenomenon of urban sprawl in many countries, especially advanced and industrial countries, distance education system has been used for many years as a method of teaching people in different locations and in different times without the student's needing to attend a class. Since it has been only a few years that this type of education has been used in the education system of the vast country of Iran and in view of special structure of mathematics and the importance and sensitiveness of its education, the present study was made to assess the success of students in this system of mathematics education. The statistical population of this research consists of 95 boy students from high schools of Tehran who were chosen by quasi-cluster method. 35 students in distance education system were chosen as experiment group and 60 students in traditional education system were chosen as control group. Using quasi-standard harmonious mathematics test and according to the results of descriptive statistics, Levene tests and independent samples test, this method of mathematics education was not found efficient for high school students of Tehran.

  8. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  9. Educational Borrowing and Mathematics Curriculum: Realistic Mathematics Education in the Dutch and Indonesian Primary Curriculum

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2018-02-01

    Full Text Available Since the late 1990s, Indonesian mathematics educators have considered Realistic Mathematics Education (RME, the Dutch approach to mathematics instruction, to be the basis for educational reform. In the National curriculum development, RME has, therefore, been reviewed as among the theoretical references to the curriculum goals and content. In the present study, an analysis of the consistency between RME and the curriculum descriptors and contents in Indonesia is presented. This is supplemented with some comparisons to that in the Netherlands. Findings in this study revealed that while most of RME principles are reflected in the Indonesian curriculum, the descriptions were often very general and less explicit compared to the Dutch curriculum. They were also limited by the content-based approach as well as by the centralized decision making process of the contents to be taught which have been pre-determined at the national level. This study suggests future research to see how the curriculum may influence teachers’ enactment of RME at classroom level.

  10. Teacher Mathematical Literacy: Case Study of Junior High School Teachers in Pasaman

    Science.gov (United States)

    Ahmad, D.; Suherman, S.; Maulana, H.

    2018-04-01

    The aim of this paper was to examine the ability of junior high school mathematics teachers to solve mathematical literacy base Problems (PISA and PISA-like problems) for the case Pasaman regency. The data was collected by interviews and test. As the results of this study, teacher ability in solving mathematical literacy base problems for level 1 until 3 has been good, but for level 4 or above is still low. It is caused by teacher knowledge about mathematical literacy still few.

  11. Development of a Mathematical Model for Multivariate Process by Balanced Six Sigma

    Directory of Open Access Journals (Sweden)

    Díaz-Castellanos Elizabeth Eugenia

    2015-07-01

    Full Text Available The Six Sigma methodology is widely used in business to improve quality, increase productivity and lower costs, impacting on business improvement. However, today the challenge is to use those tools for improvements that will have a direct impact on the differentiation of value, which requires the alignment of Six Sigma with the competitive strategies of the organization.Hence the importance of a strategic management system to measure, analyze, improve and control corporate performance, while setting out responsibilities of leadership and commitment. The specific purpose of this research is to provide a mathematical model through the alignment of strategic objectives (Balanced Scorecard and tools for productivity improvement (Six Sigma for processes with multiple answers, which is sufficiently robust so that it can serve as basis for application in manufacturing and thus effectively link strategy performance and customer satisfaction. Specifically we worked with a case study: Córdoba, Ver. The model proposes that is the strategy, performance and customer satisfaction are aligned, the organization will benefit from the intense relationship between process performance and strategic initiatives. These changes can be measured by productivity and process metrics such as cycle time, production rates, production efficiency and percentage of reprocessing, among others.

  12. The Role of Intuition in the Process of Objectification of Mathematical Phenomena from a Husserlian Perspective: A Case Study

    Science.gov (United States)

    Zagorianakos, Andonis; Shvarts, Anna

    2015-01-01

    The research is a study of the Husserlian approach to intuition, informed by Merleau-Ponty's theory of perception, in the case of a prospective teacher of mathematics. It explores the two major stages-categories of intuition, the essential relations between them, and their vital role in the emergence of empirical and abstract mathematical…

  13. Meaning in mathematics education

    CERN Document Server

    Valero, Paola; Hoyles, Celia; Skovsmose, Ole

    2005-01-01

    What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.

  14. The mathematics of soap films

    CERN Document Server

    Oprea, John

    2000-01-01

    Nature tries to minimize the surface area of a soap film through the action of surface tension. The process can be understood mathematically by using differential geometry, complex analysis, and the calculus of variations. This book employs ingredients from each of these subjects to tell the mathematical story of soap films. The text is fully self-contained, bringing together a mixture of types of mathematics along with a bit of the physics that underlies the subject. The development is primarily from first principles, requiring no advanced background material from either mathematics or physics. Through the Maple® applications, the reader is given tools for creating the shapes that are being studied. Thus, you can "see" a fluid rising up an inclined plane, create minimal surfaces from complex variables data, and investigate the "true" shape of a balloon. Oprea also includes descriptions of experiments and photographs that let you see real soap films on wire frames. The theory of minimal surfaces is a beautif...

  15. IMPROVING TEACHING MATHEMATICS USING MODERN INFORMATION TECHNOLOGIES IN FORMATION MATHEMATICAL COMPETENCE REQUIRED FUTURE SKIPPERS.

    Directory of Open Access Journals (Sweden)

    Elena Gudyreva

    2015-10-01

    Full Text Available The article is devoted to consideration of issues related to identifying the potential for teaching mathematics using network (Internet technology and the introduction of elements of distance learning into educational process of higher educational establishments of the sea profile, as well as achievement of formation of mathematical competence of students of the University generally, and of the University's Maritime profile, in particular. Based on the analysis of psychological and pedagogical literature highlights the factors that influence the increase of efficiency of independent work of students of higher educational institutions and on the formation of steady skills of self-education that ultimately leads to quality of formation of mathematical competence of a student. Specific features of teaching mathematics at the University of the sea profile. The description of the project (complex sites "KSMA. Higher mathematics navigators", who developed and used in the Kherson state Maritime Academy in the teaching of mathematics and the organization of individual techniques of distance learning, shows the simplicity and accessibility of working with complex sites, as well as the simplicity and accessibility of design "personal website", but in fact complex sites, by a teacher of any discipline of higher education. Shown, also a training process with the use of the project "KSMA. Higher mathematics navigators", analyzes the experience of teaching the course "Higher mathematics" in a higher educational institution of the marine profile with the use of a personal website, a teacher and shown positive results in students mastery of basic mathematical competencies.

  16. Japanese lesson study in mathematics its impact, diversity and potential for educational improvement

    CERN Document Server

    Isoda, Masami; Stephens, Max

    2007-01-01

    In Before It''s Too Late: A Report to the Nation from the National Commission on Mathematics and Science Teaching for the 21st Century (2000) in the US, the authors quote from James Stigler''s conclusions from various videotape research studies of mathematics teaching: "The key to long-term improvement [in teaching] is to figure out how to generate, accumulate, and share professional knowledge". Japanese Lesson Study has proved to be one successful means. This book supports the growing movement of lesson study to improve the quality of mathematics education from the original viewpoints of Japanese educators who have been engaging in lesson study in mathematics for professional development and curriculum implementation. This book also illustrates several projects related to lesson study in other countries.

  17. Salient Beliefs of Secondary School Mathematics Teachers Using Dynamic Geometry Software

    Science.gov (United States)

    Chan, Kan Kan

    2015-01-01

    Even though dynamic geometry software (DGS) is becoming an emergent instructional tool for mathematics teachers, many teachers are still in the process of consideration about whether to use it. In order to encourage teachers to use DGS, this study seeks to discover mathematics teachers' salient beliefs about the use of DGS in mathematics class.…

  18. Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process

    Science.gov (United States)

    Bal, Aytgen Pinar; Doganay, Ahmet

    2014-01-01

    The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…

  19. The nature of mathematical enrichment: a case study of implementation

    Directory of Open Access Journals (Sweden)

    Jennifer Susan Piggott

    2007-12-01

    Full Text Available This paper reports a framework for describing the nature of mathematics enrichment that emerged from a case study based on the work of the NRICH Project (www.nrich.maths.org team when producing “mathematics enrichment trails” (an ordered set of related mathematics problems and support materials. A range of data sources, including the trails, trail development sessions, related literature and the views of colleagues were used to inform the findings. The data were analysed using NVivo and involved the development of two complementary coding systems. One, drawn from the data itself, gave evidence of views of the content aspects of mathematical enrichment. The other, specifically designed and informed by the literature, was used to aid the analysis of the roles of teaching and learning inherent in views of enrichment described by participants. The framework describes the content of an enrichment curriculum as well as implications for teaching and learning, the experiences of learners and the features of settings where this occurs. To support this, some detail is provided on the role, nature and purpose of problem-solving and what constitutes a good problem. While emerging from a particular context, the framework highlights the need for debate concerning the audience for mathematics enrichment, particularly in questioning the commonly held belief that its value is in supporting the needs of the mathematically most able. The framework also has potential value through offering a focus for debate within the wider community concerning the nature of mathematics enrichment and as a reference point for evaluating the potential of existing or new curriculum to deliver mathematics enrichment.

  20. DEVELOPING STUDENTS’ ABILITY OF MATHEMATICAL CONNECTION THROUGH USING OUTDOOR MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Saleh Haji

    2017-01-01

    Full Text Available The Purpose of this study is to determine the achievement and improvement of students’ mathematical connectionability through using outdoor mathematics learning. 64 students from the fifth grade of Primary School at SDN 65 and SDN 67 Bengkulu City were taken as the sample of this study. While the method of the research used in this research is experiment with quasi-experimental designs non-equivalent control group. The results of the study are as follows: (1 There is an increasing ability found in mathematical connection of students whom taught by using outdoors mathematics learning is 0,53; (2 Based on statical computation that achievement of students’ ability of mathematical connection is taught by using outdoor mathematics learning score is 71,25. It is higher than the students score 66,25 which were taught by using the conventional learning. So as to improve students’ mathematical connection, teachers are suggested to use the outdoors mathematics learning

  1. Secondary School Mathematics Teachers' Attitude in Teaching Mathematics

    OpenAIRE

    Mulugeta Atnafu

    2014-01-01

    The purpose of this study was to examine Addis Ababa secondary school mathematics teachers’ attitude in teaching mathematics. 148 mathematics teachers were selected using cluster sampling from Addis Ababa administration region. The study used survey method of data collection and it includes both quantitative and qualitative research methods. From the independent t-test, ANOVA, tukey test and regression analysis, some of the results obtained were: the majority of the secondary school mathemati...

  2. Hemomath the mathematics of blood

    CERN Document Server

    Fasano, Antonio

    2017-01-01

    This book illustrates applications of mathematics to various processes (physiological or artificial) involving flowing blood, including hemorheology, microcirculation, coagulation, kidney filtration and dialysis, offering a historical overview of each topic. Mathematical models are used to simulate processes normally occurring in flowing blood and to predict the effects of dysfunctions (e.g. bleeding disorders, renal failure), as well as the effects of therapies with an eye to improving treatments. Most of the models have a completely new approach that makes patient-specific simulations possible. The book is mainly intended for mathematicians interested in medical applications, but it is also useful for clinicians such as hematologists, nephrologists, cardio-surgeons, and bioengineers. Some parts require no specific knowledge of mathematics. The book is a valuable addition to mathematics, medical, biology, and bioengineering libraries.

  3. The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study

    Science.gov (United States)

    Mischo, Christoph; Maaß, Katja

    2013-01-01

    This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…

  4. Student-Teachers in Higher Education Institutions' (HEIs) Emotional Intelligence and Mathematical Competencies

    Science.gov (United States)

    Eustaquio, William Rafael

    2015-01-01

    As manifested by various studies conducted, the present state of Mathematics education in the teaching-learning process is relatively declining and the existing effort to identify emotional intelligence and mathematics competencies of Mathematics major student-teachers at Higher Education Institutions in Isabela is an attempt to help alleviate the…

  5. Mathematical Strengths and Weaknesses of Preservice Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady; Stephens, Carrie A.

    2014-01-01

    The purpose of this study was to describe the mathematics ability of preservice agricultural education teachers related to each of the National Council of Teachers of Mathematics (NCTM) content/process areas and their corresponding sub-standards that are cross-referenced with the National Agriculture, Food and Natural Resources Career Cluster…

  6. Use of imitation mathematical model of phosphorus system for analysis of rates of production-destruction processes in reservoir of the Zagorsk pumped-storage plant

    International Nuclear Information System (INIS)

    Leonov, A.V.; Margolina, G.L.; Sokolov, A.G.

    1993-01-01

    The rates of production-destruction processes in water media are traditionally measured for investigation of the conditions of operation of water-ecology systems and to study the role of microorganisms in the transformation of substances of different origins. One possibility for investigation of the production-destruction process is the use of numerical analytic methods and, in particular, of imitation mathematical modeling. The task of this investigation consisted of evaluation, from observations carried out in 1989, of the rates of production-destruction processes in the water of the reservoir of the Zagorsk pumped-storage plant by means of an imitation mathematical model of a phosphorus system. The model was based on a study of the characteristics of transformation of phosphorus in the water media, as well as by comparison of evaluations of the rates of the above-mentioned processes by two methods -- an experimental one (a modification of the oxygen flask method) and an analytical one (an imitation model of a phosphorus system). 7 refs., 6 figs., 4 tabs

  7. Early mathematical competencies and later achievement: insights from the Longitudinal Study of Australian Children

    Science.gov (United States)

    MacDonald, Amy; Carmichael, Colin

    2017-11-01

    International research suggests that early mathematical competence predicts later mathematical achievement. In this article, we explore the relationship between mathematical competencies at 4-5 years, as measured by teacher ratings, and later results on Years 3, 5, 7 and 9 National Assessment Program - Literacy and Numeracy (NAPLAN) numeracy tests. Data from a nationally representative sample of 2343 children participating in the Longitudinal Study of Australian Children (LSAC) are examined. In line with international studies, we report moderate correlations between preschool-entry mathematics and later NAPLAN numeracy test results. However, analysis of individual growth trajectories indicates that early mathematics predicts the initial (Year 3) level, but not subsequent growth. This suggests that early mathematical competencies are important for enhancing achievement in early schooling, but that the quality of mathematics education provided in the schooling years is critical for future development.

  8. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  9. Elementary Pre-Service Teachers' Mathematics Anxiety and Mathematics Teaching Anxiety

    Science.gov (United States)

    Haciomeroglu, Guney

    2014-01-01

    The present study examined the structure of elementary pre-service teachers' mathematics anxiety and mathematics teaching anxiety by asking whether the two systems of anxiety are related. The Turkish Mathematics Anxiety Rating Scale Short Version and the Mathematics Teaching Anxiety Scale were administered to 260 elementary pre-service teachers.…

  10. Improving of prospective elementary teachers' reasoning: Learning geometry through mathematical investigation

    Science.gov (United States)

    Sumarna, Nana; Sentryo, Izlan

    2017-08-01

    This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.

  11. Principle-Based Mathematics: An Exploratory Study

    OpenAIRE

    Poon, Rebecca Chung-Yan

    2014-01-01

    Although educators and policymakers are becoming increasingly aware of the need for professional development that is content specific (Kennedy, 1999) and focuses on deepening and broadening teachers' knowledge of content for teaching (American Federation of Teachers, 2002; National Academy of Education, 2009), little attention has been given to supporting teachers' development of content knowledge as defined by Shulman (1986). Principle-Based Mathematics (PBM), a presentation of K-12 mathemat...

  12. Masculinities in mathematics

    CERN Document Server

    Mendick, Heather

    2006-01-01

    The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.

  13. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    Science.gov (United States)

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  14. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    Science.gov (United States)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  15. The Effect of Dynamic and Interactive Mathematics Learning Environments (DIMLE), Supporting Multiple Representations, on Perceptions of Elementary Mathematics Pre-Service Teachers in Problem Solving Process

    Science.gov (United States)

    Ozdemir, S.; Reis, Z. Ayvaz

    2013-01-01

    Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…

  16. Effects of Gender, Mathematics Anxiety and Achievement Motivation on College Students’ Achievement in Mathematics

    Directory of Open Access Journals (Sweden)

    Ajogbeje Oke James

    2013-07-01

    Full Text Available The urge to excel or perform maximally in mathematics varies from individual to individual because achievement motivation is often developed or learnt during socialization and learning experiences. The study examined the relationship between College of Education students’ achievement motivation and mathematics achievement, correlation coefficient between mathematics anxiety and college students’ achievement motivation as well as mathematics anxiety and mathematics achievement. The sample, 268 College of Education students offering mathematics as one of their subject combination, was selected using purposive sampling techniques. Three research instruments namely: Mathematics Anxiety Scale (MAS, Achievement Motivation Scale (AMS and Mathematics Achievement Test (MAT were used to collect data for the study. Data collected for the study were analyzed using correlational analysis and ANOVA. The results showed that a significantly low negative correlation coefficient existed between mathematics anxiety and mathematics achievement. There is a negative and significant correlation coefficient between mathematics anxiety and achievement motivation. Similarly, a positive and significant correlation coefficient also exists between achievement motivation and mathematics achievement. Based on the findings of the study, it was recommended that mathematics teachers should adopt activity based strategies and conducive learning environment in order to reduce college students’ anxieties in mathematics learning.

  17. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    Science.gov (United States)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  18. Ranking of options of real estate use by expert assessments mathematical processing

    Science.gov (United States)

    Lepikhina, O. Yu; Skachkova, M. E.; Mihaelyan, T. A.

    2018-05-01

    The article is devoted to the development of the real estate assessment concept. In conditions of multivariate using of the real estate method based on calculating, the integral indicator of each variant’s efficiency is proposed. In order to calculate weights of criteria of the efficiency expert method, Analytic hierarchy process and its mathematical support are used. The method allows fulfilling ranking of alternative types of real estate use in dependence of their efficiency. The method was applied for one of the land parcels located on Primorsky district in Saint Petersburg.

  19. Learning to Teach Mathematics Specialists in a Synchronous Online Course: A Self-Study

    Science.gov (United States)

    Hjalmarson, Margret A.

    2017-01-01

    This article uses a self-study research methodology to explore teaching an online course for mathematics specialists. The course included weekly videoconferencing sessions and focused on supporting their development as mathematics coaches working with K-8 teachers to enhance mathematics teaching and learning. The central question for the…

  20. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  1. Qualitative mathematics for the social sciences mathematical models for research on cultural dynamics

    CERN Document Server

    Rudolph, Lee

    2012-01-01

    In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in

  2. An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities.

    Science.gov (United States)

    Heine, Angela; Wissmann, Jacqueline; Tamm, Sascha; De Smedt, Bert; Schneider, Michael; Stern, Elsbeth; Verschaffel, Lieven; Jacobs, Arthur M

    2013-09-01

    The aim of the present study was to probe electrophysiological effects of non-symbolic numerical processing in 20 children with mathematical learning disabilities (mean age = 99.2 months) compared to a group of 20 typically developing matched controls (mean age = 98.4 months). EEG data were obtained while children were tested with a standard non-symbolic numerical comparison paradigm that allowed us to investigate the effects of numerical distance manipulations for different set sizes, i.e., the classical subitizing, counting and estimation ranges. Effects of numerical distance manipulations on event-related potential (ERP) amplitudes as well as activation patterns of underlying current sources were analyzed. In typically developing children, the amplitudes of a late parietal positive-going ERP component showed systematic numerical distance effects that did not depend on set size. For the group of children with mathematical learning disabilities, ERP distance effects were found only for stimuli within the subitizing range. Current source density analysis of distance-related group effects suggested that areas in right inferior parietal regions are involved in the generation of the parietal ERP amplitude differences. Our results suggest that right inferior parietal regions are recruited differentially by controls compared to children with mathematical learning disabilities in response to non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes that exceed the subitizing range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics

    Science.gov (United States)

    Dickerson, David S.; Doerr, Helen M.

    2014-12-01

    Proof serves many purposes in mathematics. In this qualitative study of 17 high school mathematics teachers, we found that these teachers perceived that two of the most important purposes for proof in school mathematics were (a) to enhance students' mathematical understanding and (b) to develop generalized thinking skills that were transferable to other fields of endeavor. We found teachers were divided on the characteristics (or features) of proofs that would serve these purposes. Teachers with less experience tended to believe that proofs in the high school should adhere to strict standards of language and reasoning while teachers with more experience tended to believe that proofs based on concrete or visual features were well suited for high school mathematics. This study has implications for teacher preparation because it appears that there is a wide variation in how teachers think about proof. It seems likely that students would experience proof very differently merely because they were seated in different classrooms.

  4. The materiality of mathematics: presenting mathematics at the blackboard.

    Science.gov (United States)

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics. © London School of Economics and Political Science 2014.

  5. Unfolding the assessment process in a whole class mathematics setting

    Directory of Open Access Journals (Sweden)

    Radišić Jelena

    2014-01-01

    Full Text Available Assessment activities in the class are an important aspect of classroom practice, while there is much debate with respect to the formative vs. summative assessment routines and the outcomes that each of them provides for students' learning. As classroom assessment does not occur in seclusion of other aspects of classroom life, the process is seen as rather complex. In this study we wished to explore how assessment serves the function of supporting students' learning and whether this evidence is used to adapt teacher's practices in meeting different learning needs in the mathematics classroom. The authors observed assessment practices of an experienced math teacher in a grammar school in Belgrade. Teacher's assessment practices were observed during a three week period. The analysis has shown the teacher to hold a somewhat complex perception of assessment, yet the perception is largely detached from teaching, which is in line with the previously reported results. However, the elements of formative assessment do emerge, thus contributing to the assessment being in service of learning. In spite of this, a narrow set of practices are visible when observing how the teacher keeps track of students' progress. A mismatch is visible between students' and teacher's perceptions of the assessment as a whole and some of the practices exercised in the process. The teacher struggled to verbalize some aspects of own assessment practices, especially those related to more formative aspects.

  6. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  7. Cross-national Retrospective Studies of Mathematics Olympians.

    Science.gov (United States)

    Campbell, James Reed, Ed.

    1996-01-01

    The eight chapters of this theme issue use quantitative and qualitative methods to explore the nature and nurture of young participants in the mathematics Olympiad from five countries. Parallel studies are presented of winners from China, Taiwan, and the United States, along with descriptions of programs in Japan and Russia. (SLD)

  8. POOR PROGRESS STUDENTS IN LEARNING MATHEMATICS AS SOCIAL AND PSYCHOLOGICAL-PEDAGOGICAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Vladimir Tatochenko

    2016-09-01

    Full Text Available The article is devoted to theoretical substantiation of modern methodical system of Mathematics teaching of poor progressing secondary school pupils. A systematic approach to the study of psycho-pedagogical determinants of poor progress of pupils in math was implemented. The dynamic of interfunctional relationship of structure of educational and informative sphere of poor progressing pupils in mathematics was disclosed and scientific understanding of this process was expanded. The introduction in the educational process of didactic methodical and psychologically balanced methodical control system and correction of poor progressing students’ in Maths improves quality indicators of their permanent knowledge and skills. It allows you to discover the fullness, depth and durability of learning at different stages and levels of education, it contributes to correction, management and partly self-management learning process of poor progressing students in Mathematics, excites them to an active mental activity promotes the development of a conscious attitude to their systematic academic work. The essence of “poor progress” phenomena is observed as well as “educational retardation” of school students during teaching mathematics. Target orientation, the resource potential of the real educational process of poor progressing pupils in Mathematics are determined. Contradictions are singled out and pedagogical conditions of results control of learning outcomes of comprehensive school pupils are proved. An attempt to consider the academic failure of schoolchildren in Mathematics in connection with the main categories of didactics – the content and the learning process was made. Certain shortcomings of teaching and learning activities of students in the study of Mathematics are highlighted as poor progressing elements and gaps. The process and content, enriched with the use of NIT, ensuring the formation of key competencies of lagging behind and

  9. Foreword to the Special Focus on Mathematics, Data and Knowledge

    KAUST Repository

    Chen, Xiaoyu

    2013-12-01

    There is a growing interest in applying mathematical theories and methods from topology, computational geometry, differential equations, fluid dynamics, quantum statistics, etc. to describe and to analyze scientific regularities of diverse, massive, complex, nonlinear, and fast changing data accumulated continuously around the world and in discovering and revealing valid, insightful, and valuable knowledge that data imply. With increasingly solid mathematical foundations, various methods and techniques have been studied and developed for data mining, modeling, and processing, and knowledge representation, organization, and verification; different systems and mechanisms have been designed to perform data-intensive tasks in many application fields for classification, predication, recommendation, ranking, filtering, etc. This special focus of Mathematics in Computer Science is organized to stimulate original research on the interaction of mathematics with data and knowledge, in particular the exploration of new mathematical theories and methodologies for data modeling and analysis and knowledge discovery and management, the study of mathematical models of big data and complex knowledge, and the development of novel solutions and strategies to enhance the performance of existing systems and mechanisms for data and knowledge processing. The present foreword provides a short review of some key ideas and techniques on how mathematics interacts with data and knowledge, together with a few selected research directions and problems and a brief introduction to the four papers published in the focus. © 2013 Springer Basel.

  10. A three-phase comprehensive mathematical model of desulfurization in electroslag remelting process

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Guangqiang; He, Zhu; Li, Baokuan

    2017-01-01

    Highlights: • First developed a three-phase coupled model of desulfurization in ESR process. • The MHD thermal flow in the reactor was clarified. • Distributions of sulfur concentration in the three phases were demonstrated. • An experiment was carried out to validate the simulation. - Abstract: A three-phase comprehensive mathematical model has been established to study the desulfurization behavior in electroslag remelting (ESR) process. The solutions of the mass, momentum, energy, and species conservation equations were simultaneously calculated by the finite volume method. The Joule heating and Lorentz force were fully coupled through solving the Maxwell’s equations with the assistance of the magnetic potential vector. The movements of the air-slag and slag-metal interfaces were described by the volume of fluid (VOF) approach. In order to include the influences of the air, the slag and the electric current on the desulfurization, a thermodynamic and kinetic module was introduced. An experiment was conducted to validate the model. The completely comparison between the measured and simulated data indicates that the model can describe the desulfurization behavior in the ESR process with an acceptable accuracy. The sulfur in the metal would be transferred into the slag under the combined effect of the slag treatment and the electrochemical reaction, and is primarily achieved in the period of the droplet formation. The sulfur in the slag then could be transferred into the air because of the oxidation. The maximum calculated removal ratio in the whole process is around 88%.

  11. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  12. An intercomparison of computer assisted date processing and display methods in radioisotope scintigraphy using mathematical tumours

    International Nuclear Information System (INIS)

    Houston, A.S.; Macleod, M.A.

    1977-01-01

    Several computer assisted processing and display methods are evaluated using a series of 100 normal brain scintigrams, 50 of which have had single 'mathematical tumours' superimposed. Using a standard rating system, or in some cases quantitative estimation, LROC curves are generated for each method and compared. (author)

  13. The Mathematics Textbook at Tertiary Level as Curriculum Material--Exploring the Teacher's Decision-Making Process

    Science.gov (United States)

    Randahl, Mira

    2016-01-01

    This paper reports on a study about how the mathematics textbook was perceived and used by the teacher in the context of a calculus part of a basic mathematics course for first-year engineering students. The focus was on the teacher's choices and the use of definitions, examples and exercises in a sequence of lectures introducing the derivative…

  14. Criticising with Foucault: Towards a Guiding Framework for Socio-Political Studies in Mathematics Education

    Science.gov (United States)

    Kollosche, David

    2016-01-01

    Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the…

  15. Predicting Success in College Mathematics from High School Mathematics Preparation

    OpenAIRE

    Shepley, Richard A.

    1983-01-01

    The purpose of this study was to develop a model to predict the college mathematics courses a freshman could expect to pass by considering their high school mathematics preparation. The high school information that was used consisted of the student's sex, the student's grade point average in mathematics, the highest level of high school mathematics courses taken, and the number of mathematics courses taken in high school. The high school sample was drawn from graduated Seniors in the State...

  16. Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics

    Science.gov (United States)

    Wickstrom, Megan H.

    2017-01-01

    This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…

  17. Psychological effects and epistemological education through mathematics "abstraction" and "construction"

    Directory of Open Access Journals (Sweden)

    Aurel Pera

    2015-10-01

    Full Text Available This study is part of a broader research which will be found in future work, Psychology and epistemology of mathematical creation, complementary work of experimental research psychology mathematics, whose investigative approach, promoting the combination type cross section paradigms and quantitative methods and qualitative and comparative method and the analytic-synthetic, based on the following idea: to make learning as efficient, contents and methods must be appropriate to the individual particularities of the pupils, a measure of the balance between converging and diverging dosing tasks as a promising opening to the transition from education proficiency in math performance. At this juncture, mathematical existence as ontological approach against the background of a history of "abstraction" mathematical and theoretical observations on the abstraction, realization and other mathematical thought processes, explanatory approach fulfills the context in which s mathematics constituted an important factor in psychological and methodological perspective, in a context of maximizing the educational effectiveness that depends on the quality of the methods used in teaching, focused on knowledge of the general principles of psycho-didactics not only mathematical and mental organization individual student or knowledge of the factors that make possible psycho-educational learning process.

  18. A Study on the Role of Drama in Learning Mathematics

    Directory of Open Access Journals (Sweden)

    Elahe Masoum

    2013-08-01

    Full Text Available Present educational systems needs modern strategies for teaching and learning. Mathematics education has to change for students in elementary schools. One of the modern strategies, it is drama activities. The drama is as empirical aspect of learning. The student may learn from what they are doing in drama. They are so active instead having a passive shape in drama, in fact, students are learning, finding experiences and new paths from drama as well. The students could find its capabilities, recommendations and strength-weakness points through the different drama. This study is looking to investigate the role of drama so that have a better understanding of mathematical concepts in Zahedan's girly elementary students (2011-12. This research is used on 36 three grade students through quasi-experiment method. The emerging results clearly showed that using drama in mathematics education has been better results against the traditional teaching. Then it seems that cited method is suitable for elementary students to learn mathematical concepts.

  19. Exploring Yellowstone National Park with Mathematical Modeling

    Science.gov (United States)

    Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia

    2017-01-01

    Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…

  20. A Study on the Effect of Mathematics Teaching Provided through Drama on the Mathematics Ability of Six-Year-Old Children

    Science.gov (United States)

    Erdogan, Serap; Baran, Gulen

    2009-01-01

    This study was conducted to examine the effect of mathematics teaching given through the drama method on the mathematical ability of six-year-old children. The research was conducted in Ankara on 105 children from the kindergarten classes of two different primary schools of the Ministry of National Education, which are at middle socio-economic…

  1. Mathematics Anxiety in Young Children: Concurrent and Longitudinal Associations with Mathematical Performance

    Science.gov (United States)

    Vukovic, Rose K.; Kieffer, Michael J.; Bailey, Sean P.; Harari, Rachel R.

    2013-01-01

    This study explored mathematics anxiety in a longitudinal sample of 113 children followed from second to third grade. We examined how mathematics anxiety related to different types of mathematical performance concurrently and longitudinally and whether the relations between mathematics anxiety and mathematical performance differed as a function of…

  2. Mathematical modeling in municipal solid waste management: case study of Tehran.

    Science.gov (United States)

    Akbarpour Shirazi, Mohsen; Samieifard, Reza; Abduli, Mohammad Ali; Omidvar, Babak

    2016-01-01

    Solid Waste Management (SWM) in metropolises with systematic methods and following environmental issues, is one of the most important subjects in the area of urban management. In this regard, it is regarded as a legal entity so that its activities are not overshadowed by other urban activities. In this paper, a linear mathematical programming model has been designed for integrated SWM. Using Lingo software and required data from Tehran, the proposed model has been applied for Tehran SWM system as a case study. To determine the optimal status of the available system for Tehran's Solid Waste Management System (SWMS), a novel linear programming model is applied. Tehran has 22 municipal regions with 11 transfer stations and 10 processing units. By running of the model, the transfer stations and processing units are decreased to 10 and 6 units, respectively. The proposed model is an alternative method for improvement the SWMS by decreasing the transfer stations and processing units.

  3. THE MATHEMATICAL MODEL DEVELOPMENT OF THE ETHYLBENZENE DEHYDROGENATION PROCESS KINETICS IN A TWO-STAGE ADIABATIC CONTINUOUS REACTOR

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.

  4. A Mixed Methods Study of Teach for America Teachers' Mathematical Beliefs, Knowledge, and Classroom Teaching Practices during a Reform-Based University Mathematics Methods Course

    Science.gov (United States)

    Swars, Susan Lee

    2015-01-01

    This mixed methods study examined the mathematical preparation of elementary teachers in a Teach for America (TFA) program, focal participants for whom there is scant extant research. Data collection occurred before and after a university mathematics methods course, with a particular focus on the participants' (n = 22) mathematical beliefs,…

  5. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  7. Framing the structural role of mathematics in physics lectures: A case study on electromagnetism

    Directory of Open Access Journals (Sweden)

    Ricardo Karam

    2014-05-01

    Full Text Available Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations. Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction. Starting from an overall distinction between a technical approach, which involves an instrumental (tool-like use of mathematics, and a structural one, focused on reasoning about the physical world mathematically, the goal of this study is to characterize the development of the latter in didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a distinguished physics professor. The analysis of selected teaching episodes with the software Videograph led to the identification of a set of categories that describe different strategies used by the professor to emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic tool to enable future comparative studies between didactic approaches regarding the way mathematics is treated in physics teaching is provided.

  8. An Example of Using History of Mathematics in Classes

    Science.gov (United States)

    Goktepe, Sevda; Ozdemir, Ahmet Sukru

    2013-01-01

    In recent years, the topic of integrating history to mathematics lessons in teaching-learning processes has been frequently discussed among researchers. The main aim of this study is to present an example activity which enriched with history of mathematics and to take the views of students about teaching course in this way. In addition, to create…

  9. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    Science.gov (United States)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  10. Mathematical simulation of processes in horizontal steam generator and the program of calculation of its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.F.; Zorin, V.M.; Gorburov, V.I. [OKB Gidropress, Moscow Energy Inst. (Russian Federation)

    1995-12-31

    On the basis of mathematical models describing the processes in horizontal steam generator (SG) the code giving the possibility to calculate the hydrodynamical characteristics in any point of water volume, has been developed. The code simulates the processes in SG in the stationary (or quasi-stationary) mode or operation only. The code may be used as a next step to calculations of the SG characteristics in the non-stationary modes of operation.

  11. Mathematical simulation of processes in horizontal steam generator and the program of calculation of its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V F; Zorin, V M; Gorburov, V I [OKB Gidropress, Moscow Energy Inst. (Russian Federation)

    1996-12-31

    On the basis of mathematical models describing the processes in horizontal steam generator (SG) the code giving the possibility to calculate the hydrodynamical characteristics in any point of water volume, has been developed. The code simulates the processes in SG in the stationary (or quasi-stationary) mode or operation only. The code may be used as a next step to calculations of the SG characteristics in the non-stationary modes of operation.

  12. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  13. Developing a study orientation questionnaire in Mathematics for primary school students

    OpenAIRE

    Van Der Walt, Martha

    2009-01-01

    The Study Orientation Questionnaire in Mathematics (Primary) is being developed as a diagnostic measure for South African teachers and counsellors to help primary school students improve their orientation towards the study of mathematics. In this study, participants were primary school students in the North-West Province of South Africa. During the standardisation in 2007, 1,013 students (538 boys: M age = 12.61; SD = 1.53; 555 girls: M age = 11.98; SD = 1.35; 10 missing values) were assessed...

  14. A new mathematical process for the calculation of average forms of teeth.

    Science.gov (United States)

    Mehl, A; Blanz, V; Hickel, R

    2005-12-01

    Qualitative visual inspections and linear metric measurements have been predominant methods for describing the morphology of teeth. No quantitative formulation exists for the description of dental features. The aim of this study was to determine and validate a mathematical process for calculation of the average form of first maxillary molars, including the general occlusal features. Stone replicas of 174 caries-free first maxillary molar crowns from young patients ranging from 6 to 9 years of age were measured 3-dimensionally with a laser scanning system at a resolution of approximately 100,000 points. Then, the average tooth was computed, which captured the common features of the molar's surface quantitatively. This new method adapts algorithms both from computer science and neuroscience to detect and associate the same features and same surface points (correspondences) between 1 reference tooth and all other teeth. In this study, the method was tested for 7 different reference teeth. The algorithm does not involve any prior knowledge about teeth and their features. Irrespective of the reference tooth used, the procedure yielded average teeth that showed nearly no differences (less than +/-30 microm). This approach provides a valid quantitative process for calculating 3-dimensional (3D) averages of occlusal surfaces of teeth even in the event of a high number of digitized surface points. Additionally, because this process detects and assigns point-wise feature correspondences between all library teeth, it may also serve as a basis for a more substantiated principal component analysis evaluating the main natural shape deviations from the 3D average.

  15. Interest in mathematics and science among students having high mathematics aptitude

    Science.gov (United States)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  16. Mathematics beliefs and achievement of a national sample of Native American students: results from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States assessment.

    Science.gov (United States)

    House, J Daniel

    2009-04-01

    Recent mathematics assessment findings indicate that Native American students tend to score below students of the ethnic majority. Findings suggest that students' beliefs about mathematics are significantly related to achievement outcomes. This study examined relations between self-beliefs and mathematics achievement for a national sample of 130 Grade 8 Native American students from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States sample of (M age = 14.2 yr., SD = 0.5). Multiple regression indicated several significant relations of mathematics beliefs with achievement and accounted for 26.7% of the variance in test scores. Students who earned high test scores tended to hold more positive beliefs about their ability to learn mathematics quickly, while students who earned low scores expressed negative beliefs about their ability to learn new mathematics topics.

  17. Practical research on junior high school mathematics about students' learning processes : using 'reflective sheet' (the Math Journal) et al.

    OpenAIRE

    吉岡, 睦美; 重松, 敬一

    2015-01-01

    In this paper, we discuss the case study of mathematics education for Junior High School students' learning processes focusing students' metacognition and knowledge using 'Reflective Sheet' (the Math Journal) et al.. The metacognition is rather than direct action on the environment and the perception that target cognitive function and cognitive recognition of that, and say what happens in the mind. Especially, we use Reflective Sheet which is formed to check students' cognitive and metacognit...

  18. Perception determinants in learning mathematics

    Science.gov (United States)

    Mokhtar, Siti Fairus; Ali, Noor Rasidah; Rashid, Nurazlina Abdul

    2015-05-01

    This article described a statistical study of students' perception in mathematics. The objective of this study is to identify factors related to perception about learning mathematics among non mathematics' student. This study also determined the relationship between of these factors among non mathematics' student. 43 items questionnaires were distributed to one hundred students in UiTM Kedah who enrolled in the Business Mathematics course. These items were measured by using a semantic scale with the following anchors: 1 = strongly disagree to 7 = strongly agree. A factor analysis of respondents were identified into five factors that influencing the students' perception in mathematics. In my study, factors identified were attitude, interest, role of the teacher, role of peers and usefulness of mathematics that may relate to the perception about learning mathematics among non mathematics' student.

  19. Sustainable Student Retention and Gender Issues in Mathematics for ICT Study

    Science.gov (United States)

    Divjak, Blazenka; Ostroski, Mirela; Hains, Violeta Vidacek

    2010-01-01

    This article reports on the research whose specific objective is to improve student retention in mathematics included in the first-year ICT study programme by means of improving teaching methods, with an emphasis on gender issues. Two principal reasons for this research are, first, the fact that first-year mathematics courses are often viewed as…

  20. Feasible mathematics II

    CERN Document Server

    Remmel, Jeffrey

    1995-01-01

    Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computa­ tion device, such as a 'lUring machine or boolean circuit. Feasible math­ ematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on nota...

  1. A Pathway for Mathematical Practices

    Science.gov (United States)

    Wenrick, Melanie; Behrend, Jean L.; Mohs, Laura C.

    2013-01-01

    How can teachers engage students in learning essential mathematics? The National Council of Teachers of Mathematics recommends using "contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations" (NCTM 2006, p. 11). Understanding the Process Standards (NCTM 2000) enables teachers…

  2. An approach critical in mathematics education: Opportunities and interaction theory-practice-through critical mathematics education

    Directory of Open Access Journals (Sweden)

    Itamar Miranda da Silva

    2011-06-01

    Full Text Available This paper discusses the possibilities of articulation of theory-and-practice in the teaching, by means of critical mathematics education as a proposal for the teacher facing the challenges of daily life in the classroom. The discussion is based on the literature through which was estudied and analyzed several books, articles and dissertations on the subject, as well as our experiences and reflections resulting from the process of teacher education we experienced. From the readings and analysis was possible to construct a teaching proposal that suggests to address critical mathematics education as an alternative link between theory and practice and to assign to the teaching of mathematics a greater dynamism, with the prospect of developing knowledge and pedagogical practices that contribute to a broader training, which prepares for citizenship and for being critical students and teachers in the training process. Conjectures were raised about possible contributions of critical mathematics education as a differentiated alternative as opposed to reproductivist teaching. We believe therefore that this article could help with the reflections on the importance of mathematics education in teacher education which enables the realization that beyond disciplinary knowledge (content, are necessary pedagogical knowledge, curriculum and experiential to address the problems that relate to the teaching of mathematics

  3. A comparison between strategies applied by mathematicians and mathematics teachers to solve a problem

    OpenAIRE

    Guerrero-Ortiz, Carolina; Mena-Lorca, Jaime

    2015-01-01

    International audience; This study analyses the results obtained from comparing the paths shown by expert mathematicians on the one hand and mathematics teachers on the other, when addressing a hypothetical problem that requires the construction of a mathematical model. The research was conducted with a qualitative approach, applying a case study which involved a group of mathematics teachers and three experts from different mathematical areas. The results show that the process of constructin...

  4. Learning by Preparing to Teach: Fostering Self-Regulatory Processes and Achievement during Complex Mathematics Problem Solving

    Science.gov (United States)

    Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.

    2016-01-01

    We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…

  5. Is There Gender Difference between Learning Disabled Students' Performances in Mathematical Activities? (Case Study

    Directory of Open Access Journals (Sweden)

    Somayeh Karimi

    2013-11-01

    Full Text Available Recent studies show that mathematics disorder is a learning disorder. Children with this disorder have math skills is much lower than mean for their age, intelligence, and education. The disorder affects the child's success at school. It is thought that up to 7% of children have this disorder. It affects boys and girls equally. It is also caused dyscalculia. The cause of this disorder is not known. Like other learning disorders, it occurs more in some families. Mathematics disorder may also be the result of damage in certain parts of the brain. It also has led to a weak understanding of mathematical concepts and increased realization of mathematics. In this study, it is tried that studied gender difference between learning disabled students' performances in mathematical activities. Findings indicated that there is not meaningful difference between genders. Since this research was case study, it seems that this difference will be indicated in vast studies. Then it suggests that have to do more study in this field for its causes.

  6. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  7. PROFICIENT CLASSROOM MANAGEMENT THROUGH FOCUSED MATHEMATIC TEACHING

    Directory of Open Access Journals (Sweden)

    Marcus Samuelsson

    2017-12-01

    Full Text Available A not entirely unusual position among teachers is that they believe that they must first establish a peaceful classroom before they can begin to teach the subject. This research, shows how a proficient mathematics teacher teaches his subject and thereby creates a quiet and focused classroom and exerts effective leadership, just by teaching mathematics. The researchers observed a male mathematics teacher for almost half a year, i.e. one semester. The results of research present several patterns that the researchers saw during the observations of his teaching. The teacher showed an interest in each student’s mathematical thinking and expressed explicitly how students were expected to learn mathematics. He also directed students’ attention to mathematics and established a culture where all solutions were important in the teaching process. In the teaching process, he used multiple representations to motivate students and a lot of supportive expressions that made them feel that they were able to learn mathematics. He worked patiently to establish structures, and there was almost no disruptive behaviour. Students simply did not have time to interfere because they were so engaged in learning mathematics.

  8. Mathematical modelling of zirconium salicylate solvent extraction process

    International Nuclear Information System (INIS)

    Smirnova, N.S.; Evseev, A.M.; Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    Mathematical modelling of equilibrium multicomponent physicochemical system at the extraction of zirconium salicylates by chloroform is carried out from HCl aqueous solutions at pH 0.5-4.7. Adequate models, comprising different molecular forms, corresponding to equilibrium phase composition are built

  9. Mathematical modelling of zirconium salicylate solvent extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N S; Evseev, A M; Fadeeva, V I; Kochetkova, S K [Moskovskij Gosudarstvennyj Univ. (USSR)

    1979-11-01

    Mathematical modelling of equilibrium multicomponent physicochemical system at the extraction of zirconium salicylates by chloroform is carried out from HCl aqueous solutions at pH 0.5-4.7. Adequate models, comprising different molecular forms, corresponding to equilibrium phase composition are built.

  10. MATHEMATICS TEACHER: MOVING KNOWLEDGE UNDER FORMATION

    Directory of Open Access Journals (Sweden)

    Roselaine Machado Albernaz

    2010-07-01

    Full Text Available This essay approaches the Mathematics teacher forming process from his/her experiences in the school system and the set of knowledge that hashistorical, philosophical and politically constituted him/her. This set of knowledge not only comprises academic knowledge, but also involves the subjective effects of knowledge it incorporates. Starting from a tale, the character, called ‘researcher-teacher’, conducts the text throughout questions about the forming processes of teachers of such a particular subject as Mathematics. The character seems to have an “interrogative something” which is peculiar to us, teachers, concerned about our disciplinary field. Having the objective of problematize the formation and knowledge of our character, her ways of being, thinking and perceiving, we intend to question, with and through her, the new requirements that have been demanded towards Mathematics teachers and the set of knowledge that constitute her, the way she is, her way of acting and taking  position in the school universe. The proposed essay seeks for an articulation between the fields of Art, Philosophy, Science and Education. It speaks about the intriguing school world, but not least, the ways we think to treat the forming process of Mathematics teachers from a set of logical, subjective and sensitive knowledge.  Key words: Forming process of teachers; mathematics; aesthetic experience; philosophy of difference.

  11. Mathematical models for the efficiency of flotation process for the recovery of north waziristan copper

    International Nuclear Information System (INIS)

    Ali, S.; Rahman, S.U.; Khan, M.M.

    2007-01-01

    Mathematical models were developed to give an insight into the effect of process variables, propylxanthae (X/sub 1/ g/ton), pH (X/sub 2/), sodium sulphide (X3 g/ton) and sodium cyanide (X/sub 4/ g/ton), on the recovery (YR) of copper. The optimum recovery (YR) 62.95%, was obtained at X/sub 4/=60g/ton. (author)

  12. The Prevalence of Mathematical Anxiety in a Business School: A Comparative Study across Subject Areas

    Directory of Open Access Journals (Sweden)

    Anna Howard

    2017-01-01

    Full Text Available Mathematical anxiety is a phenomenon linked to poor attainment in mathematics and restricted development of mathematical skills among those who are afflicted by it. Unfortunately most undergraduate courses in business related areas require the further study of mathematics to enable effective business decision making and students who suffer from mathematical anxiety are placed at risk of underperformance or failure in such quantitative modules. This paper summarizes the results of a survey (n = 330 of students joining a university business school with a view to ascertaining the degree of mathematical anxiety exhibited by incoming students. Results of the survey show no significant differences in anxiety attributable to age or gender but significant differences attributable to level of study and subject area. Implications of the findings for a redesigned teaching approach are discussed drawing on suggestions from the literature surrounding mathematical anxiety.

  13. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  14. Secondary School Mathematics Teachers' Knowledge Levels and Use of History of Mathematics

    Science.gov (United States)

    Bütüner, Suphi Önder

    2018-01-01

    This study describes secondary school mathematics teachers' use of history of mathematics in their classes and their knowledge levels in this field. The study population included a total of 58 secondary school mathematics teachers working at the secondary schools located in Yozgat city center, and the sample included 32 mathematics teachers from…

  15. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  16. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  17. Attitudes of Mathematics Teachers toward Using Smart Board in Teaching Mathematics

    Science.gov (United States)

    Muhanna, Wafa; Nejem, Khamis Mousa

    2013-01-01

    This study aimed at investigating the attitudes of mathematics teachers toward using a smart board in teaching mathematics and also to determine the effect of gender, experience, and qualification of teachers on their attitudes. The sample of this study consisted of 74 mathematics teachers--35 males and 39 females--from private schools in Amman…

  18. Mathematical Creativity and Mathematical Aptitude: A Cross-Lagged Panel Analysis

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2016-01-01

    Cross-lagged panel correlation (CLPC) analysis has been used to identify causal relationships between mathematical creativity and mathematical aptitude. For this study, 480 8th standard students were selected through a random cluster technique from 9 intermediate and high schools of Varanasi, India. Mathematical creativity and mathematical…

  19. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  20. Standards for Reporting Mathematics Professional Development in Research Studies

    Science.gov (United States)

    Sztajn, Paola

    2011-01-01

    This Research Commentary addresses the need for standards for describing mathematics professional development in mathematics education research reports. Considering that mathematics professional development is an emerging research field, it is timely to set expectations for what constitutes high-quality reporting in this field. (Contains 2 tables.)

  1. The Prevalence of Mathematical Anxiety in a Business School: A Comparative Study Across Subject Areas

    OpenAIRE

    Howard, A; Warwick, J

    2016-01-01

    Mathematical anxiety is a phenomenon linked to poor attainment in mathematics and restricted development of mathematical skills among those who are afflicted by it. Unfortunately most undergraduate courses in business related areas require the further study of mathematics to enable effective business decision making and students who suffer from mathematical anxiety are placed at risk of underperformance or failure in such quantitative modules. This paper summarizes the results of ...

  2. Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery

    Science.gov (United States)

    Preininger, Anita M.

    2017-02-01

    There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before and after the 18-week chemistry class; results from the chemistry class were compared to survey results from students in an elective science class that did not emphasize mathematics. At the end of the 18-week period, only the chemistry students exhibited more positive views toward their abilities in mathematics and careers that involve mathematics, as compared to their views at the outset of the course. To ensure that chemistry mastery was not hindered by the additional emphasis on math, and that mastery on state end-of-course examinations reflected knowledge acquired during the math-intensive chemistry class, a chemistry progress test was administered at the start and end of the term. This exploratory study suggests that emphasizing mathematical approaches in chemistry may positively influence attitudes toward math in general, as well as foster mastery of chemistry content.

  3. Structural Modeling for Influence of Mathematics Self-Concept, Motivation to Learn Mathematics and Self-Regulation Learning on Mathematics Academic Achievement

    OpenAIRE

    Hamideh Jafari Koshkouei; Ahmad Shahvarani; Mohammad Hassan Behzadi; Mohsen Rostamy-Malkhalifeh

    2016-01-01

    The present study was carried out to investigate the influence of mathematics self-concept (MSC), motivation to learn mathematics (SMOT) and self-regulation learning (SRL) on students' mathematics academic achievement. This study is of a descriptive survey type. 300 female students at the first grade of high school (the second period) in City Qods, were selected by multiple step cluster sampling method and completed MSC, SMOT and SRL questionnaires. Mathematics academic achievement was measur...

  4. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    Science.gov (United States)

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  5. Enhancing Parent Involvement in NC-CCSS for K-2 Mathematics

    Science.gov (United States)

    Johnson, D.

    2014-12-01

    Key Terms:Parent Involvement, Common Core State Standards, Homework, K - 2 Mathematics In this study, the 2014 REU math team developed and provided a workshop that assisted parents in understanding the North Carolina Common Core State Standards for K-2 Mathematics to assist with student homework assignments. Parent involvement is defined as parent participating in the educational processes and experiences of their children. A chi-square analysis was used to analyze data collected from the pre survey and the post survey administered to participants in the workshop. The study revealed all of the individual components of parent involvement were positively and significantly related to educational goals. The study identified various aspects of parent involvement that yielded statistically significant results in affirming that parent involvement attributed to urban student achievement. These findings were particularly helpful for indicating which kinds of parent involvement influenced academic success. Most notably, parent expectations and styles demonstrated a strong relationship with scholastic outcomes. Parent expectations and styles created an educationally oriented ambience that established an understanding of the certain level of support the child needed to succeed academically. The REU mathematics team focused on three essential questions in this study: (1) What practices will increase parent awareness of K-2 NC-CCSS for mathematics at P. W. Moore Elementary School? (2) What methods can be used to strengthen parent skills in assisting with mathematics homework assignments at P. W. Moore Elementary School? (3) What actions can be taken to motivate parent involvement in the school improvement process focusing on mathematics at P. W. Moore Elementary School?

  6. Research Mathematicians' Practices in Selecting Mathematical Problems

    Science.gov (United States)

    Misfeldt, Morten; Johansen, Mikkel Willum

    2015-01-01

    Developing abilities to create, inquire into, qualify, and choose among mathematical problems is an important educational goal. In this paper, we elucidate how mathematicians work with mathematical problems in order to understand this mathematical process. More specifically, we investigate how mathematicians select and pose problems and discuss to…

  7. Mathematics at University

    DEFF Research Database (Denmark)

    Winsløw, Carl

    2015-01-01

    Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...... and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined...

  8. Methodological Approaches to Experimental Teaching of Mathematics to University Students

    Directory of Open Access Journals (Sweden)

    Nikolay I.

    2018-03-01

    Full Text Available Introduction: the article imparts authors’ thoughtson a new teaching methodology for mathematical education in universities. The aim of the study is to substantiate the efficiency of the comprehensive usage of mathematical electronic courses, computer tests, original textbooks and methodologies when teaching mathematics to future agrarian engineers. The authors consider this implementation a unified educational process. Materials and Methods: the synthesis of international and domestic pedagogical experience of teaching students in university and the following methods of empirical research were used: pedagogical experiment, pedagogical measurementsand experimental teaching of mathematics. The authors applied the methodology of revealing interdisciplinary links on the continuum of mathematical problems using the key examples and exercises. Results: the online course “Mathematics” was designed and developed on the platform of Learning Management System Moodle. The article presents the results of test assignments assessing students’ intellectual abilities and analysis of solutions of various types of mathematical problems by students. The pedagogical experiment substantiated the integrated selection of textbooks, online course and online tests using the methodology of determination of the key examples and exercises. Discussion and Conclusions: the analysis of the experimental work suggested that the new methodology is able to have positive effect on the learning process. The learning programme determined the problem points for each student. The findings of this study have a number of important implications for future educational practice.

  9. Teaching Mathematics in Multilingual Classrooms: Developing Intercultural Competence via a Study Abroad Program

    Science.gov (United States)

    Kasmer, Lisa Anne; Billings, Esther

    2017-01-01

    This study investigated how a study abroad experience teaching mathematics in Tanzania, Africa impacted a group of secondary education pre-service teachers (PSTs) from the United States. In particular we discuss their ability to facilitate the learning of students in multilingual mathematics classrooms while personally developing intercultural…

  10. "Mathematics Is Like a Lion": Elementary Students' Beliefs about Mathematics

    Science.gov (United States)

    Markovits, Zvia; Forgasz, Helen

    2017-01-01

    The aim of this study was to explore the beliefs of elementary school students about mathematics and about themselves as mathematics learners. The participants, Israeli grade 4 and grade 6 students, completed questionnaires. Using an "animal metaphor" to tap beliefs, some students perceived mathematics as difficult and complicated, while…

  11. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  12. Mathematical Competence of a Child - Life Success of an Adult

    Directory of Open Access Journals (Sweden)

    Tina Bregant

    2017-10-01

    Full Text Available Aims: To provide a brief overview of literature studying the relationship between mathematical competences in childhood and adult life success measured in academic achievements, socioeconomic status, and health measures. Results: Mathematical competences are determined by the ability to process mathematical symbols and quantity determination which is partially inborn. We can stimulate mathematical abilities by preschool stimulation, which leads to a less difficult behavioural pattern. Better mathematical competences correlate with positive socio-emotional control and positive attitudes towards learning and school which contribute to a more engaged academic life-style. Higher mathematical achievements correlate with better paid positions and also increased gross domestic product (GDP on the national level. The Study of Mathematically Precocious Youth showed that their adult careers, accomplishments, and psychological well-being far exceeded base-rate expectations. On the other hand, children who are born preterm or near term experience mathematical learning difficulties which, despite the absence of overt health problems, present an obstacle into leading an otherwise fulfilling life. Conclusions: We can conclude from the findings, that mathematical precocity early in life predicts later creative contributions and leadership in critical occupational roles. Mathematical abilities are partially inborn. However, mathematical literacy can be further nurtured in preschool and school programmes. Since it is connected to a higher prosperity on individual as well as on national level, mathematical intervention should be offered especially to those who are underprivileged. When stimulating mathematical competences, a greater prosperity for all can be anticipated.

  13. Pre-Service Secondary Mathematics Teachers' Reflections on Good and Bad Mathematics Teaching

    Science.gov (United States)

    Dayal, Hem Chand

    2013-01-01

    Researchers suggest that teachers' beliefs about teaching are strongly influenced by their personal experiences with mathematics. This study aimed to explore Pacific Island pre-service secondary mathematics teachers' perceptions about good and bad mathematics teachers. Thirty pre-service teachers, enrolled in a mathematics teaching methods course…

  14. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    A curriculum designed around habits of mind comprises both the content and the process. The existing .... Research in learning shows that ... and various interrelated experiences that ... mathematics has very little connection with .... that uses workplace and everyday tasks to .... cognitive sciences has supported the notion.

  15. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  16. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  17. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  18. Mathematical knowledge for teaching: Making the tacit more explicit in mathematics teacher education

    Science.gov (United States)

    Abdullah, Mohd Faizal Nizam Lee; Vimalanandan, Lena

    2017-05-01

    Teaching practice during school based experiences, afford an opportunity for pre service teachers to put into practice their knowledge for teaching mathematics. Like all knowledge, Mathematical Knowledge for Teaching (MKT) is held in both tacit and explicit form, making it especially difficult to study and map during instruction. This study investigates the tacit and explicit nature of MKT held by pre service teachers in a Malaysian Teacher Education Program and how it impacts the Mathematical Quality of their instruction (MQI). This study of three mathematics pre-service teachers (PSTs), utilised videos of mathematics lessons, reflective debriefs and interviews. The findings suggest that factors such as reflecting, peer-sharing, conferencing with mentors and observing support in making tacit knowledge more explicit during planning and instruction. Implications for preparation of mathematics teachers capable of high Mathematical Quality of Instruction are also discussed.

  19. Adversity Quotient in Mathematics Learning (Quantitative Study on Students Boarding School in Pekanbaru

    Directory of Open Access Journals (Sweden)

    Zubaidah Amir MZ

    2017-08-01

    Full Text Available The aim of this study is to analyze students’ Adversity Quotient (AQ in mathematics learning viewed from gender aspect. This study is quantitative survey study on students in MTs Al-Munawarah Boarding School, Pekanbaru. The subjects of study are 8th grade students consisting of  75 girls and 63 boys. Data are collected by AQ scale and analyzed with statistic descriptive and inferential (test-t. The indicator of AQ consist of control, origin, ownership, reach and endurance.  The result of descriptive analysis shows that there is difference in mean of each indicator for two groups, but analysis of test-t  shows that there is no difference in students’ mathematical AQ for two group of gender. Through variance test, students’ mathematical AQ in two groups is homogeneous. The indicator of AQ in boys which is categorized as high are endurance and reach. While, the indicator in girls is aspect of control. This study contributes to literature study in identifying students’ AQ and the effort done to enhance students’ AQ in mathematics learning.

  20. Computer-Based Mathematics Instructions for Engineering Students

    Science.gov (United States)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  1. Mathematics across cultures the history of non-Western mathematics

    CERN Document Server

    2000-01-01

    Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  2. A Content Analysis Study about the Usage of History of Mathematics in Textbooks in Turkey

    Science.gov (United States)

    Eren, Mehmet; Bulut, Mehmet; Bulut, Neslihan

    2015-01-01

    The present study aimed to investigate how history of mathematics was integrated to some mathematics textbooks in Turkey. On this account, four different textbooks with different grade levels were chosen. In total, 42 cases were detected and studied by three researchers. Results indicated that the usage of history of mathematics was materialized…

  3. Unraveling the Culture of the Mathematics Classroom: A Video-Based Study in Sixth Grade

    Science.gov (United States)

    Depaepe, Fien; De Corte, Erik; Verschaffel, Lieven

    2007-01-01

    Changing perspectives on mathematics teaching and learning resulted in a new generation of mathematics textbooks, stressing among others the importance of mathematical reasoning and problem-solving skills and their application to real-life situations. The article reports a study that investigates to what extent the reform-based ideas underlying…

  4. Mathematics for multimedia

    CERN Document Server

    Wickerhauser, Mladen Victor

    2003-01-01

    Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are `gems' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors and s...

  5. The Language of Mathematics Utilizing Math in Practice

    CERN Document Server

    Baber, Robert L

    2011-01-01

    A new and unique way of understanding the translation of concepts and natural language into mathematical expressions Transforming a body of text into corresponding mathematical expressions and models is traditionally viewed and taught as a mathematical problem; it is also a task that most find difficult. The Language of Mathematics: Utilizing Math in Practice reveals a new way to view this process-not as a mathematical problem, but as a translation, or language, problem. By presenting the language of mathematics explicitly and systematically, this book helps readers to learn mathematics¿and i

  6. Is rapid automatized naming related to reading and mathematics for the same reason(s)? A follow-up study from kindergarten to Grade 1.

    Science.gov (United States)

    Georgiou, George K; Tziraki, Niki; Manolitsis, George; Fella, Argyro

    2013-07-01

    We examined (a) what rapid automatized naming (RAN) components (articulation time and/or pause time) predict reading and mathematics ability and (b) what processing skills involved in RAN (speed of processing, response inhibition, working memory, and/or phonological awareness) may explain its relationship with reading and mathematics. A sample of 72 children were followed from the beginning of kindergarten until the end of Grade 1 and were assessed on measures of RAN, general cognitive ability, speed of processing, attention, working memory, phonological awareness, reading, and mathematics. The results indicated that pause time was the critical component in both the RAN-reading and RAN-mathematics relationships and that it shared most of its predictive variance in reading and mathematics with speed of processing and working memory. Our findings further suggested that, unlike the relationship between RAN and reading fluency in Grade 1, there is nothing in the RAN task that is uniquely related to math. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... The level of detail varies; some disciplines produce manuscripts that comprise discrete .... Duplicate publication, sometimes called self-plagiarism, occurs when an author ...

  8. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  9. A mathematical model for postirradiation immunity

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1988-01-01

    A mathematical model of autoimmune processes in exposed mammals was developed. In terms of this model a study was made of the dependence of the autoimmunity kinetics on radiation dose and radiosensitivity of autologous tissues. The model simulates the experimentally observed dynamics of autoimmune diseases

  10. Using video games to combine learning and assessment in mathematics education

    Directory of Open Access Journals (Sweden)

    Kristian Juha Mikael Kiili

    2015-12-01

    Full Text Available One problem with most education systems is that learning and (summative assessment are generally treated as quite separate things in schools. We argue that video games can provide an opportunity to combine these processes in an engaging and effective way. The present study focuses on investigating the effectiveness and the assessment power of two different mathematics video games, Semideus and Wuzzit Trouble. In the current study, we validated the Semideus game as a rational number test instrument. We used it as a pre- and a post-test for a three-hour intervention in which we studied the effectiveness of Wuzzit Trouble, a game built on whole number arithmetic and designed to enhance mathematical thinking and problem solving skills. The results showed that (1 games can be used to assess mathematical knowledge validly, and (2 even short game-based interventions can be very effective. Based on the results, we argue that game-based assessment can create a more complete picture of mathematical knowledge than simply measuring students' accuracy, providing indicators of student misconceptions and conceptual change processes

  11. The Increase of Critical Thinking Skills through Mathematical Investigation Approach

    Science.gov (United States)

    Sumarna, N.; Wahyudin; Herman, T.

    2017-02-01

    Some research findings on critical thinking skills of prospective elementary teachers, showed a response that is not optimal. On the other hand, critical thinking skills will lead a student in the process of analysis, evaluation and synthesis in solving a mathematical problem. This study attempts to perform an alternative solution with a focus on mathematics learning conditions that is held in the lecture room through mathematical investigation approach. This research method was Quasi-Experimental design with pre-test post-test design. Data analysis using a mixed method with Embedded design. Subjects were regular students enrolled in 2014 at the study program of education of primary school teachers. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The results of the study showed that (1) there is a significant difference in the improvement of critical thinking ability of students who receive learning through mathematical investigation approach when compared with students studying through expository approach, and (2) there is no interaction effect between prior knowledge of mathematics and learning factors (mathematical investigation and expository) to increase of critical thinking skills of students.

  12. Studies in the history of Indian mathematics

    CERN Document Server

    2010-01-01

    This volume is the outcome of a seminar on the history of mathematics held at the Chennai Mathematical Institute during January-February 2008 and contains articles based on the talks of distinguished scholars both from the West and from India. The topics covered include: (1) geometry in the oulvasatras; (2) the origins of zero (which can be traced to ideas of lopa in Paoini's grammar); (3) combinatorial methods in Indian music (which were developed in the context of prosody and subsequently applied to the study of tonal and rhythmic patterns in music); (4) a cross-cultural view of the development of negative numbers (from Brahmagupta (c. 628 CE) to John Wallis (1685 CE); (5) Kunnaka, Bhavana and Cakravala (the techniques developed by Indian mathematicians for the solution of indeterminate equations); (6) the development of calculus in India (covering the millennium-long history of discoveries culminating in the work of the Kerala school giving a complete analysis of the basic calculus of polynomial and trigon...

  13. A Categorization Model for Educational Values of the History of Mathematics. An Empirical Study

    Science.gov (United States)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-11-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the history of mathematics by combining the objectives of high school mathematics curriculum in China. This framework includes six dimensions: the harmony of knowledge, the beauty of ideas or methods, the pleasure of inquiries, the improvement of capabilities, the charm of cultures, and the availability of moral education. The results show that this framework better explained the all-educational values of the history of mathematics that all teaching cases showed. Therefore, the framework can guide teachers to better integrate the history of mathematics into teaching.

  14. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    Science.gov (United States)

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  15. Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling

    Science.gov (United States)

    Karali, Diren; Durmus, Soner

    2015-01-01

    The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…

  16. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    Science.gov (United States)

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  17. Mathematics Anxiety, Working Memory and Mathematics Performance in Secondary-School Children

    Directory of Open Access Journals (Sweden)

    Maria Chiara ePassolunghi

    2016-02-01

    Full Text Available Mathematics anxiety (MA has been defined as a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations. Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM also plays an important part in such anxious feelings.The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA and low math anxiety (LMA. Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  18. Why do early mathematics skills predict later reading? The role of mathematical language.

    Science.gov (United States)

    Purpura, David J; Logan, Jessica A R; Hassinger-Das, Brenna; Napoli, Amy R

    2017-09-01

    A growing body of evidence indicates that the development of mathematics and literacy skills is highly related. The importance of literacy skills-specifically language-for mathematics development has been well rationalized. However, despite several prominent studies indicating that mathematics skills are highly predictive of literacy development, the reason for this relation is not well understood. The purpose of this study was to identify how and why early mathematics is predictive of early literacy development. Participants included 125 preschool children 3-5 years old (M = 4 years 3 months). Participants were assessed on mathematics, literacy, and cognitive measures in both the fall and spring of their preschool year. Mediation analyses indicated that the relation between early mathematics and literacy skills is mediated by children's mathematical language skills. These findings suggest that, in prior research identifying mathematical performance as a significant predictor of later literacy skills, mathematical performance may have acted only as a proxy measure for more complex language skills such as those assessed on a mathematical language measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  20. Attitudes towards Mathematics of the students who enter University of Granada

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Tyteca

    2008-05-01

    Full Text Available Affective answers play an essential role in the process of teaching-learning mathematics. Within this field, the more studied construct in the last three decades is the attitude towards mathematics. This construct have been frequently related to gender differences between the students population as well as the students´ election of mathematics courses and university degrees depending on the level of mathematics that they present. For this reason, we have analyzed, using an adaptation of the Fennema-Sherman Mathematics Attitude Scales (1976, the attitudes towards mathematics of the students who enter the University of Granada, in a global way and classifying the subjects by gender and by the fields of knowledge of their degrees.

  1. A Categorization Model for Educational Values of the History of Mathematics: An Empirical Study

    Science.gov (United States)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-01-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the…

  2. Mathematic Model of Technical Process of Heavy Mixtures Classifying on the Basis of Dispersion of Particles Flight Path

    OpenAIRE

    Normahmad Ravshanov; Bozorboy Palvanov; Gulnora Shermatova

    2014-01-01

    The article presents mathematic model and results of computer calculations of heavy mixtures classifying and farm crops full seeds selection. They enable to determine major process parameters and variation range, providing maximum dispersion of particles flight path, depending on feedstock modules.

  3. Mathematical model of process of redundant measurements with uninterrupted influence of measurand on sensing element of sensor

    Directory of Open Access Journals (Sweden)

    Redko V. V.

    2011-12-01

    Full Text Available The paper discusses improvement of accuracy of measurands measurements with the use of measuring channel with nonlinear calibration curve. There is proposed a mathematical model, which describes process of redundant measurements for measuring channel when it’s measurement function is a polynomial of third power.

  4. Effects of single-gender mathematics classrooms on self-perception of mathematical ability and post secondary engineering paths: an Australian case study

    Science.gov (United States)

    Tully, D.; Jacobs, B.

    2010-08-01

    This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.

  5. The influence of Missouri mathematics project on seventh grade students’ mathematical understanding ability

    Science.gov (United States)

    Rezeki, S.; Setyawan, A. A.; Amelia, S.

    2018-01-01

    Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.

  6. In-service and Pre-service Middle School Mathematics Teachers' Attitudes and Decisions Regarding Teaching Mathematics Using Mobile Phones

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2014-10-01

    Full Text Available Several researches examined students' mathematics learning using mobile phones, while very few researches examined mathematics teaching using this new educational tool. This research attempts to analyze in-service and pre-service teachers' attitudes and decisions regarding mathematics teaching with mobile phones using activity theory. More specifically, three case studies are analyzed in this research: One concerns an in-service teacher who used mobile phones in her class, the second case study involves a pre-service teacher who collaborated with the in-service teacher to teach mathematics lessons using mobile phones, and the third case study is about 15 pre-service teachers who were observers of the experiment but did not use mobile phones in their teaching. We held one-hour semi-structured interviews with the in-service teacher, with the leading pre-service teacher and with the group of other observer pre-service teachers. This happened three times during the academic year: at the beginning of the experiment, after three months and after it ended. The research findings indicate that different factors have an impact on the attitudes and decisions of the teacher: history of the teacher using technologies in teaching, perceptions of the teacher using technologies in teaching, community’s teacher, rules regulating the use of technologies in teaching mathematics, and division of labor. For example, questions as to who decides which technologies to use in the classroom and who should prepare the learning material for the students. Contradictions were identified in mathematics teachers' activity when utilizing mobile phones in their teaching. These contradictions hinder or slow such utilization. Community, especially its leading members, mediated and helped overcome the activity contradictions that arose throughout the experiment regarding the teaching processes in and/or out of the mathematics classroom.

  7. ABOUT THREE PROCESSES IN MATHEMATICS EDUCATION FOR SOLIDARITY ECONOMY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Renata Cristina Geromel Meneghetti

    2013-07-01

    Full Text Available This paper focuses on Mathematics Education in the context of Solidarity Economy and aims to approach our performance, aiming to answer demands of Mathematics Education of the three Solidarity Economy Enterprises (SEE: a cooperative cleaning, of a women carpenter’s group and a group manufacturing homemade soap. Based on the Ethnomathematics, a pedagogical intervention with these SEE was performed, in which we seek to work the Mathematics within the cultural context of these enterprises through problem situations related to their daily work. The research followed a qualitative research through action research. As a result we found that the approach applied has contributed to changes some attitudes, it was favorable to the learning of concepts and also the socioeconomic reintegration, in the direction of a posture more critical and emancipatory. The interventions were inserted in the Non Formal Education, and we point out that realize this type of education can indeed contribute to the ideals of Education in the Solidarity Economy as a way include those who have been socially excluded by formal education provided at school.

  8. Mathematics learning on geometry for children with autism

    Science.gov (United States)

    Widayati, F. E.; Usodo, B.; Pamudya, I.

    2017-12-01

    The purpose of this research is to describe: (1) the mathematics learning process in an inclusion class and (2) the obstacle during the process of mathematics learning in the inclusion class. This research is a descriptive qualitative research. The subjects were a mathematics teacher, children with autism, and a teacher assistant. Method of collecting data was observation and interview. Data validation technique is triangulation technique. The results of this research are : (1) There is a modification of lesson plan for children with autism. This modification such as the indicator of success, material, time, and assessment. Lesson plan for children with autism is arranged by mathematics teacher and teacher assistant. There is no special media for children with autism used by mathematics teacher. (2) The obstacle of children with autism is that they are difficult to understand mathematics concept. Besides, children with autism are easy to lose their focus.

  9. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  10. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    OpenAIRE

    E. V. Biloshytskyi

    2018-01-01

    Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical...

  11. Characteristic of critical and creative thinking of students of mathematics education study program

    Science.gov (United States)

    Rochmad; Agoestanto, A.; Kharis, M.

    2018-03-01

    Critical and creative thinking give important role in learning matematics for mathematics education students. This research to explored the characteristic of critical and creative thinking of students of mathematics study program in mathematics department. Critical thinking and creative thinking can be illustrated as two sides of a coin, which one is associated to the other. In elementary linear algebra courses, however, critical thinking can be seen as a foundation to build students’ creative thinking.

  12. Study on reactive extrusion processes of block copolymer

    International Nuclear Information System (INIS)

    Wu Lili; Jia Yuxi; Sun Sheng; Zhang Guofang; Zhao Guoqun; An Lijia

    2007-01-01

    The anionic copolymerization process of styrene-butadiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results

  13. APPLYING PROFESSIONALLY ORIENTED PROBLEMS OF MATHEMATICAL MODELING IN TEACHING STUDENTS OF ENGINEERING DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Natal’ya Yur’evna Gorbunova

    2017-06-01

    Full Text Available We described several aspects of organizing student research work, as well as solving a number of mathematical modeling problems: professionally-oriented, multi-stage, etc. We underlined the importance of their economic content. Samples of using such problems in teaching Mathematics at agricultural university were given. Several questions connected with information material selection and peculiarities of research problems application were described. Purpose. The author aims to show the possibility and necessity of using professionally-oriented problems of mathematical modeling in teaching Mathematics at agricultural university. The subject of analysis is including such problems into educational process. Methodology. The main research method is dialectical method of obtaining knowledge of finding approaches to selection, writing and using mathematical modeling and professionally-oriented problems in educational process; the methodology is study of these methods of obtaining knowledge. Results. As a result of analysis of literature, students opinions, observation of students work, and taking into account personal teaching experience, it is possible to make conclusion about importance of using mathematical modeling problems, as it helps to systemize theoretical knowledge, apply it to practice, raise students study motivation in engineering sphere. Practical implications. Results of the research can be of interest for teachers of Mathematics in preparing Bachelor and Master students of engineering departments of agricultural university both for theoretical research and for modernization of study courses.

  14. From Calculus to Wavelets: ANew Mathematical Technique

    Indian Academy of Sciences (India)

    expansions have many theoretical and practical ..... them into a rigorous mathematical theory. Meyer con- structed an ... engineers for signal processing, Ingrid Daubechies con- ..... and its applications on a somewhat higher mathematical level.

  15. Strengthening the Conceptualization of Mathematics Pedagogical Content Knowledge for International Studies: A Taiwanese Perspective

    Science.gov (United States)

    Hsieh, Feng-Jui

    2013-01-01

    This paper discusses different conceptual frameworks for measuring mathematics pedagogical content knowledge (MPCK) in international comparison studies. Two large-scale international comparative studies, "Mathematics Teaching in the Twenty-First Century" (MT21; Schmidt et al., 2011) and the "Teacher Education and Development Study…

  16. Self-efficacy, mathematics' anxiety and perceived importance: an empirical study with Portuguese engineering students

    Science.gov (United States)

    Alves, Manuela; Rodrigues, Cristina S.; Rocha, Ana Maria A. C.; Coutinho, Clara

    2016-01-01

    The accomplishment in mathematics has gained attention from educators and arises as an emerging field of study, including in engineering education. However, in Portugal, there is still incipient research in the area; so it is high time to explore factors that might enlighten the gap in the study of the relationship between Portuguese engineering students and the learning of mathematics. The main purpose of this study is to explore three factors identified in the literature as influencing the learning of mathematical concepts - self-efficacy, anxiety towards mathematics and perceived importance of mathematics - and search for differences by gender and by type of engineering course, a dimension not much reported in the literature but which was revealed as important in the team's previous research. Based on a sample of 140 undergraduate students of different engineering courses from University of Minho, results only identify differences in the type of course and not in gender. These results constitute a contribution and open new paths for future research in the engineering education.

  17. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study.

    Science.gov (United States)

    Mercader, Jessica; Miranda, Ana; Presentación, M Jesús; Siegenthaler, Rebeca; Rosel, Jesús F

    2017-01-01

    The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions), executive functioning (inhibition and working memory), and early numeracy skills (logical operations, counting, and magnitude comparison abilities), assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5-6 and 7-8 years old). The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  18. The Use of the History of Mathematics in the Teaching Pre-Service Mathematics Teachers

    Science.gov (United States)

    Galante, Dianna

    2014-01-01

    Many scholars have written about using the history of mathematics in the teaching of pre-service mathematics teachers. For this study, pre-service mathematics teachers developed an electronic journal of reflections based on presentations in the history of mathematics in a secondary mathematics education course. The main purpose of the…

  19. Historical Research: How to Fit Minority and Women's Studies into Mathematics Class

    Science.gov (United States)

    Saraco, Margaret R.

    2008-01-01

    This article presents a lesson for studying minority and women's contributions to the field of mathematics in the middle school classroom. This lesson may be able to stem the tide of the shrinking number of students entering the field of mathematics by helping them become interested in its history. Nonetheless, this project encourages students to…

  20. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…