WorldWideScience

Sample records for mathematics skill area

  1. Skill Games for Mathematics.

    Science.gov (United States)

    Corle, Clyde G.

    This guide is to assist teachers with motivational ideas for teaching elementary school mathematics. The items included are a wide variety of games (paper and pencil, verbal, and physical), jingles, contests, teaching devices, and thought provoking exercises. Suggestions for selection of mathematical games are offered. The devices are used to…

  2. Mathematical Skills and Motor Life Skills in Toddlers: Do Differences in Mathematical Skills Reflect Differences in Motor Skills?

    Science.gov (United States)

    Reikerås, Elin; Moser, Thomas; Tønnessen, Finn Egil

    2017-01-01

    This study examines possible relations between early mathematical skills and motor life skills in 450 toddlers aged two years and nine months. The study employs baseline data from the longitudinal Stavanger Project--The Learning Child. The children's mathematical skills and motor life skills were assessed by structured observation in the natural…

  3. Games for Mathematics Skill Practice.

    Science.gov (United States)

    Ludeman, Clinton; Sevier, Bonnie

    1982-01-01

    Multivision is designed to practice simple multiplication and division with one-digit numbers, and is played similarly to Sorry. Fraction Monopoly was designed to assist in practicing addition and subtraction skills with fractions, along with recognizing basic parts and matching numerals with pictorial representations, and is similar to Monopoly.…

  4. Mathematical Games: Skill + Luck = Learning

    Science.gov (United States)

    Parsons, John

    2008-01-01

    Left to their own devices, many students are happy to work within their comfort zone of skill and understanding, a level where they are confident that they will achieve regular success. The job of the classroom teacher is to help students reach beyond this and to help them make this level their new comfort zone. Clearly, teachers need to employ a…

  5. Contributions of executive function and spatial skills to preschool mathematics achievement.

    Science.gov (United States)

    Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-10-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Core skills assessment to improve mathematical competency

    Science.gov (United States)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  7. Influence of Writing Ability and Computation Skill on Mathematics Writing

    Science.gov (United States)

    Powell, Sarah R.; Hebert, Michael A.

    2016-01-01

    Mathematics standards expect students to communicate about mathematics using oral and written methods, and some high-stakes assessments ask students to answer mathematics questions by writing. Assumptions about mathematics communication via writing include (a) students possess writing skill, (b) students can transfer this writing skill to…

  8. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  9. A Research on Mathematical Thinking Skills: Mathematical Thinking Skills of Athletes in Individual and Team Sports

    Science.gov (United States)

    Onal, Halil; Inan, Mehmet; Bozkurt, Sinan

    2017-01-01

    The aim of this research is to examine the mathematical thinking skills of licensed athletes engaged in individual and team sports. The research is designed as a survey model. The sample of the research is composed of 59 female and 170 male licensed athletes (n = 229) and (aged 14 to 52) licensed who do the sports of shooting, billiards, archery,…

  10. I. SPATIAL SKILLS, THEIR DEVELOPMENT, AND THEIR LINKS TO MATHEMATICS.

    Science.gov (United States)

    Verdine, Brian N; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; Newcombe, Nora S

    2017-03-01

    Understanding the development of spatial skills is important for promoting school readiness and improving overall success in STEM (science, technology, engineering, and mathematics) fields (e.g., Wai, Lubinski, Benbow, & Steiger, 2010). Children use their spatial skills to understand the world, including visualizing how objects fit together, and can practice them via spatial assembly activities (e.g., puzzles or blocks). These skills are incorporated into measures of overall intelligence and have been linked to success in subjects like mathematics (Mix & Cheng, 2012) and science (Pallrand & Seeber, 1984; Pribyl & Bodner, 1987). This monograph sought to answer four questions about early spatial skill development: 1) Can we reliably measure spatial skills in 3- and 4-year-olds?; 2) Do spatial skills measured at 3 predict spatial skills at age 5?; 3) Do preschool spatial skills predict mathematics skills at age 5?; and 4) What factors contribute to individual differences in preschool spatial skills (e.g., SES, gender, fine-motor skills, vocabulary, and executive function)? Longitudinal data generated from a new spatial skill test for 3-year-old children, called the TOSA (Test of Spatial Assembly), show that it is a reliable and valid measure of early spatial skills that provides strong prediction to spatial skills measured with established tests at age 5. New data using this measure finds links between early spatial skill and mathematics, language, and executive function skills. Analyses suggest that preschool spatial experiences may play a central role in children's mathematical skills around the time of school entry. Executive function skills provide an additional unique contribution to predicting mathematical performance. In addition, individual differences, specifically socioeconomic status, are related to spatial and mathematical skill. We conclude by exploring ways of providing rich early spatial experiences to children. © 2017 The Society for Research in Child

  11. Elementary General and Special Education Teachers' Mathematics Skills and Efficacy

    Science.gov (United States)

    Flores, Margaret M.; Thornton, Jennifer; Franklin, Toni M.; Hinton, Vanessa M.; Strozier, Shaunita

    2014-01-01

    The purpose of this study was to extend the literature regarding elementary teachers' beliefs about mathematics instruction to include special education teachers by surveying special education and general education teachers' mathematics teaching efficacy. In addition, the researchers' surveyed teachers' mathematics skills. The participants (n =…

  12. Why do early mathematics skills predict later reading? The role of mathematical language.

    Science.gov (United States)

    Purpura, David J; Logan, Jessica A R; Hassinger-Das, Brenna; Napoli, Amy R

    2017-09-01

    A growing body of evidence indicates that the development of mathematics and literacy skills is highly related. The importance of literacy skills-specifically language-for mathematics development has been well rationalized. However, despite several prominent studies indicating that mathematics skills are highly predictive of literacy development, the reason for this relation is not well understood. The purpose of this study was to identify how and why early mathematics is predictive of early literacy development. Participants included 125 preschool children 3-5 years old (M = 4 years 3 months). Participants were assessed on mathematics, literacy, and cognitive measures in both the fall and spring of their preschool year. Mediation analyses indicated that the relation between early mathematics and literacy skills is mediated by children's mathematical language skills. These findings suggest that, in prior research identifying mathematical performance as a significant predictor of later literacy skills, mathematical performance may have acted only as a proxy measure for more complex language skills such as those assessed on a mathematical language measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Content Area Literacy in the Mathematics Classroom

    Science.gov (United States)

    Armstrong, Abbigail; Ming, Kavin; Helf, Shawnna

    2018-01-01

    Content area literacy has an important role in helping students understand content in specific disciplines, such as mathematics. Although the strategies are not unique to each individual content area, they are often adapted for use in a specific discipline. For example, mathematicians use mathematical language to make sense of new ideas and…

  14. Mathematical literacy skills of students' in term of gender differences

    Science.gov (United States)

    Lailiyah, Siti

    2017-08-01

    Good mathematical literacy skills will hopefully help maximize the tasks and role of the prospective teacher in activities. Mathematical literacy focus on students' ability to analyze, justify, and communicate ideas effectively, formulate, solve and interpret mathematical problems in a variety of forms and situations. The purpose of this study is to describe the mathematical literacy skills of the prospective teacher in term of gender differences. This research used a qualitative approach with a case study. Subjects of this study were taken from two male students and two female students of the mathematics education prospective teacher who have followed Community Service Program (CSP) in literacy. Data were collected through methods think a loud and interviews. Four prospective teachers were asked to fill mathematical literacy test and video taken during solving this test. Students are required to convey loud what he was thinking when solving problems. After students get the solution, researchers grouped the students' answers and results think aloud. Furthermore, the data are grouped and analyzed according to indicators of mathematical literacy skills. Male students have good of each indicator in mathematical literacy skills (the first indicator to the sixth indicator). Female students have good of mathematical literacy skills (the first indicator, the second indicator, the third indicator, the fourth indicator and the sixth indicator), except for the fifth indicators that are enough.

  15. The Prevalence of Mathematical Anxiety in a Business School: A Comparative Study Across Subject Areas

    OpenAIRE

    Howard, A; Warwick, J

    2016-01-01

    Mathematical anxiety is a phenomenon linked to poor attainment in mathematics and restricted development of mathematical skills among those who are afflicted by it. Unfortunately most undergraduate courses in business related areas require the further study of mathematics to enable effective business decision making and students who suffer from mathematical anxiety are placed at risk of underperformance or failure in such quantitative modules. This paper summarizes the results of ...

  16. Reading skills and mathematics | Bohlmann | South African Journal ...

    African Journals Online (AJOL)

    This article considers the relationship between poorly-developed reading skills and academic performance in mathematics. It discusses ... South African Journal of Higher Education Vol.16(3) 2002: 196-206 ... AJOL African Journals Online.

  17. Role of linguistic skills in fifth-grade mathematics.

    Science.gov (United States)

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2018-03-01

    The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills.

    Science.gov (United States)

    Kim, Helyn; Duran, Chelsea A K; Cameron, Claire E; Grissmer, David

    2018-03-01

    This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years. Associations were dynamic, with more reciprocal transactions occurring in kindergarten than in the later grades. Specifically, visuomotor integration and mathematics exhibited ongoing reciprocity in kindergarten and first grade, attention contributed to mathematics in kindergarten and first grade, mathematics contributed to attention across the kindergarten year only, and fine motor coordination contributed to mathematics indirectly, through visuomotor integration, across kindergarten and first grade. Implications of examining the hierarchical interrelations among processes underlying the development of children's mathematics skills are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  19. Spatial Skill Profile of Mathematics Pre-Service Teachers

    Science.gov (United States)

    Putri, R. O. E.

    2018-01-01

    This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.

  20. Helping Students Acquire Thinking Skills through Mathematics Instruction.

    Science.gov (United States)

    Van Devender, Evelyn M.

    1992-01-01

    Describes three activities that the teacher can employ to help students develop thinking skills through mathematics instruction: (1) memorization using the technique of chunking; (2) higher order thinking with magic squares; and (3) predicting games. Identifies eight facets of the teacher's role in promoting thinking skills. (MDH)

  1. Mathematics ability and related skills in preschoolers born very preterm.

    Science.gov (United States)

    Hasler, Holly M; Akshoomoff, Natacha

    2017-12-12

    Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.

  2. Speed mathematics secrets skills for quick calculation

    CERN Document Server

    Handley, Bill

    2011-01-01

    Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract

  3. Critical Thinking Skills Of Junior High School Female Students With High Mathematical Skills In Solving Contextual And Formal Mathematical Problems

    Science.gov (United States)

    Ismail; Suwarsono, St.; Lukito, A.

    2018-01-01

    Critical thinking is one of the most important skills of the 21st century in addition to other learning skills such as creative thinking, communication skills and collaborative skills. This is what makes researchers feel the need to conduct research on critical thinking skills in junior high school students. The purpose of this study is to describe the critical thinking skills of junior high school female students with high mathematical skills in solving contextual and formal mathematical problems. To achieve this is used qualitative research. The subject of the study was a female student of eight grade junior high school. The students’ critical thinking skills are derived from in-depth problem-based interviews using interview guidelines. Interviews conducted in this study are problem-based interviews, which are done by the subject given a written assignment and given time to complete. The results show that critical thinking skills of female high school students with high math skills are as follows: In solving the problem at the stage of understanding the problem used interpretation skills with sub-indicators: categorization, decode, and clarify meaning. At the planning stage of the problem-solving strategy is used analytical skills with sub-indicators: idea checking, argument identification and argument analysis and evaluation skills with sub indicators: assessing the argument. In the implementation phase of problem solving, inference skills are used with subindicators: drawing conclusions, and problem solving and explanatory skills with sub-indicators: problem presentation, justification procedures, and argument articulation. At the re-checking stage all steps have been employed self-regulatory skills with sub-indicators: self-correction and selfstudy.

  4. Sharpen Your Skills: Mathematics and Science Braille.

    Science.gov (United States)

    Eulert, Von E.; Cohn, Doris

    1984-01-01

    Three articles about mathematics and science braille are provided for braille transcribers and teachers of the visually handicapped. The first article discusses common problems such as setting braille writers incorrectly, duplicating transcribed materials unnecessarily, and incorrectly transcribing from typescript. The second article provides a…

  5. Mathematics in Finance and Economics: Importance of Teaching Higher Order Mathematical Thinking Skills in Finance

    Science.gov (United States)

    Tularam, Gurudeo Anand

    2013-01-01

    This paper addresses the importance of teaching mathematics in business and finance schools of tertiary institutions of Australia. The paper explores the nature of thinking and reasoning required for advancement financial or economic studies involves the use of higher order thinking and creativity skills (HOTS) for teaching in mathematics classes.…

  6. Mathematics skills in good readers with hydrocephalus.

    Science.gov (United States)

    Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather

    2002-01-01

    Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.

  7. The Increase of Critical Thinking Skills through Mathematical Investigation Approach

    Science.gov (United States)

    Sumarna, N.; Wahyudin; Herman, T.

    2017-02-01

    Some research findings on critical thinking skills of prospective elementary teachers, showed a response that is not optimal. On the other hand, critical thinking skills will lead a student in the process of analysis, evaluation and synthesis in solving a mathematical problem. This study attempts to perform an alternative solution with a focus on mathematics learning conditions that is held in the lecture room through mathematical investigation approach. This research method was Quasi-Experimental design with pre-test post-test design. Data analysis using a mixed method with Embedded design. Subjects were regular students enrolled in 2014 at the study program of education of primary school teachers. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The results of the study showed that (1) there is a significant difference in the improvement of critical thinking ability of students who receive learning through mathematical investigation approach when compared with students studying through expository approach, and (2) there is no interaction effect between prior knowledge of mathematics and learning factors (mathematical investigation and expository) to increase of critical thinking skills of students.

  8. Developing Critical Thinking Skills of Students in Mathematics Learning

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2015-08-01

    Full Text Available Critical thinking skills should be owned by students. Therefore, schools should be responsible to develop and  evaluate critical thinking skills through teaching and learning process in schools. This study aims to identify the effects of mathematical learning modules based on problem-based learning to critical thinking skills at secondary school students in District of Bone. Assessment of critical thinking skills in mathematical problem solving non-routine includes three parts;  the identification and interpretation of information, information analysis, and evaluate of evidence and arguments. This study involved a total of 68 students grade 12 science state secondary school (SMAN in Bone District of South Sulawesi, Indonesia in academic year 2014-2015. The sample consists of 38 students in the city and 30 rural students. The design of the study was quasi experimental one group pretest-posttest. The data was analysed using the inferential t-test with SPSS 20.0 for windows. The study found that there are effects of the use of mathematical learning module based PBL to enhance the ability of critical thinking skills in mathematics students in all three components, namely, identifying and interpreting information, information analysis, and evaluate of evidence and argument.

  9. Critical Thinking and Problem Solving Skills in Mathematics of Grade-7 Public Secondary Students

    Directory of Open Access Journals (Sweden)

    Emil C. Alcantara

    2017-11-01

    Full Text Available The study aimed to assess the academic performance, critical thinking skills, and problem solving skills in mathematics of Grade-7 students in the five central public secondary schools of Area 2, Division of Batangas, Philippines. This study utilized descriptive method of research. Three hundred forty one (341 students of the public secondary schools out of the total of 2,324 Grade-7 students were selected through systematic random sampling as the subjects of the study. It was found out that the level of performance in Mathematics of the Grade-7 students is proficient. The level of critical thinking skills of students from the different schools is above average as well as their level of problem solving skills. The mathematics performance of the students is positively correlated to their level of critical thinking skills and problem solving skills. Students considered the following learning competencies in the different content areas of Grade-7 Mathematics as difficult to master: solving problems involving sets, describing the development of measurement from the primitive to the present international system of units, finding a solution of an equation or inequality involving one variable, using compass and straightedge to bisect line segments and angles, and analyzing, interpreting accurately and drawing conclusions from graphic and tabular presentations of statistical data.

  10. Developing Students' Mathematical Skills Involving Order of Operations

    Science.gov (United States)

    Ali Rahman, Ernna Sukinnah; Shahrill, Masitah; Abbas, Nor Arifahwati; Tan, Abby

    2017-01-01

    This small-scale action research study examines the students' ability in using their mathematical skills when performing order of operations in numerical expressions. In this study, the "hierarchy-of-operators triangle" by Ameis (2011) was introduced as an alternative BODMAS approach to help students in gaining a better understanding…

  11. Developmental Relations among Motor and Cognitive Processes and Mathematics Skills

    Science.gov (United States)

    Kim, Helyn; Duran, Chelsea A. K.; Cameron, Claire E.; Grissmer, David

    2018-01-01

    This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years.…

  12. Gender: Its relation to Mathematical Creative Thinking Skill

    Science.gov (United States)

    Permatasari, H. R.; Wahyudin, W.

    2017-09-01

    Mathematical creative thinking skill is one of the most important capabilities in the present century, both for men and women. One of the current issues is about gender and how gender mainstreaming can be realized optimally. The purpose of this study is to determine the comparison of the mathematical creative thinking skill increasing between male and female students after the application of Team Games Tournament (TGT) learning. This research was conducted at 28 students in the 4th grade of an elementary school in Bandung City. The research method used is quasi experiment because it is aimed to test wether there are differences in mathematical creative thinking skill improving between male and female students after being treatment in the form of learnig with TGT. The result of this research is that there is no difference in mathematical creative thinking skill improving between male and female students after the application of TGT learning. It is influenced by some factors such as how the teacher treats male and female with the same treatment in learning process. Recommendation of this research that can be done further research about this topic more deeply. Beside that, the teacher especially in elementary school can use the TGT learning application to reduce the gap between male and female students during the learning process.

  13. Analysis of anatomic variability in children with low mathematical skills

    Science.gov (United States)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  14. Enhancing the Communication and Speaking Skills of Mathematics Undergraduates

    OpenAIRE

    Groves, James

    2012-01-01

    In June 2011, the University of Lancaster delivered a substantially-enhanced course in Communication and Presentation Skills to 108 second-year undergraduate mathematicians. The course was delivered jointly by staff in the Department of Mathematics and Statistics and CETAD, the Centre for Training and Development at Lancaster. Funding for the course and its increased staffing requirement came from an MSOR HE Curriculum Innovation Fund grant of £5,000. CETAD is a specialist unit which focuses ...

  15. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  16. The Prevalence of Mathematical Anxiety in a Business School: A Comparative Study across Subject Areas

    Directory of Open Access Journals (Sweden)

    Anna Howard

    2017-01-01

    Full Text Available Mathematical anxiety is a phenomenon linked to poor attainment in mathematics and restricted development of mathematical skills among those who are afflicted by it. Unfortunately most undergraduate courses in business related areas require the further study of mathematics to enable effective business decision making and students who suffer from mathematical anxiety are placed at risk of underperformance or failure in such quantitative modules. This paper summarizes the results of a survey (n = 330 of students joining a university business school with a view to ascertaining the degree of mathematical anxiety exhibited by incoming students. Results of the survey show no significant differences in anxiety attributable to age or gender but significant differences attributable to level of study and subject area. Implications of the findings for a redesigned teaching approach are discussed drawing on suggestions from the literature surrounding mathematical anxiety.

  17. The Employment Advantages of Skilled Urban Areas

    OpenAIRE

    Diaz Escobar, Ana Maria

    2011-01-01

    This paper explores whether the agglomeration of human capital leads to social employment advantages in urban labor markets of a developing country: Colombia. I estimate the social effects of human capital agglomeration by comparing employment opportunities of individuals located in urban areas in which the level of education differs. Results show that employment opportunities are higher on average in skilled urban areas. Three explanations have been offered: human capital externalities, prod...

  18. A complementary measure of heterogeneity on mathematical skills

    Science.gov (United States)

    Fedriani, Eugenio M.; Moyano, Rafael

    2012-06-01

    Finding educational truths is an inherently multivariate problem. There are many factors affecting each student and their performances. Because of this, both measuring of skills and assessing students are always complex processes. This is a well-known problem, and a number of solutions have been proposed by specialists. One of its ramifications is that the variety of progress levels of students in the Mathematics classroom makes teaching more difficult. We think that a measure of the heterogeneity of the different student groups could be interesting in order to prepare some strategies to deal with these kinds of difficulties. The major aim of this study is to develop new tools, complementary to the statistical ones that are commonly used for these purposes, to study situations related to education (mainly to the detection of levels of mathematical education) in which several variables are involved. These tools are thought to simplify these educational analyses and, through a better comprehension of the topic, to improve our teaching. Several authors in our research group have developed some mathematical, theoretical tools, to deal with multidimensional phenomena, and have applied them to measure poverty and also to other business models. These tools are based on multidigraphs. In this article, we implement these tools using symbolic computational software and apply them to study a specific situation related to mathematical education.

  19. What's Working: Program Factors Influencing California Community College Basic Skills Mathematics Students' Advancement to Transfer Level

    Science.gov (United States)

    Fiero, Diane M.

    2013-01-01

    Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…

  20. Using Interactive Software to Teach Foundational Mathematical Skills

    Directory of Open Access Journals (Sweden)

    Larysa V Lysenko

    2016-01-01

    Full Text Available The pilot research presented here explores the classroom use of Emerging Literacy in Mathematics (ELM software, a research-based bilingual interactive multimedia instructional tool, and its potential to develop emerging numeracy skills. At the time of the study, a central theme of early mathematics curricula, Number Concept, was fully developed. It was broken down into five mathematical concepts including counting, comparing, adding, subtracting and decomposing. Each of these was further subdivided yielding 22 online activities, each building in a level of complexity and abstraction. In total, 234 grade one students from 12 classes participated in the two-group post-test study that lasted about seven weeks and for which students in the experimental group used ELM for about 30 minutes weekly. The results for the final sample of 186 students showed that ELM students scored higher on the standardized math test (Canadian Achievement Test, 2008 and reported less boredom and lower anxiety as measured on the Academic Emotions Questionnaire than their peers in the control group. This short duration pilot study of one ELM theme holds great promise for ELM’s continued development.

  1. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  2. Working memory and language: skill-specific or domain-general relations to mathematics?

    Science.gov (United States)

    Purpura, David J; Ganley, Colleen M

    2014-06-01

    Children's early mathematics skills develop in a cumulative fashion; foundational skills form a basis for the acquisition of later skills. However, non-mathematical factors such as working memory and language skills have also been linked to mathematical development at a broad level. Unfortunately, little research has been conducted to evaluate the specific relations of these two non-mathematical factors to individual aspects of early mathematics. Thus, the focus of this study was to determine whether working memory and language were related to only individual aspects of early mathematics or related to many components of early mathematics skills. A total of 199 4- to 6-year-old preschool and kindergarten children were assessed on a battery of early mathematics tasks as well as measures of working memory and language. Results indicated that working memory has a specific relation to only a few-but critically important-early mathematics skills and language has a broad relation to nearly all early mathematics skills. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mathematical Knowledge and Skills Expected by Higher Education in Engineering and the Social Sciences: Implications for High School Mathematics Curriculum

    Science.gov (United States)

    Basaran, Mehmet; Özalp, Gülümser; Kalender, Ilker; Alacaci, Cengiz

    2015-01-01

    One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at…

  4. Students' Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Science.gov (United States)

    Palinussa, Anderson L.

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students' critical mathematical thinking skills and character through realistic mathematics education (RME) culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in…

  5. The Effects of Computer Games on the Achievement of Basic Mathematical Skills

    Science.gov (United States)

    Sayan, Hamiyet

    2015-01-01

    This study aims to analyze the relationship between playing computer games and learning basic mathematics skills. It shows the role computer games play in the learning and achievement of basic mathematical skills by students. Nowadays it is clear that individuals, especially young persons are very fond of computer and computer games. Since…

  6. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    Science.gov (United States)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  7. Interpreting Mathematics Scores on the New Jersey College Basic Skills Placement Test.

    Science.gov (United States)

    Dass, Jane; Pine, Charles

    The New Jersey College Basic Skills Placement Test (NJCBSPT) is designed to measure certain basic language and mathematics skills of students entering New Jersey colleges. The primary purpose of the two mathematics sections is to determine whether students are prepared to begin certain college-level work without a handicap in computation or…

  8. The Investigation of Elementary Mathematics Teacher Candidates' Problem Solving Skills According to Various Variables

    Science.gov (United States)

    Kaya, Deniz; Izgiol, Dilek; Kesan, Cenk

    2014-01-01

    The aim was to determine elementary mathematics teacher candidates' problem solving skills and analyze problem solving skills according to various variables. The data were obtained from total 306 different grade teacher candidates receiving education in Department of Elementary Mathematics Education, Buca Faculty of Education, Dokuz Eylul…

  9. Have Basic Mathematical Skills Grown Obsolete in the Computer Age: Assessing Basic Mathematical Skills and Forecasting Performance in a Business Statistics Course

    Science.gov (United States)

    Noser, Thomas C.; Tanner, John R.; Shah, Situl

    2008-01-01

    The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…

  10. How Mathematics Teachers Develop Their Pupils' Self-Regulated Learning Skills

    Science.gov (United States)

    Marchis, Iuliana

    2011-01-01

    Self-regulated learning skills are important in mathematical problem solving. The aim of the paper is to present a research on how mathematics teachers guide their pupils' mathematical problem-solving activities in order to increase self-regulation. 62 teachers have filled in a questionnaire developed for this research. The results are show that…

  11. Rethinking Teacher Preparation: Conceptualizing Skills and Knowledge of Novice Teachers of Secondary Mathematics

    Science.gov (United States)

    Cummings, Margarita Borelli

    2010-01-01

    This dissertation examines the extent to which novice secondary mathematics teachers (licensed and currently teaching in Utah) perceive they are prepared to do the work of teaching secondary mathematics. It first examined if novice secondary mathematics teachers' perceptions of their knowledge and skills of doing their work fell into four…

  12. The Study of the Relationship between Mother's Studies with Study Skills and Mathematics Performance of Students

    Directory of Open Access Journals (Sweden)

    Behnoush Taheri

    2015-07-01

    Full Text Available Certainly teaching study skills of mathematics has special importance and plays important role in mathematics performance of students. As mothers spend more times with self-children then they can be effect on study and their mathematics performance. Present research implements to study of the relationship between mothers' studies with study skills and mathematics performance of their children. Population of this research is all girl students of first grade in high school at zone one of Tehran and sample is 97 people. For collecting data of this research through standard questionnaire of mathematics studies skills is used for measuring of study skill of mathematics and questions for studying information related to mothers' studies and a math exam for getting information of mathematics performance of students are used. The results indicated that there is not significant relationship between mothers' studies and study skill of mathematics among students. Also, it is indicated that there is positive significant relationship between mothers' studies and mathematic performance of students.

  13. Mathematics and communication skills using educational software in math classes

    Directory of Open Access Journals (Sweden)

    Marjolis Laffita-Cuza

    2017-04-01

    Full Text Available The current transformations conceive among others, to form in the race of Mathematics-Physics a professor who imparts indistinctly the subjects of Mathematics and Physics in the upper secondary education from the third year of this race which requires putting more emphasis in the orientation of those Subjects to achieve greater professionalism. The present paper approaches from the theoretical aspects the essential aspects in the educational process of the learning of mathematics for the Mathematics-Physics career of the university of pedagogical sciences such as mathematical communicative competences and the use of educational software, all in function of achieving A greater development of student's mathematical logical thinking.

  14. An Analysis of the Reasoning Skills of Pre-Service Teachers in the Context of Mathematical Thinking

    Science.gov (United States)

    Yavuz Mumcu, Hayal; Aktürk, Tolga

    2017-01-01

    The aim of this study is to address and analyse pre-service teachers' mathematical reasoning skills in relation to mathematical thinking processes. For these purposes, pre-service teachers' mathematical reasoning skills namely generalising/abstraction/modelling, ratiocination, development and creative thinking skills and the relationships among…

  15. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    Science.gov (United States)

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

  16. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  17. Brain stimulation, mathematical, and numerical training: Contribution of core and noncore skills.

    Science.gov (United States)

    Looi, C Y; Cohen Kadosh, R

    2016-01-01

    Mathematical abilities that are correlated with various life outcomes vary across individuals. One approach to improve mathematical abilities is by understanding the underlying cognitive functions. Theoretical and experimental evidence suggest that mathematical abilities are subserved by "core" and "noncore" skills. Core skills are commonly regarded as the "innate" capacity to attend to and process numerical information, while noncore skills are those that are important for mathematical cognition, but are not exclusive to the mathematical domain such as executive functions, spatial skills, and attention. In recent years, mathematical training has been combined with the application of noninvasive brain stimulation to further enhance training outcomes. However, the development of more strategic training paradigms is hindered by the lack of understanding on the contributory nature of core and noncore skills and their neural underpinnings. In the current review, we will examine the effects of brain stimulation with focus on transcranial electrical stimulation on core and noncore skills, and its impact on mathematical and numerical training. We will conclude with a discussion on the theoretical and experimental implications of these studies and directions for further research. © 2016 Elsevier B.V. All rights reserved.

  18. Using the 5E Learning Cycle with Metacognitive Technique to Enhance Students’ Mathematical Critical Thinking Skills

    Directory of Open Access Journals (Sweden)

    Runisah Runisah

    2017-02-01

    Full Text Available This study aims to describe enhancement and achievement of mathematical critical thinking skills of students who received the 5E Learning Cycle with Metacognitive technique, the 5E Learning Cycle, and conventional learning. This study use experimental method with pretest-posttest control group design. Population are junior high school students in Indramayu city, Indonesia. Sample are three classes of eighth grade students from high level school and three classes from medium level school. The study reveal that in terms of overall, mathematical critical thinking skills enhancement and achievement of students who received the 5E Learning Cycle with Metacognitive technique is better than students who received the 5E Learning Cycle and conventional learning. Mathematical critical thinking skills of students who received the 5E Learning Cycle is better than students who received conventional learning. There is no interaction effect between learning model and school level toward enhancement and achievement of students’ mathematical critical thinking skills.

  19. High School Students with Learning Disabilities: Mathematics Instruction, Study Skills, and High Stakes Tests

    Science.gov (United States)

    Steele, Marcee M.

    2010-01-01

    This article reviews characteristics of high school students with learning disabilities and presents instructional modifications and study skills to help them succeed in algebra and geometry courses and on high stakes mathematics assessments.

  20. Enabling Metacognitive Skills for Mathematics Problem Solving: A Collective Case Study of Metacognitive Reflection and Awareness

    Science.gov (United States)

    Jagals, Divan; van der Walt, Marthie

    2016-01-01

    Metacognition encompasses knowledge and regulation that, through reflection, sustain problem solving behaviour. How metacognitive awareness is constructed from reflection on metacognitive knowledge and regulation and how these reflections enable metacognitive skills for Mathematics problem solving remain unclear. Three secondary schools…

  1. Improving the basic skills of teaching mathematics through learning with search-solve-create-share strategy

    Science.gov (United States)

    Rahayu, D. V.; Kusumah, Y. S.; Darhim

    2018-05-01

    This study examined to see the improvement of prospective teachers’ basic skills of teaching mathematics through search-solve-create-share learning strategy based on overall and Mathematical Prior Knowledge (MPK) and interaction of both. Quasi experiments with the design of this experimental-non-equivalent control group design involved 67 students at the mathematics program of STKIP Garut. The instrument used in this study included pre-test and post-test. The result of this study showed that: (1) The improvement and achievement of the basic skills of teaching mathematics of the prospective teachers who get the learning of search-solve-create-share strategy is better than the improvement and achievement of the prospective teachers who get the conventional learning as a whole and based on MPK; (2) There is no interaction between the learning used and MPK on improving and achieving basic skills of teaching mathematics.

  2. Analysis mathematical literacy skills in terms of the students’ metacognition on PISA-CPS model

    Science.gov (United States)

    Ovan; Waluya, S. B.; Nugroho, S. E.

    2018-03-01

    This research was aimed to know the effectiveness of PISA-CPS model and desceibe the mathematical literacy skills (KLM) in terms of the students’ metacognition. This study used Mixed Methods approaches with the concurrent embedded desaign. The technique of data analysis on quantitative research done analysis of lesson plan, prerequisite test, test hypotesis 1 and hypotesis test. While qualitative research done data reduction, data presentation, and drawing conclution and data verification. The subject of this study was the students of Grade Eight (VIII) of SMP Islam Sultan Agung 4 Semarang, Central Java. The writer analyzed the data with quantitative and qualitative approaches based on the metacognition of the students in low, medium and high groups. Subsequently, taken the mathematical literacy skills (KLM) from students’ metacognition in low, medium, and high . The results of the study showed that the PISA-CPS model was complete and the students’ mathematical literacy skills in terms of the students’ metacognition taught by the PISA-CPS model was higher than the expository learning. metacognitions’ students classified low hadmathematical literacy skills (KLM) less good, metacognitions’ students classified medium had mathematical literacy skills (KLM) good enough, metacognitions’ students classified high had mathematical literacy skills (KLM) very good. Based onresult analysis got conclusion that the PISA-CPS model was effective toward the students’ mathematical literacy skills (KLM). To increase the students’ mathematical literacy skills (KLM), the teachers need to provide reinforcements in the form of the exercises so that the student’s mathematical literacy was achieved at level 5 and level 6.

  3. Effects of "Handep" Cooperative Learning Based on Indigenous Knowledge on Mathematical Problem Solving Skill

    Science.gov (United States)

    Demitra; Sarjoko

    2018-01-01

    Indigenous people of Dayak tribe in Kalimantan, Indonesia have traditionally relied on a system of mutual cooperation called "handep." The cultural context has an influence on students mathematics learning. The "handep" system might be suitable for modern learning situations to develop mathematical problem-solving skill. The…

  4. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  5. Investigating Lebanese Grade Seven Biology Teachers Mathematical Knowledge and Skills: A Case Study

    Science.gov (United States)

    Raad, Nawal Abou; Chatila, Hanadi

    2016-01-01

    This paper investigates Lebanese grade 7 biology teachers' mathematical knowledge and skills, by exploring how they explain a visual representation in an activity depending on the mathematical concept "Function". Twenty Lebanese in-service biology teachers participated in the study, and were interviewed about their explanation for the…

  6. Increasing Mathematical Computation Skills for Students with Physical and Health Disabilities

    Science.gov (United States)

    Webb, Paula

    2017-01-01

    Students with physical and health disabilities struggle with basic mathematical concepts. The purpose of this research study was to increase the students' mathematical computation skills through implementing new strategies and/or methods. The strategies implemented with the students was utilizing the ten-frame tiles and technology with the purpose…

  7. Evaluation of Mathematical Game Design Skills of Pre-Service Classroom Teachers

    Science.gov (United States)

    Pilten, Pusat; Pilten, Gülhiz; Divrik, Ramazan; Divrik, Fatma

    2017-01-01

    The purpose of the research is to evaluate the games prepared by pre-service classroom teachers within the scope of "Mathematics Teaching 1" and "Mathematics Teaching 2" courses, which are included in the undergraduate classroom teaching programs in Turkey, and to make predictions on the game design skills of pre-service…

  8. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  9. The Relationship between Higher Order Thinking Skills and Academic Performance of Student in Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus; Mumu, Jeinne; Margono, Gaguk

    2017-01-01

    Higher order thinking skills (HOTS) is one of important aspects in education. Students with high level of higher order thinking skills tend to be more successful. However, do this phenomenon also happen in the learning of Mathematics? To answer this question, this research aims to study the relationship between HOTS and students' academic…

  10. The Challenge of Teaching Quantitative Skills to Students with Limited Mathematical Background.

    Science.gov (United States)

    Anosike, Nnamdi

    There is a myth in the African American community that only a few students are bright enough to effectively learn quantitative skills, and many African American students attend college with the assumption that they are not good at mathematics and as a result cannot choose majors that require the mastery of quantitative skills. African American…

  11. Critical Thinking Skills of an Eighth Grade Male Student with High Mathematical Ability in Solving Problem

    Science.gov (United States)

    Ismail

    2018-01-01

    This study aims to describe student’s critical thinking skill of grade VIII in solving mathematical problem. A qualitative research was conducted to a male student with high mathematical ability. Student’s critical thinking skill was obtained from a depth task-based interview. The result show that male student’s critical thinking skill of the student as follows. In understanding the problem, the student did categorization, significance decoding, and meaning clarification. In devising a plan he examined his ideas, detected his argument, analyzed his argument and evaluated his argument. During the implementation phase, the skill that appeared were analyzing of the argument and inference skill such as drawing conclusion, deliver alternative thinking, and problem solving skills. At last, in rechecking all the measures, they did self-correcting and self-examination.

  12. Integrating Study Skills and Problem Solving into Remedial Mathematics

    Science.gov (United States)

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  13. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study.

    Science.gov (United States)

    Mercader, Jessica; Miranda, Ana; Presentación, M Jesús; Siegenthaler, Rebeca; Rosel, Jesús F

    2017-01-01

    The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions), executive functioning (inhibition and working memory), and early numeracy skills (logical operations, counting, and magnitude comparison abilities), assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5-6 and 7-8 years old). The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  14. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Jessica Mercader

    2018-01-01

    Full Text Available The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions, executive functioning (inhibition and working memory, and early numeracy skills (logical operations, counting, and magnitude comparison abilities, assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5–6 and 7–8 years old. The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  15. Development of Mathematics Learning Strategy Module, Based on Higher Order Thinking Skill (Hots) To Improve Mathematic Communication And Self Efficacy On Students Mathematics Department

    Science.gov (United States)

    Andriani, Ade; Dewi, Izwita; Halomoan, Budi

    2018-03-01

    In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.

  16. SIGNIFICANCE OF EARLY-AGE LEARNING OF MATHEMATICAL SKILLS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2011-12-01

    Full Text Available It is a fact that only hereditary, i.e. genetic factors are not sufficient for development of a child’s brain; on the contrary, a child needs external stimuli expressed through touch, speech, images, which lead to the conclusion that immediate and extended surroundings shape the brain, meaning that the external stimuli, stronger or weaker, mutually connect the brain cells and neurons. Questions regarding the development of mathematical manner of thinking are mostly based on the natural process of learning, however, this paper deals with deeper set of problems, which are not only difficult to resolve but possibly there is no resolution. Namely, a question is posed what is the appropriate age when a child is ready and able to solve certain mathematical problems or notice mathematical principles, that is, whether they are actually exist clearly defined age boundaries based on which a conclusion could be made about the time and individual is ready to solve mathematical problems of a concrete difficulty level or to notice mathematical laws.

  17. Students’ Critical Mathematical Thinking Skills and Character:Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Directory of Open Access Journals (Sweden)

    Anderson L. Palinussa

    2013-01-01

    Full Text Available This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students’ critical mathematical thinking skills and character through realistic mathematics education (RME culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in Ambon. The instruments of the study are: students’ early math skills test, critical thinking skills mathematical test and perception scale of students’character. Data was analyzed by using t-test and Anova. The study found that: 1 Achievements and enhancement of students’ critical mathematical thinking skills who were treated with by realistic mathematics education is better then students’ skills were treated by conventional mathematics education. The differences are considered to: a overall students, b the level of early math skills, and c schools’ level; 2 Quality of students’ character who were treated by realistic mathematics education is better then students’ character who were treated by conventional mathematics education The differences are considered to: a overall students, b the level of early math skills, and c schools’ level  Keywords: Critical Thinking, Students’ Character, Realistic Mathematics Education Culture-Based DOI: http://dx.doi.org/10.22342/jme.4.1.566.75-94

  18. Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics

    NARCIS (Netherlands)

    Sweller, John; Clark, Richard; Kirschner, Paul A.

    2010-01-01

    Sweller, J., Clark, R., & Kirschner, P. A. (2010). Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics. Notices of the American Mathematical Society, 57, 1303-1304.

  19. Enhancing mathematics teachers' pedagogical content knowledge and skills in Tanzania

    NARCIS (Netherlands)

    Kitta, S.

    2004-01-01

    The study has revealed that the use of a comprehensive, school-based programme, emphasising peer collaboration, can be a promising scenario for professional development of mathematics teachers in Tanzania. Such a comprehensive approach has the potential of supporting teachers with diverse levels of

  20. A Meta-Analysis of Mathematics and Working Memory: Moderating Effects of Working Memory Domain, Type of Mathematics Skill, and Sample Characteristics

    Science.gov (United States)

    Peng, Peng; Namkung, Jessica; Barnes, Marcia; Sun, Congying

    2016-01-01

    The purpose of this meta-analysis was to determine the relation between mathematics and working memory (WM) and to identify possible moderators of this relation including domains of WM, types of mathematics skills, and sample type. A meta-analysis of 110 studies with 829 effect sizes found a significant medium correlation of mathematics and WM, r…

  1. Preschool Children's Interest, Social-Emotional Skills, and Emergent Mathematics Skills

    Science.gov (United States)

    Doctoroff, Greta L.; Fisher, Paige H.; Burrows, Bethany M.; Edman, Maria Tsepilovan

    2016-01-01

    This cross-sectional study examined the relationship between interest, social-emotional skills, and early math skills in preschool children. Math-specific interest and global interest in learning were measured using teacher report and a play-based observation task. Math skills were assessed with a test of math achievement, and social-emotional…

  2. Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy

    Science.gov (United States)

    Kadir; Adelina, R.; Fatma, M.

    2018-01-01

    Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.

  3. Bridging the Gap: A Design-based Case Study of a Mathematics Skills Intervention Program

    OpenAIRE

    Safaralian, Leila

    2017-01-01

    Abstract of the DissertationBridge the Gap: A Design-based Case Study of a Mathematics Skills Intervention ProgrambyLeila SafaralianDoctor of Education in Educational LeadershipUniversity of California, San Diego, 2017California State University, San Marcos, 2017Kenneth P. Gonzalez, ChairMany students aspire to continue their educational journey, but far too many enter college without the basic content knowledge, skills, or habits of mind needed to succeed. Research on college readiness indic...

  4. Deaf college students' mathematical skills relative to morphological knowledge, reading level, and language proficiency.

    Science.gov (United States)

    Kelly, Ronald R; Gaustad, Martha G

    2007-01-01

    This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.

  5. Development of an Instrument to Measure Higher Order Thinking Skills in Senior High School Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus

    2016-01-01

    The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…

  6. Number Line Estimation Predicts Mathematical Skills: Difference in Grades 2 and 4.

    Science.gov (United States)

    Zhu, Meixia; Cai, Dan; Leung, Ada W S

    2017-01-01

    Studies have shown that number line estimation is important for learning. However, it is yet unclear if number line estimation predicts different mathematical skills in different grades after controlling for age, non-verbal cognitive ability, attention, and working memory. The purpose of this study was to examine the role of number line estimation on two mathematical skills (calculation fluency and math problem-solving) in grade 2 and grade 4. One hundred and forty-eight children from Shanghai, China were assessed on measures of number line estimation, non-verbal cognitive ability (non-verbal matrices), working memory (N-back), attention (expressive attention), and mathematical skills (calculation fluency and math problem-solving). The results showed that in grade 2, number line estimation correlated significantly with calculation fluency ( r = -0.27, p problem-solving ( r = -0.52, p problem-solving ( r = -0.38, p problem-solving (12.0%) and calculation fluency (4.0%) after controlling for the effects of age, non-verbal cognitive ability, attention, and working memory. In grade 4, number line estimation accounted for unique variance in math problem-solving (9.0%) but not in calculation fluency. These findings suggested that number line estimation had an important role in math problem-solving for both grades 2 and 4 children and in calculation fluency for grade 2 children. We concluded that number line estimation could be a useful indicator for teachers to identify and improve children's mathematical skills.

  7. Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement

    NARCIS (Netherlands)

    Xenidou-Dervou, I.; Molenaar, D.; Ansari, D.; van der Schoot, M.; van Lieshout, E.C.D.M.

    What developmental roles do nonsymbolic (e.g., dot arrays) and symbolic (i.e., Arabic numerals) magnitude comparison skills play in children's mathematics? We assessed a large sample in kindergarten, grade 1 and 2 on two well-known nonsymbolic and symbolic magnitude comparison measures. We also

  8. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  9. Developing Basic Mathematical Skills of Pre-School Children by Using Plasticized Clay

    Science.gov (United States)

    Chumark, Charung; Puncreobutr, Vichian

    2016-01-01

    The main objective of this research was to study the development of basic mathematical skills in preschool children by using plasticized clay. A pre-test and post-test design was adopted for the study to compare the difference before and after the art activity. The experimental group of 15 preschool children of 3-4 years old, attending…

  10. Pre-Service Mathematics Teachers' Noticing Skills and Scaffolding Practices

    Science.gov (United States)

    Kilic, Hulya

    2018-01-01

    A 14-week course program was designed to investigate pre-service teachers' noticing skills and scaffolding practices. Six pre-service teachers were matched with a pair of sixth grade students to observe and scaffold students' mathematical understanding while they were working on the given tasks. Data was collected through pre-service teachers' own…

  11. Ideas Para Fortalecer Las Destrezas en Matematicas. Ideas for Strengthening Mathematics Skills. Spanish Edition.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Bilingual Education.

    Presented is an overview of some specific schemes that have been used successfully by teachers throughout New York State to strengthen basic mathematics skills. Components offer ideas that have been successful with primary, intermediate, and secondary students. The contents of this Spanish language edition are identical to the English language and…

  12. Idee Per Consolidare Le Abilita In Matematica. Ideas for Strengthening Mathematics Skills. Italian Edition.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Bilingual Education.

    Presented is an overview of some specific schemes that have been used successfully by teachers throughout New York State to strengthen basic mathematics skills. Components offer ideas that have been successful with primary, intermediate, and secondary students. The contents of this Italian language edition are identical to the English language and…

  13. Developing Argumentation Skills in Mathematics through Computer-Supported Collaborative Learning: The Role of Transactivity

    Science.gov (United States)

    Vogel, Freydis; Kollar, Ingo; Ufer, Stefan; Reichersdorfer, Elisabeth; Reiss, Kristina; Fischer, Frank

    2016-01-01

    Collaboration scripts and heuristic worked examples are effective means to scaffold university freshmen's mathematical argumentation skills. Yet, which collaborative learning processes are responsible for these effects has remained unclear. Learners presumably will gain the most out of collaboration if the collaborators refer to each other's…

  14. From Research to Practice: Basic Mathematics Skills and Success in Introductory Statistics

    Science.gov (United States)

    Lunsford, M. Leigh; Poplin, Phillip

    2011-01-01

    Based on previous research of Johnson and Kuennen (2006), we conducted a study to determine factors that would possibly predict student success in an introductory statistics course. Our results were similar to Johnson and Kuennen in that we found students' basic mathematical skills, as measured on a test created by Johnson and Kuennen, were a…

  15. Behind Mathematical Learning Disabilities: What about Visual Perception and Motor Skills?

    Science.gov (United States)

    Pieters, Stefanie; Desoete, Annemie; Roeyers, Herbert; Vanderswalmen, Ruth; Van Waelvelde, Hilde

    2012-01-01

    In a sample of 39 children with mathematical learning disabilities (MLD) and 106 typically developing controls belonging to three control groups of three different ages, we found that visual perception, motor skills and visual-motor integration explained a substantial proportion of the variance in either number fact retrieval or procedural…

  16. Mathematical Skills in Undergraduate Students. A Ten-Year Survey of a Plant Physiology Course

    Science.gov (United States)

    Llamas, A.; Vila, F.; Sanz, A.

    2012-01-01

    In the health and life sciences and many other scientific disciplines, problem solving depends on mathematical skills. However, significant deficiencies are commonly found in this regard in undergraduate students. In an attempt to understand the underlying causes, and to improve students' performances, this article describes a ten-year survey…

  17. An Analysis of Mathematics Teacher Candidates' Critical Thinking Dispositions and Their Logical Thinking Skills

    Science.gov (United States)

    Incikabi, Lutfi; Tuna, Abdulkadir; Biber, Abdullah Cagri

    2013-01-01

    This study aimed to investigate the existence of the relationship between mathematics teacher candidates' critical thinking skills and their logical thinking dispositions in terms of the variables of grade level in college, high school type, and gender. The current study utilized relational survey model and included a total of 99 mathematics…

  18. The Transitory Phase to the Attainment of Self-Regulatory Skill in Mathematical Problem Solving

    Science.gov (United States)

    Lazakidou, G.; Paraskeva, F.; Retalis, S.

    2007-01-01

    Three phases of development of self-regulatory skill in the domain of mathematical problem solving were designed to examine students' behaviour and the effects on their problem solving ability. Forty-eight Grade 4 students (10 year olds) participated in this pilot study. The students were randomly assigned to one of three groups, each representing…

  19. Primary School Text Comprehension Predicts Mathematical Word Problem-Solving Skills in Secondary School

    Science.gov (United States)

    Björn, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2016-01-01

    This longitudinal study aimed to investigate the extent to which primary school text comprehension predicts mathematical word problem-solving skills in secondary school among Finnish students. The participants were 224 fourth graders (9-10 years old at the baseline). The children's text-reading fluency, text comprehension and basic calculation…

  20. Evaluation of Students' Mathematical Problem Solving Skills in Relation to Their Reading Levels

    Science.gov (United States)

    Özsoy, Gökhan; Kuruyer, Hayriye Gül; Çakiroglu, Ahmet

    2015-01-01

    The purpose of the current study is to investigate the correlation between students' reading levels and mathematical problem solving skills. The present study was conducted in line with a qualitative research method, i.e., the phenomenological method. The study group of the current research is composed of six third grade students with different…

  1. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  2. Promoting students’ mathematical problem-solving skills through 7e learning cycle and hypnoteaching model

    Science.gov (United States)

    Saleh, H.; Suryadi, D.; Dahlan, J. A.

    2018-01-01

    The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).

  3. Preterm Birth and Adult Wealth: Mathematics Skills Count.

    Science.gov (United States)

    Basten, Maartje; Jaekel, Julia; Johnson, Samantha; Gilmore, Camilla; Wolke, Dieter

    2015-10-01

    Each year, 15 million babies worldwide are born preterm. Preterm birth is associated with adverse neurodevelopmental outcomes across the life span. Recent registry-based studies suggest that preterm birth is associated with decreased wealth in adulthood, but the mediating mechanisms are unknown. This study investigated whether the relationship between preterm birth and low adult wealth is mediated by poor academic abilities and educational qualifications. Participants were members of two British population-based birth cohorts born in 1958 and 1970, respectively. Results showed that preterm birth was associated with decreased wealth at 42 years of age. This association was mediated by decreased intelligence, reading, and, in particular, mathematics attainment in middle childhood, as well as decreased educational qualifications in young adulthood. Findings were similar in both cohorts, which suggests that these mechanisms may be time invariant. Special educational support in childhood may prevent preterm children from becoming less wealthy as adults. © The Author(s) 2015.

  4. Effects of phonological awareness and naming speed on mathematics skills in children with mild intellectual disabilities.

    Science.gov (United States)

    Foster, Matthew E; Sevcik, Rose A; Romski, Maryann; Morris, Robin D

    2015-01-01

    Both phonological awareness (PA) and naming speed have been identified as two skills related to the development of mathematics skills for children with and without learning disabilities. The purpose of the present study was to investigate the relationships between PA and colour naming speed for 265 elementary school students with mild intellectual disabilities (MID). Participants were assessed using the Comprehensive Test of Phonological Processes and the KeyMath Revised Diagnostic Inventory of Essential Mathematics. Hierarchical regression analyses accounting for the effects of age indicated that children with MID rely on both PA and naming speed when solving mathematics problems, although PA was the more robust indicator of the two. As a whole, these results suggest that children with intellectual disabilities evidence the same types of reading and math relationships as shown for other populations of children.

  5. An Early Mathematical Patterning Assessment: identifying young Australian Indigenous children's patterning skills

    Science.gov (United States)

    Papic, Marina

    2015-12-01

    This paper presents an Early Mathematical Patterning Assessment (EMPA) tool that provides early childhood educators with a valuable opportunity to identify young children's mathematical thinking and patterning skills through a series of hands-on and drawing tasks. EMPA was administered through one-to-one assessment interviews to children aged 4 to 5 years in the year prior to formal school. Two hundred and seventeen assessments indicated that the young low socioeconomic and predominantly Australian Indigenous children in the study group had varied patterning and counting skills. Three percent of the study group was able to consistently copy and draw an ABABAB pattern made with coloured blocks. Fifty percent could count to six by ones and count out six items with 4 % of the total group able to identify six items presented in regular formations without counting. The integration of patterning into early mathematics learning is critical to the abstraction of mathematical ideas and relationships and to the development of mathematical reasoning in young children. By using the insights into the children's thinking that the EMPA tool provides, early childhood educators can better inform mathematics teaching and learning and so help close the persistent gap in numeracy between Indigenous and non-Indigenous children.

  6. Teachers' Beliefs about Improving Transfer of Algebraic Skills from Mathematics into Physics in Senior Pre-University Education

    Science.gov (United States)

    Tursucu, Süleyman; Spandaw, Jeroen; Flipse, Steven; de Vries, Marc J.

    2017-01-01

    Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers' beliefs about improving the transfer of algebraic skills from mathematics into physics. We interviewed 10 mathematics and 10 physics teachers using a…

  7. Mathematical model of parking space unit for triangular parking area

    Science.gov (United States)

    Syahrini, Intan; Sundari, Teti; Iskandar, Taufiq; Halfiani, Vera; Munzir, Said; Ramli, Marwan

    2018-01-01

    Parking space unit (PSU) is an effective measure for the area size of a vehicle, including the free space and the width of the door opening of the vehicle (car). This article discusses a mathematical model for parking space of vehicles in triangular shape area. An optimization model for triangular parking lot is developed. Integer Linear Programming (ILP) method is used to determine the maximum number of the PSU. The triangular parking lot is in isosceles and equilateral triangles shape and implements four possible rows and five possible angles for each field. The vehicles which are considered are cars and motorcycles. The results show that the isosceles triangular parking area has 218 units of optimal PSU, which are 84 units of PSU for cars and 134 units of PSU for motorcycles. Equilateral triangular parking area has 688 units of optimal PSU, which are 175 units of PSU for cars and 513 units of PSU for motorcycles.

  8. A Mathematical Program to Develop the Skills of Thinking of Children

    Directory of Open Access Journals (Sweden)

    Magda M. Saleh

    2009-10-01

    Full Text Available The importance of this study emerges from the importance of the points it discusses as it attempts to study the effectiveness of the suggested program of mathematics that develop the thinking skill of the children in preschool age. Accordingly, it comes from the attempt to teach the children the skill of thinking as one of the important and required skills for the children to accommodate with the surrounded environment and to help them develop and grow completely and to accommodate with themselves and their society. The purpose of this study is, thus, summarized in the answering of the following questions: 1- How can we create a program that uses mathematical activities and that contribute in the development of thinking skill of the preschool child? 2- To what extent is that program effective to develop the skills of thinking of the preschool child? The research sample is composed of 35 children for the experimental group and the same number for the controller group from the KJ2 children. The results of the research showed the effectiveness of the suggested program and its obvious contribution in the development of the thinking skills for the preschool children in a more effective way than the traditional methods used.

  9. Critical Thinking Skills of Students through Mathematics Learning with ASSURE Model Assisted by Software Autograph

    Science.gov (United States)

    Kristianti, Y.; Prabawanto, S.; Suhendra, S.

    2017-09-01

    This study aims to examine the ability of critical thinking and students who attain learning mathematics with learning model ASSURE assisted Autograph software. The design of this study was experimental group with pre-test and post-test control group. The experimental group obtained a mathematics learning with ASSURE-assisted model Autograph software and the control group acquired the mathematics learning with the conventional model. The data are obtained from the research results through critical thinking skills tests. This research was conducted at junior high school level with research population in one of junior high school student in Subang Regency of Lesson Year 2016/2017 and research sample of class VIII student in one of junior high school in Subang Regency for 2 classes. Analysis of research data is administered quantitatively. Quantitative data analysis was performed on the normalized gain level between the two sample groups using a one-way anova test. The results show that mathematics learning with ASSURE assisted model Autograph software can improve the critical thinking ability of junior high school students. Mathematical learning using ASSURE-assisted model Autograph software is significantly better in improving the critical thinking skills of junior high school students compared with conventional models.

  10. Evaluation of the Effect of Mathematical Routines on the Development of Skills in Mathematical Problem Solving and School Motivation of Primary School Students in Abitibi-Témiscamingue

    Science.gov (United States)

    Rajotte, Thomas; Marcotte, Christine; Bureau-Levasseur, Lisa

    2016-01-01

    In recent decades, the dropout rate in Abitibi-Témiscamingue is a worrying phenomenon. An analysis of ministerial examination results identifies that students in Abitibi-Témiscamingue have specific difficulties with mathematical problem solving tasks. Among the activities that develop those skills, the daily routines in mathematics seem to be a…

  11. Effects of Reading Skills on Students’ Performance in Science and Mathematics in Public and Private Secondary Schools

    Directory of Open Access Journals (Sweden)

    Ombra A. Imam

    2016-05-01

    Full Text Available In the Philippine education system, reading, mathematics, and science formed part of the core areas of basic education curriculum. For the last decade, the quality of Philippine education was put into a big question due to poor performance of students in mathematics and science tests both local and abroad. The initial result of current efforts of the government by adopting K-12 curriculum didn’t do much to change the status quo. The purpose of this study is to determine the reading predictors of students’ performance in Mathematics and Science and identify its effects to such performance. A total of 660 freshmen students from public and private high schools in Cotabato City, Philippines were taken as sample. A validated and reliable 150-item test in reading comprehension skills, mathematics and science was used to get primary data to perform correlation and regression analysis. Findings showed that only making inference and getting main idea were predictors of mathematics performance of students in public school and private schools, respectively.  Data analysis also revealed that two reading skills such as noting details and making inference had an influence on science performance of students in public school while skills in getting main idea and drawing conclusion influenced science performance of students in private schools.  However, there was only one skill such as vocabulary in context which was predictor of overall science performance of all students. Moreover, separate effects of making inference, identifying main idea explained only 1.8 percent and 1.3 percent of students’ math performance while their combined effects provided only .1 percent or nearly zero percent. Furthermore, the study found out that separate effects of noting details contributed 3.3 percent and its combined effects with making inference explained 4.2 percent of science performance of students in public schools. In terms of effects of reading to science

  12. Number Line Estimation Predicts Mathematical Skills: Difference in Grades 2 and 4

    Directory of Open Access Journals (Sweden)

    Meixia Zhu

    2017-09-01

    Full Text Available Studies have shown that number line estimation is important for learning. However, it is yet unclear if number line estimation predicts different mathematical skills in different grades after controlling for age, non-verbal cognitive ability, attention, and working memory. The purpose of this study was to examine the role of number line estimation on two mathematical skills (calculation fluency and math problem-solving in grade 2 and grade 4. One hundred and forty-eight children from Shanghai, China were assessed on measures of number line estimation, non-verbal cognitive ability (non-verbal matrices, working memory (N-back, attention (expressive attention, and mathematical skills (calculation fluency and math problem-solving. The results showed that in grade 2, number line estimation correlated significantly with calculation fluency (r = -0.27, p < 0.05 and math problem-solving (r = -0.52, p < 0.01. In grade 4, number line estimation correlated significantly with math problem-solving (r = -0.38, p < 0.01, but not with calculation fluency. Regression analyses indicated that in grade 2, number line estimation accounted for unique variance in math problem-solving (12.0% and calculation fluency (4.0% after controlling for the effects of age, non-verbal cognitive ability, attention, and working memory. In grade 4, number line estimation accounted for unique variance in math problem-solving (9.0% but not in calculation fluency. These findings suggested that number line estimation had an important role in math problem-solving for both grades 2 and 4 children and in calculation fluency for grade 2 children. We concluded that number line estimation could be a useful indicator for teachers to identify and improve children’s mathematical skills.

  13. HOW MATHEMATICS TEACHERS DEVELOP THEIR PUPILS’ SELF-REGULATED LEARNING SKILLS

    Directory of Open Access Journals (Sweden)

    Iuliana Marchis

    2011-11-01

    Full Text Available Self-regulated learning skills are important in mathematical problem solving. The aim of the paper is to present a research on how mathematics teachers guide their pupils’ mathematical problem-solving activities in order to increase self-regulation. 62 teachers have filled in a questionnaire developed for this research. The results are show that more than two third of the teachers promote the methods of understanding the problem; develop pupils’ self-efficacy and self-control. But only one third of the teachers ask pupils to use different strategies for solving a problem; ask students to explain the solution to their colleagues. In case of unsuccessful problem solving only one third of the respondents ask pupils to present previous knowledge about the problem or/and recall and try different methods.

  14. Applying a Conceptual Mini Game for Supporting Simple Mathematical Calculation Skills: Students' Perceptions and Considerations

    Science.gov (United States)

    Panagiotakopoulos, Chris T.

    2011-01-01

    Mathematics is an area of study that particularly lacks student enthusiasm. Nevertheless, with the help of educational games, any phobias concerning mathematics can be considerably decreased and mathematics can become more appealing. In this study, an educational game addressing mathematics was designed, developed and evaluated by a sample of 33…

  15. The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition

    Science.gov (United States)

    Çiğdem Özcan, Zeynep

    2016-04-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students' homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students' mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).

  16. Cognitive mechanisms underlying third graders' arithmetic skills: Expanding the pathways to mathematics model.

    Science.gov (United States)

    Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard

    2018-03-01

    A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis of Mathematical Communication Skills and Confidence of 10th Grader of SMK in Geometry Material Viewed from Cognitive Style

    Directory of Open Access Journals (Sweden)

    Elanda Laksinta Putri

    2017-03-01

    Full Text Available The purpose of this study were to describe the mathematical communication skills and the confidence of grade X SMK students on Van Hiele model geometry learning based on their cognitive styles. It was a qualitative descriptive research. The subjects were 2 impulsive students and 2 reflective students which were selected with MFFT instrument. The data collection techniques were mathematical communication skills tests (written and orally, interviews, documentation, attitude scale and activity observation sheets. The results showed that both written and orally, reflective students were able to meet 5 indicators of mathematical communication skills, and less meet another indicators. While, impulsive students less meet all of the mathematical communication skills indictors. The impulsive students confidence was in the medium category. In contrary, the reflective students confidence was in the high category.

  18. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  19. Teachers’ beliefs about improving transfer of algebraic skills from mathematics into physics in senior pre-university education

    NARCIS (Netherlands)

    Tursucu, S.; Spandaw, J.G.; Flipse, S.M.; de Vries, M.J.

    2017-01-01

    Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers’ beliefs about improving the transfer of algebraic skills from mathematics into physics. We

  20. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  1. Selective Spatial Working Memory Impairment in a Group of Children with Mathematics Learning Disabilities and Poor Problem-Solving Skills

    Science.gov (United States)

    Passolunghi, Maria Chiara; Mammarella, Irene Cristina

    2012-01-01

    This study examines visual and spatial working memory skills in 35 third to fifth graders with both mathematics learning disabilities (MLD) and poor problem-solving skills and 35 of their peers with typical development (TD) on tasks involving both low and high attentional control. Results revealed that children with MLD, relative to TD children,…

  2. The Effectiveness of Local Culture-Based Mathematical Heuristic-KR Learning towards Enhancing Student's Creative Thinking Skill

    Science.gov (United States)

    Tandiseru, Selvi Rajuaty

    2015-01-01

    The problem in this research is the lack of creative thinking skills of students. One of the learning models that is expected to enhance student's creative thinking skill is the local culture-based mathematical heuristic-KR learning model (LC-BMHLM). Heuristic-KR is a learning model which was introduced by Krulik and Rudnick (1995) that is the…

  3. Developing Instructional Design to Improve Mathematical Higher Order Thinking Skills of Students

    Science.gov (United States)

    Apino, E.; Retnawati, H.

    2017-02-01

    This study aimed to describe the instructional design to improve the Higher Order Thinking Skills (HOTS) of students in learning mathematics. This research is design research involving teachers and students of class X MIPA 1 MAN Yigyakarta III, Special Region of Yogyakarta, Indonesia. Data collected through focus group discussions and tests. Data analyzed by quantitative descriptive. The results showed that the instructional design developed is effective to improving students’ HOTS in learning mathematics. Instructional design developed generally include three main components: (1) involve students in the activities non-routine problem solving; (2) facilitating students to develop the ability to analyze and evaluate (critical thinking) and the ability to create (creative thinking); and (3) encourage students to construct their own knowledge.

  4. Development of early mathematical skills with a tablet intervention: a randomized control trial in Malawi.

    Science.gov (United States)

    Pitchford, Nicola J

    2015-01-01

    Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1-3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-weeks period, for the equivalent of 30-min per day. Technical support was provided from the local Voluntary Service Overseas (VSO). Children were then post-tested on the same assessments as given at pre-test. A final sample of 283 children, from Standards 1-3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standards 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child's developmental

  5. Development of early mathematical skills with a tablet intervention: a randomized control trial in Malawi

    Directory of Open Access Journals (Sweden)

    Nicola ePitchford

    2015-04-01

    Full Text Available Evaluation of educational interventions is necessary prior to wide-scale rollout. Yet very few rigorous studies have been conducted on the effectiveness of tablet-based interventions, especially in the early years and in developing countries. This study reports a randomized control trial to evaluate the effectiveness of a tablet intervention for supporting the development of early mathematical skills in primary school children in Malawi. A total sample of 318 children, spanning Standards 1-3, attending a medium-sized urban primary school, were randomized to one of three groups: maths tablet intervention, non-maths tablet control, and standard face-to-face practice. Children were pre-tested using tablets at the start of the school year on two tests of mathematical knowledge and a range of basic skills related to scholastic progression. Class teachers then delivered the intervention over an 8-week period, for the equivalent of 30-minutes per day. Technical support was provided from the local Voluntary Service Overseas. Children were then post-tested on the same assessments as given at pre-test.A final sample of 283 children from Standards 1-3, present at both pre- and post-test, was analyzed to investigate the effectiveness of the maths tablet intervention. Significant effects of the maths tablet intervention over and above standard face-to-face practice or using tablets without the maths software were found in Standard 2 and 3. In Standard 3 the greater learning gains shown by the maths tablet intervention group compared to both of the control groups on the tablet-based assessments transferred to paper and pencil format, illustrating generalization of knowledge gained. Thus, tablet technology can effectively support early years mathematical skills in developing countries if the software is carefully designed to engage the child in the learning process and the content is grounded in a solid well-constructed curriculum appropriate for the child

  6. Combining project based learning with exercises in problem solving in order to train analytical mathematical skills

    DEFF Research Database (Denmark)

    Friesel, Anna

    2013-01-01

    This paper presents the contents and the teaching methods used in the fourth semester course - REG4E - an important subject in engineering, namely Control Theory and Dynamical Systems. Control Theory courses in engineering education are usually related to exercises in the laboratory or to projects....... However, in order to understand complexity of control systems, the students need to possess an analytical understanding of abstract mathematical problems. Our main goal is to illustrate the theory through the robot project, but at the same time we force our students to train their analytical skills...

  7. Beyond Cognitive Increase: Investigating the Influence of Computer Programming on Perception and Application of Mathematical Skills

    Science.gov (United States)

    Rich, Peter J.; Bly, Neil; Leatham, Keith R.

    2014-01-01

    This study aimed to provide first-hand accounts of the perceived long-term effects of learning computer programming on a learner's approach to mathematics. These phenomenological accounts, garnered from individual interviews of seven different programmers, illustrate four specific areas of interest: (1) programming provides context for many…

  8. Examining Middle School Mathematics Teachers’ Use of Information and Communication Technologies and Psychomotor Skills

    Directory of Open Access Journals (Sweden)

    Alattin Ural

    2015-04-01

    Full Text Available The aim of this study is to investigate what kind of materials are used in which grades in order to improve psychomotor skills and the use of information technologies by students in the courses taught by mathematics teachers and how these materials are used; and to elicit the perceptions of these teachers on the use of these materials. Twenty two mathematics teachers (out of 25 working in 7 secondary schools were given a questionnaire form containing open ended questions and they were asked to write down the answers to those questions on the same form. The research was designed in the scanning model as a qualitative study. The data obtained from teachers were analyzed descriptively and samples from the data were presented categorically. It was observed that, regarding the psychomotor skills, a pair compass-ruler-protractor, dotted-isometric-graph paper, cutting-folding paper in geometry; fraction slips and algebra squares in algebra were the materials used respectively. The grades where these materials are used were 5, 6, 7, and 8 respectively. Regarding the use of information and communication technologies, it was observed that Morpa and Vitamin, the software developed by Turkish Ministery of Education was used to teach the subjects which contain shapes or animation; PowerPoint presentations to teach solid objects, fractals; and animations and videos on the internet to teach solid materials, triangles, fractals, patterns and decoration, equations and symmetry. These activities are used in the grades 8, 7, 6, 5 respectively. The teachers stated that the fact that information technologies and psychomotor skills are not used to the extent they should be stems from the lack of time, lack of computers, the overpopulated classes and the washback effect of the national exams. Keywords: Information and communication technologies (ICT, psychomotor skills, teacher’s opinions

  9. Efforts to Improve Mathematics Teacher Competency Through Training Program on Design Olympiad Mathematics Problems Based on Higher Order Thinking Skills in The Junior High School

    Science.gov (United States)

    Arnellis, A.; Jamaan, E. Z.; Amalita, N.

    2018-04-01

    The goal to analyse a improvement of teacher competence after being trained in preparing high-order math olympicad based on high order thinking skills in junior high school teachers in Pesisir Selatan Regency. The sample of these activities are teachers at the MGMP junior high school in Pesisir Selatan District. Evaluation of the implementation is done by giving a pre test and post test, which will measure the success rate of the implementation of this activities. The existence of the devotion activities is expected to understand the enrichment of mathematics olympiad material and training in the preparation of math olympiad questions for the teachers of South Pesisir district junior high school, motivating and raising the interest of the participants in order to follow the mathematics olympiad with the enrichment of mathematics materials and the training of problem solving about mathematics olympiad for junior high school teachers, the participants gain experience and gain insight, as well as the ins and outs of junior mathematics olympiad and implement to teachers and students in olympic competitions. The result of that the post-test is better than the result of pretest in the training of mathematics teacher competence improvement in composing the mathematics olympiad problem based on high order thinking skills of junior high school (SMP) in Pesisir Selatan District, West Sumatra, Indonesia.

  10. Assessing pediatrics residents' mathematical skills for prescribing medication: a need for improved training.

    Science.gov (United States)

    Glover, Mark L; Sussmane, Jeffrey B

    2002-10-01

    To evaluate residents' skills in performing basic mathematical calculations used for prescribing medications to pediatric patients. In 2001, a test of ten questions on basic calculations was given to first-, second-, and third-year residents at Miami Children's Hospital in Florida. Four additional questions were included to obtain the residents' levels of training, specific pediatrics intensive care unit (PICU) experience, and whether or not they routinely double-checked doses and adjusted them for each patient's weight. The test was anonymous and calculators were permitted. The overall score and the score for each resident class were calculated. Twenty-one residents participated. The overall average test score and the mean test score of each resident class was less than 70%. Second-year residents had the highest mean test scores, although there was no significant difference between the classes of residents (p =.745) or relationship between the residents' PICU experiences and their exam scores (p =.766). There was no significant difference between residents' levels of training and whether they double-checked their calculations (p =.633) or considered each patient's weight relative to the dose prescribed (p =.869). Seven residents committed tenfold dosing errors, and one resident committed a 1,000-fold dosing error. Pediatrics residents need to receive additional education in performing the calculations needed to prescribe medications. In addition, residents should be required to demonstrate these necessary mathematical skills before they are allowed to prescribe medications.

  11. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  12. The Effect of Scratch- and Lego Mindstorms Ev3-Based Programming Activities on Academic Achievement, Problem-Solving Skills and Logical-Mathematical Thinking Skills of Students

    Science.gov (United States)

    Korkmaz, Özgen

    2016-01-01

    The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…

  13. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    Science.gov (United States)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  14. Environmental Print Activities for Teaching Mathematics and Content Areas.

    Science.gov (United States)

    Rule, Audrey C., Ed.; McIntyre, Sandra, Ed.; Ranous, Meg, Ed.

    Twenty-three mathematics activities that use environmental print materials are presented, along with two activities that focus on music education, one that highlights history concepts, and five science activities. The environmental print materials are words and images cut from food or other product packaging and mounted on mat board cards.…

  15. ASSOCIATION AMONG MATHEMATICAL CRITICAL THINKING SKILL, COMMUNICATION, AND CURIOSITY ATTITUDE AS THE IMPACT OF PROBLEM-BASED LEARNING AND COGNITIVE CONFLICT STRATEGY (PBLCCS) IN NUMBER THEORY COURSE

    OpenAIRE

    Zetriuslita Zetriuslita; Wahyudin Wahyudin; Jarnawi Afgani Dahlan

    2018-01-01

    This research aims to find out the association amongMathematical Critical Thinking (MCT) ability, Mathematical Communication, and Mathematical Curiosity Attitude (MCA) as the impact of applying Problem-Based Learning Cognitive Conflict Strategy(PBLCCS) in Number Theory course. The research method is correlative study. The instruments include a test for mathematical critical thinking skill and communication, and questionnaire to obtain the scores of mathematical curiosity attitude. The finding...

  16. Motivational, Parental, and Cultural Influences on Achievement and Persistence in Basic Skills Mathematics at the Community College

    Science.gov (United States)

    Nordstrom, Donna E.

    2012-01-01

    The purpose of this study was to address the gap in the current literature on community college students in basic math courses by examining motivational, parental and cultural factors as predictors of achievement and persistence of students enrolled in basic skills mathematics courses at a community college. More specifically, this study…

  17. The variability in the effect of additional education on different mathematics skills in primary school - A regression discontinuity analysis

    NARCIS (Netherlands)

    Bartelet, D.; Haelermans, C.; Groot, W.; Maassen van den Brink, H.

    2013-01-01

    This paper explores the variability in the effect of an additional year of education on different basic mathematical skills, which are taught to children and explicitly repeated at different points in time during elementary school. In addition, the role of child specific characteristics and the role

  18. Early Career Mathematics Teachers' General Pedagogical Knowledge and Skills: Do Teacher Education, Teaching Experience, and Working Conditions Make a Difference?

    Science.gov (United States)

    König, Johannes; Blömeke, Sigrid; Kaiser, Gabriele

    2015-01-01

    We examined several facets of general pedagogical knowledge and skills of early career mathematics teachers, asking how they are associated with characteristics of teacher education, teaching experience, and working conditions. Declarative general pedagogical knowledge (GPK) was assessed via a paper-and-pencil test, while early career teachers'…

  19. Building a Mentorship-Based Research Program Focused on Individual Interests, Curiosity, and Professional Skills at the North Carolina School of Science and Mathematics

    Science.gov (United States)

    Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin

    2016-01-01

    The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…

  20. American Mathematical Association of Two Year Colleges Reform Policies in Practice: Implementing Standards in Classroom Instruction for Basic Skills Mathematics at One Four-Year College in New Jersey

    Science.gov (United States)

    Garruto, Patricia J.

    2012-01-01

    High school graduates continue to enter post-secondary education lacking in basic mathematical skills and thus not academically prepared to enroll in college-level mathematics courses (ACT, 2010). Although it can be argued that those mathematical concepts should have been mastered in grades K-12, educating those students in basic skills…

  1. Mathematics teachers' metacognitive skills and mathematical language in the teaching-learning of trigonometric functions in township schools / Johanna Sandra Fransman

    OpenAIRE

    Fransman, Johanna Sandra

    2014-01-01

    Metacognition is commonly understood in the context of the learners and not their teachers. Extant literature focusing on how Mathematics teachers apply their metacognitive skills in the classroom, clearly distinguishes between teaching with metacognition (TwM) referring to teachers thinking about their own thinking and teaching for metacognition (TfM) which refers to teachers creating opportunities for learners to reflect on their thinking. However, in both of these cases, thinking requires ...

  2. Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school.

    Science.gov (United States)

    Kuhn, Jörg-Tobias; Holling, Heinz

    2014-01-01

    Research on the improvement of elementary school mathematics has shown that computer-based training of number sense (e.g., processing magnitudes or locating numbers on the number line) can lead to substantial achievement gains in arithmetic skills. Recent studies, however, have highlighted that training domain-general cognitive abilities (e.g., working memory [WM]) may also improve mathematical achievement. This study addressed the question of whether a training of domain-specific number sense skills or domain-general WM abilities is more appropriate for improving mathematical abilities in elementary school. Fifty-nine children (M age = 9 years, 32 girls and 27 boys) received either a computer-based, adaptive training of number sense (n = 20), WM skills (n = 19), or served as a control group (n = 20). The training duration was 20 min per day for 15 days. Before and after training, we measured mathematical ability using a curriculum-based math test, as well as spatial WM. For both training groups, we observed substantial increases in the math posttest compared to the control group (d = .54 for number sense skills training, d = .57 for WM training, respectively). Whereas the number sense group showed significant gains in arithmetical skills, the WM training group exhibited marginally significant gains in word problem solving. However, no training group showed significant posttest gains on the spatial WM task. Results indicate that a short training of either domain-specific or domain-general skills may result in reliable short-term training gains in math performance, although no stable training effects were found in the spatial WM task.

  3. Profile of mathematical reasoning ability of 8th grade students seen from communicational ability, basic skills, connection, and logical thinking

    Science.gov (United States)

    Sumarsih; Budiyono; Indriati, D.

    2018-04-01

    This research aims to understand the students’ weaknesses in mathematical reasoning ability in junior secondary school. A set of multiple choice tests were used to measure this ability involve components mathematical communication, basic skills, connection, and logical thinking. A total of 259 respondents were determined by stratified cluster random sampling. Data were analyzed using one-way Anova test with Fobs = 109.5760 and F = 3.0000. The results show that students’ ability from schools with high National Exam in mathematics category was the best and followed by medium and low category. Mathematical connection is the most difficult component performed by students. In addition, most students also have difficulty in expressing ideas and developing logical arguments.

  4. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

    Science.gov (United States)

    Risnawati; Khairinnisa, S.; Darwis, A. H.

    2018-01-01

    The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

  5. Spontaneous focusing on numerosity in preschool as a predictor of mathematical skills and knowledge in the fifth grade.

    Science.gov (United States)

    Nanu, Cristina E; McMullen, Jake; Munck, Petriina; Hannula-Sormunen, Minna M

    2018-05-01

    Previous studies in a variety of countries have shown that there are substantial individual differences in children's spontaneous focusing on numerosity (SFON), and these differences are positively related to the development of early numerical skills in preschool and primary school. A total of 74 5-year-olds participated in a 7-year follow-up study, in which we explored whether SFON measured with very small numerosities at 5 years of age predicts mathematical skills and knowledge, math motivation, and reading in fifth grade at 11 years of age. Results show that preschool SFON is a unique predictor of arithmetic fluency and number line estimation but not of rational number knowledge, mathematical achievement, math motivation, or reading. These results hold even after taking into account age, IQ, working memory, digit naming, and cardinality skills. The results of the current study further the understanding of how preschool SFON tendency plays a role in the development of different formal mathematical skills over an extended period of time. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mathematics Learning Assisted Geogebra using Technologically Aligned Classroom (TAC) to Improve Communication Skills of Vocasional High School Student

    Science.gov (United States)

    Yuliardi, R.; Nurjanah

    2017-09-01

    The purpose of this study to analyze mathematical communication skill’s student to resolve geometry transformation problems through computer Assisted Geogebra using Technologically Aligned Classroom (TAC). The population in this study were students from one of Vocasional High School Student in West Java. Selection of sample by purposed random sampling, the experimental class is taught Technologically Aligned Classroom (TAC) with GeoGebra, while the control class is taught by conventional learning. This study was quasi-experimental with pretest and posttest control group design. Based on the results; (1) The enhancement of student mathematical communication skills through TAC was higher than the conventional learning; (2) based on gender, there were no differences of mathematical communication skilss student who exposed with TAC and conventional learning; (3) based on KAM test, there was significant enhancement of students’ communication skills among ability of high, middle, and low KAM. The differences occur between high KAM and middle KAM, and also between high KAM and low KAM. Based on this result, mathematics learning Assisted Geogebra using Technologically Aligned Classroom (TAC) can be applied in the process of Mathematics Learning in Vocasional High School.

  7. Skilled Labour market and economic development in the Mediterranean area

    OpenAIRE

    Adriana Luciano; Roberto Di Monaco

    2011-01-01

    Steady growing literature has examined the relationship between human capital and economic development. However, there is no empirical evidence that the increase in education is always related to growth. The purpose of this paper is to explore the links between human capital and growth in Mediterranean countries to put the premises for further research on single countries and on the functioning of the Mediterranean high skill labour market and the relationship with the economic development of...

  8. The Enhancement of Junior High School Students' Abilities in Mathematical Problem Solving Using Soft Skill-based Metacognitive Learning

    OpenAIRE

    Murni, Atma; Sabandar, Jozua; S. Kusumah, Yaya; Kartasamita, Bana Goerbana

    2013-01-01

    The aim of this study is to know the differences of enhancement in mathematical problem solving ability (MPSA) between the students who received soft skill- based metacognitive learning (SSML) with the students who got conventional learning (CL). This research is a quasi experimental design with pretest-postest control group. The population in this study is the students of Junior High School in Pekanbaru city. The sample consist of 135 students, 68 of them are from the high-level...

  9. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  10. Estimation in the Primary School: Developing a Key Mathematical Skill for Life

    Science.gov (United States)

    Mildenhall, Paula

    2016-01-01

    Very recently, in the "Australian Association of Mathematics Teachers (AAMT)/Australian Industry Group quantitative report" (2014), concerns were raised that school mathematics is lacking real world application. This report highlighted the gaps between school mathematics and the requirements of the workplace. After interviewing industry…

  11. Mathematical calculation skills required for drug administration in undergraduate nursing students to ensure patient safety: A descriptive study: Drug calculation skills in nursing students.

    Science.gov (United States)

    Bagnasco, Annamaria; Galaverna, Lucia; Aleo, Giuseppe; Grugnetti, Anna Maria; Rosa, Francesca; Sasso, Loredana

    2016-01-01

    In the literature we found many studies that confirmed our concerns about nursing students' poor maths skills that directly impact on their ability to correctly calculate drug dosages with very serious consequences for patient safety. The aim of our study was to explore where students had most difficulty and identify appropriate educational interventions to bridge their mathematical knowledge gaps. This was a quali-quantitative descriptive study that included a sample of 726 undergraduate nursing students. We identified exactly where students had most difficulty and identified appropriate educational interventions to bridge their mathematical knowledge gaps. We found that the undergraduate nursing students mainly had difficulty with basic maths principles. Specific learning interventions are needed to improve their basic maths skills and their dosage calculation skills. For this purpose, we identified safeMedicate and eDose (Authentic World Ltd.), only that they are only available in English. In the near future we hope to set up a partnership to work together on the Italian version of these tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Teaching mathematics online in the European Area of Higher Education: an instructor's point of view

    Science.gov (United States)

    Juan, Angel A.; Steegmann, Cristina; Huertas, Antonia; Martinez, M. Jesus; Simosa, J.

    2011-03-01

    This article first discusses how information technologies are changing the way knowledge is delivered at universities worldwide. Then, the article reviews some of the most popular learning management systems available today and some of the most useful online resources in the areas of Mathematics and Statistics. After that, some long-term experiences regarding the teaching of online courses in those areas at the Open University of Catalonia are discussed. Finally, the article presents the results of a large-scale survey performed in Spain that aims to reflect instructors' opinions and feelings about potential benefits and challenges of teaching mathematics online, as well as the role of emergent technologies in the context of the European Area of Higher Education. Therefore, this article contributes to the existing literature as an additional reference point, one based on our long-term experience in a large-scale online environment, for discussions involving mathematical e-learning.

  13. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong

    2015-07-01

    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  14. The implementation of skill assessment by the educators on the mathematics learning process in senior high school

    Science.gov (United States)

    Lestariani, I.; Sujadi, I.; Pramudya, I.

    2018-03-01

    The purpose of research to describe and know the implementation of skill assessment on the mathematics learning process with the high school mathematics teacher as the subject because it is less fully implemented. This research is the type of the descriptive qualitative method. The data was collecting observation method, interview and documentation. The result showed that on the planning stage of the implementation of skill assessment, there were many teachers who had not prepared all the completeness with various assessment techniques through performance, project and portfolio. The teacher was prepared the list of questions. On the implementation stage, there were many teachers who had not understand the stage of completing the assessment with the appropriate instrument method and development. On the reporting stage, discovered that teachers faced the difficulty on preparing scoring report with the range value. Aside from that, the teachers had not prepared the assessment instrument very well on the planning stage. It can be concluded that the implementation of skill assessment has been implemented but not maximally because educators don’t understand about the skill assessment and the number of instrument that must be prepared before the assessment.

  15. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  16. Disentangling Mathematics Target and Access Skills: Implications for Accommodation Assignment Practices

    Science.gov (United States)

    Ketterlin-Geller, Leanne R.; Jamgochian, Elisa M.; Nelson-Walker, Nancy J.; Geller, Joshua P.

    2012-01-01

    Appropriate assignment of accommodations is predicated on a clear distinction between target skills and access skills. In this study, we examine the agreement between test developer/researchers' and educators' classification of target and access skills as a possible explanatory mechanism for assigning accommodations. Findings indicate that…

  17. Cognitive Skills Used to Solve Mathematical Word Problems and Numerical Operations: A Study of 6- to 7-Year-Old Children

    Science.gov (United States)

    Bjork, Isabel Maria; Bowyer-Crane, Claudine

    2013-01-01

    This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…

  18. Mediated collaborative learning as a strategy for the development of skills: an experience with residents of Teachers of Mathematics

    Directory of Open Access Journals (Sweden)

    Rosa Rita MAENZA

    2011-12-01

    Full Text Available 0 0 1 126 693 Instituto Universitario de Ciencias de la Educación 5 1 818 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} The implementation of technologies as teaching resources used in education involves the development of different skills among which are: meeting new models of communication, knowing different ways to manipulate information, to use various content delivery formats and work interacting collaboratively. This need to demand the teaching to updated, but in turn, is essential to incorporate these activities in teacher training courses. Trying to provide an experience in this line, this paper presents a novel variant applied of residence of Teachers of Mathematics, Faculty of Sciences, Engineering and Surveying of the Universidad Nacional de Rosario. This is the realization of a shared task involving an area of knowledge management, socialization, and use of technology and virtual space using the tools of Web 2.0.

  19. Averages, Areas and Volumes; Cambridge Conference on School Mathematics Feasibility Study No. 45.

    Science.gov (United States)

    Cambridge Conference on School Mathematics, Newton, MA.

    Presented is an elementary approach to areas, columns and other mathematical concepts usually treated in calculus. The approach is based on the idea of average and this concept is utilized throughout the report. In the beginning the average (arithmetic mean) of a set of numbers is considered and two properties of the average which often simplify…

  20. Assessment Skills: A Case of Mathematics Examination and Its Place in Math-Teacher Development

    Science.gov (United States)

    Qudah, Ahmad Hassan

    2016-01-01

    The research aims to reveal the specific way to evaluate learning mathematics, so that we get the "measuring tool" for the achievement of learners in mathematics that reflect their level of understanding by score (mark), which we trust it with high degree. The behavior of the learner can be measured by a professional way to build the…

  1. A Mediation Model to Explain the Role of Mathematics Skills and Probabilistic Reasoning on Statistics Achievement

    Science.gov (United States)

    Primi, Caterina; Donati, Maria Anna; Chiesi, Francesca

    2016-01-01

    Among the wide range of factors related to the acquisition of statistical knowledge, competence in basic mathematics, including basic probability, has received much attention. In this study, a mediation model was estimated to derive the total, direct, and indirect effects of mathematical competence on statistics achievement taking into account…

  2. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  3. Life skills, mathematical reasoning and critical thinking: a curriculum for the prevention of problem gambling.

    Science.gov (United States)

    Turner, Nigel E; Macdonald, John; Somerset, Matthew

    2008-09-01

    Previous studies have shown that youth are two to three times more likely than adults to report gambling related problems. This paper reports on the development and pilot evaluation of a school-based problem gambling prevention curriculum. The prevention program focused on problem gambling awareness and self-monitoring skills, coping skills, and knowledge of the nature of random events. The results of a controlled experiment evaluating the students learning from the program are reported. We found significant improvement in the students' knowledge of random events, knowledge of problem gambling awareness and self-monitoring, and knowledge of coping skills. The results suggest that knowledge based material on random events, problem gambling awareness and self-monitoring skills, and coping skills can be taught. Future development of the curriculum will focus on content to expand the students' coping skill options.

  4. Mathematics

    International Nuclear Information System (INIS)

    Demazure, M.

    1988-01-01

    The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr

  5. Development of Finnish Elementary Pupils’ Problem-Solving Skills in Mathematics

    Directory of Open Access Journals (Sweden)

    Anu Laine

    2014-09-01

    Full Text Available The purpose of this study is to determine how Finnish pupils’ problemsolving skills develop from the 3rd to 5th grade. As research data, we use one non-standard problem from pre- and post-test material from a three-year follow-up study, in the area of Helsinki, Finland. The problems in both tests consisted of four questions related to each other. The purpose of the formulation of the problem was to help the pupils to find how many solutions for a certain answer exist. The participants in the study were 348 third-graders and 356 fifth-graders. Pupils’ fluency, i.e. ability to develop different solutions, was found to correlate with their ability to solve the problem. However, the proportions of the pupils (17% of the 3rd graders and 21% of the 5th graders who answered that there were an infinite number of solutions are of the same magnitude. Thus, the pupils’ ability to solve this kind of problem does not seem to have developed from the 3rd to the 5th grade. The lack and insufficiency of pupils’ justifications reveal the importance of the teacher carefully listening to the pupils’ ideas in order to be able to promote pupils’ understanding of the concept of infinity, as well as the basic calculations.

  6. Do preschool special education services make a difference in kindergarten reading and mathematics skills?: A propensity score weighting analysis.

    Science.gov (United States)

    Sullivan, Amanda L; Field, Samuel

    2013-04-01

    The purpose of this study was to examine the average treatment effect of preschool special education services on children's kindergarten academic skills. Using data from a nationally representative sample of United States children who participated in the Early Childhood Longitudinal Study-Birth Cohort, we examined the effectiveness of preschool special education services by comparing reading and math outcomes for children who received special education services at preschool-age to a propensity-score-weighted sample of children who did not receive these services. Results indicated that the receipt of these special education services had a statistically significant moderate negative effect on children's kindergarten skills in both reading (d=-0.21) and mathematics (d=-0.29). These findings have implications for the implementation and evaluation of services for young children experiencing developmental delays or disabilities. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  7. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  8. [Occupational health and immigration: skills, perspectives and areas of intervention].

    Science.gov (United States)

    Porru, S; Arici, C

    2011-01-01

    The occupational physician (OP) has nowadays to face health and safety of migrant workers on new ethical, scientific, epidemiologic and legislative basis. Objective of our contribution is to describe area of interventions and perspectives in good medical practices for OP when dealing with migrant workers. Risk assessment should focus on differences of immigrants versus natives as regards exposures and effects, quality of and access to health services, organizational issues. Health surveillance should take into account cultural, educational, religious, life style differences, as well as susceptibility; time must be dedicated by the OP to search and evaluate such differences. Counselling, health promotion and case management are part of good medical practice. The professional role of the OP is depicted, trying to identify weaknesses and strengths, as well as priorities for intervention especially in applied research. In conclusion, migrant workers may suffer from occupational health inequalities. By means of good medical practices in risk assessment, health surveillance, fitness for work and health promotion, OP can proactively improve migrant workers' health and guarantee same levels of protection and prevention in workplaces as for the natives.

  9. Research Area 3: Mathematics (3.1 Modeling of Complex Systems)

    Science.gov (United States)

    2017-10-31

    Title: RESEARCH AREA 3: MATHEMATICS (3.1 Modeling of Complex Systems). Proposal should be directed to Dr. John Lavery Report Term: 0-Other Email ...Paolo Rosso Email : prosso@dsic.upv.es values of the profile characteristics taken by the users), intersection (they represent the relationship between...accuracy, especially when adding fully connected layers at the end of the network. This work has resulted in the writing of a manuscript for the Journal

  10. Robotics: Assessing Its Role in Improving Mathematics Skills for Grades 4 to 5

    Science.gov (United States)

    Laughlin, Sara Rose

    2013-01-01

    Inspiring and motivating students to pursue science, technology, engineering, and mathematics education continues to be an important educational focus in the United States. Robotics programs are one strategy developed to accomplish this goal. This causal comparative study focused on investigating whether a causal relationship exists between…

  11. Multiple-Choice versus Constructed-Response Tests in the Assessment of Mathematics Computation Skills.

    Science.gov (United States)

    Gadalla, Tahany M.

    The equivalence of multiple-choice (MC) and constructed response (discrete) (CR-D) response formats as applied to mathematics computation at grade levels two to six was tested. The difference between total scores from the two response formats was tested for statistical significance, and the factor structure of items in both response formats was…

  12. Destrezas de Matematica: Curriculo Basico. Guia para el Maestro (Mathematics Skills: Basic Curriculum. Teacher's Guide).

    Science.gov (United States)

    Puerto Rico State Dept. of Education, Hato Rey. Office of Special Education.

    The fundamental importance of basic mathematics to daily life is emphasized in this teacher's guide for special education teachers in Puerto Rico. While it is necessary for the teacher to determine the needs and abilities of each student and adapt the curriculum accordingly, this guide presents, in Spanish, a set of lesson plans, each with an…

  13. Integration of Bioinformatics into an Undergraduate Biology Curriculum and the Impact on Development of Mathematical Skills

    Science.gov (United States)

    Wightman, Bruce; Hark, Amy T.

    2012-01-01

    The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this…

  14. University-School Collaboration as a Tool for Promoting Pre-Service Mathematics Teachers' Professional Skills

    Science.gov (United States)

    Kilic, Hulya; Tunc Pekkan, Zelha

    2017-01-01

    In this paper, we discuss pre-service mathematics teachers' professional gains from a university-school collaboration where they were given opportunity to observe two teacher educators' instructional practices in a 6th grade classroom, interact with students in one-to-one fashion and reflect on the teacher educators' and their own practices. Three…

  15. Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Jensen, Jamie L.; Neeley, Shannon; Hatch, Jordan B.; Piorczynski, Ted

    2017-01-01

    The United States produces too few Science, Technology, Engineering, and Mathematics (STEM) graduates to meet demand. We investigated scientific reasoning ability as a possible factor in STEM retention. To do this, we classified students in introductory biology courses at a large private university as either declared STEM or non-STEM majors and…

  16. Developing A-level physics students' mathematical skills - a way forward?

    Science.gov (United States)

    Raw, A. J.

    1999-09-01

    This article outlines research that details the mathematical difficulties of physics students and it also discusses various projects to overcome these difficulties. The successes of these projects are very encouraging and show a way forward for A-level physics teaching.

  17. The Trajectory of Mathematics Skills and Working Memory Thresholds in Girls with Fragile X Syndrome

    Science.gov (United States)

    Murphy, Melissa M.; Mazzocco, Michele M. M.

    2009-01-01

    Fragile X syndrome is a common genetic disorder associated with executive function deficits and poor mathematics achievement. In the present study, we examined changes in math performance during the elementary and middle school years in girls with fragile X syndrome, changes in the working memory loads under which children could complete a…

  18. Improving University Students' Perception of Mathematics and Mathematics Ability

    Directory of Open Access Journals (Sweden)

    Shelly L. Wismath

    2015-01-01

    Full Text Available Although mathematical and quantitative reasoning skills are an essential part of adult life in our society, many students arrive at post-secondary education without such skills. Taking a standard mathematics course such as calculus may do little to improve those skills. Using a modification of the Tapia & Marsh questionnaire, we surveyed 62 students taking a broad quantitative reasoning course designed to develop quantitative skills, with respect to two broad attitudinal areas: students’ perception of their own ability, confidence and anxiety, and their perception of the value of mathematics in their studies and their lives. Pre- to post-course comparisons were done by both paired t-tests and Wilcoxon signed-rank tests. Our results showed a significant increase in confidence and decrease in anxiety, while perception of the value of mathematics was already high and changed little by the end of the course.

  19. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  20. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  1. Narrowing the Early Mathematics Gap: A Play-Based Intervention to Promote Low-Income Preschoolers’ Number Skills

    Directory of Open Access Journals (Sweden)

    Nicole R. Scalise

    2018-01-01

    Full Text Available Preschoolers from low-income households lag behind preschoolers from middle-income households on numerical skills that underlie later mathematics achievement. However, it is unknown whether these gaps exist on parallel measures of symbolic and non-symbolic numerical skills. Experiment 1 indicated preschoolers from low-income backgrounds were less accurate than peers from middle-income backgrounds on a measure of symbolic magnitude comparison, but they performed equivalently on a measure of non-symbolic magnitude comparison. This suggests activities linking non-symbolic and symbolic number representations may be used to support children’s numerical knowledge. Experiment 2 randomly assigned low-income preschoolers (Mean Age = 4.7 years to play either a numerical magnitude comparison or a numerical matching card game across four 15 min sessions over a 3-week period. The magnitude comparison card game led to significant improvements in participants’ symbolic magnitude comparison skills in an immediate posttest assessment. Following the intervention, low-income participants performed equivalently to an age- and gender-matched sample of middle-income preschoolers in symbolic magnitude comparison. These results suggest a brief intervention that combines non-symbolic and symbolic magnitude representations can support low-income preschoolers’ early numerical knowledge.

  2. Las Matematicas: Lenguaje Universal. Grados Intermedios, Nivel 5b: Medida Lineal, Perimetro y Area (Mathematics: A Universal Language. Intermediate Grades, Level 5b: Linear Measure, Perimeter and Area).

    Science.gov (United States)

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    This is one of a series of student booklets designed for use in a bilingual mathematics program in grades 6-8. The general format is to present each page in both Spanish and English. The mathematical topics in this booklet include measurement, perimeter, and area. (MK)

  3. Effects of the Self-Regulation Empowerment Program (SREP) on middle school students' strategic skills, self-efficacy, and mathematics achievement.

    Science.gov (United States)

    Cleary, Timothy J; Velardi, Brittany; Schnaidman, Bracha

    2017-10-01

    The current study examined the effectiveness of an applied self-regulated learning intervention (Self-Regulation Empowerment Program (SREP)) relative to an existing, school-based remedial mathematics intervention for improving the motivation, strategic skills, and mathematics achievement of academically at-risk middle school students. Although significant group differences in student self-regulated learning (SRL) were not observed when using self-report questionnaires, medium to large and statistically significant group differences were observed across several contextualized, situation-specific measures of strategic and regulatory thinking. The SREP group also exhibited a statistically significant and more positive trend in achievement scores over two years in middle school relative to the comparison condition. Finally, SREP students and coaches reported SREP to be a socially-valid intervention, in terms of acceptability and importance. The importance of this study and critical areas for future research are highlighted and discussed. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  4. Mathematics in the Age of Jane Austen: Essential Skills of 1800.

    Science.gov (United States)

    Gray, S. I. B.

    2000-01-01

    Discusses textbooks from the 1800s for young ladies versus young men, for the youngest students, more advanced students, and university students. Regards these publications as furnishing a record of the skills thought to be essential at the turn of the previous century. (KHR)

  5. Enhancing Self-Regulatory Skills through an Intervention Embedded in a Middle School Mathematics Curriculum

    Science.gov (United States)

    Digiacomo, Gregory; Chen, Peggy P.

    2016-01-01

    We investigated the effects of a self-regulatory intervention strategy designed to improve middle-school students' calibration accuracy, self-regulatory skills, and math achievement. Focusing on self-monitoring and self-reflection as the two key processes of this intervention in relation to improving students' math achievement and overall…

  6. The Factors Affecting Techno-Pedagogical Competencies and Critical Thinking Skills of Preservice Mathematics Teachers

    Science.gov (United States)

    Yildiz, Avni

    2017-01-01

    Students' high-level thinking skills, like critical thinking, have been developed thanks to the use of technology. When the previous researches in the literature are analyzed, it will be understood that this research is original by providing significant contributions to the literature. This research aims to investigate whether techno-pedagogical…

  7. The Analysis of Elementary Mathematics Preservice Teachers' Spatial Orientation Skills with SOLO Model

    Science.gov (United States)

    Özdemir, Ahmet Sükrü; Göktepe Yildiz, Sevda

    2015-01-01

    Problem Statement: The SOLO model places responses provided by students on a certain level instead of placing students there themselves. SOLO taxonomy, including five sub-levels, is used for determining observed structures of learning outcomes in various disciplines and grade levels. On the other hand, the spatial orientation skill is the ability…

  8. Innovative Teaching Games: Climbing the Hills of Math Skills. California Demonstration Mathematics Program.

    Science.gov (United States)

    Pittsburg Unified School District, CA.

    The card games in this publication are an alternative activity to help students master computational skills. Games for operations with whole numbers, fractions, decimals, percents, integers, and square roots are included. They can be used to introduce math topics and for practice and review, with either the whole class or in small groups with 2 to…

  9. Cultivating Mathematical Skills: From Drill-and-Practice to Deliberate Practice

    Science.gov (United States)

    Lehtinen, Erno; Hannula-Sormunen, Minna; McMullen, Jake; Gruber, Hans

    2017-01-01

    Contemporary theories of expertise development highlight the crucial role of deliberate practice in the development of high level performance. Deliberate practice is practice that intentionally aims at improving one's skills and competencies. It is not a mechanical or repetitive process of making performance more fluid. Instead, it involves a…

  10. The Role of PS Ability and RC Skill in Predicting Growth Trajectories of Mathematics Achievement

    Science.gov (United States)

    Vista, Alvin

    2016-01-01

    There are relatively few studies in Australia and South-East Asian region that combine investigating models of math growth trajectories with predictors such as reasoning ability and reading comprehension skills. Math achievement is one of the major components of overall academic achievement and it is important to determine what factors (especially…

  11. University-School Collaboration as a Tool for Promoting Pre-Service Mathematics Teachers’ Professional Skills

    OpenAIRE

    Kilic, Hulya; Tunc Pekkan, Zelha

    2017-01-01

    In this paper, we discuss pre-service mathematics teachers’ professionalgains from a university-school collaboration where they were given opportunityto observe two teacher educators’ instructional practices in a 6th gradeclassroom, interact with students in one-to-one fashion and reflect on theteacher educators’ and their own practices. Three pre-service teachers out ofnine volunteers attended all modelling and practice sessions for 20 weeks. Thedata collected through interviews, field notes...

  12. Expressive and receptive language skills in preschool children from a socially disadvantaged area.

    Science.gov (United States)

    Ryan, Ashling; Gibbon, Fiona E; O'shea, Aoife

    2016-02-01

    Evidence suggests that children present with receptive language skills that are equivalent to or more advanced than expressive language skills. This profile holds true for typical and delayed language development. This study aimed to determine if such a profile existed for preschool children from an area of social deprivation and to investigate if particular language skills influence any differences found between expressive and receptive skills. Data from 187 CELF P2 UK assessments conducted on preschool children from two socially disadvantaged areas in a city in southern Ireland. A significant difference was found between Receptive Language Index (RLI) and Expressive Language Index (ELI) scores with Receptive scores found to be lower than Expressive scores. The majority (78.6%) of participants had a lower Receptive Language than Expressive score (RLI ELI), with very few (3.2%) having the same Receptive and Expressive scores (RLI = ELI). Scores for the Concepts and Following Directions (receptive) sub-test were significantly lower than for the other receptive sub tests, while scores for the Expressive Vocabulary sub-test were significantly higher than for the other expressive sub tests. The finding of more advanced expressive than receptive language skills in socially deprived preschool children is previously unreported and clinically relevant for speech-language pathologists in identifying the needs of this population.

  13. The use of isiXhosa children’s poetry as a tool to integrate literacy, mathematics and life skills in Foundation Phase: Grade R-3

    Directory of Open Access Journals (Sweden)

    Nozuko Gxekwa

    2017-12-01

    Full Text Available Literature helps us understand and make sense of the world around us. It is a part of education, which broadens one’s mind about how to understand, transfer knowledge and provide meaningful and authentic learning. Thus, this article aims to highlight how some elements of isiXhosa children’s poetry can be used to help pre-service teachers to teach and integrate mathematics and life skills with literacy in Foundation Phase (FP. This approach of using poems for integration strengthens concepts and skills in more than one subject area. The theoretical framework that informed the article is integrative learning. The data in this article were generated through non-participant classroom observations and non-structured interviews with the participants of the study and the researchers adopted the interpretative phenomenological analysis method for data analysis. This article was prompted by findings of lack of understanding of integrative teaching and learning and lack of teaching resources in isiXhosa to enhance integrative teaching and learning in FP intervention undertaken with 25 first year isiXhosa-speaking FP students.

  14. The measurement of enhancement in mathematical abilities as a result of joint cognitive trainings in numerical and visual- spatial skills: A preliminary study

    International Nuclear Information System (INIS)

    Agus, M; Mascia, M L; Fastame, M C; Melis, V; Pilloni, M C; Penna, M P

    2015-01-01

    A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment

  15. The measurement of enhancement in mathematical abilities as a result of joint cognitive trainings in numerical and visual- spatial skills: A preliminary study

    Science.gov (United States)

    Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.

    2015-02-01

    A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.

  16. Measure, a specific professional skill for teachers of Mathematics-Physics

    Directory of Open Access Journals (Sweden)

    Evelio Guillermo Pozo Velázquez

    2010-12-01

    Full Text Available This work aims at the validation of measuring skill as one of the bassic professi onal skill conceived for the formation of the Physics professor from the definitions given by A. Márquez(1987 and H. Fuentes(1994 in one of a first approximation, in order to make later, a validation of the conceptual and operational structure of this sk ill taking into consideration the definition of the concept of measurement given by the necessity of the social task in the formation to the first ́year student in the career Mathematics–Physics in the University of Pedagogical Science “Rafael María de Mendive” in Pinar del Río.

  17. Do higher levels of education and skills in an area benefit wider society?

    OpenAIRE

    Winters, John V.

    2015-01-01

    Formal schooling increases earnings and provides other individual benefits. However, societal benefits of education may exceed individual benefits. Research finds that increased average education levels in an area are correlated with higher earnings, even for locals with relatively little education. Science, technology, engineering, and mathematics (STEM) graduates appear to have especially strong external effects, due to their role in stimulating innovation and economic growth. Several strat...

  18. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  19. Effect of a virtual environment on the development of mathematical skills in children with dyscalculia.

    Directory of Open Access Journals (Sweden)

    Marcus Vasconcelos de Castro

    Full Text Available In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG and experimental (EG groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05. The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development.

  20. Effect of a Virtual Environment on the Development of Mathematical Skills in Children with Dyscalculia

    Science.gov (United States)

    de Castro, Marcus Vasconcelos; Bissaco, Márcia Aparecida Silva; Panccioni, Bruno Marques; Rodrigues, Silvia Cristina Martini; Domingues, Andreia Miranda

    2014-01-01

    In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG) and experimental (EG) groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT) was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05). The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development. PMID:25068511

  1. Effect of a virtual environment on the development of mathematical skills in children with dyscalculia.

    Science.gov (United States)

    de Castro, Marcus Vasconcelos; Bissaco, Márcia Aparecida Silva; Panccioni, Bruno Marques; Rodrigues, Silvia Cristina Martini; Domingues, Andreia Miranda

    2014-01-01

    In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG) and experimental (EG) groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT) was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05). The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development.

  2. Development of Learning Devices through Problem Based Learning Model Based on the Context of Aceh Cultural to Improve Mathematical Communication Skills and Social Skills of SMPN 1 Muara Batu Students

    Science.gov (United States)

    Aufa, Mahrani; Saragih, Sahat; Minarni, Ani

    2016-01-01

    The purposes of this study were:1) Developed problem-based on learning tools in the cultural context of Aceh (PBM-BKBA) who meet the criteria are valid, practical and effective; 2) Described the improvement of communication capabilities mathematics and social skills of students using the PBM-BKBA developed; and 3) Described the process of student…

  3. The Effects of Computer Programming on High School Students' Reasoning Skills and Mathematical Self-Efficacy and Problem Solving

    Science.gov (United States)

    Psycharis, Sarantos; Kallia, Maria

    2017-01-01

    In this paper we investigate whether computer programming has an impact on high school student's reasoning skills, problem solving and self-efficacy in Mathematics. The quasi-experimental design was adopted to implement the study. The sample of the research comprised 66 high school students separated into two groups, the experimental and the…

  4. Improved Outcomes with Computer-Assisted Instruction in Mathematics and English Language Skills for Hispanic Students in Need of Remedial Education at Miami Dade College, Florida

    Science.gov (United States)

    Vassiliou, John

    2011-01-01

    In this study, 180 first-time-in-college (FTIC) students at Miami Dade College, Florida in need of remedial instruction in basic mathematics, reading, and sentence skills utilized the A[superscript +]dvancer[R] College Readiness Online software. Significant results were found with increased ACCUPLACER[R] scores; number of students who avoided at…

  5. Fostering Early Numerical Skills at School Start in Children at Risk for Mathematical Achievement Problems: A Small Sample Size Training Study

    Science.gov (United States)

    Hasselhorn, Marcus; Linke-Hasselhorn, Kathrin

    2013-01-01

    Eight six-year old German children with development disabilities regarding such number competencies as have been demonstrated to be among the most relevant precursor skills for the acquisition of elementary mathematics received intensive training with the program "Mengen, zählen, Zahlen" ["quantities, counting, numbers"] (MZZ,…

  6. It takes two-skilled recognition of objects engages lateral areas in both hemispheres.

    Directory of Open Access Journals (Sweden)

    Merim Bilalić

    Full Text Available Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas.

  7. Helping students mathematical construction on square and rectangle’s area by using Sarong motive chess

    Science.gov (United States)

    Zuliana, Eka; Setyawan, Fariz; Veloo, Arsaythamby

    2017-12-01

    The aim of this study is developing the learning trajectory to construct students’ understanding of the concept of the area of square and rectangle by using Sarong Motive Chess. This research is a design research which is consists of three stages. The stages are preparing for the experiment, designing experiment, and making a retrospective analysis. The activities started by the activity of using sarong motive chess as the manipulative measurement unit. The Sarong motive chess helps students to understand the concept of area of square and rectangle. In the formal stage of cognitive level, students estimate the area of square and rectangle by determining the square unit at the surface area of sarong through many ways. The result of this study concludes that Sarong motive chess can be used for mathematics learning process. It helps the students to construct the concept of a square and rectangle’s area. This study produces learning trajectory to construct the concept of a square and rectangle’s area by using Sarong motive chess, especially for elementary school students.

  8. Mathematical simulation for compensation capacities area of pipeline routes in ship systems

    Science.gov (United States)

    Ngo, G. V.; Sakhno, K. N.

    2018-05-01

    In this paper, the authors considered the problem of manufacturability’s enhancement of ship systems pipeline at the designing stage. The analysis of arrangements and possibilities for compensation of deviations for pipeline routes has been carried out. The task was set to produce the “fit pipe” together with the rest of the pipes in the route. It was proposed to compensate for deviations by movement of the pipeline route during pipe installation and to calculate maximum values of these displacements in the analyzed path. Theoretical bases of deviation compensation for pipeline routes using rotations of parallel section pairs of pipes are assembled. Mathematical and graphical simulations of compensation area capacities of pipeline routes with various configurations are completed. Prerequisites have been created for creating an automated program that will allow one to determine values of the compensatory capacities area for pipeline routes and to assign quantities of necessary allowances.

  9. Qualified nurses' rate new nursing graduates as lacking skills in key clinical areas.

    Science.gov (United States)

    Missen, Karen; McKenna, Lisa; Beauchamp, Alison; Larkins, Jo-Ann

    2016-08-01

    The aim of this study was to explore perceptions of qualified nurses on the abilities of newly registered nursing graduates to perform a variety of clinical skills. Evidence from the literature suggests that undergraduate nursing programmes do not adequately prepare nursing students to be practice-ready on completion of their nursing courses. A descriptive quantitative design was used. Participants were recruited through the Australian Nursing and Midwifery Federation, Victorian branch. A brief explanation of the study and a link to the survey were promoted in their monthly e-newsletter. A total of 245 qualified nurses in the state of Victoria, Australia participated in this study. A survey tool of 51 clinical skills and open-ended questions was used, whereby participants were asked to rate new nursing graduates' abilities using a 5-point Likert scale. Overall participants rated new nursing graduates' abilities for undertaking clinical skills as good or very good in 35·3% of skills, 33·3% were rated as adequate and 31·4% rated as being performed poorly or very poorly. Of concern, essential clinical skills, such as critical thinking and problem solving, working independently and assessment procedures, were found to be poorly executed and affecting new registered nurses graduates' competence. The findings from this study can further serve as a reference for nursing education providers to enhance nursing curricula and work collaboratively with healthcare settings in preparing nurses to be competent, safe practitioners on completion of their studies. Identifying key areas in which new nursing graduates are not yet competent means that educational providers and educators from healthcare settings can focus on these skills in better preparing our nurses to be work ready. © 2016 John Wiley & Sons Ltd.

  10. Teaching physics to student's with special needs & make more appealing to encourage mathematical skills

    Science.gov (United States)

    Schunicht, Shannon

    2010-03-01

    This WORLDY recognized mnemonic discovery resulted from this author' head injury (3 weeks unconsciousness). Beginning with some essential Brain Facts to explain how this remarkable discovery was devised: Right hemisphere => Spatial/musical Left hemisphere => Language/Logic This authors education: 2 ea BA degrees => language requirement A hole in the head (right hemisphere) may be spied on the WTVH DVD. The damaged right hemisphere accentuates this author's left hemisphere coupled with 2ea BA degrees that require a language ('83 BA a/Spanish & '94 BA w/Latin). Physical survival may be attributed to US Army RANGER training who Never say die! 10-82, 11-82, & 13 83. Recovery came having to learn EVERYTHING all over again, as I was reported having displayed upon awakening from the extended unconsciousness (19 days). Studies were difficult without a memory, but simple because I had always been forced to learn EVERYTHING MYSELF by mother who was a kindergarten teacher! The residual deficit continues to plague this author: Out of Sight is truly Out of mind! Even for a student whose memory is NOT disabled, memory is difficult. The ``nut's & bolts'' of this presentation are essentially having each Vowel represent a Mathematical operation. A: multiplication => @ O: division => Over I: subraction => mInus U: addition => plUs E: => Equals Most constants and variables are indeed consonants, e.g. c = speed of light z = altitude

  11. THE DEVELOPMENT OF ELECTRONIC TEACHING MATERIALS BY FLIPBOOK ASSISTANCE BASED PROBLEM SOLVING SKILL WITH CTL APPROACH ON LEARNING MATHEMATICS CLASS V

    Directory of Open Access Journals (Sweden)

    RUSNILAWATI Eva Gustiana RUSNILAWATI

    2018-01-01

    Full Text Available The purpose of this research is to produce Flipbook-based Electronic Teaching Materials (BAE based on problem solving skills with CTL Approach on Vocational School Class V learning valid, practical, and effective. This type of research is development research (Development Research. This research developed Flipbook-assisted Electronic Teaching Materials (BAE on the mathematics learning of Class V Primary School by using the 4-D development model developed by Thiagarajan, Semmel, and Semmel. The validation results show that the developed Teaching Materials are worthy of use with a good minimum category. The results of the experiments show that Electronic Materials developed are practical and effective. Completed learning in the classical has reached the minimum criteria of 75% that is for problem-solving test reached 86%. Based on a questionnaire of attitudes toward mathematics, 88% of students showed an increase in attitude scores on mathematics, and 85% of students showed attitudes toward mathematics with a good minimum category.

  12. How to Build a Course in Mathematical-Biological Modeling: Content and Processes for Knowledge and Skill

    Science.gov (United States)

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity…

  13. Mathematical model of small water-plane area twin-hull and application in marine simulator

    Science.gov (United States)

    Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng

    2013-09-01

    Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.

  14. Using Tree-Ring Data to Develop Critical Scientific and Mathematical Thinking Skills in Undergraduate Students

    Science.gov (United States)

    Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.

    2015-12-01

    Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction

  15. The Comparison of the Effectiveness of Cognitive and Cognitive-Metacognitive Strategies based on Mathematical Problem-Solving Skills on 9th Grade Girl Students with Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Seyyedeh Somayyeh Jalil-Abkenar

    2012-01-01

    Full Text Available Objective: The purpose of present research was the comparison of the effectiveness of cognitive & cognitive-metacognitive strategies based on mathematical problem-solving skills on 9th grade girl students with intellectual disability in Tehran Province. Materials & Methods: The research is an experimental, comparing pre-test and post-test data. The participants were chosen by cluster sampling from three schools three districts of Tehran Province (Gharchak, Shahrerey and Shahryar. Fifteen female students with Intellectual disability were assigned from each school and they were divided into three, one control and two experiment groups. For experimental groups students cognitive & cognitive-metacognitive strategies were taught in the 15 instructional sessions, but the control group students did not receive none of strategies in the same sessions. The instruments consist of Wechsler intelligence test was used for matching the groups in terms of IQ, a teacher performed the tests for mathematical problem-solving and instructional pakage of cognitive and cognitive-metacognitive strategies. The data analysis was done by using descriptive statistics (mean, standard deviation and frequency table and ANCOVA. Results: The findings of this research showed that there was significant increasing in mathematical problem-solving skills in the group receiving cognitive-metacognitive strategies in comparison with the cognitive group (P<0.005 and control group (P<0.001. Beside, the mean difference of the cognitive group was significantly more than the control group (P<0.003. Conclusion: The mathematical problem-solving skill of the students have been improved through cognitive-metacognitive and cognitive strategies. Also, the instruction of cognitive-metacognitive strategies, in compared with cognitive strategy caused more improvement on the performance of mathematical problem-solving skills.

  16. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  17. Future Directions for The Math You Need, When You Need It: Adaptation and Implementation of Online Student-Centered Tutorials that Remediate Introductory Geoscience-Related Mathematical Skills

    Science.gov (United States)

    Wenner, J. M.; Burn, H.; Baer, E. M.

    2009-12-01

    Requiring introductory geoscience students to apply mathematical concepts and solve quantitative problems can be an arduous task because these courses tend to attract students with diverse levels of mathematical preparedness. Perhaps more significantly, geoscience instructors grapple with quantitative content because of the difficulties students have transferring their prior mathematical learning to common geological problems. As a result, instructors can choose to eliminate the mathematics, spend valuable class time teaching basic mathematical skills or let students flounder in the hope that they will learn on their own. None of these choices are ideal. Instead, research suggests that introductory geoscience courses are opportune places to increase students’ quantitative abilities but that students need effective support at their own skill level. To provide such support, we developed The Math You Need, When You Need It (TMYN): a set of online geoscience context-rich tutorials that students complete just before they encounter a mathematical or numerical skill in their introductory course. The tutorials are modular; each mathematical topic has a set of pages that students work through toward a final assessment. The 11 modules currently available, including unit conversions, graphing, calculating density, and rearranging equations, touch on quantitative topics that cross a number of geologic contexts. TMYN modules are designed to be stand-alone and flexible - faculty members can choose modules appropriate for their courses and implement them at any time throughout the term. The flexible and adaptable nature of TMYN enables faculty to provide a supportive learning environment that remediates math for those who need it without taking significant classroom time. Since spring 2008, seven instructors at Highline Community College and University of Wisconsin Oshkosh successfully implemented TMYN in six geoscience courses with diverse student audiences. Evaluation of

  18. Reading, Mathematics and Fine Motor Skills at 5 Years of Age in US Children who were Extremely Premature at Birth.

    Science.gov (United States)

    Lee, Miryoung; Pascoe, John M; McNicholas, Caroline I

    2017-01-01

    Objectives The prevalence of extreme prematurity at birth has increased, but little research has examined its impact on developmental outcomes in large representative samples within the United States. This study examined the association of extreme prematurity with kindergarteners' reading skills, mathematics skills and fine motor skills. Methods The early childhood longitudinal study-birth cohort, a representative sample of the US children born in 2001 was analyzed for this study. Early reading and mathematics skills and fine motor skills were compared among 200 extremely premature children (EPC) (gestational age motor performance of PC (failed to build a gate, 1.3[95 % CI 1.0-1.7]; failed to draw all four shapes, 1.1[95 % CI 0.8-1.6]) was not significantly different from TC. Mean early reading scale score (36.8[SE:1.3]) of EPC was 4.0 points lower than TC (p value motor delays at age 5 years. This suggests that based on a nationally representative sample of infants, the biological risk of extreme prematurity persists after adjusting for other factors related to development.

  19. Investigation in Adopting Skill Education on Higher Mathematics Education%高等数学教学实施素质教育的探讨

    Institute of Scientific and Technical Information of China (English)

    朱省娥

    2001-01-01

    在高等数学教学中如何实施素质教育进行了探 讨,提出了设 想,介绍了有关的教改尝试,并对如何进一步加强高等数学的素质教育提出了建议。%The article investigated the adoption of skill educa tion on higher mathema tics education,making a proposal and explaining the initial experiment which has been made,and suggesting some hows on the further adoption of skill education i n higher mathematics education.

  20. Connecting mathematics learning through spatial reasoning

    Science.gov (United States)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  1. Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill.

    Science.gov (United States)

    Cipora, Krzysztof; Nuerk, Hans-Christoph

    2013-01-01

    The SNARC (spatial-numerical association of response codes) described that larger numbers are responded faster with the right hand and smaller numbers with the left hand. It is held in the literature that arithmetically skilled and nonskilled adults differ in the SNARC. However, the respective data are descriptive, and the decisive tests are nonsignificant. Possible reasons for this nonsignificance could be that in previous studies (a) very small samples were used, (b) there were too few repetitions producing too little power and, consequently, reliabilities that were too small to reach conventional significance levels for the descriptive skill differences in the SNARC, and (c) general mathematical ability was assessed by the field of study of students, while individual arithmetic skills were not examined. Therefore we used a much bigger sample, a lot more repetitions, and direct assessment of arithmetic skills to explore relations between the SNARC effect and arithmetic skills. Nevertheless, a difference in SNARC effect between arithmetically skilled and nonskilled participants was not obtained. Bayesian analysis showed positive evidence of a true null effect, not just a power problem. Hence we conclude that the idea that arithmetically skilled and nonskilled participants generally differ in the SNARC effect is not warranted by our data.

  2. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    Science.gov (United States)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurfBS.

  3. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    International Nuclear Information System (INIS)

    Benalcázar, M; Padín, J; Brun, M; Pastore, J; Ballarin, V; Peirone, L; Pereyra, G

    2011-01-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  4. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    Science.gov (United States)

    Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.

    2011-12-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  5. Helping Mathematics Teachers Develop Noticing Skills: Utilizing Smartphone Technology for One-on-One Teacher/Student Interviews

    Science.gov (United States)

    Chao, Theodore; Murray, Eileen; Star, Jon R.

    2016-01-01

    Teaching mathematics for understanding requires listening to each student's mathematical thinking, best elicited in a one-on-one interview. Interviews are difficult to enact in a teacher's busy schedule, however. In this study, the authors utilize smartphone technology to help mathematics teachers interview a student in a virtual one-on-one…

  6. Role of medial premotor areas in action language processing in relation to motor skills.

    Science.gov (United States)

    Courson, Melody; Macoir, Joël; Tremblay, Pascale

    2017-10-01

    The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Instructional Guide for Abbott Skills Enhancement Classes. Revised Edition.

    Science.gov (United States)

    Ballinger, Ronda; Gee, Mary Kay

    This guide, which integrates adult basic education (ABE) curriculum, job skills for Abbott Laboratories, and work-related foundation skills, is designed for an instructional program in the skill areas of reading, writing, oral communications, mathematics, and problem solving. In addition to creating a uniform process and product to promote…

  8. Calculation method of rate and area of sedimentation, by non-conventional mathematical process of data treatment

    International Nuclear Information System (INIS)

    Cota, P.L.

    1987-01-01

    The used methods for calculating the rate and area of sedimentation are based in techniques of graphical resolution. The solution of the problem by a mathematical resolution, using computational methods, is more fast and more accuracy. The comparison between the results from this methods and the conventional method is shown. (E.G.) [pt

  9. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  10. Educational Needs Assessment Highlights Several Areas of Emphasis in Teaching Evidence-Based Medicine Skills to Physician Assistant Students.

    Science.gov (United States)

    Kuntz, Susan; Ali, Syed Haris; Hahn, Emily

    2016-08-03

    An assessment of educational needs is essential for curricular reform in medical education. Using the conceptual framework of needs assessment, this study aimed to determine which content should be emphasized in teaching evidence-based medicine (EBM) skills to physician assistant (PA) students. Key content areas were identified from the published literature and objectives for previous courses. A questionnaire-type needs assessment instrument was created and given to a graduating class of PA students (n = 21) at the University of North Dakota. The response format had two 5-option scales, one to assess current skill levels and the other to assess ideal skill levels. Means for each category were calculated, and a mean difference analysis was performed. An average mean difference of 0.5 was noted in 3 domains (information retrieval skills, writing skills, and overall gains), and a mean difference of 0.7 was noted in one domain (statistical skills). Items with a mean difference of ≥ 0.7 were identified for prioritization for curricular reform. Open-ended input from respondents substantiated the need for greater emphasis on these content areas. Several content areas related to EBM skills can be identified and prioritized through a systematically conducted educational needs assessment. This method can be used to identify discrepancies between the existing and ideal states of affairs in PA education.

  11. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  12. Research trends in mathematics teacher education

    CERN Document Server

    Lo, Jane-Jane; Zoest, Laura RVan

    2014-01-01

    Research on the preparation and continued development of mathematics teachers is becoming an increasingly important subset of mathematics education research. Such research explores the attributes, knowledge, skills and beliefs of mathematics teachers as well as methods for assessing and developing these critical aspects of teachers and influences on teaching.Research Trends in Mathematics Teacher Education focuses on three major themes in current mathematics teacher education research: mathematical knowledge for teaching, teacher beliefs and identities, and tools and techniques to support teacher learning. Through careful reports of individual research studies and cross-study syntheses of the state of research in these areas, the book provides insights into teachers' learning processes and how these processes can be harnessed to develop effective teachers. Chapters investigate bedrock skills needed for working with primary and secondary learners (writing relevant problems, planning lessons, being attentive to...

  13. Setting the Stage with Geometry: Lessons & Worksheets to Build Skills in Measuring Perimeter, Area, Surface Area, and Volume. Poster/Teaching Guide. Expect the Unexpected with Math[R

    Science.gov (United States)

    Actuarial Foundation, 2013

    2013-01-01

    "Setting the Stage with Geometry" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards that is designed to help students in grades 6-8 build and reinforce basic geometry skills for measuring 2D and 3D shapes. Developed by The Actuarial Foundation, this program seeks to provide skill-building math…

  14. Resources and instructional strategies effective middle school science teachers use to improve content area reading skills

    Science.gov (United States)

    Beaver, Melanie S.

    This study examined the resources and instructional strategies effective middle school science teachers use to improve content area reading skills. Reading instruction in the middle school years should follow the natural cognitive progression that occurs in the adolescent brain from learning to read to reading to learn. Scientific reading is a different type of reading than most middle school students are accustomed to. It is important to understand that students will continue to be expected to read non-fiction critically for success in the 21st century. Effective teachers know this, and they perceive themselves as teachers of reading regardless of the content area in which their expertise lies. This qualitative research study was conducted at a rural middle school with three science teachers who employ before, during, and after literacy strategies when reading the textbook content with their students. The methodologies used in this study were interviews, observations, and document collection. The results of this study revealed the students' reading difficulties perceived by the teacher participants, the literacy strategies used by the teacher participants, the instructional resources the teacher participants used to improve comprehension, and the need for professional development in content area literacy.

  15. Helwan University Project Developing Primary School Pupils' Abilities and Skills at Some Egyptian Underprivileged Areas (Slums). (Field Study)

    Science.gov (United States)

    El-Tayeb, Mahmoud N.; El Nashar, Mohamed; Zeid, Mai M.; El-Sayed, Magda; Ramadan, Mohamed A.; Hamdi, Safia M.; El-Affy, Nabila; Ebeid, Amina K.; El-Marasi, Sonia S.; Abou-Elmahty, Maher

    2010-01-01

    Through directing concerted efforts and educational services of seven Faculties of Helwan University towards socially underprivileged pupils in slum areas (EL-Marg area in big Cairo) this research project had two main aims: firstly, modifying a set of arbitrary behaviors of those pupils, in a trial to develop some behavior skills associated with…

  16. Mathematics Objectives and Measurement Specifications 1986-1990. Exit Level. Texas Educational Assessment of Minimum Skills (TEAMS).

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Educational Assessment.

    This document lists the objectives for the Texas educational assessment program in mathematics. Eighteen objectives for exit level mathematics are listed, by category: number concepts (4); computation (3); applied computation (5); statistical concepts (3); geometric concepts (2); and algebraic concepts (1). Then general specifications are listed…

  17. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    Science.gov (United States)

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  18. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  19. Mathematical Decision Models Applied for Qualifying and Planning Areas Considering Natural Hazards and Human Dealing

    Science.gov (United States)

    Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego

    2014-05-01

    The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional

  20. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  1. Results of Third-Grade Students in a Reform Curriculum on the Illinois State Mathematics Test.

    Science.gov (United States)

    Carroll, William M.

    1997-01-01

    Reports on the results of the reform curriculum of the University of Chicago School Mathematics Project's elementary curriculum, Everyday Mathematics, for third-grade students. Results included the fact that only 2% of UCSMP students failed to meet state goals. UCSMP students also scored well in all mathematical areas including number skills and…

  2. The Relationship between Mathematical Problem-Solving Skills and Self-Regulated Learning through Homework Behaviours, Motivation, and Metacognition

    Science.gov (United States)

    Özcan, Zeynep Çigdem

    2016-01-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving…

  3. A Mathematical Method to Calculate Tumor Contact Surface Area: An Effective Parameter to Predict Renal Function after Partial Nephrectomy.

    Science.gov (United States)

    Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang

    2016-07-01

    We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot) inte...

  5. C³TO: enabling mathematics teachers to create a presence on mxit and other chat areas

    CSIR Research Space (South Africa)

    Butgereit, L

    2010-03-01

    Full Text Available of their pupils. C³TO is a platform where bona fida teachers (not just mathematics teachers) can easily set up games, quizes, definition lists, formulae lists, and tutoring facilities which their pupils can reach using mxit on their cell phones....

  6. Effectiveness of POGIL Learning Model with Ethnomathematics Nuance Assisted by Student Worksheet toward Student Mathematical Communication Skill

    Directory of Open Access Journals (Sweden)

    Hilyatin Farda

    2017-08-01

    Full Text Available The purpose of this study was to analyzing the effectiveness of POGIL model learning with ethnomathematics nuance by using student worksheets towards student’s mathematical communication ability in quadraliteral materialand. The population in this research was the students of seventh grade Junior High School 1 Welahan on year 2016/2017. By using simple random sampling, the selected samples were VII-A as control class with PBL model learning and VII-B as experiment class with POGIL model learning with nuance ethnomathematics by using student worksheet. The methods which have been used to collect data were documentation, test, and questionnaire. Data were analyzed using proportion test, independent samples t-test, and linear regression. The result of research showed that (1 Student’s mathematical communication ability which have studied with POGIL model learning with ethnomathematics nuance by using student worksheets reach the minimum score criteria, (2 The average of student’s mathematical communication ability by implementing POGIL model learning with ethnomathematics nuance by using student worksheets better than the average of student’s mathematical communication ability by implementing PBL model learning, (3 Respect to local culture attitude influenced toward mathematical communication ability with the number 55,5%.

  7. Use of an Accessible iPad App and Supplemental Graphics to Build Mathematics Skills: Feasibility Study Results

    Science.gov (United States)

    Beal, Carole R.; Rosenblum, L. Penny

    2015-01-01

    Introduction: The present study evaluated the feasibility of using an iPad application or "app" for algebra-readiness mathematics, with accompanying braille materials and accessible graphics, when used in authentic educational settings. Methods: Twenty-nine students with visual impairments in grades 4-11 used the materials under the…

  8. The Language Factor in Elementary Mathematics Assessments: Computational Skills and Applied Problem Solving in a Multidimensional IRT Framework

    Science.gov (United States)

    Hickendorff, Marian

    2013-01-01

    The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…

  9. Reasoning and mathematical skills contribute to normatively superior decision making under risk: evidence from the game of dice task.

    Science.gov (United States)

    Pertl, Marie-Theres; Zamarian, Laura; Delazer, Margarete

    2017-08-01

    In this study, we assessed to what extent reasoning improves performance in decision making under risk in a laboratory gambling task (Game of Dice Task-Double, GDT-D). We also investigated to what degree individuals with above average mathematical competence decide better than those with average mathematical competence. Eighty-five participants performed the GDT-D and several numerical tasks. Forty-two individuals were asked to calculate the probabilities and the outcomes associated with the different options of the GDT-D before performing it. The other 43 individuals performed the GDT-D at the beginning of the test session. Both reasoning and mathematical competence had a positive effect on decision making. Different measures of mathematical competence correlated with advantageous performance in decision making. Results suggest that decision making under explicit risk conditions improves when individuals are encouraged to reflect about the contingencies of a decision situation. Interventions based on numerical reasoning may also be useful for patients with difficulties in decision making.

  10. Private Speech Use in Arithmetical Calculation: Relationship with Phonological Memory Skills in Children with and without Mathematical Difficulties

    Science.gov (United States)

    Ostad, Snorre A.

    2015-01-01

    The majority of recent studies conclude that children's private speech development (private speech internalisation) is important for mathematical development and subject to disabling. The main concern of the present study was whether or not the two phonological memory factors evaluated in the study (i.e. the results of children's digit span…

  11. Causal Bayes Model of Mathematical Competence in Kindergarten

    Directory of Open Access Journals (Sweden)

    Božidar Tepeš

    2016-06-01

    Full Text Available In this paper authors define mathematical competences in the kindergarten. The basic objective was to measure the mathematical competences or mathematical knowledge, skills and abilities in mathematical education. Mathematical competences were grouped in the following areas: Arithmetic and Geometry. Statistical set consisted of 59 children, 65 to 85 months of age, from the Kindergarten Milan Sachs from Zagreb. The authors describe 13 variables for measuring mathematical competences. Five measuring variables were described for the geometry, and eight measuring variables for the arithmetic. Measuring variables are tasks which children solved with the evaluated results. By measuring mathematical competences the authors make causal Bayes model using free software Tetrad 5.2.1-3. Software makes many causal Bayes models and authors as experts chose the model of the mathematical competences in the kindergarten. Causal Bayes model describes five levels for mathematical competences. At the end of the modeling authors use Bayes estimator. In the results, authors describe by causal Bayes model of mathematical competences, causal effect mathematical competences or how intervention on some competences cause other competences. Authors measure mathematical competences with their expectation as random variables. When expectation of competences was greater, competences improved. Mathematical competences can be improved with intervention on causal competences. Levels of mathematical competences and the result of intervention on mathematical competences can help mathematical teachers.

  12. Knowledge and psychomotor skills of nursing students in North Cyprus in the area of cardiopulmonary resuscitation.

    Science.gov (United States)

    Dal, Umran; Sarpkaya, Dilek

    2013-07-01

    Objective : The aim of the study was to determine the cardiopulmonary resuscitation (CPR) knowledge and skill levels of nursing students in North Cyprus. Methods : The study design was quasi-experimental and longitudinal. A questionnaire was applied to the students before the CPR lecture. Then the students were informed about adult CPR by the researchers and all of the students practiced CPR on a Resusci-Anne manikin. One and six months after this training the same questionnaire and skills checklist of CPR were applied. Results : Eighty three third year students of nursing participated in the study. While the average CPR knowledge score of these students was 9.3 ± 2.9 out of 23 before the lecture, this average increased to 17.0 ± 1.8 one month after the CPR lecture and decreased by two points back to 14.9 ± 3.8 after six months. Skill score of the students one month after the CPR skills training was 18.4 out of 21, and that this average decreased to 13.8 after six months (p<0.05). Nursing students tend to forget theoretical and applied CPR training after couple of months. Hence there is a need for continuous CPR training and education and repeating the skills at regular intervals even after they have graduated to ensure sustainability in the CPR skills.

  13. Frequency of Internet addiction and development of social skills in adolescents in an urban area of Lima.

    Science.gov (United States)

    Zegarra Zamalloa, Carlos Orlando; Cuba Fuentes, Maria Sofía

    2017-01-30

    To determine the frequency of Internet addiction and its relationship with the development of social skills in adolescents in the town of Condevilla, district of San Martin de Porres, Lima - Peru. The degree of social skills and level of internet use was evaluated in adolescents from 10 to 19 years of 5th to 11th grades in two secondary schools in the town of Condevilla. Classrooms were randomly selected, and the questionnaires were applied to all adolescents. Two questionnaires were applied: Scale for Internet Addiction of Lima to determine the extent of Internet use, and the Social Skills Test from the Ministry of Health of Peru, which evaluates self-esteem, assertiveness, communication and decision-making. The analyses by Chi2 test and Fisher's exact test, as well as a generalized linear model (GLM) were performed using the binomial family. Both questionnaires were applied to 179 adolescents, of whom 49.2% were male. The main age was 13 years, 78.8% of which were in secondary school. Internet addiction was found in 12.9% of respondents, of whom the majority were male (78.3%, p = 0.003) and had a higher prevalence of low social skills (21.7%, p = 0.45). In multivariate analysis, the independent factors associated with Internet addiction were gender (p = 0.016) and to have low social skills compared to high social skills (p = 0.004). In adolescents, there is a relationship between internet addiction and low social skills, among which the area of communication is statistically significant.

  14. Elementary Education Pre-Service Teachers' Development of Mathematics Technology Integration Skills in a Technology Integration Course

    Science.gov (United States)

    Polly, Drew

    2015-01-01

    Preparing pre-service teachers to effectively integrate technology in the classroom requires rich experiences that deepen their knowledge of technology, pedagogy, and content and the intersection of these aspects. This study examined elementary education pre-service teachers' development of skills and knowledge in a technology integration course…

  15. Do Preschool Special Education Services Make a Difference in Kindergarten Reading and Mathematics Skills?: A Propensity Score Weighting Analysis

    Science.gov (United States)

    Sullivan, Amanda L.; Field, Samuel

    2013-01-01

    The purpose of this study was to examine the average treatment effect of preschool special education services on children's kindergarten academic skills. Using data from a nationally representative sample of United States children who participated in the Early Childhood Longitudinal Study--Birth Cohort, we examined the effectiveness of preschool…

  16. Language Skills, Mathematical Thinking, and Achievement Motivation in Children with ADHD, Disruptive Behavior Disorders, and Normal Controls

    Science.gov (United States)

    Gut, Janine; Heckmann, Carmen; Meyer, Christine Sandra; Schmid, Marc; Grob, Alexander

    2012-01-01

    Recent models of attention deficit/hyperactivity disorder (ADHD) suggest that the association between achievement motivation and school performance may be stronger in children with ADHD than in typically developing children. Therefore, the present study investigated associations between achievement motivation and performance on language skills and…

  17. Academic performance in the high school mathematics standardized test at metropolitan and remote areas of Costa Rica schools in 2013

    Directory of Open Access Journals (Sweden)

    Mario Castillo-Sánchez

    2016-01-01

    Full Text Available This article describes the academic performance of students from urban and distant areas in the national mathematics test corresponding to the completion of secondary education, considering the specific test and according to the different types of schools: daytime (daytime scientific, daytime humanistic, nighttime, technical or integrated centers for education of young people and adults (CINDEA, in its Spanish acronym.  The main objective is to describe the students academic performance in the national mathematics test issued to complete high-school level, for the year 2013 and according to the country educational areas.  For the analysis of such information, the main source used was the High-School Education National Report, issued by the Ministry of Public Education for 2013 standardized tests.  One of the conclusions from this study is the need to carry out a historical analysis of the performance of educational institutions which have recently obtained the highest and lowest average grades in the high-school diploma tests, in order to be able to delve into the causes of those performances.

  18. A Beginning Workshop in the Basic Skill Areas of Theatre Sports Improvisation.

    Science.gov (United States)

    Belt, Lynda

    1990-01-01

    Describes "Theatre Sports," a type of improvisational theater that actively involves the audience. Presents a beginning workshop that explains the basic skills of improvisation (group cohesion and trust, movement, pantomime, spontaneity, offers and blocking, characterization and status, narrative, and endowment) and explains how to play…

  19. A structural equation modeling of executive functions, IQ and mathematical skills in primary students: Differential effects on number production, mental calculus and arithmetical problems.

    Science.gov (United States)

    Arán Filippetti, Vanessa; Richaud, María Cristina

    2017-10-01

    Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.

  20. A cross-sectional study of mathematics achievement, estimation skills, and academic self-perception in students of varying ability.

    Science.gov (United States)

    Montague, Marjorie; van Garderen, Delinda

    2003-01-01

    This study investigated students' mathematics achievement, estimation ability, use of estimation strategies, and academic self-perception. Students with learning disabilities (LD), average achievers, and intellectually gifted students (N = 135) in fourth, sixth, and eighth grade participated in the study. They were assessed to determine their mathematics achievement, ability to estimate discrete quantities, knowledge and use of estimation strategies, and perception of academic competence. The results indicated that the students with LD performed significantly lower than their peers on the math achievement measures, as expected, but viewed themselves to be as academically competent as the average achievers did. Students with LD and average achievers scored significantly lower than gifted students on all estimation measures, but they differed significantly from one another only on the estimation strategy use measure. Interestingly, even gifted students did not seem to have a well-developed understanding of estimation and, like the other students, did poorly on the first estimation measure. The accuracy of their estimates seemed to improve, however, when students were asked open-ended questions about the strategies they used to arrive at their estimates. Although students with LD did not differ from average achievers in their estimation accuracy, they used significantly fewer effective estimation strategies. Implications for instruction are discussed.

  1. Mathematical psychology.

    Science.gov (United States)

    Batchelder, William H

    2010-09-01

    Mathematical psychology is a sub-field of psychology that started in the 1950s and has continued to grow as an important contributor to formal psychological theory, especially in the cognitive areas of psychology such as learning, memory, classification, choice response time, decision making, attention, and problem solving. In addition, there are several scientific sub-areas that were originated by mathematical psychologists such as the foundations of measurement, stochastic memory models, and psychologically motivated reformulations of expected utility theory. Mathematical psychology does not include all uses of mathematics and statistics in psychology, and indeed there is a long history of such uses especially in the areas of perception and psychometrics. What is most unique about mathematical psychology is its approach to theory construction. While accepting the behaviorist dictum that the data in psychology must be observable and replicable, mathematical models are specified in terms of unobservable formal constructs that can predict detailed aspects of data across multiple experimental and natural settings. By now almost all the substantive areas of cognitive and experimental psychology have formal mathematical models and theories, and many of these are due to researchers that identify with mathematical psychology. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Utah's New Mathematics Core

    Science.gov (United States)

    Utah State Office of Education, 2011

    2011-01-01

    Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

  3. The effects of gender, motor skills and play area on the free play activities of 8-11 year old school children.

    Science.gov (United States)

    Harten, Nathan; Olds, Tim; Dollman, Jim

    2008-09-01

    Two studies were conducted to examine the interactions between gender, play area, motor skills and free play activity in 8-11 year old school children. In both studies, boys were more active than girls. In boys, but not in girls, energy expenditure was greater for high-skill than for low-skill children (p = 0.0002), and increased as play area increased (p = 0.01). These results suggest that motor skills and play space are important variables in determining the free play activity of boys, but not of girls. This may be related to widely different play styles among boys and girls.

  4. Intangible heritage for sustainable future: mathematics in the paddy field

    Science.gov (United States)

    Dewanto, Stanley P.; Kusuma, Dianne A.; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje

    2017-10-01

    Mathematics, as the only general language, can describe all phenomena on earth. Mathematics not only helps us to understand these phenomena, but it also can sustain human activities, consequently ensure that the future development is sustainable. Indonesia, with high cultural diversity, should aware to have its understanding, skills, and philosophies developed by certain societies, with long histories of interaction with their natural surroundings, which will provide a foundation for locally appropriate sustainable development. This paper discussed the condition and situation on certain area in Cigugur, Indonesia, and what skills, knowledge, and concept can be transmitted, regarding simple mathematics (arithmetic). Some examples are provided.

  5. EXPERIMENTAL VALIDATION FOR THE TRAINING METHOD AND MATHEMATICAL MODEL OF THE PILOT SKILL FORMATION IN MAINTENANCE OF ATTITUDE ORIENTATION

    Directory of Open Access Journals (Sweden)

    Maksim BARABANOV

    2017-12-01

    Full Text Available In order to overcome the drawbacks in artificial horizon indicator (HI of inside-in type (a view from an aircraft (A/C, where pilots produce mistakes in maintenance of attitude orientation most of all, the authors offer a novel training method. The method is based on the hypothesis that the manipulative ability of a human visual system can be trained. A mathematical model for the data accumulation during the corresponding training procedure has been proposed. Construction, design and results of the model evaluation are presented in the article. The experimental results revealed the increase of the probability of faultless operation by the test group of up to 0,892, whereas the faultless operation probability of a control group was 0,726. Thus, the trainee-students have statistically increased the reliability for the maintenance of attitude orientation thanks to the proposed method, and the hypothesis was confirmed.

  6. A mathematical model for leak location and leak area determination in pipeline networks

    Directory of Open Access Journals (Sweden)

    Oyedokun O.I.

    2013-01-01

    Full Text Available Prompt leak location and leak area determination in oil and gas pipeline installations is an indispensable approach to controlling petroleum products wastages in pipes. However, there is an evident lack of literature information on this subject. In this paper, we modelled leak location detection and leak area determination in pipes by applying two methodologies and gave an illustrative example using simulated data with the aid of Matlab. A comparison of these two approaches resulted in an error of 6.24%, suggesting that the closer the leak is to the measurement station, the lower will be the time interval between two successive waves that will pass through the leak and get to the measurement station. The relationship between the pipe area and coefficient of reflection is parabolic. This contribution is valuable to pipeline engineers in the economic control of leaks.

  7. Mathematical aspects that extend the notion of scientific notation in the area of Physics of General Middle Education

    Directory of Open Access Journals (Sweden)

    Yohan Godoy

    2018-01-01

    Full Text Available For this work, a constructivist didactic proposal was designed in which the students of the third year of General Media Education can acquire a significant learning in the use of Scientific Notation. The type of research used is among feasible projects with a non-experimental field design. For data collection, the survey technique was used, which was applied to 43 students of the Physics subject of the third year of the Liceo Rosario Almarza Trujillo-Venezuela. The analysis of the results indicated that they present deficiencies in terms of significant numbers and order magnitude, which are essential mathematical aspects for the understanding and use of Scientific Notation in the area of Physics, as well as highlighting the need for Implement other teaching and learning strategies, such as a series of complementary activities for the teacher in the classroom or the student. In view of these results, a didactic guide was carried out using the known mathematical aspects and various ludic activities to extend the notion and use of scientific notation.

  8. Place value without number sense: Exploring the need for mental mathematical skills assessment within the Annual National Assessments

    Directory of Open Access Journals (Sweden)

    Mellony Graven

    2013-12-01

    Full Text Available In this paper we examine the extent of the focus on number sense, enabled and accompanied by the development of efficient strategies for mental maths, in the foundation and intermediate phase. We do this through documentary analysis of the Curriculum and Assessment Policy Statements (CAPS for these phases and the Annual National Assessments (ANAs. We argue that number sense and mental agility are critical for the development and understanding of algorithms and algebraic thinking introduced in the intermediate phase. However, we note from our work with learners, and broader evidence in the South African landscape, that counting-based strategies in the foundation phase are replaced in the intermediate phase with traditional algorithms. We share experiences in the form of vignettes to illuminate this problem. Whilst literature and the CAPS curriculum emphasise the important role of mental computation within number sense, we note that the ANAs do not include a “mental mathematics” component. This absence in assessment, where assessment often drives teaching, is problematic. We conclude with the suggestion that research be conducted into the viability/appropriateness of an orally administered mental mathematics assessment component in the ANAs as a way to establish a focus on number sense across the foundation and intermediate phases.

  9. Special Interest Areas and Employment Skills Programming for Secondary Students with Autism

    Science.gov (United States)

    Bross, Leslie Ann; Travers, Jason C.

    2017-01-01

    Many students with autism spectrum disorder (ASD) have specialized interests and passions that are highly reinforcing. Such special interest areas (SIAs) are more than mere hobbies or simple curiosities. Rather, the SIAs of an individual with autism may be characterized by (a) significant depth and breadth of knowledge about the area, (b)…

  10. Remedial mathematics for quantum chemistry

    NARCIS (Netherlands)

    Koopman, L.; Brouwer, N.; Heck, A.; Buma, W.J.

    2008-01-01

    Proper mathematical skills are important for every science course and mathematics-intensive chemistry courses rely on a sound mathematical pre-knowledge. In the first-year quantum chemistry course at this university, it was noticed that many students lack basic mathematical knowledge. To tackle the

  11. Soundoff: Mathematics Is Getting Easier.

    Science.gov (United States)

    Usiskin, Zalman

    1984-01-01

    Teaching mathematics in hard ways, rather than using easier methods or technology, is described. Employing the most efficient means possible to solve a problem is the essence of good mathematics, rather than wasting time in practicing obsolete skills. (MNS)

  12. Mathematics: Number Systems around the World [and] Reading/Language Arts: The Little Red Hen [and] Use Book-Making, Art, Research, Word-Processing Skills, and Language Arts Skills to Create Original "Ancient Greek" Myths [and] Electronic Author Studies [and] Science: Inspecting the Wide World of Insects on the Web [and] Social Studies: Civil War Letters [and] Pizarro and the Incas.

    Science.gov (United States)

    School Library Media Activities Monthly, 1997

    1997-01-01

    Provides seven fully developed library media activities that are designed for use with specific curriculum units in mathematics, reading and language arts, science, and social studies for elementary and secondary education. Library media skills, objectives, grade levels, resources, instructional roles, evaluation, and follow-up are described for…

  13. Training teachers to teach mental health skills to staff in primary care settings in a vast, under-populated area.

    Science.gov (United States)

    Goldberg, D P; Gask, L; Zakroyeva, A; Proselkova, E; Ryzhkova, N; Williams, P

    2012-12-01

    Background The Arkhangelsk Oblast is an area the size of France with a sparsely distributed population. The existing primary care staff have had very little training in the management of mental health disorders, despite the frequency of these disorders in the population. They requested special teaching on depression, suicide, somatisation and alcohol problems. Methods An educational intervention was developed in partnership with mental health and primary care staff in Russia, to develop mental health skills using established, evidence-based methods. After a preliminary demonstration of teaching methods to be employed, a 5-day full-time teaching course was offered to trainers of general practitioners and feldshers. Results The findings are presented by providing details of improvements that occurred over a 3-month period in four areas, namely depression in primary care, somatic presentations of distress, dealing with suicidal patients, and alcohol problems. We present preliminary data on how the training has generalised since our visits to Archangelsk. Conclusions Teachers who are used to teaching by didactic lectures can be taught the value of short introductory talks that invite discussion, and mental health skills can be taught using role play. The content of such training should be driven by perceived local needs, and developed in conjunction with local leaders and teachers within primary care services. Further research will be needed to establish the impact on clinical outcomes.

  14. Mathematical writing

    CERN Document Server

    Vivaldi, Franco

    2014-01-01

    This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student.   The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition.   Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...

  15. Mathematical physics

    CERN Document Server

    Geroch, Robert

    1985-01-01

    Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle

  16. Promotion and diffusion of tha career Bachelor and Licenciature of Mathematics Teaching in rural areas of Costa Rica project: effects and results

    Directory of Open Access Journals (Sweden)

    Jorge Arroyo Hernández

    2016-03-01

    Full Text Available This article describes the purpose and activities of the project Promoting Mathematics Education in Rural Areas of Costa Rica. The activity has focused on two objectives. First, supporting and monitoring students who have expressed interest in studying a mathematics teacher. To achieve this, it has been working with students who have an ideal profile for the career, mainly from rural areas. The second objective is to conduct training workshops for high school in-service teachers, to strengthen and improve their knowledge in the area of mathematics. Among the results of the project, it can be highlighted a significant increase in the enrollment of students in the career of Mathematics Education in 2010 and 2011, and the training processes in the field of Real Functions of Real Variable and Geometry at different regional areas mostly rural as Aguirre, Sarapiquí, Coto, Buenos Aires, Limón, Cañas, Pérez Zeledón, Nicoya, Los Santos, Turrialba, Puriscal, Desamparados, San Carlos, Puntarenas, Limón, Liberia, Santa Cruz y Upala.

  17. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Science.gov (United States)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  18. Using Virtual Manipulative Instruction to Teach the Concepts of Area and Perimeter to Secondary Students with Learning Disabilities

    Science.gov (United States)

    Satsangi, Rajiv; Bouck, Emily C.

    2015-01-01

    Secondary students with a learning disability in mathematics often struggle with the academic demands presented in advanced mathematics courses, such as algebra and geometry. With greater emphasis placed on problem solving and higher level thinking skills in these subject areas, students with a learning disability in mathematics often fail to keep…

  19. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  20. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  1. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  2. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  3. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  4. A Summary of an Assessment of Fourth and Sixth Grade Basic Skills.

    Science.gov (United States)

    CTB / McGraw-Hill, Monterey, CA.

    A comprehensive assessment was made of the status of elementary education in Missouri in reading, mathematics, language, and study skills. The Comprehensive Tests of Basic Skills (CTBS) and the Short Form Test of Academic Aptitude (SFTAA) were administered to a sample of Missouri fourth and sixth graders. For each curricular area, Missouri…

  5. Fixing Holes Where the Rain Gets in: Problem Areas in the Development of Generic Skills in Business

    Science.gov (United States)

    Calma, Angelito

    2013-01-01

    Purpose: Little attention is paid to understanding generic skills in business. Even less attention is paid to collecting evidence of students' development of these skills. This paper aims to fill this gap. Design/methodology/approach: Four generic skills in business undergraduate and graduate programs are examined--written communication; critical…

  6. Journal of applied mathematics

    National Research Council Canada - National Science Library

    2001-01-01

    "[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

  7. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  8. A first course in mathematical physics

    CERN Document Server

    Whelan, Colm T

    2016-01-01

    The book assumes next to no prior knowledge of the topic. The first part introduces the core mathematics, always in conjunction with the physical context. In the second part of the book, a series of examples showcases some of the more conceptually advanced areas of physics, the presentation of which draws on the developments in the first part. A large number of problems helps students to hone their skills in using the presented mathematical methods. Solutions to the problems are available to instructors on an associated password-protected website for lecturers.

  9. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  10. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    Science.gov (United States)

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  11. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  12. A Primer for Mathematical Modeling

    Science.gov (United States)

    Sole, Marla

    2013-01-01

    With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…

  13. Developing a Framework of Outcomes for Mathematics Teacher Learning: Three Mathematics Educators Engage in Collaborative Self-Study

    Science.gov (United States)

    Bahr, Damon L.; Monroe, Eula Ewing; Mantilla, Jodi

    2018-01-01

    This article synthesizes the literature on what it means to teach mathematics and science to ELLs and abstract from it a set of knowledge and skills teachers might need to teach ELLs effectively. To this end, the article brings together the sociocultural and linguistic perspectives identifying three areas of effective teaching practice. One…

  14. Examining the Impact of a Video Case-Based Mathematics Methods Course on Secondary Pre-Service Teachers' Skills at Analysing Students' Strategies

    Science.gov (United States)

    Martinez, Mara Vanina; Superfine, Alison Castro; Carlton, Theresa; Dasgupta, Chandan

    2015-01-01

    This paper focuses on results from a study conducted with two cohorts of pre-service teachers (PSTs) in a video case-based mathematics methods course at a large Midwestern university in the US. The motivation for this study was to look beyond whether or not PSTs pay attention to mathematical thinking of students, as shown by previous studies when…

  15. An evaluation of business skills and training needs within selected small manufacturing businesses in the Vanderbijlpark area of Gauteng Province, South Africa

    Directory of Open Access Journals (Sweden)

    O. Okubena

    2014-01-01

    Full Text Available Laxity in managerial competencies due to relevant and appropriate skills has often been linked to small business failure despite its vital contribution to the economic development in South Africa. Skills development is one of the major challenges faced by South Africans, with more than 60% of the labour force being unskilled. This affects large percentage of small businesses around the country with unskilled employees evidenced in the day to day operation of the business. The small Manufacturing Industry in the Vanderbijlpark area of the Gauteng Province is a prime example of businesses that are affected by the short supply of relevant skilled personnel in the labour market. Nevertheless, the primary objective of this study was to undertake an evaluation concerning the significance of business skills and training needs for business success. Secondary objectives were to determine whether training in business skills as well as technical skills for the employees, could add value to the business success. Research methodology included a literature review and an empirical study, making use of the survey method through self-administered questionnaires. Using mixed research design methods, the study collected data on the knowledge, training needs and attitudes of the employees. The statistical analyses included descriptive statistics, frequencies, Chi-square tests, linear regression and ANOVA. Thence, the Cronbach’s alpha was used to measure reliability of the research results. This however reduced the situation in which either test or scale is wrongly discarded or test criticized for not generating trustworthy result. Additionally, the associated concept of internal consistency, homogeneity and unidimensionality was employed to improve the use of alpha. The research findings established that training in business skills and related types of skills was essential for the success of a business. The findings further showed and confirmed that, effective

  16. Investigation of the Effects of Mathematical Thinking States of Form Teachers on Their Mathematics Teaching Anxieties

    Science.gov (United States)

    Yorulmaz, Alper; Altintas, Sedat; Sidekli, Sabri

    2017-01-01

    The state of mathematical thinking is considered to have an effect on the formation of anxiety regarding teaching mathematics. It is hypothesized that with the formation of mathematical thinking, the anxiety in teachers regarding teaching mathematics will be reduced. Since mathematical thinking is a skill acquired starting from the early years of…

  17. Sustaining Regional Advantages in Manufacturing: Skill Accumulation of Rural–Urban Migrant Workers in the Coastal Area of China

    Directory of Open Access Journals (Sweden)

    Huasheng Zhu

    2017-01-01

    Full Text Available Extant research pays little attention to unorganized migrant workers’ skill accumulation/upgrading from the perspective of the labor supply. This paper takes China as an example to explore the factors influencing the skill accumulation of rural–urban migrant workers (RUMWs, with the purpose of discovering how to sustain or reshape regional competitive advantages by improving RUMWs’ skill accumulation. Structured questionnaire surveys were adopted for data collection in Suzhou City, Jiangsu Province and Taizhou City, Zhejiang Province located in the Yangtze River Delta in eastern China. In total, 700 questionnaires were issued and 491 effective questionnaires were recovered. It takes the perspective of individual laborers, with special regard to the effects of localization on the laborers’ skill accumulation within the context of globalization. It adopts a broad viewpoint including intra-firm skill-biased strategy (as a response to intense competition, inter-firm relationships, and the accessibility of local non-firm organizations. The findings indicate that firms’ skill preference, which impacts employees’ skills and innovation ability and stimulates them to learn with initiative, have a significant influence on RUMWs’ skill accumulation. In terms of collective efficiency based on the co-competitive relationship between local firms, the more intensive interactions are, the more opportunities RUMWs are afforded for skill accumulation. The accessibility of local institutions and favorable policies also benefit RUMWs’ skill accumulation. In addition, the place itself, as a synthesized space of a firm’s internal labor-management relations and inter-organizational relations, also exerts an influence on and causes regional differences in RUMWs’ skill accumulation.

  18. Mathematics Education in Brazilian Rural Areas: An Analysis of the "Escola Ativa" Public Policy and the Landless Movement Pedagogy

    Science.gov (United States)

    Knijnik, Gelsa; Wanderer, Fernanda

    2015-01-01

    The article discusses mathematics education within two educational projects addressed to rural multigrade schools in Brazil: Active School Program (in Portuguese, Programa Escola Ativa--PEA) and the Landless Movement (Movimento Sem Terra--MST) Pedagogy. It is based on an ethnomathematics perspective drawn from Wittgenstein's later work and Michel…

  19. Meaning in mathematics

    CERN Document Server

    2011-01-01

    Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.

  20. Wheels, skills and thrills: a social marketing trial to reduce aggressive driving from young men in deprived areas.

    Science.gov (United States)

    Tapp, Alan; Pressley, Ashley; Baugh, Mike; White, Paul

    2013-09-01

    Young men from poorer backgrounds are associated with high road traffic collision levels. However, solving this problem has proven very difficult. Hence this paper summarises the findings of a UK government funded two-year trial of a cross-discipline intervention to reduce aggressive driving amongst this group. The intervention reported on here departed from traditional approaches such as fear appeals, stand-alone educational approaches, or punitive measures. Instead, the discipline of social marketing was used to provide overarching direction and structure for the trial, with a key focus on motivation and engagement. The project rested on a strong education and training platform and included a bespoke coaching programme, incentives, and an in-vehicle measurement and feedback device. The project had three development phases leading to the final trial. First, a literature and case study review identified possible design strategies. Second, these strategies were explored using primary research in the form of a qualitative inquiry. Third, a pre-trial design phase sought to introduce key components of the intervention to the trial cohort, retaining some flexibility before committing to the final design. Young males with a history of challenging behaviour (e.g. criminal records, driving convictions) from an economically deprived area within a UK city were recruited. Of 42 recruits, 23 successfully completed the trial. Behaviour changes were measured pre-, during and post-trial through a combination of driver performance data measured by in-vehicle data recorders (IVDRs), assessments of driving undertaken by trained observers, and self-assessment surveys and interviews with trial participants. Results indicate a significant average improvement in driving skills amongst participants who completed the trial. Given the difficulty in engaging and changing behaviour of this specific group, this is regarded as a significant finding. In summary the study provides an indication

  1. Leading and Managing Today's Independent School: A Qualitative Analysis of the Skills and Practices of Experienced Heads of Independent Schools in the New York Metropolitan Area

    Science.gov (United States)

    Juhel, Jean-Marc

    2016-01-01

    This article presents the findings of a qualitative study conducted in 2014 with 16 experienced heads of school in the New York metropolitan area. The study was designed to better understand the skills and practices that they view as critical to leading and managing independent schools. The data collected speak to each head's ability to manage the…

  2. Identification of Skills Needed for Central Areas of Green and Low-Carbon Economy, for the Needs of Labor Market, in Finland

    Directory of Open Access Journals (Sweden)

    Tove Holm

    2017-01-01

    Full Text Available EU has set sustainable growth as a goal for 2020, by which a transition to a more resource efficient greener and competitive economy should be achieved. This requires new skills in business life. We have studied how vocational education and training and higher education may serve as a promoter of a green and low-carbon economy in Finland. Based on results from interviews of companies three main areas were chosen. These areas were decentralized renewable energy production, use of organic by-products and promotion of energy efficiency in properties. Education in vocational education and training and universities of applied sciences, for the selected areas, was mapped in 2014-15. The results were presented on workshops, where knowledge supply chains for a green economy on the selected areas were developed. If was found that cooperation between different fields and levels of education is important, as the new skills often emerge at the interfaces.

  3. Mathematical tapas

    CERN Document Server

    Hiriart-Urruty, Jean-Baptiste

    This book contains a collection of exercises (called “tapas”) at undergraduate level, mainly from the fields of real analysis, calculus, matrices, convexity, and optimization. Most of the problems presented here are non-standard and some require broad knowledge of different mathematical subjects in order to be solved. The author provides some hints and (partial) answers and also puts these carefully chosen exercises into context, presents information on their origins, and comments on possible extensions. With stars marking the levels of difficulty, these tapas show or prove something interesting, challenge the reader to solve and learn, and may have surprising results. This first volume of Mathematical Tapas will appeal to mathematicians, motivated undergraduate students from science-based areas, and those generally interested in mathematics.

  4. Why Teach mathematics to Adults?

    DEFF Research Database (Denmark)

    Johansen, Lene Østergaard

    2008-01-01

    teachers. I distinguish analytically between three different discourses. The Political Discourse, The Curriculum Planner Discourse and The Mathematics Teachers Discourse. The discourses are analysed separately and I distinguish between explicit reasons and implicit reasons.       In the thesis I construct...... a framework or a tool for my analysis of the three discourses, which consists of three elements. I identify the explicit reasons asking the question "Why teach mathematics to adults?" to the texts of each discourse. To identify the implicit reasons, I assume that it is necessary to construct a need...... in all areas of life increases considerably with good (functional/basic) numeracy skills.    The analysis of the implicit reasons shows that the politicians construct a need for education through the way they talk about the demands of the labour market, the demands of the educational system, the demands...

  5. An Analysis of Mathematics Education Students' Skills in the Process of Programming and Their Practices of Integrating It into Their Teaching

    Science.gov (United States)

    Gökçe, Semirhan; Yenmez, Arzu Aydogan; Özpinar, Ilknur

    2017-01-01

    Recent developments in technology have changed the learner's profile and the learning outcomes. Today, with the emergence of higher-order thinking skills and computer literacy skills, teaching through traditional methods is likely to fail to achieve the learning outcomes. That is why; teachers and teacher candidates are expected to have computer…

  6. Guidelines for the Use of Mathematics in Operational Area-Wide Integrated Pest Management Programmes Using the Sterile Insect Technique with a Special Focus on Tephritid Fruit Flies

    International Nuclear Information System (INIS)

    Barclay, H.L.; Enkerlin, W.R.; Manoukis, N.C.; Reyes-Flores, J.

    2016-01-01

    This guideline attempts to assist managers in the use of mathematics in area-wide Integrated Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes mathematical tools that can be used at different stages of suppression/eradication programmes. For instance, it provides simple methods for calculating the various quantities of sterile insects required in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be achieved. The calculations, for the most part, only involve high school mathematics and can be done easily with small portable computers or calculators. The guideline is intended to be a reference book, to be consulted when necessary. As such, any particular AW-IPM programme using the SIT will probably only need certain sections, and much of the book can be ignored if that is the case. For example, if the intervention area is relatively small and well isolated, then the section on dispersal can safely be ignored, as the boundedness of the area means that dispersal should not be a problem, and so the section on diffusion equations can be ignored. An overview is given in each chapter to try to let the programme manager make a decision about where to put the programme efforts. On the other hand, most SIT programmes have an information system (many of them based on GIS) that produces reliable profiles of historic information. Based on the results of past activities they describe what has happened in the last days or weeks but usually do not explain, or barely explain, what is expected in the following days or weeks. Current AW-IPM progammes using the SIT have produced over many years a vast amount of every-day data from the field operations and from the mass rearing facility and packing and sterile insect releasing centres. With the help of this guideline, that information can be used to develop predictive models for their particular conditions to better plan control measures.

  7. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  8. An investigation to find strategies to improve student nurses' maths skills.

    Science.gov (United States)

    Wright, Kerri

    Being able to perform drug calculations accurately is an essential skill for nurses. Many studies, however, have demonstrated that nurses need to improve this area of their practice and in particular their mathematical skills. Several strategies have been implemented to develop the drug calculation skills of nurses, with mixed success. This article reports on a study that was carried out to investigate whether strategies implemented within a second-year pre-registration course were perceived by students to be helpful in improving their mathematical skills for drug calculations. The results demonstrated that students felt their mathematics and confidence improved as a result of these strategies. The students' evaluation of the learning strategy that they found most helpful in learning drug calculation gave a mixed result, indicating that students have differing learning styles and needs. The study also indicates that student nurses were able to integrate the mathematical skills into their nursing practice by having different strategies that allowed them to develop conceptual, mathematical and practical skills concurrently. The study recommends the implementation of integrated strategies to address drug calculation skills in student nurses, although further research is still required.

  9. The Education of Mathematics

    Directory of Open Access Journals (Sweden)

    Abu Darda

    2016-01-01

    Full Text Available The objective of mathematics education is not only preparingmathematicians but making well-informed citizens. This is a broad generalterms for objective of the teaching of mathematics. And, this might beimplemented as “accurate thorough knowledge” or “original logicalthinking”. So, teaching mathematics is not the conversation andtransmission of mathematical knowledge, but on the aim of preparing wellinformedcitizens trained in independent, critical thinking.By the mathematics, sciences become simple, clearer, and easier to bedeveloped. The mathematics is often applied for solving any problem ofother field of sciences, either in the physics such as astronomy, chemistry,technique; or social sciences such as economy, demography, and assurance.Those all need an analysis reading ability.Mathematical skill, therefore, relates strongly with the analysisreading ability in the human intellectual structure. This study is about therelationship between them. And, result of the study shows us as below:Both Mathematical skill and analysis reading ability possess the “high type”of thinking operation. Both also involve the same content of the abstractintelligent, i.e. symbolic and semantic contents. Last but not least, both alsouse the same product of thinking, i.e. units, classes, relations, and systems.Both can be transformed and have an implication.

  10. EFFECTIVENESS OF THE PROGRAM OF EMPOWERMENT OF THE WOMEN RESIDING AT THE COASTAL AREA OF AMPENAN DISTRICT, MATARAM CITY, LOMBOK IMPLEMENTED IN THE FORM OF LIFE SKILLS

    Directory of Open Access Journals (Sweden)

    Ni Putu Listiawati

    2012-11-01

    Full Text Available The program of the empowerment of the women living in Mataram City implemented inthe form of life skills including vocational skill, social skill, and personal skill has been carriedout since 2001. In reality, the attempts already made could not improve the well-being of thewomen in Mataram City in general and the women living along the coastal area of Ampenan,South Ampenan District and Banjar District in particular. Based on the background mentionedabove, the researcher was interested in exploring the effectiveness of the program of theempowerment provided in the form life skills. Three problems are formulated in this research.They are (1 how effective the implementation of the empowerment program of the womenresiding at the coastal area of Ampenan District was?; (2 what factors contributed to theeffectiveness of the empowerment program of the women residing at the coastal area?; (3 whatwere the effects and meanings of the effectiveness of the empowerment program of the womenresiding at the coastal area? The theories employed to answer the problems formulated above arethe theory of post feminism by Ann Brooks, the theory of social practice by Bourdieu and thetheory of power/knowledge by Foucault. The theories were eclectically applied. The qualitativemethod was employed in this study and the data needed were collected by the techniques ofobservation, in-depth interview, Focus Group Discussion (hereon abbreviated to FGD,documentation and library research.The results of the study show that (1 the program of the empowerment of the womenliving in the coastal area was ineffective; (2 the factors which contributed to the effectivenessof the empowerment of the women living along the coastal area are economic capital, culturalcapital, socio culture and symbolic culture; (3 the effects of the effectiveness of theempowerment program were on the skills acquired, the income earned, the independenceacquired, the environment where they live and their pattern

  11. Using Sorting Networks for Skill Building and Reasoning

    Science.gov (United States)

    Andre, Robert; Wiest, Lynda R.

    2007-01-01

    Sorting networks, used in graph theory, have instructional value as a skill- building tool as well as an interesting exploration in discrete mathematics. Students can practice mathematics facts and develop reasoning and logic skills with this topic. (Contains 4 figures.)

  12. Making Meaning of Creativity and Mathematics Teaching

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2014-01-01

    . One reason is that it is not clear what relation such creative and innovative skills have to mathematics, and how we should teach them. In this paper, I review different conceptions of creativity in mathematics education and investigate what mathematical innovation and creativity “are......Creativity and innovation are important 21st-century skills, and mathematics education contributes to the development of these skills. However, it is far from clear how we as mathematics educators should respond to the need to contribute to our students’ development of creativity and innovation......” in the mathematical classroom. I show how different conceptions of mathematical innovation and creativity dominate different parts of the mathematics education literature, and explain how these differences can be viewed as framing mathematical creativity toward different domains....

  13. You failed your math test, comrade Einstein adventures and misadventures of young mathematicians or test your skills in almost recreational mathematics

    CERN Document Server

    2005-01-01

    This groundbreaking work features two essays written by the renowned mathematician Ilan Vardi. The first essay presents a thorough analysis of contrived problems suggested to "undesirable" applicants to the Department of Mathematics of Moscow University. His second essay gives an in-depth discussion of solutions to the Year 2000 International Mathematical Olympiad, with emphasis on the comparison of the olympiad problems to those given at the Moscow University entrance examinations. The second part of the book provides a historical background of a unique phenomenon in mathematics, which flourished in the 1970s-80s in the USSR. Specially designed math problems were used not to test students' ingenuity and creativity but, rather, as "killer problems," to deny access to higher education to "undesirable" applicants. The focus of this part is the 1980 essay, "Intellectual Genocide", written by B Kanevsky and V Senderov. It is being published for the first time. Also featured is a little-known page of the Soviet hi...

  14. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  15. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  16. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1 using directional mathematical morphology to enhance the contrast between roads and non-roads; (2 using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  17. The mathematics of games

    CERN Document Server

    Beasley, John D

    2006-01-01

    ""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat

  18. Teacher's Guide to Secondary Mathematics.

    Science.gov (United States)

    Duval County Schools, Jacksonville, FL.

    This is a teacher's guide to secondary school mathematics. Developed for use in the Duval County Public Schools, Jacksonville, Florida. Areas of mathematics covered are algebra, analysis, calculus, computer literacy, computer science, geometry, analytic geometry, general mathematics, consumer mathematics, pre-algebra, probability and statistics,…

  19. Higher engineering mathematics

    CERN Document Server

    John Bird

    2014-01-01

    A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in

  20. Rethinking the mathematics curriculum

    CERN Document Server

    Hoyles, Celia; Woodhouse, Geoffrey

    1998-01-01

    At a time when political interest in mathematics education is at its highest, this book demonstrates that the issues are far from straightforward. A wide range of international contributors address such questions as: What is mathematics, and what is it for? What skills does mathematics education need to provide as technology advances? What are the implications for teacher education? What can we learn from past attempts to change the mathematics curriculum? Rethinking the Mathematics Curriculum offers stimulating discussions, showing much is to be learnt from the differences in culture, national expectations, and political restraints revealed in the book. This accessible book will be of particular interest to policy makers, curriculum developers, educators, researchers and employers as well as the general reader.

  1. The Development of Learning Model Based on Problem Solving to Construct High-Order Thinking Skill on the Learning Mathematics of 11th Grade in SMA/MA

    Science.gov (United States)

    Syahputra, Edi; Surya, Edy

    2017-01-01

    This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…

  2. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  3. Physics Doctorates: Skills Used & Satisfaction with Employment. Data from the Degree Recipient Follow-Up Survey for the Classes of 2013 and 2014. Focus On

    Science.gov (United States)

    Pold, Jack; Mulvey, Patrick

    2016-01-01

    By the time people earn physics PhDs, they have learned a great deal about physics and how research is conducted. However, physics PhDs also develop skills and knowledge in a number of related areas, such as advanced mathematics, programming, modeling, and technical writing. Physics PhDs draw upon an arsenal of skills and knowledge in their…

  4. Presentation and verification of a simple mathematical model foridentification of the areas behind noise barrierwith the highest performance

    Directory of Open Access Journals (Sweden)

    M. Monazzam

    2009-07-01

    Full Text Available Background and aims   Traffic noise barriers are the most important measure to control the environmental noise pollution. Diffraction from top edge of noise barriers is the most important path of indirect sound wave moves towards receiver.Therefore, most studies are focused on  improvement of this kind.   Methods   T-shape profile barriers are one of the most successful barrier among many different profiles. In this investigation the theory of destructive effect of diffracted waves from real edge of barrier and the wave diffracted from image of the barrier with phase difference of radians is used. Firstly a simple mathematical representation of the zones behind rigid and absorbent T- shape barriers with the highest insertion loss using the destructive effect of indirect path via barrier  image is introduced and then two different profile reflective and absorption barrier is used for  verification of the introduced model   Results   The results are then compared with the results of a verified two dimensional boundary element method at 1/3 octave band frequencies and in a wide field behind those barriers. Avery good agreement between the results has been achieved. In this method effective height is used for any different profile barriers.   Conclusion   The introduced model is very simple, flexible and fast and could be used for choosing the best location of profile rigid and absorptive barriers to achieve the highest  performance.  

  5. Mathematical Modeling and Computational Thinking

    Science.gov (United States)

    Sanford, John F.; Naidu, Jaideep T.

    2017-01-01

    The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

  6. Mathematical people profiles and interviews

    CERN Document Server

    Albers, Donald

    2008-01-01

    This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introduction by Philip J. Davis.

  7. Encouraging Students to Read Mathematics

    Science.gov (United States)

    Shepherd, Mary D.

    2005-01-01

    It is generally agreed that the ability to read mathematics is an important skill--one that few of our students possess. A number of people have published some suggestions for helping students learn to read their mathematics textbooks. What these have in common is suggestions for getting students more active while reading. Using these resources as…

  8. Mastering mathematics for Edexcel GCSE

    CERN Document Server

    Davis, Heather; Liggett, Linda

    2015-01-01

    Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty

  9. Elementary School Mathematics Priorities

    Science.gov (United States)

    Wilson, W. Stephen

    2009-01-01

    This article first describes some of the basic skills and knowledge that a solid elementary school mathematics foundation requires. It then elaborates on several points germane to these practices. These are then followed with a discussion and conclude with final comments and suggestions for future research. The article sets out the five…

  10. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  11. What's Past Is Prologue: Relations between Early Mathematics Knowledge and High School Achievement

    Science.gov (United States)

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    Although previous research has established the association between early-grade mathematics knowledge and later mathematics achievement, few studies have measured mathematical skills prior to school entry, and few have investigated the predictive power of early gains in mathematics ability. The current paper relates mathematical skills measured at…

  12. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  13. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  14. Small Schools Student Learning Objectives, 9-12: Mathematics, Reading, Reading in the Content Areas, Language Arts.

    Science.gov (United States)

    Nelson, JoAnne, Ed.; Hartl, David, Ed.

    Designed by Washington curriculum specialists and secondary teachers to assist teachers in small schools with the improvement of curriculum and instruction and to aid smaller districts lacking curriculum personnel to comply with Washington's Student Learning Objectives Law, this handbook contains learning objectives in the areas of language arts,…

  15. International Mathematical Internet Olympiad

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2012-10-01

    Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.

  16. African Journals Online: Chemistry, Mathematics & Physics

    African Journals Online (AJOL)

    Items 1 - 36 of 36 ... African Journal of Educational Studies in Mathematics and Sciences ... statistics, operational research, financial mathematics and about the annexes ... research work in all areas of mathematical sciences and application at all ...

  17. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  18. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  19. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  20. Mathematics for computer graphics

    CERN Document Server

    Vince, John

    2006-01-01

    Helps you understand the mathematical ideas used in computer animation, virtual reality, CAD, and other areas of computer graphics. This work also helps you to rediscover the mathematical techniques required to solve problems and design computer programs for computer graphic applications

  1. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    Science.gov (United States)

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  2. Ensinar capacidades gerais de resolução de problemas não é uma substituição, nem um complemento viável, a ensinar matemática [Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics

    NARCIS (Netherlands)

    Sweller, John; Clark, Richard; Kirschner, Paul A.

    2012-01-01

    Sweller, J., Clark, R. E., & Kirschner, P. A. (2012). Ensinar capacidades gerais de resolução de problemas não é uma substituição, nem um complemento viável, a ensinar matemática [Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics]. Gazeta

  3. What’s Past is Prologue: Relations Between Early Mathematics Knowledge and High School Achievement

    OpenAIRE

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    © 2014 AERA. Although previous research has established the association between early-grade mathematics knowledge and later mathematics achievement, few studies have measured mathematical skills prior to school entry, and few have investigated the predictive power of early gains in mathematics ability. The current paper relates mathematical skills measured at 54 months to adolescent mathematics achievement using multisite longitudinal data. We find that preschool mathematics ability predicts ...

  4. Mathematical methods for physicists

    CERN Document Server

    Arfken, George B

    2005-01-01

    This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted

  5. Mathematics for multimedia

    CERN Document Server

    Wickerhauser, Mladen Victor

    2003-01-01

    Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are `gems' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors and s...

  6. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  7. History, observation and mathematical models in the seismic analysis of the Valadier abutment area in the Colosseum

    Directory of Open Access Journals (Sweden)

    D. D'Ayala

    1995-06-01

    Full Text Available The present work aimed to outline the need to investigate different fields of research to interpret the structural behaviour of a monument as complex as the Colosseum. It is shown how defining the numerical models first. then refining them, followed by interpretation of results. is strictly linked with the inforination gathered from historical records and observation of the ~nonumenta s it is today. The study is confined to the area of the Valadier abutment. analysing its state and its seismic behaviour before and after the XIX century restoration using different ilumerical tools, from the elastic modal analysis to the non linear step by step time history direct integration. The procedure comparatiely evaluates the reliability in the interpretation of the results and identifies future lines or research.

  8. 5th August 2008 - British Secretary of State for Innovation, Universities and Skills J. Denham MP visiting LHCb experimental area with Collaboration Spokesperson A. Golutvin and users T. Bowcock and U. Egede.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    5th August 2008 - British Secretary of State for Innovation, Universities and Skills J. Denham MP visiting LHCb experimental area with Collaboration Spokesperson A. Golutvin and users T. Bowcock and U. Egede.

  9. Mathematics for physics with calculus

    CERN Document Server

    Das, Biman

    2005-01-01

    Designed for students who plan to take or who are presently taking calculus-based physics courses. This book will develop necessary mathematical skills and help students gain the competence to use precalculus, calculus, vector algebra, vector calculus, and the statistical analysis of experimental data. Students taking intermediate physics, engineering, and other science courses will also find the book useful-and will be able to use the book as a mathematical resource for these intermediate level courses. The book emphasizes primarily the use of mathematical techniques and mathematical concepts in Physics and does not go into their rigorous developments.

  10. Comparison of quantitatively analyzed dynamic area-detector CT using various mathematic methods with FDG PET/CT in management of solitary pulmonary nodules.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2013-06-01

    The objective of our study was to prospectively compare the capability of dynamic area-detector CT analyzed with different mathematic methods and PET/CT in the management of pulmonary nodules. Fifty-two consecutive patients with 96 pulmonary nodules underwent dynamic area-detector CT, PET/CT, and microbacterial or pathologic examinations. All nodules were classified into the following groups: malignant nodules (n = 57), benign nodules with low biologic activity (n = 15), and benign nodules with high biologic activity (n = 24). On dynamic area-detector CT, the total, pulmonary arterial, and systemic arterial perfusions were calculated using the dual-input maximum slope method; perfusion was calculated using the single-input maximum slope method; and extraction fraction and blood volume (BV) were calculated using the Patlak plot method. All indexes were statistically compared among the three nodule groups. Then, receiver operating characteristic analyses were used to compare the diagnostic capabilities of the maximum standardized uptake value (SUVmax) and each perfusion parameter having a significant difference between malignant and benign nodules. Finally, the diagnostic performances of the indexes were compared by means of the McNemar test. No adverse effects were observed in this study. All indexes except extraction fraction and BV, both of which were calculated using the Patlak plot method, showed significant differences among the three groups (p method, pulmonary arterial perfusion calculated using the dual-input method, and perfusion calculated using the single-input method were significantly larger than that of SUVmax (p method (69.8%, p method has better potential for the diagnosis of pulmonary nodules than dynamic area-detector CT analyzed using other methods and than PET/CT.

  11. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  12. Skills and Competencies

    Directory of Open Access Journals (Sweden)

    Nasios Orinos

    2013-07-01

    Full Text Available This article presents the results of a study aimed to investigate the requirements of the business sector in light of the skills and competencies students should have in order to be recruited. In this fashion, the study intended to measure the importance of the skills and competencies sought by the business world, revealing ways through which students can develop such skills. This project portrayed that, some of the required classes will certainly give students a strong theoretical background but they will neither completely prepare this student with all possible skills or competencies nor provide the student with any practical experience that will enable him/her to be more competitive when entering the business market. In some classes, however, like Public Speaking, which is designed to teach presentation skills, successful students are able to build good communication and interpersonal skills. Additionally, an English writing class will certainly attempt to provide them with strong writing skills, and a business class will possibly demand reading skills. Moreover, a calculus and a statistics class will provide basic arithmetic/mathematical skills. However, through this project it is proven that all of these classes will neglect the indoctrination of creative thinking in students, or make students believe in their own self-worth (self-esteem skills; the courses will also fail to develop the sense of urgency, drive and determination that students should possess not just to compete but also to survive in a business world.

  13. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  14. Introduction to Computers & Introduction to Word Processing: Integrating Content Area Coursework into College Reading/Study Skills Curricula Using Microcomputers.

    Science.gov (United States)

    Balajthy, Ernest; And Others

    A study examined the planning, implementation, and evaluation of a curriculum designed to teach 60 college level developmental reading students to use microcomputers (Apple) as learning tools and to improve their content area reading ability. The textbook from a biology course in which all but three of the subjects were enrolled was the source for…

  15. A Continuing Educational Initiative to Develop Nurses' Mental Health Knowledge and Skills in Rural and Remote Areas.

    Science.gov (United States)

    Chang, Esther; Daly, John; Bell, Pamela; Brown, Tracey; Allan, Jan; Hancock, Karen

    2002-01-01

    Australian nurses (n=202) participated in mental health continuing education delivered via distance methods and regional workshops in rural areas. The majority increased content knowledge and thought audio- and videotapes were effective despite technical difficulties; 90% felt the experiential learning workshops and distance modules integrated…

  16. The Effects of Modern Mathematics Computer Games on Mathematics Achievement and Class Motivation

    Science.gov (United States)

    Kebritchi, Mansureh; Hirumi, Atsusi; Bai, Haiyan

    2010-01-01

    This study examined the effects of a computer game on students' mathematics achievement and motivation, and the role of prior mathematics knowledge, computer skill, and English language skill on their achievement and motivation as they played the game. A total of 193 students and 10 teachers participated in this study. The teachers were randomly…

  17. Improving Mathematics at Work The Need for Techno-Mathematical Literacies

    CERN Document Server

    Hoyles, Celia; Kent, Phillip; Bakker, Arthur

    2010-01-01

    What are the mathematical knowledge and skills that actually matter for the world of work today? Has technology reduced the necessary knowledge to the most basic arithmetic? This book argues that there has been a radical shift in the nature of mathematical skills required for work

  18. Contemporary mathematical physics

    CERN Document Server

    Dobrushin, R L; Shubin, M A; Vershik, Anatoly M

    1996-01-01

    This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis ("supermathematics"). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topics

  19. Business Financial Occupations: Skill Standards.

    Science.gov (United States)

    Vocational Technical Education Consortium of States, Decatur, GA.

    This report organizes the information provided by 71 individuals in finance-related occupations in 11 states into skills inventories for persons in these jobs. The skills inventories contain the following sections: (1) occupation-specific knowledge (communication, mathematics, science); (2) workplace behaviors (work ethics, interpersonal…

  20. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  1. Drama for children with special needs (motor skill development)

    OpenAIRE

    Cameron, Fiona

    1991-01-01

    During placement in secondary schools, the author notice a general lack of confidence in the ability to use movement. Many of these "Clumsy Children" expressed difficulties with reading and writing and in the area of Mathematics. Was there a connection between under-developed motor skills and general academic and social behaviour? Primary 1-3 are structured around "learning by doing". After that the work changes to more cognitive based learning and more classroom structure. If the children do...

  2. Mathematics disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...

  3. Nurse managers' perceptions related to their leadership styles, knowledge, and skills in these areas-a viewpoint: case of health centre wards in Finland.

    Science.gov (United States)

    Vesterinen, Soili; Suhonen, Marjo; Isola, Arja; Paasivaara, Leena; Laukkala, Helena

    2013-01-01

    The purpose of this study was to explore nurse managers' perceptions related to their leadership styles, knowledge, and their skills in these areas in health centre wards in Finland. The data were collected from nurse managers (n = 252) in health centre hospitals in Finland using a structured questionnaire (response rate 63%). Six leadership styles-visionary, coaching, affiliate, democratic, commanding, and isolating-were reflected on. Almost all respondents in every age group considered four leadership styles-visionary, coaching, affiliate, and democratic-to be very important or important. Nurse managers estimated their knowledge and skills in leadership styles to be essentially fairly sufficient or sufficient. Nurse managers' abilities to reflect, understand, and, if necessary, change their leadership style influence the work unit's success and employees' job satisfaction. Nurse managers, especially new nurse managers, need more theoretic, evidence-based education to cope with these expectations and to develop their professional abilities. Together with universities, health care organizations should start planning nurse manager education programmes that focus on strategic issues, leadership, job satisfaction, challenging situations in leadership, change management, work unit management (e.g., economy, efficiency, and resources), and how the nurse managers consider their own wellbeing.

  4. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  5. Reorganizing Freshman Business Mathematics II: Authentic Assessment in Mathematics through Professional Memos

    Science.gov (United States)

    Green, Kris; Emerson, Allen

    2008-01-01

    The first part of this two-part paper [see EJ787497] described the development of a new freshman business mathematics (FBM) course at our college. In this paper, we discuss our assessment tool, the business memo, as a venue for students to apply mathematical skills, via mathematical modelling, to realistic business problems. These memos have…

  6. Teaching Middle-Grades Mathematics through Financial Literacy

    Science.gov (United States)

    Crawford-Ferre, Heather Glynn; Wiest, Lynda R.; Vega, Stephanie

    2016-01-01

    Because financial literacy is an important skill for middle-grades students, this article suggests numerous personal financial literacy tasks for use in the mathematics classroom. Also provided are specifics for implementing one of these tasks to address mathematical content.

  7. Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Van Khoai, Do [Micro-Emission Ltd., 1-1 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of)

    2016-06-15

    Uranium dioxide (UO{sub 2}) powder has been widely used to prepare fuel pellets for commercial light water nuclear reactors. Among typical characteristics of the powder, specific surface area (SSA) is one of the most important parameter that determines the sintering ability of UO{sub 2} powder. This paper built up a mathematical model describing the effect of the fabrication parameters on SSA of UO{sub 2} powders. To the best of our knowledge, the Brandon model is used for the first time to describe the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and SSA of the obtained UO{sub 2} powder product. The proposed model was tested with Wilcoxon's rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of UO{sub 2} powder.

  8. Rainforest Mathematics

    Science.gov (United States)

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  9. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  10. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  11. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  12. Canadian Mathematical Congress

    CERN Document Server

    1977-01-01

    For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter­ disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re­ searchers. To accomplish these objective the committee assembled a stim­ ulating programme of lectures and talks. Six ...

  13. Mathematics for sustainability

    CERN Document Server

    Roe, John; Jamshidi, Sara

    2018-01-01

    Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking is at the fore throughout, as students learn to model sustainability on local, regional, and global scales. Exercises emphasize concepts, while projects build and challenge communication skills. With no prerequisites beyond high school algebra, instructors will find this book a rich resource for engaging all majors in the...

  14. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  15. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  16. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  17. Contextual Teaching and Learning Approach of Mathematics in Primary Schools

    Science.gov (United States)

    Selvianiresa, D.; Prabawanto, S.

    2017-09-01

    The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.

  18. Using Graphic Organizers to Improve the Reading of Mathematics.

    Science.gov (United States)

    Braselton, Stephania; Decker, Barbara C.

    1994-01-01

    Describes the use of a graphic organizer with fifth graders to teach problem-solving skills and to teach reading skills helpful for comprehending mathematics materials. Suggests that the strategy was effective with students of all ability levels. (SR)

  19. An investigation of mathematics and science instruction in English and Spanish for English language learners

    Science.gov (United States)

    Rodriguez-Esquivel, Marina

    The contextual demands of language in content area are difficult for ELLS. Content in the native language furthers students' academic development and native language skills, while they are learning English. Content in English integrates pedagogical strategies for English acquisition with subject area instruction. The following models of curriculum content are provided in most Miami Dade County Public Schools: (a) mathematics instruction in the native language with science instruction in English or (b) science instruction in the native language with mathematics instruction in English. The purpose of this study was to investigate which model of instruction is more contextually supportive for mathematics and science achievement. A pretest and posttest, nonequivalent group design was used with 94 fifth grade ELLs who received instruction in curriculum model (a) or (b). This allowed for statistical analysis that detected a difference in the means of .5 standard deviations with a power of .80 at the .05 level of significance. Pretreatment and post-treatment assessments of mathematics, reading, and science achievement were obtained through the administration of Aprenda-Segunda Edicion and the Florida Comprehensive Achievement Test. The results indicated that students receiving mathematics in English and Science in Spanish scored higher on achievement tests in both Mathematics and Science than the students who received Mathematics in Spanish and Science in English. In addition, the mean score of students on the FCAT mathematics examination was higher than their mean score on the FCAT science examination regardless of the language of instruction.

  20. Mentoring in mathematics education

    CERN Document Server

    Hyde, Rosalyn

    2013-01-01

    Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:

  1. Mathematics year 5 answers

    CERN Document Server

    Alexander, Serena; Poggo, Tammy

    2014-01-01

    Features the complete set of answers to the exercises in Mathematics Year 5, to save you time marking work and enable you to identify areas requiring further attention. The book includes diagrams and workings where necessary, to ensure pupils understand how to present their answers. Also available from Galore Park www.galorepark.co.uk :. - Mathematics Year 5. - Mathematics Year 6. - 11+ Maths Practice Exercises. - 11+ Maths Revision Guide. - 10-Minute Maths Tests Workbook Age 8-10. - 10-Minute Maths Tests Workbook Age 9-11. - Mental Arithmetic Workbook Age 8-10. - Mental Arithmetic Workbook Ag

  2. Mathematics and Measurement.

    Science.gov (United States)

    Boisvert, R F; Donahue, M J; Lozier, D W; McMichael, R; Rust, B W

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST's current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years.

  3. The Mathematics of Knots

    CERN Document Server

    Banagl, Markus

    2011-01-01

    The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested

  4. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  5. The Princeton companion to mathematics

    CERN Document Server

    Barrow-Green, June; Leader, Imre

    2008-01-01

    This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more

  6. Test-taking skills of secondary students: The relationship with ...

    African Journals Online (AJOL)

    taking situation in an appropriate manner. This study is aimed at assessing the relationship between students' test-taking skills and each of the following variables: motivation to learn mathematics; mathematics anxiety; attitudes towards ...

  7. Engaging Elementary Students in the Creative Process of Mathematizing Their World through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Jennifer M. Suh

    2017-06-01

    Full Text Available This paper examines the experiences of two elementary teachers’ implementation of mathematical modeling in their classrooms and how the enactment by the teachers and the engagement by students exhibited their creativity, critical thinking, collaboration and communication skills. In particular, we explore the questions: (1 How can phases of mathematical modeling as a process serve as a venue for exhibiting students’ critical 21st century skills? (2 What were some effective pedagogical practices teachers used as they implemented mathematical modeling with elementary students and how did these promote students’ 21st century skills? We propose that mathematical modeling provides space for teachers and students to have a collective experience through the iterative process of making sense of and building knowledge of important mathematical ideas while engaging in the critical 21st century skills necessary in our complex modern world.

  8. Shop Math for the Metal Trades. Combination Welder Apprentice, Machinist Helper, Precision Metal Finisher, Sheet Metal Worker Apprentice. A Report on Metal Trades Industry Certified, Single-Concept, Mathematical Learning Projects to Eliminate Student Math Fears.

    Science.gov (United States)

    Newton, Lawrence R.

    This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…

  9. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  10. Mathematics everywhere

    CERN Document Server

    Aigner, Martin; Spain, Philip G

    2010-01-01

    Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

  11. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  12. Mathematical scandals

    CERN Document Server

    Pappas, Theoni

    1997-01-01

    In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

  13. Teacher's Ability to Develop Learning Materials Potentially Mathematical Discourse

    Directory of Open Access Journals (Sweden)

    Hamdani Hamdani

    2017-10-01

    Full Text Available In the process of learning in the field, the teacher still dominates the conversation while the students as a passive listener. As a result, not only the communication skills of students who are less developed, the understanding of student material is also lacking. Therefore it is necessary to research the ability of teachers in developing learning tools potentially mathematical discourse to improve students' mathematical communication skills. The research method used is descriptive. Research activities include: identification of problems through questionnaires, observation, and interviews; teacher training; teachers develop learning tools; validation; and enhancement of the device by the teacher. The subject of this research is the junior high school mathematics teacher from several districts in the border area of Sambas-Sarawak Regency. The results show that in every learning mathematics there is always a conversation between teachers and students, but rarely use the question "why" and "how". Most teacher-made lesson plans contain scenarios of conversations between teachers and students, but just plain questioning, have not led to a debate between each other so that understanding becomes deeper. Student worksheet made by the teacher in the form of a matter of the ordinary story, rarely load non-routine problem let alone open-ended.

  14. COLLEGE STUDENTS’ PERCEPTIONS OF LEARNING MATHEMATICS AND USING COMPUTERS

    OpenAIRE

    Gok, Tolga

    2016-01-01

    Mathematics isthe key course to interpret the science and nature. A positive attitude shouldbe improved by learners to comprehend the logic of mathematics. However, mostof the research indicated that they were not interested in learning andstudying mathematics. Instead of understanding the basic principles, manystudents preferred to use sophisticated software packages or graphingcalculators for solving mathematics problems. Thus, these tools prevent theimprovement of their mathematical skills...

  15. Counting skills intervention for low-performing first graders

    Directory of Open Access Journals (Sweden)

    Riikka Mononen

    2016-09-01

    Conclusion: A relatively short counting skills intervention that applied explicit teaching showed promising effects in improving low-performing children’s mathematical performance as a supplemental instruction.

  16. High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics

    Science.gov (United States)

    Dickerson, David S.; Doerr, Helen M.

    2014-12-01

    Proof serves many purposes in mathematics. In this qualitative study of 17 high school mathematics teachers, we found that these teachers perceived that two of the most important purposes for proof in school mathematics were (a) to enhance students' mathematical understanding and (b) to develop generalized thinking skills that were transferable to other fields of endeavor. We found teachers were divided on the characteristics (or features) of proofs that would serve these purposes. Teachers with less experience tended to believe that proofs in the high school should adhere to strict standards of language and reasoning while teachers with more experience tended to believe that proofs based on concrete or visual features were well suited for high school mathematics. This study has implications for teacher preparation because it appears that there is a wide variation in how teachers think about proof. It seems likely that students would experience proof very differently merely because they were seated in different classrooms.

  17. A Multiple Intelligence Pedagogical Approach in Fifth Grade Mathematics: A Mixed Method Study

    Science.gov (United States)

    Davis, Claudine Davillier

    2012-01-01

    The need for mathematics intervention has increased tremendously over the years, particularly after the No Child Left Behind Act of 2001.Students who lack basic mathematics skills and students who experience mathematics difficulties greatly benefit from mathematics interventions. This study examined mathematics intervention through the use of the…

  18. Quality and Equality: Basic Skill Requirements at the University Level.

    Science.gov (United States)

    Guskin, Alan E.; Greenebaum, Ben

    1979-01-01

    The University of Wisconsin-Parkside's comprehensive collegiate skills program is described from proposal to implementation. Junior year students must demonstrate competence in: writing, reading, mathematics, research paper writing, and library skills. (MLW)

  19. Mathematical logic

    CERN Document Server

    Kleene, Stephen Cole

    1967-01-01

    Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

  20. Making Mathematics.

    Science.gov (United States)

    Huckstep, Peter

    2002-01-01

    Contends teachers must resist the temptation to suggest that, while children can create stories and melodies, they cannot create mathematics. Quotes mathematician G. H. Hardy: "A mathematician, like a painter or poet, is a 'maker' of patterns." Considers mathematics should be able to stand up for itself. (BT)

  1. Mathematics 2

    CERN Document Server

    Kodaira, Kunihiko

    1996-01-01

    This is the translation from the Japanese textbook for the grade 11 course, "General Mathematics". It is part of the easier of the three elective courses in mathematics offered at this level and is taken by about 40% of students. The book covers basic notions of probability and statistics, vectors, exponential, logarithmic, and trigonometric functions, and an introduction to differentiation and integration.

  2. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  3. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  4. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  5. Discrete mathematics using a computer

    CERN Document Server

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  6. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  7. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  8. Mathematics unbound

    CERN Document Server

    Parshall, Karen Hunger

    2002-01-01

    Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only develo...

  9. Mathematical analysis II

    CERN Document Server

    Canuto, Claudio

    2015-01-01

    The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...

  10. Teaching Mathematics That Addresses Learners' Multiple Intelligences

    Science.gov (United States)

    Gouws, E.; Dicker, A-M.

    2011-01-01

    To meet the demands of our highly technological and globally competitive society, it is becoming increasingly important for all learners in South Africa to obtain skills and knowledge in mathematics. However, South Africa performed the worst of all the countries who participated in the Trends in International Mathematics and Science Study (TIMMS).…

  11. Construction Industry Related Mathematics: Seventh Grade.

    Science.gov (United States)

    Mundell, Scott

    The field tested construction industry-related mathematics unit is intended to familiarize seventh grade students with various facets of the construction industry, including the various occupations available and the mathematical abilities and other skills and training necessary to pursue an occupation in the industry. The final set of activities…

  12. Mathematics in the Workplace: Issues and Challenges

    NARCIS (Netherlands)

    Hoyles, C.; Noss, R.; Kent, P.; Bakker, A.

    2013-01-01

    In political and educational debate, there is contrary opinion about the mathematical needs of employees. Several influential studies report that, apart from recognizing the need for a small layer of ‘symbolic analysts’ (Reich 1992), employers do not prioritize mathematical skills (e.g., Department

  13. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  14. VEDIC MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2015-09-01

    Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

  15. Mobile learning to improve mathematics teachers mathematical competencies

    Science.gov (United States)

    Hendrayana, A.; Wahyudin

    2018-01-01

    The role of teachers is crucial to the success of mathematics learning. One of the learning indicator is characterized by the students’ improved mathematical proficiency. In order to increase that, it is necessary to improve the teacher’s mathematical skills first. For that, it needs an innovative way to get teachers close to easily accessible learning resources through technology. The technology can facilitate teachers to access learning resources anytime and anywhere. The appropriate information technology is mobile learning. Innovations that can make teachers easy to access learning resources are mobile applications that can be accessed anytime and anywhere either online or offline. The research method was research development method. In preliminary analysis, subjects consist of teachers and lecturers in professional teacher education program. The results that the teachers ready to adopt mobile-learning for the improvement of their skills.

  16. Leadership Skills.

    Science.gov (United States)

    Hutchison, Cathleen; And Others

    1988-01-01

    Lists skills identified by the Leadership Development Task Force as being critical skills for a leader. Discussion focuses on information managing skills, including problem solving, decision making, setting goals and objectives; project management; and people managing skills, including interpersonal communications, conflict management, motivation,…

  17. Student nurses need more than maths to improve their drug calculating skills.

    Science.gov (United States)

    Wright, Kerri

    2007-05-01

    Nurses need to be able to calculate accurate drug calculations in order to safely administer drugs to their patients (NMC, 2002). Studies have shown however that nurses do not always have the necessary skills to calculate accurate drug dosages and are potentially administering incorrect dosages of drugs to their patients (Hutton, M. 1998. Nursing Mathematics: the importance of application. Nursing Standard 13(11), 35-38; Kapborg, I. 1994. Calculation and administration of drug dosage by Swedish nurses, Student Nurses and Physicians. International Journal for Quality in Health Care 6(4), 389-395; O'Shea, E. 1999. Factors contributing to medication errors: a literature review. Journal of Advanced Nursing 8, 496-504; Wilson, A. 2003. Nurses maths: researching a practical approach. Nursing Standard 17(47), 33-36). The literature indicates that in order to improve drug calculations strategies need to focus on both the mathematical skills and conceptual skills of student nurses so they can interpret clinical data into drug calculations to be solved. A study was undertaken to investigate the effectiveness of implementing several strategies which focussed on developing the mathematical and conceptual skills of student nurses to improve their drug calculation skills. The study found that implementing a range of strategies which addressed these two developmental areas significantly improved the drug calculation skills of nurses. The study also indicates that a range of strategies has the potential ensuring that the skills taught are retained by the student nurses. Although the strategies significantly improved the drug calculation skills of student nurses, the fact that only 2 students were able to achieve 100% in their drug calculation test indicates a need for further research into this area.

  18. Mathematical Performance: What's in It for Developmental Educators?

    Science.gov (United States)

    Garofalo, Joe

    1985-01-01

    Points out that successful mathematical performance depends not only on declarative and procedural content knowledge, but also upon mathematical thinking skills such as problem-schema knowledge, decision-making skills, and metacognitive knowledge. Argues that the growing need for remediation should influence schools' traditional overemphasis on…

  19. The Association between Mathematical Word Problems and Reading Comprehension

    Science.gov (United States)

    Vilenius-Tuohimaa, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2008-01-01

    This study aimed to investigate the interplay between mathematical word problem skills and reading comprehension. The participants were 225 children aged 9-10 (Grade 4). The children's text comprehension and mathematical word problem-solving performance was tested. Technical reading skills were investigated in order to categorise participants as…

  20. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  1. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  2. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  3. A reading intervention programme for mathematics students ...

    African Journals Online (AJOL)

    Based on the results of Phase I of a reading skills project in 2000 (SAJHE 16(3) 2002), Phase II was undertaken to set up a reading intervention programme on a voluntary basis for students enrolled in a mathematics access module, to determine whether explicit attention given to reading would improve their reading skills ...

  4. Strategies of solving arithmetic word problems in students with learning difficulties in mathematics

    OpenAIRE

    Kalan, Marko

    2015-01-01

    Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in scho...

  5. A Study on Gendered Portrayals in Children's Picture Books with Mathematical Content

    Directory of Open Access Journals (Sweden)

    Patricia R. Ladd

    2011-12-01

    Full Text Available This study analyzes sexism in children's picture books that incorporate mathematical problems and problem-solving into the plot to determine if children's earliest reading material is affecting the achievement gap between males and females in this subject area. The study focused not just on overall totals of male and female characters, but also analyzed which genders most often portrayed gender stereotyped behaviors and personality traits and which characters were most often shown with mathematical skills. The findings of the study show that there were twice as many male as female characters, and the math problem-solving was generally done by males in the majority of titles.

  6. Are students who have been educated in an outcomes-based approach prepared for university mathematics?

    Directory of Open Access Journals (Sweden)

    Johann Engelbrecht

    2009-09-01

    the will to work. However, in many instances, their general mathematical attributes such as algebraic manipulation skills and their general mastery of mathematical writing are worse than those of students in the past. There are also areas where their content knowledge is either lacking or unexpectedly shallow. It therefore appears that these students have improved personal attributes but not necessarily the knowledge and mathematical skills to back them up. Some recommendations are made with regard to handling the situation. It is clear that the new school system necessitates changes at school level with a view to university level in order to ensure a transition that is surmountable.

  7. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  8. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  9. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  10. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  11. What's Past is Prologue: Relations Between Early Mathematics Knowledge and High School Achievement.

    Science.gov (United States)

    Watts, Tyler W; Duncan, Greg J; Siegler, Robert S; Davis-Kean, Pamela E

    2014-10-01

    Although previous research has established the association between early-grade mathematics knowledge and later mathematics achievement, few studies have measured mathematical skills prior to school entry, nor have they investigated the predictive power of early gains in mathematics ability. The current paper relates mathematical skills measured at 54 months to adolescent mathematics achievement using multi-site longitudinal data. We find that preschool mathematics ability predicts mathematics achievement through age 15, even after accounting for early reading, cognitive skills, and family and child characteristics. Moreover, we find that growth in mathematical ability between age 54 months and first grade is an even stronger predictor of adolescent mathematics achievement. These results demonstrate the importance of pre-kindergarten mathematics knowledge and early math learning for later achievement.

  12. What’s Past is Prologue: Relations Between Early Mathematics Knowledge and High School Achievement

    Science.gov (United States)

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2015-01-01

    Although previous research has established the association between early-grade mathematics knowledge and later mathematics achievement, few studies have measured mathematical skills prior to school entry, nor have they investigated the predictive power of early gains in mathematics ability. The current paper relates mathematical skills measured at 54 months to adolescent mathematics achievement using multi-site longitudinal data. We find that preschool mathematics ability predicts mathematics achievement through age 15, even after accounting for early reading, cognitive skills, and family and child characteristics. Moreover, we find that growth in mathematical ability between age 54 months and first grade is an even stronger predictor of adolescent mathematics achievement. These results demonstrate the importance of pre-kindergarten mathematics knowledge and early math learning for later achievement. PMID:26806961

  13. Mathematical statistics

    CERN Document Server

    Pestman, Wiebe R

    2009-01-01

    This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.

  14. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  15. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  16. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  17. Adaptation of abbreviated mathematics anxiety rating scale for engineering students

    Science.gov (United States)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah

    2015-05-01

    Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.

  18. Groups - Modular Mathematics Series

    CERN Document Server

    Jordan, David

    1994-01-01

    This text provides an introduction to group theory with an emphasis on clear examples. The authors present groups as naturally occurring structures arising from symmetry in geometrical figures and other mathematical objects. Written in a 'user-friendly' style, where new ideas are always motivated before being fully introduced, the text will help readers to gain confidence and skill in handling group theory notation before progressing on to applying it in complex situations. An ideal companion to any first or second year course on the topic.

  19. Engineering Mathematics in Context

    DEFF Research Database (Denmark)

    Ravn, Ole; Henriksen, Lars Bo

    2017-01-01

    A theory-based approach to scientific research has an inherent tendency to become secluded from the ongoing problems and discussions of the surrounding society. A problem-based approach to research immediately involves this context of problems and discussions from the outset. In this article, we ...... argue that education in university engineering mathematics should take its outset in contextual problems in order to provide a foundation for the skills and capabilities engineers need in their future job settings, whether it be research or development activities....

  20. Understanding Mathematics: Some Key Factors

    Science.gov (United States)

    Ali, Asma Amanat; Reid, Norman

    2012-01-01

    Mathematics is well known as a subject area where there can be problems in terms of understanding as well as retaining positive attitudes. In a large study involving 813 school students (ages approximately 10-12) drawn from two different school systems in Pakistan, the effect of limited working memory capacity on performance in mathematics was…

  1. Visual Representations in Mathematics Teaching: An Experiment with Students

    Science.gov (United States)

    Debrenti, Edith

    2015-01-01

    General problem-solving skills are of central importance in school mathematics achievement. Word problems play an important role not just in mathematical education, but in general education as well. Meaningful learning and understanding are basic aspects of all kinds of learning and it is even more important in the case of learning mathematics. In…

  2. Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms

    Science.gov (United States)

    Niu, Weihua; Zhou, Zheng; Zhou, Xinlin

    2017-01-01

    Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…

  3. Innovative trends in mathematics education: Implications for global ...

    African Journals Online (AJOL)

    Acquisition of Mathematical knowledge and skills requires effective teaching and learning. The traditional method of teaching that is usually adopted by Mathematics Teachers has been identified as one of the causes of students' poor performance Mathematics. However, adoptions of innovative strategies have been ...

  4. Modelling as a foundation for academic forming in mathematics education

    NARCIS (Netherlands)

    Perrenet, J.C.; Morsche, ter H.G.

    2004-01-01

    The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students

  5. Introduction to mathematical physics methods and concepts

    CERN Document Server

    Wong, Chun Wa

    2013-01-01

    Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages...

  6. Test-Taking Skills of Secondary Students: The Relationship with Motivation, Attitudes, Anxiety and Attitudes towards Tests

    Science.gov (United States)

    Dodeen, Hamzeh M.; Abdelfattah, Faisal; Alshumrani, Saleh

    2014-01-01

    Test-taking skills are cognitive skills that enable students to undergo any test-taking situation in an appropriate manner. This study is aimed at assessing the relationship between students' test-taking skills and each of the following variables: motivation to learn mathematics; mathematics anxiety; attitudes towards mathematics; and attitudes…

  7. Mathematical Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Glimm, J.

    2009-10-14

    Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

  8. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  9. Modern problems in insurance mathematics

    CERN Document Server

    Martin-Löf, Anders

    2014-01-01

    This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance, and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.

  10. Teaching Preschoolers to Count: Effective Strategies for Achieving Early Mathematics Milestones

    Science.gov (United States)

    Jacobi-Vessels, Jill L.; Brown, E. Todd; Molfese, Victoria J.; Do, Ahn

    2016-01-01

    Attention to early childhood mathematics instructional strategies has sharpened due to the relatively poor mathematics performance of U.S. students in comparison to students from other countries and research evidence that early mathematics skills impact later achievement. Early Childhood counting skills form the foundation for subsequent…

  11. Junior High School Students’ Understanding and Problem Solving Skills on the Topics of Line and Angles

    Science.gov (United States)

    Irsal, I. L.; Jupri, A.; Prabawanto, S.

    2017-09-01

    Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.

  12. Learners with learning difficulties in mathematics : attitudes, curriculum and methods of teaching mathematics

    OpenAIRE

    2012-01-01

    D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...

  13. Following the Template: Transferring Modeling Skills to Nonstandard Problems

    Science.gov (United States)

    Tyumeneva, Yu. A.; Goncharova, M. V.

    2017-01-01

    This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…

  14. Computational mathematics in China

    CERN Document Server

    Shi, Zhong-Ci

    1994-01-01

    This volume describes the most significant contributions made by Chinese mathematicians over the past decades in various areas of computational mathematics. Some of the results are quite important and complement Western developments in the field. The contributors to the volume range from noted senior mathematicians to promising young researchers. The topics include finite element methods, computational fluid mechanics, numerical solutions of differential equations, computational methods in dynamical systems, numerical algebra, approximation, and optimization. Containing a number of survey articles, the book provides an excellent way for Western readers to gain an understanding of the status and trends of computational mathematics in China.

  15. Phenomenology and Mathematics

    CERN Document Server

    Hartimo, Mirja

    2010-01-01

    During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.

  16. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  17. English learners in the mathematics classroom

    CERN Document Server

    Coggins, Debra S (Susan)

    2014-01-01

    Research-based strategies to reach English learners - now aligned with the Common Core!Enable your English learners to build higher-level math skills and gain greater fluency in their new language-all while achieving the goals of the Common Core. Now in its second edition, this trusted resource includes:  Mathematics lesson scenarios in every chapter, directly connected to Common Core Standards and the Standards for Mathematical Practice Instructional approaches that promote participation, hands-on learning, and true comprehension of mathematics concepts that benefit ALL students Sample lessons, visuals, and essential vocabulary that connect mathematical concepts with language development.

  18. The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary

    Science.gov (United States)

    Riccomini, Paul J.; Smith, Gregory W.; Hughes, Elizabeth M.; Fries, Karen M.

    2015-01-01

    Vocabulary understanding is a major contributor to overall comprehension in many content areas, including mathematics. Effective methods for teaching vocabulary in all content areas are diverse and long standing. Teaching and learning the language of mathematics is vital for the development of mathematical proficiency. Students' mathematical…

  19. Global Journal of Mathematical Sciences

    African Journals Online (AJOL)

    Global Journal of Mathematical Sciences publishes research work in all areas of ... of new theories, techniques and application to science, industry and society. The journal aims to promote the exchange of information and ideas between all ...

  20. Interpersonal Skills

    Directory of Open Access Journals (Sweden)

    Barakat NG

    2007-01-01

    Full Text Available INTRODUCTIONInterpersonal skills are becoming more and more a necessity in the medical profession. The expectation from health care professionals is beyond just knowledge of the medical facts. To practice medicine effectively, doctors need to develop interpersonal skills in communication, leadership, management, teaching and time management. All of these are vital tools and are becoming increasingly essential subjects in teaching both undergraduate students and postgraduate doctors. However, a degree of self-motivation and personal initiative is needed to develop these skills. In this article, I will give an overview on interpersonal skills and will be follow this by a series of articles, in future issues, dealing with these skills.

  1. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  2. Physical mathematics

    CERN Document Server

    Cahill, Kevin

    2013-01-01

    Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

  3. Mathematical simulation of the behaviour of the spent organic extractive solution near the injection well area in the case of underground disposal

    International Nuclear Information System (INIS)

    Istomin, A.D.; Noskov, M.D.; Balakhonov, V.G.; Zubkov, A.A.; Egorov, G.F.

    2005-01-01

    A mathematical model is presented of the processes in the collector seam under combined disposal of organic and radioactive wastes in porous geological strata of deep bedding. The model describes filtration, mass transfer, sorption and desorption of radionuclides, radioactive decay, decomposition of organic components and heat transfer. The computer software is developed. The results of simulating the thermal field dynamics, behaviour of the components of the spent organic extractive solution and water radioactive wastes in the collector seam of deep bedding are presented [ru

  4. The Role of Teachers in Facilitating Mathematics Learning Opportunities in Agriculture, Food, and Natural Resources

    Science.gov (United States)

    McKim, Aaron J.; Velez, Jonathan J.; Everett, Michael W.; Sorensen, Tyson J.

    2017-01-01

    Strengthening knowledge and skills in mathematics is critically important to preparing the next generation of innovators, problem solvers, and interdisciplinary thinkers. School-based agricultural education offers a valuable context to co-develop mathematics knowledge and skills alongside knowledge and skills in agriculture, food, and natural…

  5. Mathematical analysis I

    CERN Document Server

    Zorich, Vladimir A

    2015-01-01

    VLADIMIR A. ZORICH is professor of mathematics at Moscow State University. His areas of specialization are analysis, conformal geometry, quasiconformal mappings, and mathematical aspects of thermodynamics. He solved the problem of global homeomorphism for space quasiconformal mappings. He holds a patent in the technology of mechanical engineering, and he is also known by his book Mathematical Analysis of Problems in the Natural Sciences . This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems...

  6. Mathematical Lives

    CERN Document Server

    Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim

    2011-01-01

    Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci

  7. Interpersonal skills for effective library management

    OpenAIRE

    Koganuramath, M. M.; Angadi, Mallikarjun

    2000-01-01

    This paper intends to reveal various facets of interpersonal skills and also the importance of public relations skills, including librarian's own skills, that helps the users to cultivate interpersonal skills as a positive reference service. Surveys of professional librarians show a high need for the skills for professional competencies, management, networking and teamwork. The perceived need for skills in these areas may reflect the increasing interdependence of library workers and relianc...

  8. Remedial Instruction to Enhance Mathematical Ability of Dyscalculics

    Science.gov (United States)

    Kumar, S. Praveen; Raja, B. William Dharma

    2012-01-01

    The ability to do arithmetic calculations is essential to school-based learning and skill development in an information rich society. Arithmetic is a basic academic skill that is needed for learning which includes the skills such as counting, calculating, reasoning etc. that are used for performing mathematical calculations. Unfortunately, many…

  9. Mathematical Creativity: Psychology, Progress and Caveats

    Science.gov (United States)

    Sriraman, Bharath

    2017-01-01

    The aim of this paper is to provide a concise survey of advances in the study of the psychology of creativity, with an emphasis on literature that is typically not cited in mathematics education. In spite of claims that mathematical creativity is an ill-defined area of inquiry in mathematics education, the literature from psychology can serve as…

  10. Lectures on Applications-Oriented Mathematics

    CERN Document Server

    Friedman, Bernard

    2011-01-01

    Meets the need for a program of short courses involving the essentials of a number of mathematical topics taken by physics and engineering students. Basically applications-oriented, the courses do include selected topics of abstract mathematics. While several courses can be used as practical appendices to conventional mathematics, others serve as introductions, providing motivation for self-study in areas of conceptual math.

  11. Mathematical omnibus thirty lectures on classic mathematics

    CERN Document Server

    Fuchs, Dmitry; Fuchs, Dmitry

    2007-01-01

    The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.

  12. Mathematics++ selected topics beyond the basic courses

    CERN Document Server

    Kantor, Ida; Šámal, Robert

    2015-01-01

    Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is comp

  13. A Descriptive Study Examining the Impact of Digital Writing Environments on Communication and Mathematical Reasoning for Students with Learning Disabilities

    Science.gov (United States)

    Huscroft-D'Angelo, Jacqueline; Higgins, Kristina N.; Crawford, Lindy L.

    2014-01-01

    Proficiency in mathematics, including mathematical reasoning skills, requires students to communicate their mathematical thinking. Mathematical reasoning involves making sense of mathematical concepts in a logical way to form conclusions or judgments, and is often underdeveloped in students with learning disabilities. Technology-based environments…

  14. Mathematical cosmology

    International Nuclear Information System (INIS)

    Wainwright, J.

    1990-01-01

    The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)

  15. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  16. Mathematical stereochemistry

    CERN Document Server

    Fujita, Shinsaku

    2015-01-01

    Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.

  17. How primary health care staff working in rural and remote areas access skill development and expertise to support health promotion practice.

    Science.gov (United States)

    McFarlane, Kathryn A; Judd, Jenni; Wapau, Hylda; Nichols, Nina; Watt, Kerrianne; Devine, Sue

    2018-05-01

    Health promotion is a key component of comprehensive primary health care. Health promotion approaches complement healthcare management by enabling individuals to increase control over their health. Many primary healthcare staff have a role to play in health promotion practice, but their ability to integrate health promotion into practice is influenced by their previous training and experience. For primary healthcare staff working in rural and remote locations, access to professional development can be limited by what is locally available and prohibitive in terms of cost for travel and accommodation. This study provides insight into how staff at a large north Queensland Aboriginal community controlled health service access skill development and health promotion expertise to support their work. A qualitative exploratory study was conducted. Small group and individual semi-structured interviews were conducted with staff at Apunipima Cape York Health Council (n=9). A purposive sampling method was used to recruit participants from a number of primary healthcare teams that were more likely to be involved in health promotion work. Both on-the-ground staff and managers were interviewed. All participants were asked how they access skill development and expertise in health promotion practice and what approaches they prefer for ongoing health promotion support. The interviews were transcribed verbatim and analysed thematically. All participants valued access to skill development, advice and support that would assist their health promotion practice. Skill development and expertise in health promotion was accessed from a variety of sources: conferences, workshops, mentoring or shared learning from internal and external colleagues, and access to online information and resources. With limited funds and limited access to professional development locally, participants fostered external and internal organisational relationships to seek in-kind advice and support. Irrespective of

  18. Using assessment to individualize early mathematics instruction.

    Science.gov (United States)

    Connor, Carol McDonald; Mazzocco, Michèle M M; Kurz, Terri; Crowe, Elizabeth C; Tighe, Elizabeth L; Wood, Taffeta S; Morrison, Frederick J

    2018-02-01

    Accumulating evidence suggests that assessment-informed personalized instruction, tailored to students' individual skills and abilities, is more effective than more one-size-fits-all approaches. In this study, we evaluate the efficacy of Individualizing Student Instruction in Mathematics (ISI-Math) compared to Reading (ISI-Reading) where classrooms were randomly assigned to ISI-Math or ISI-Reading. The literature on child characteristics X instruction or skill X treatment interaction effects point to the complexities of tailoring instruction for individual students who present with constellations of skills. Second graders received mathematics instruction in small flexible learning groups based on their assessed learning needs. Results of the study (n=32 teachers, 370 students) revealed significant treatment effects on standardized mathematics assessments. With effect sizes (d) of 0.41-0.60, we show that we can significantly improve 2nd graders' mathematics achievement, including for children living in poverty, by using assessment data to individualize the mathematics instruction they receive. The instructional regime, ISI-Math, was implemented by regular classroom teachers and it led to about a 4-month achievement advantage on standardized mathematics tests when compared to students in control classrooms. These results were realized within one school year. Moreover, treatment effects were the same regardless of school-level poverty and students' gender, initial mathematics or vocabulary scores. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-01-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students¿ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding of mathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education. In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students' intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum provides ways for students to maintain their identity while succeeding academically.

  20. Using the Wonder of Inequalities between Averages for Mathematics Problems Solving

    Science.gov (United States)

    Shaanan, Rachel Mogilevsky; Gordon, Moshe Stupel

    2016-01-01

    The study presents an introductory idea of using mathematical averages as a tool for enriching mathematical problem solving. Throughout students' activities, a research was conducted on their ability to solve mathematical problems, and how to cope with a variety of mathematical tasks, in a variety of ways, using the skills, tools and experiences…

  1. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  2. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  3. The mathematical knowledge of physics graduates: Primary data and conclusions

    Science.gov (United States)

    Breitenberger, Ernst

    1992-04-01

    Systematic observations were made of the mathematical knowledge of physics students from the U.S. and other countries during their first years of graduate study at Ohio University. It was found that all were deficient in general and in ``modern'' mathematical concepts, and in problem-solving skills. Sizable fractions of them did not even possess adequate concepts of ``derivative,'' ``integration,'' and ``truth.'' Nearly all were limited to some familiarity with rather elementary calculus, and with equally elementary differential and linear equations, but they showed some ability and a pronounced willingness to perform manipulations. Roughly, they regarded mathematics as mechanical method, not as constructive thinking. In view of the significantly higher levels of mathematical fluency demanded by contemporary advances in physics and in computer usage, none of these students was adequately prepared for future-oriented study, or for research and employment in physics and related areas at the close of the 20th century. It is intended to discuss the likely causes of this state of affairs elsewhere with a view toward remedial actions.

  4. Studying the Ability of 7th Grade Students to Define the Circle and Its Elements in the Context of Mathematical Language

    Science.gov (United States)

    Akarsu, Esra; Yilmaz, Süha

    2015-01-01

    In this study, it was aimed to study the mathematical language skills that the 7th grade students use in defining the circle and its elements. In the study, the mathematical language skills of students that they use in defining the circle and its elements in a scenario were compared to the mathematical language skills they use in defining them…

  5. Understanding in mathematics

    CERN Document Server

    Sierpinska, Anna

    1994-01-01

    The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

  6. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  7. Mathematical epidemiology

    CERN Document Server

    Driessche, Pauline; Wu, Jianhong

    2008-01-01

    Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...

  8. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  9. Intellectual skills needed for the effective learning and application of chemical knowledge

    OpenAIRE

    Drummond, Helen P.; Selvaratnam, Mailoo

    2009-01-01

    Many students' difficulties in learning and applying chemical knowledge are associated with their being incompetent in a few widely applicable intellectual skills and strategies. This paper discusses the results of a study that was done to test first year university students' competence in some types of intellectual skills that are important in chemistry. The skills tested include language skills, mathematical skills, graphical skills, three-dimensional visualization skills, information proce...

  10. Mathematics education and students with learning disabilities: introduction to the special series.

    Science.gov (United States)

    Rivera, D P

    1997-01-01

    The prevalence of students with mathematics learning disabilities has triggered an interest among special education researchers and practitioners in developing an understanding of the needs of this group of students, and in identifying effective instructional programming to foster their mathematical performance during the school years and into adulthood. Research into the characteristics of students with mathematics learning disabilities is being approached from different perspectives, including developmental, neurological and neuropsychological, and educational. This diversity helps us develop a broader understanding of students' learning needs and difficulties. Special education assessment practices encompass a variety of approaches, including norm-referenced, criterion-referenced, and nonstandardized procedures, depending on the specific assessment questions professionals seek to answer. Students' mathematical knowledge and conceptual understanding must be examined to determine their strengths and weaknesses, curriculum-based progress, and use of cognitive strategies to arrive at mathematical solutions. Research findings have identified empirically validated interventions for teaching mathematics curricula to students with mathematics learning disabilities. Research studies have been grounded in behavioral theory and cognitive psychology, with an emergent interest in the constructivist approach. Although research studies have focused primarily on computational performance, more work is being conducted in the areas of story-problem solving and technology. These areas as well as other math curricular skills require further study. Additionally, the needs of adults with math LD have spurred educators to examine the elementary and secondary math curricula and determine ways to infuse them with life skills instruction accordingly. As the field of mathematics special education continues to evolve, special educators must remain cognizant of the developments in and

  11. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  12. Dilemma in Teaching Mathematics

    Science.gov (United States)

    Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

    2012-01-01

    The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

  13. Especial Skills in Experienced Archers.

    Science.gov (United States)

    Nabavinik, Mahdi; Abaszadeh, Ali; Mehranmanesh, Mehrab; Rosenbaum, David A

    2017-09-05

    Especial skills are skills that are distinctive by virtue of massive practice within the narrow contexts in which they are expressed. In the first demonstration of especial skills, Keetch, Schmidt, Lee, and Young (2005) showed that experienced basketball players are better at shooting baskets from the foul line, where they had massive amounts of practice, than would expected from their success at other locations closer to or farther from the basket. Similar results were obtained for baseball throwing. The authors asked whether especial skills hold in archery, a sport requiring less movement. If the emergence of especial skills depends on large-scale movement, one would expect archery to escape so-called especialism. But if the emergence of especial skills reflects a more general tendency for highly specific learning, experienced archers should show especial skills. The authors obtained evidence consistent with the latter prediction. The expert archers did much better at their most highly practiced distance than would be expected by looking at the overall function relating shooting score to distance. We offer a mathematical model to account for this result. The findings attest to the generality of the especial skills phenomenon.

  14. The story of mathematics

    CERN Document Server

    Mankiewicz, Richard

    2000-01-01

    Questioning how mathematics has evolved over the centuries and for what reasons; how human endeavour and changes in the way we live have been dependent on mathematics, this book tells the story of the impact this intellectual activity has had across cultures and civilizations. It shows how, far from being just the obsession of an elite group of philosophers, priests and scientists, mathematics has in some shape or other entered every area of human activity. The mysterious tally sticks of prehistoric peoples and the terrestial maps used for trade, exploration and warfare; the perennial fascination with the motions of heavenly bodies and changing perspectives on the art and science of vision; all are testament to a mathematics at the heart of history. The path of this changing discipline is marked by a wealth of images, from medieval manuscripts to the unsettling art of Dali or Duchamp, from the austere beauty of Babylonian clay tablets to the delicate complexity of computer-generated images. The text encompass...

  15. Effect of a ball skill intervention on children's ball skills and cognitive functions

    NARCIS (Netherlands)

    Westendorp-Haverdings, Marieke; Houwen, Suzanne; Hartman, Esther; Mombarg, Remo; Smith, Joanne; Visscher, Chris

    Purpose: This study examined the effect of a 16-wk ball skill intervention on the ball skills, executive functioning (in terms of problem solving and cognitive flexibility), and in how far improved executive functioning leads to improved reading and mathematics performance of children with learning

  16. The functions of mathematical physics

    CERN Document Server

    Hochstadt, Harry

    2012-01-01

    A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics.In the 18th and 19th centuries, the theorists who devoted themselves to this field - pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel - were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating

  17. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  18. Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review

    Directory of Open Access Journals (Sweden)

    Timothy Myers

    2017-10-01

    Full Text Available Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.

  19. Mathematics teachers' knowledge of the subject content and ...

    African Journals Online (AJOL)

    This paper discusses the need of the mathematics teacher to be equipped adequately in the content areas in mathematics, vis-a-vis the recent concerns about the poor performance of students in the pre-tertiary schools, and the competence of mathematics teachers in the field. The low performance in mathematics at the ...

  20. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…