WorldWideScience

Sample records for mathematics performance davina

  1. Gender, culture, and mathematics performance

    OpenAIRE

    Hyde, Janet S.; Mertz, Janet E.

    2009-01-01

    Using contemporary data from the U.S. and other nations, we address 3 questions: Do gender differences in mathematics performance exist in the general population? Do gender differences exist among the mathematically talented? Do females exist who possess profound mathematical talent? In regard to the first question, contemporary data indicate that girls in the U.S. have reached parity with boys in mathematics performance, a pattern that is found in some other nations as well. Focusing on the ...

  2. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  3. Mathematics Anxiety in Young Children: Concurrent and Longitudinal Associations with Mathematical Performance

    Science.gov (United States)

    Vukovic, Rose K.; Kieffer, Michael J.; Bailey, Sean P.; Harari, Rachel R.

    2013-01-01

    This study explored mathematics anxiety in a longitudinal sample of 113 children followed from second to third grade. We examined how mathematics anxiety related to different types of mathematical performance concurrently and longitudinally and whether the relations between mathematics anxiety and mathematical performance differed as a function of…

  4. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  5. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  6. Correlation of Numerical Anxiety and Mathematics Performance

    Directory of Open Access Journals (Sweden)

    Michael Howard D. Morada

    2015-12-01

    Full Text Available It has been observed that most students had negative view towards mathematics and as a result, they also performed poorly.As such, it is imperative for every math teacher to understand the reasons behind this negative view to improve their student’s performance. This observation led the researcher to conduct a study on Correlation of Mathematics Performance and Anxiety of third and fourth year students for school year 2012-2013 across the different programs.This study determined the numerical anxiety level and mathematics performance of the respondents along age, gender and programs. The study revealed that students, regardless of age had passing performance. However, female and male students had fair and passing mathematics performance, respectively. Students from College of Business Education, Teacher Education and Computer Studies had fair performance while those from Marine Transportation, Criminal Justice Education and Engineering had passing performance. The study also revealed that students across different variables had moderate numerical anxiety level. Furthermore, it was found out that mathematics performance is significantly related to numerical anxiety. However, the relationship was inverse and small.

  7. Visuospatial training improves elementary students' mathematics performance.

    Science.gov (United States)

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-06-01

    Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.

  8. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  9. A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities.

    Science.gov (United States)

    Shin, Mikyung; Bryant, Diane Pedrotty

    2015-01-01

    The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.

  10. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety.

    Science.gov (United States)

    Devine, Amy; Fawcett, Kayleigh; Szűcs, Dénes; Dowker, Ann

    2012-07-09

    Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys' mathematics performance is more negatively affected by MA than girls' performance is. The aim of the current study was to measure girls' and boys' mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on 'online' mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because

  11. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety

    Science.gov (United States)

    2012-01-01

    Background Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in

  12. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety

    Directory of Open Access Journals (Sweden)

    Devine Amy

    2012-07-01

    Full Text Available Abstract Background Mathematics anxiety (MA, a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education

  13. Gender, culture, and mathematics performance.

    Science.gov (United States)

    Hyde, Janet S; Mertz, Janet E

    2009-06-02

    Using contemporary data from the U.S. and other nations, we address 3 questions: Do gender differences in mathematics performance exist in the general population? Do gender differences exist among the mathematically talented? Do females exist who possess profound mathematical talent? In regard to the first question, contemporary data indicate that girls in the U.S. have reached parity with boys in mathematics performance, a pattern that is found in some other nations as well. Focusing on the second question, studies find more males than females scoring above the 95th or 99th percentile, but this gender gap has significantly narrowed over time in the U.S. and is not found among some ethnic groups and in some nations. Furthermore, data from several studies indicate that greater male variability with respect to mathematics is not ubiquitous. Rather, its presence correlates with several measures of gender inequality. Thus, it is largely an artifact of changeable sociocultural factors, not immutable, innate biological differences between the sexes. Responding to the third question, we document the existence of females who possess profound mathematical talent. Finally, we review mounting evidence that both the magnitude of mean math gender differences and the frequency of identification of gifted and profoundly gifted females significantly correlate with sociocultural factors, including measures of gender equality across nations.

  14. The Chicken or the Egg? The Direction of the Relationship Between Mathematics Anxiety and Mathematics Performance.

    Science.gov (United States)

    Carey, Emma; Hill, Francesca; Devine, Amy; Szücs, Dénes

    2015-01-01

    This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory), in which MA and mathematics performance can influence one another in a vicious cycle.

  15. The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance

    Directory of Open Access Journals (Sweden)

    Emma eCarey

    2016-01-01

    Full Text Available This review considers the two possible causal directions between mathematics anxiety (MA and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory, or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model. The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory, in which MA and mathematics performance can influence one another in a vicious cycle.

  16. Relationship of Mathematics Olympiad Performance of Gifted Students with IQ and Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Ali İhsan BORAN

    2015-04-01

    Full Text Available The purpose of this study is to investigate relationship of mathematics Olympiad (analysis-algebra and geometry scores of gifted students with IQ scores (verbal, performance and general and mathematics achievement scores of the gifted students. Study group of the study included 64 gifted students (27 girls and 37 boys who took courses from one Science and Art Center. Data of study involved scores of the participants on mathematics Olympiad exam, WISC-R test and school mathematics achievement. For analysis of the data Pearson correlation analysis, Spearman correlation analysis, independent groups’ t-test and Mann Whitney U test were utilized. The findings showed that there was no significant relationship between the Olympiad scores on analysis-algebra and geometry and IQ scores (general, performance and verbal. But the Olympiad scores on analysis-algebra and geometry factors were significantly related to school mathematics achievement. Comparing IQ scores of highest and lowest scorer groups on the Olympiad scores showed that there were no significant differences between IQ scores (general, performance and verbal of the groups. However school mathematics scores of the participants significantly differed in terms of groups determined based on analysis-algebra and geometry scores.

  17. Mathematics-Related Emotions among Finnish Adolescents across Different Performance Levels

    Science.gov (United States)

    Holm, Marja Eliisa; Hannula, Markku Sakari; Björn, Piia Maria

    2017-01-01

    This study examined the relation of mathematics performance and gender with seven mathematics-related emotions (enjoyment, pride, anger, anxiety, shame, hopelessness and boredom) among adolescents. Using strict and lenient mathematics performance cut-off scores, respective groups of adolescents with mathematics difficulties (MD, n = 136), low (LA,…

  18. The Chicken or the Egg? The Direction of the Relationship Between Mathematics Anxiety and Mathematics Performance

    OpenAIRE

    Carey, Emma; Hill, Francesca; Devine, Amy; Sz?cs, D?nes

    2016-01-01

    This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by ...

  19. Sex Differences in Mathematics Performance among Senior High ...

    African Journals Online (AJOL)

    This study explored sex differences in mathematics performance of students in the final year of high school and changes in these differences over a 3-year period in Ghana. A convenience sample of 182 students, 109 boys and 72 girls in three high schools in Ghana was used. Mathematics performance was assessed using ...

  20. Is There a Causal Relation between Mathematical Creativity and Mathematical Problem-Solving Performance?

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2016-01-01

    The relationship between mathematical creativity (MC) and mathematical problem-solving performance (MP) has often been studied but the causal relation between these two constructs has yet to be clearly reported. The main purpose of this study was to define the causal relationship between MC and MP. Data from a representative sample of 480…

  1. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  2. Mathematical Performance: What's in It for Developmental Educators?

    Science.gov (United States)

    Garofalo, Joe

    1985-01-01

    Points out that successful mathematical performance depends not only on declarative and procedural content knowledge, but also upon mathematical thinking skills such as problem-schema knowledge, decision-making skills, and metacognitive knowledge. Argues that the growing need for remediation should influence schools' traditional overemphasis on…

  3. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance

    Directory of Open Access Journals (Sweden)

    Bashirah Ibrahim

    2017-10-01

    Full Text Available We examine students’ mathematical performance on quantitative “synthesis problems” with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students’ mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students’ formulation and combination of equations. Several reasons may explain this difference, including the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  4. Stereotype Threat, Test Anxiety, and Mathematics Performance

    Science.gov (United States)

    Tempel, Tobias; Neumann, Roland

    2014-01-01

    We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…

  5. Mathematics Anxiety and Mathematics Self-Efficacy in Relation to Medication Calculation Performance in Nurses

    Science.gov (United States)

    Melius, Joyce

    2012-01-01

    The purpose of this study is to identify and analyze the relationships that exist between mathematics anxiety and nurse self-efficacy for mathematics, and the medication calculation performance of acute care nurses. This research used a quantitative correlational research design and involved a sample of 84 acute care nurses, LVNs and RNs, from a…

  6. Math Self-Assessment, but Not Negative Feelings, Predicts Mathematics Performance of Elementary School Children

    Directory of Open Access Journals (Sweden)

    Vitor Geraldi Haase

    2012-01-01

    Full Text Available Mathematics anxiety has been associated to performance in school mathematics. The association between math anxiety and psychosocial competencies as well as their specific contribution to explain school mathematics performance are still unclear. In the present study, the impact of sociodemographic factors, psychosocial competencies, and math anxiety on mathematics and spelling performance was examined in school children with and without mathematics difficulties. The specific contributions of psychosocial competencies (i.e., general anxiety and attentional deficits with hyperactivity and math anxiety (i.e., self-assessment in mathematics to school mathematics performance were found to be statistically independent from each other. Moreover, psychosocial competencies—but not math anxiety—were related also to spelling performance. These results suggest that psychosocial competencies are more related to general mechanisms of emotional regulation and emotional response towards academic performance, while mathematics anxiety is related to the specific cognitive aspect of self-assessment in mathematics.

  7. Changes in Elementary Mathematics Teachers' Understanding of Cognitive Demand: When Adapting, Creating, and Using Mathematical Performance Tasks

    Science.gov (United States)

    Jamieson, Thad Spencer

    2015-01-01

    The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…

  8. What Math Matters? Types of Mathematics Knowledge and Relationships to Methods Course Performance

    Science.gov (United States)

    Kajander, Ann; Holm, Jennifer

    2016-01-01

    This study investigated the effect of a departmental focus on enhanced mathematics knowledge for teaching on overall performance in upper elementary mathematics methods courses. The study examined the effect of performance on a new course in mathematics for teaching on performance at the methods course level. In addition, the effect of performance…

  9. The Effects of a Tier 3 Intervention on the Mathematics Performance of Second Grade Students With Severe Mathematics Difficulties.

    Science.gov (United States)

    Bryant, Brian R; Bryant, Diane Pedrotty; Porterfield, Jennifer; Dennis, Minyi Shih; Falcomata, Terry; Valentine, Courtney; Brewer, Chelsea; Bell, Kathy

    2016-01-01

    The purpose of this study was to determine the effectiveness of a systematic, explicit, intensive Tier 3 (tertiary) intervention on the mathematics performance of students in second grade with severe mathematics difficulties. A multiple-baseline design across groups of participants showed improved mathematics performance on number and operations concepts and procedures, which are the foundation for later mathematics success. In the previous year, 12 participants had experienced two doses (first and second semesters) of a Tier 2 intervention. In second grade, the participants continued to demonstrate low performance, falling below the 10th percentile on a researcher-designed universal screener and below the 16th percentile on a distal measure, thus qualifying for the intensive intervention. A project interventionist, who met with the students 5 days a week for 10 weeks (9 weeks for one group), conducted the intensive intervention. The intervention employed more intensive instructional design features than the previous Tier 2 secondary instruction, and also included weekly games to reinforce concepts and skills from the lessons. Spring results showed significantly improved mathematics performance (scoring at or above the 25th percentile) for most of the students, thus making them eligible to exit the Tier 3 intervention. © Hammill Institute on Disabilities 2014.

  10. Assessing Senior Secondary School Students' Mathematical Proficiency as Related to Gender and Performance in Mathematics in Nigeria

    Science.gov (United States)

    Awofala, Adeneye O. A.

    2017-01-01

    The study investigated mathematical proficiency as related to gender and performance in mathematics among 400 Nigerian senior secondary school students from 10 elitist senior secondary schools in Lagos State using the quantitative research method within the blueprint of descriptive survey design. Data collected were analysed using the descriptive…

  11. Assessing Preservice Teachers' Mathematics Cognitive Failures as Related to Mathematics Anxiety and Performance in Undergraduate Calculus

    Science.gov (United States)

    Awofala, Adeneye O. A.; Odogwu, Helen N.

    2017-01-01

    The study investigated mathematics cognitive failures as related to mathematics anxiety, gender and performance in calculus among 450 preservice teachers from four public universities in the South West geo-political zone of Nigeria using the quantitative research method within the blueprint of the descriptive survey design. Data collected were…

  12. The Study of the Relationship between Mothers' Anxiety with the Mathematical Performance and Students' Anxiety

    Directory of Open Access Journals (Sweden)

    Sepideh Moradpour

    2015-04-01

    Full Text Available Today mathematics stress have considered under interesting of many psychologists of mathematics education and cognitive psychologists too so that recognize emotion and mental stimulations of students in mathematics and to find scientific strategies for removing and controlling them. Anxiety is one of important and effective issues of 21th century. This study is done with aim of the study of relationship between mothers' anxiety with mathematics performance and anxiety of their children at first grade of high school at zone one of Tehran. Among population, 97 students and their mothers are chosen. Data of this research are collected by Cattell standard questionnaire for studying mothers' anxiety and standard questionnaire of mathematics anxiety for studying mathematics anxiety and a math exam for studying of students' performance. Research findings indicate that there is significant relationship between mothers' anxiety with mathematics anxiety and performance of students. Also it indicated that there is significant difference between students with high and low mathematics anxiety in term of mathematics performance.

  13. Recognising "Good at Mathematics": Using a Performative Lens for Identity

    Science.gov (United States)

    Darragh, Lisa

    2015-01-01

    Many students do not recognise in themselves positive learner identities in mathematics and thus exclude themselves from further mathematics education, limiting their life opportunities. In this study, I use a performance metaphor for identity, drawing on G.H. Mead, Erving Goffman and Judith Butler to analyse interviews with students, taken at…

  14. The Study of the Relationship between Mother's Studies with Study Skills and Mathematics Performance of Students

    Directory of Open Access Journals (Sweden)

    Behnoush Taheri

    2015-07-01

    Full Text Available Certainly teaching study skills of mathematics has special importance and plays important role in mathematics performance of students. As mothers spend more times with self-children then they can be effect on study and their mathematics performance. Present research implements to study of the relationship between mothers' studies with study skills and mathematics performance of their children. Population of this research is all girl students of first grade in high school at zone one of Tehran and sample is 97 people. For collecting data of this research through standard questionnaire of mathematics studies skills is used for measuring of study skill of mathematics and questions for studying information related to mothers' studies and a math exam for getting information of mathematics performance of students are used. The results indicated that there is not significant relationship between mothers' studies and study skill of mathematics among students. Also, it is indicated that there is positive significant relationship between mothers' studies and mathematic performance of students.

  15. The Role of Mathematical Homework and Prior Knowledge on the Relationship between Students' Mathematical Performance, Cognitive Style and Working Memory Capacity

    Science.gov (United States)

    Mousavi, Shima; Radmehr, Farzad; Alamolhodaei, Hasan

    2012-01-01

    Introduction: The main objective of this study is (a) to investigate whether cognitive styles and working memory capacity could predict mathematical performance and which variable is relatively most important in predicting mathematical performance and b) to explore whether cognitive styles and working memory capacity could predict mathematical…

  16. Home and school resources as predictors of mathematics performance in South Africa

    Directory of Open Access Journals (Sweden)

    Mariette Visser

    2015-02-01

    Full Text Available The creation of an environment conducive to learning is vitally important in the academic achievement of learners. Such an environment extends beyond the classroom and school to include the home. It is from these environments that learners draw resources, both tangible and intangible, that impact on their educational experience. While current bodies of literature focus on either school or home resources, this paper looks at both. Multiple regression analyses were conducted on the 2011 Trends in International Mathematics and Science Study (TIMSS data to determine the resources factors that influence South African learners' performance in mathematics. The findings reveal that both school and home environments play significant roles in learners' mathematics performance. This paper therefore suggests that it is not only the socio-economic factors of schools that impact learners' mathematics performance, but also that higher levels of parental education have a significant positive influence.

  17. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    Science.gov (United States)

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  18. Mathematics Anxiety, Working Memory and Mathematics Performance in Secondary-School Children

    Directory of Open Access Journals (Sweden)

    Maria Chiara ePassolunghi

    2016-02-01

    Full Text Available Mathematics anxiety (MA has been defined as a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations. Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM also plays an important part in such anxious feelings.The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA and low math anxiety (LMA. Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  19. Performance of engineering undergraduate students in mathematics: A case study in UniMAP

    Science.gov (United States)

    Saad, Syafawati Ab.; Azziz, Nor Hizamiyani Abdul; Zakaria, Siti Aisyah; Yazid, Nornadia Mohd

    2015-12-01

    The purpose of this paper is to study the trend performance of the first year engineering students at a public university in Mathematics course: Engineering Mathematics I. We analyze how ethnicity factor influenced students' performance in mathematics course over three years period. The performance of the undergraduate students in this study is measured by their cumulative grade point average (CGPA) in the first semester. Analysis of Variance (ANOVA) will be used to test the significance difference between three variables (Malay, Chinese and Indian). Method of simple linear regression (SLR) is used to test the relationship between the performances and to predict the future performance for this course. The findings of the study show that Chinese students perform better than Malay and Indian students.

  20. Performance Analysis of Parallel Mathematical Subroutine library PARCEL

    International Nuclear Information System (INIS)

    Yamada, Susumu; Shimizu, Futoshi; Kobayashi, Kenichi; Kaburaki, Hideo; Kishida, Norio

    2000-01-01

    The parallel mathematical subroutine library PARCEL (Parallel Computing Elements) has been developed by Japan Atomic Energy Research Institute for easy use of typical parallelized mathematical codes in any application problems on distributed parallel computers. The PARCEL includes routines for linear equations, eigenvalue problems, pseudo-random number generation, and fast Fourier transforms. It is shown that the results of performance for linear equations routines exhibit good parallelization efficiency on vector, as well as scalar, parallel computers. A comparison of the efficiency results with the PETSc (Portable Extensible Tool kit for Scientific Computations) library has been reported. (author)

  1. An investigation into the mathematics performance of Grade 6 learners in South Africa

    Directory of Open Access Journals (Sweden)

    Gary S. Kotzé

    2007-10-01

    Full Text Available The aim of this article is to investigate mathematics performance of intermediate phase learners. The quality of learners’ scholastic achievement in mathematics are analysed based on the empirical evidence obtained from an international survey. The method of inquiry is based on an analysis of existing statistic-al data concerning present-oriented problems. The effects of particular variables on mathematics learn-ing are explored, such as male and female learners and those from less advantaged social backgrounds. Overall performance and competence levels are analysed. Although there are no outstanding contributing factors that influence mathematics achievement of  grade 6 learners in South Africa conclusions are drawn that may influence school system organisation and also the quality of mathematics teaching.

  2. Recognising `good at mathematics': using a performative lens for identity

    Science.gov (United States)

    Darragh, Lisa

    2015-03-01

    Many students do not recognise in themselves positive learner identities in mathematics and thus exclude themselves from further mathematics education, limiting their life opportunities. In this study, I use a performance metaphor for identity, drawing on G.H. Mead, Erving Goffman and Judith Butler to analyse interviews with students, taken at four time points as they make the transition from primary to secondary school. The question I focus on is `How do you recognise someone who is "good at mathematics"?' The students' responses reveal that there is a wide variety of scripts available when enacting the role of `good at mathematics', and these include getting high marks, knowing the answer quickly, helping others and demonstrating the confidence to put up their hand to answer questions. Despite the variety of ways in which to demonstrate `good at mathematics', most of the students did not recognise themselves in their own descriptions. This goes some way towards explaining why students may opt out of further study in mathematics, despite high achievement in this subject.

  3. The influence of gender on performance in mathematics in in the ...

    African Journals Online (AJOL)

    The influence of gender on performance in mathematics in in the foundation phase: the perceptions of selected teachers in a specific school. ... Again, the study has suggested strategies to encourage girls to do mathematics so as to improve their chances of following career options in engineering, accounting, medicine, ...

  4. Spatial transformation abilities and their relation to later mathematics performance.

    Science.gov (United States)

    Frick, Andrea

    2018-04-10

    Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.

  5. Assessing the Relation between Seventh-Grade Students' Engagement and Mathematical Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, Jon R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  6. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study.

    Science.gov (United States)

    Mercader, Jessica; Miranda, Ana; Presentación, M Jesús; Siegenthaler, Rebeca; Rosel, Jesús F

    2017-01-01

    The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions), executive functioning (inhibition and working memory), and early numeracy skills (logical operations, counting, and magnitude comparison abilities), assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5-6 and 7-8 years old). The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  7. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Jessica Mercader

    2018-01-01

    Full Text Available The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions, executive functioning (inhibition and working memory, and early numeracy skills (logical operations, counting, and magnitude comparison abilities, assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5–6 and 7–8 years old. The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  8. Factors involved in making post-performance judgments in mathematics problem-solving.

    Science.gov (United States)

    García Fernández, Trinidad; Kroesbergen, Evelyn; Rodríguez Pérez, Celestino; González-Castro, Paloma; González-Pienda, Julio A

    2015-01-01

    This study examines the impact of executive functions, affective-motivational variables related to mathematics, mathematics achievement and task characteristics on fifth and sixth graders’ calibration accuracy after completing two mathematical problems. A sample of 188 students took part in the study. They were divided into two groups as function of their judgment accuracy after completing the two tasks (accurate= 79, inaccurate= 109). Differences between these groups were examined. The discriminative value of these variables to predict group membership was analyzed, as well as the effect of age, gender, and grade level. The results indicated that accurate students showed better levels of executive functioning, and more positive feelings, beliefs, and motivation related to mathematics. They also spent more time on the tasks. Mathematics achievement, perceived usefulness of mathematics, and time spent on Task 1 significantly predicted group membership, classifying 71.3% of the sample correctly. These results support the relationship between academic achievement and calibration accuracy, suggesting the need to consider a wide range of factors when explaining performance judgments.

  9. International note: Prediction of mathematics work ethic and performance from behavioral, normative, and control beliefs among Qatari adolescents.

    Science.gov (United States)

    Areepattamannil, Shaljan; Abdelfattah, Faisal; Mahasneh, Randa Ali; Khine, Myint Swe; Welch, Anita G; Melkonian, Michael; Al Nuaimi, Samira Ahmed

    2016-01-01

    Over half-a-million adolescents take part in each cycle of the Program for International Student Assessment (PISA). Yet often, researchers and policy makers across the globe tend to focus their attention primarily on the academic trajectories of adolescents hailing from highly successful education systems. Hence, a vast majority of the adolescent population who regionally and globally constitute the 'long tail of underachievement' often remain unnoticed and underrepresented in the growing literature on adolescents' academic trajectories. The present study, therefore, explored the relations of dispositions toward mathematics, subjective norms in mathematics, and perceived control of success in mathematics to mathematics work ethic as well as mathematics performance; and the mediational role of mathematics work ethic in the association between dispositional, normative, and control beliefs and mathematics performance among adolescents in one of the lowest performing education systems, Qatar. Structural equation modeling (SEM) analyses revealed that Qatari adolescents' dispositional, normative, and control beliefs about mathematics were significantly associated with their mathematics work ethic and mathematics performance, and mathematics work ethic significantly mediated the relationship between dispositional, normative, and control beliefs about mathematics and mathematics performance. However, multi-group SEM analyses indicated that these relationships were not invariant across the gender and the SES groups. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. The influence of second language teaching on undergraduate mathematics performance

    Science.gov (United States)

    Gerber, Ans; Engelbrecht, Johann; Harding, Ansie; Rogan, John

    2005-10-01

    Understanding abstract concepts and ideas in mathematics, if instruction takes place in the first language of the student, is difficult. Yet worldwide students often have to master mathematics via a second or third language. The majority of students in South Africa — a country with eleven official languages — has to face this difficulty. In a quantitative study of first year calculus students, we investigated two groups of students. For one group tuition took place in their home language; for the second group, tuition was in English, a second or even a third language. Performance data on their secondary mathematics and first year tertiary calculus were analysed. The study showed that there was no significant difference between the adjusted means of the entire group of first language learners and the entire group of second language learners. Neither was there any statistically significant difference between the performances of the two groups of second language learners (based on the adjusted means). Yet, there did seem to be a significant difference between the achievement of Afrikaans students attending Afrikaans lectures and Afrikaans students attending English lectures.

  11. Identifying Domain-General and Domain-Specific Predictors of Low Mathematics Performance: A Classification and Regression Tree Analysis

    Directory of Open Access Journals (Sweden)

    David J. Purpura

    2017-12-01

    Full Text Available Many children struggle to successfully acquire early mathematics skills. Theoretical and empirical evidence has pointed to deficits in domain-specific skills (e.g., non-symbolic mathematics skills or domain-general skills (e.g., executive functioning and language as underlying low mathematical performance. In the current study, we assessed a sample of 113 three- to five-year old preschool children on a battery of domain-specific and domain-general factors in the fall and spring of their preschool year to identify Time 1 (fall factors associated with low performance in mathematics knowledge at Time 2 (spring. We used the exploratory approach of classification and regression tree analyses, a strategy that uses step-wise partitioning to create subgroups from a larger sample using multiple predictors, to identify the factors that were the strongest classifiers of low performance for younger and older preschool children. Results indicated that the most consistent classifier of low mathematics performance at Time 2 was children’s Time 1 mathematical language skills. Further, other distinct classifiers of low performance emerged for younger and older children. These findings suggest that risk classification for low mathematics performance may differ depending on children’s age.

  12. Japanese Pupils’ Attribution of their Perceived Mathematics Performance and the Relationships Between their Attribution of Mathematics Performance and their Affective Attitudes Promoted by Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Tomomi Saeki

    2006-04-01

    Full Text Available This research used a questionnaire survey to explore the relationship between pupils’ attribution of their perceived mathematics performance and their affective attitudes towards mathematics learning as promoted by the different teaching methods they were exposed to in their mathematics classes. Both 5th and 8th graders attributed their success in learning mathematics to effort, although support from the teacher and support at home were also perceived as important factors in their success. The 5th graders and 8th graders overall gave effort-based attributions in the case of failure, while for 5th graders, ability was regarded as being as important as effort, in attributing failure in mathematics learning. Pupils who attributed their success in mathematics learning to effort, support at school and home, preferred teacher explanation and reading a textbook as learning strategies, while those attributing it to their ability preferred Individual work. Where pupils attributed success to luck, this seemed to have a negative effect on their affective attitudes towards mathematics learning as promoted by different teaching methods, while attributing failure to luck seemed to have positive effect. Attributing failure to poor teaching seemed to have a negative effect on their perception of teacher explanation. The relationships between pupil effort or ability based attributions of failure and their preference for different teaching methods were not clear. Adopting various teaching methods in mathematics classes would seem to support pupils who have different attribution styles.

  13. An Examination of Stereotype Threat Effects on Girls' Mathematics Performance

    Science.gov (United States)

    Ganley, Colleen M.; Mingle, Leigh A.; Ryan, Allison M.; Ryan, Katherine; Vasilyeva, Marina; Perry, Michelle

    2013-01-01

    Stereotype threat has been proposed as 1 potential explanation for the gender difference in standardized mathematics test performance among high-performing students. At present, it is not entirely clear how susceptibility to stereotype threat develops, as empirical evidence for stereotype threat effects across the school years is inconsistent. In…

  14. Effects of reading picture books on kindergartners’ mathematics performance

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Elia, Iliada; Robitzsch, Alexander

    2016-01-01

    This article describes a field experiment with a pretest–posttest control group design which investigated the potential of reading picture books to children for supporting their mathematical understanding. The study involved 384 children from 18 kindergarten classes in 18 schools in the Netherlands. During three months, the children in the nine experimental classes were read picture books. Data analysis revealed that, when controlled for relevant covariates, the picture book reading programme had a positive effect (d = .13) on kindergartners’ mathematics performance as measured by a project test containing items on number, measurement and geometry. Compared to the increase from pretest to posttest in the control group, the increase in the experimental group was 22% larger. No significant differential intervention effects were found between subgroups based on kindergarten year, age, home language, socio-economic status and mathematics and language ability, but a significant intervention effect was found for girls and not for boys. PMID:26855457

  15. The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations in R

    Directory of Open Access Journals (Sweden)

    Giorgio Alfredo Spedicato

    2013-11-01

    Full Text Available It is possible to model life contingency insurances with the lifecontingencies R package, which is capable of performing financial and actuarial mathematics calculations. Its functions permit one to determine both the expected value and the stochastic distribution of insured benefits. Therefore, life insurance coverage can be priced and portfolios risk-based capital requirements can be assessed. This paper briefly summarizes the theory regarding life contingencies that is based on financial mathematics and demographic con- cepts. Then, with the aid of applied examples, it shows how the lifecontingencies package can be a useful tool for executing routine, deterministic, or stochastic calculations for life-contingencies actuarial mathematics.

  16. LATENT CLUSTER ANALYSIS OF INSTRUCTIONAL PRACTICES REPORTED BY HIGH- AND LOW-PERFORMING MATHEMATICS TEACHERS IN FOUR COUNTRIES

    Directory of Open Access Journals (Sweden)

    Qiang Cheng

    2017-06-01

    Full Text Available Using Trends in International Mathematics and Science Study (TIMSS 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the design of the current study. Latent cluster analysis was applied in the investigation of the profiles of mathematics teachers’ instructional practices across the four education systems. It was found that all mathematics teachers in the high- and low-performing groups used procedurally as well as conceptually oriented practices in their teaching. However, one group of high-performing mathematics teachers from the U.S. sample and all the high-performing teachers from Finland, Korea, and Russia showed more frequent use of conceptually oriented practices than their corresponding low-performing teachers. Another group of U.S. high-performing mathematics teachers showed a distinctive procedurally oriented pattern, which presented a rather different picture. Such results provide useful suggestions for practitioners and policy makers in their effort to improve mathematics teaching and learning in the US and in other countries as well.DOI: http://dx.doi.org/10.22342/jme.8.2.4066.115-132

  17. Effects of Vigorous Intensity Physical Activity on Mathematics Test Performance

    Science.gov (United States)

    Phillips, David S.; Hannon, James C.; Castelli, Darla M.

    2015-01-01

    The effect of an acute bout of physical activity on academic performance in school-based settings is under researched. The purpose of this study was to examine associations between a single, vigorous (70-85%) bout of physical activity completed during physical education on standardized mathematics test performance among 72, eighth grade students…

  18. Effects of flipped instruction on the performance and attitude of high school students in mathematics

    Directory of Open Access Journals (Sweden)

    Remalyn Q. Casem

    2017-03-01

    Full Text Available This study aimed to determine the effects of flipped instruction on the performance and attitude of high school students in Mathematics. The study made use of the true experimental design, specifically the pretest-posttest control group design. There were two instruments used to gather data, the pretest-posttest which was subjected to validity and reliability tests and the Modified Fennema-Sherman Attitudes Scale. It was found out that the experimental and control groups were comparable in the pretest and posttest. Comparison on their gain scores revealed significant difference with performance of the experimental group higher than the control group. There was no significant difference on the level of attitude of the participants in the experimental group before and after the study in terms of confidence in learning mathematics, attitude toward success in mathematics, mathematics anxiety and perception of teacher's attitudes. A very weak positive relationship existed between performance and attitudes toward mathematics.

  19. Increased environmental sensitivity in high mathematics performance

    NARCIS (Netherlands)

    Schwabe, I.; Boomsma, D. I.; van den Berg, S. M.

    2017-01-01

    Results of international comparisons of students in studies such as PISA (Program for International Student Assessment) and TIMSS (Trends in International Mathematics and Science Study) are often taken to indicate that mathematical education in Dutch schools is not appropriate for mathematically

  20. Gender, Parental Beliefs and Children's Mathematics Performance: Insights from the Longitudinal Study of Australian Children

    Science.gov (United States)

    Carmichael, Colin

    2014-01-01

    With reports of declining participation in mathematics related careers and low female participation rates, the issue of gender differences in mathematics remains relevant. This study seeks to examine the relationship between: children's sex, parents' beliefs regarding their children's education, and, the children's mathematics performance. Through…

  1. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia.

    Science.gov (United States)

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  2. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Karin Kucian

    2018-04-01

    Full Text Available Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect.We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls. All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction that was preceded by a prime (positive/negative/neutral or mathematics-related was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  3. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    Science.gov (United States)

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  4. Self-Assessment in Mathematics as Correlate of Performance of ...

    African Journals Online (AJOL)

    This study was conducted to investigate the relationship between students self assessment in Mathematics and academic performance in Senior Secondary School Physics. The research is descriptive and of the survey type as there was no treatment and manipulation of subjects. Instead it involves the use of questionnaire ...

  5. An Evaluation of the Mathematics Foundation Course in Sultan Qaboos University: Does High School Performance Matter?

    Directory of Open Access Journals (Sweden)

    Mohammad Mazharul Islam

    2018-01-01

    Full Text Available Although the mathematics foundation program was introduced in Sultan Qaboos University (SQU half a decade ago, there has been no evaluation or assessment of the program. The aim of this study was to evaluate the students’ performance in the Mathematics foundation course in SQU and to examine the predictive value of  a student’s high school performance for success in the math foundation course. The study considered a sample of 551 students who took the math course (MATH2107 during 2014 Spring semester. More than 95% of the students were admitted to SQU with a high school score of 80 and above.  The analysis revealed that, in general, female students were admitted to SQU with a significantly higher average high school score than the male students. The findings indicate a very unsatisfactory performance of the students in the mathematics foundation course as the mean GPA was 1.66 and more than half (59% of the students obtained a GPA less than 2 (i.e. below grade C, of which 14% failed and 35% obtained grade D. Female students outperformed male students in the mathematics course. High school mathematics performance, gender and cohort of students were identified as significant predictors of success in the mathematics foundation course.  To increase the success rate of the mathematics course, the high school curriculum needs to be aligned with the University standards and the admission authority should continue to give more attention to high school mathematics scores along with overall high school performance while making admission decisions for the College of Science in SQU.

  6. Some Factors That Affecting the Performance of Mathematics Teachers in Junior High School in Medan

    Science.gov (United States)

    Manullang, Martua; Rajagukguk, Waminton

    2016-01-01

    Some Factor's That Affecting The Mathematic Teacher Performance For Junior High School In Medan. This research will examine the effect of direct and indirect of the Organizational Knowledge towards the achievement motivation, decision making, organizational commitment, the performance of mathematics teacher. The research method is a method of…

  7. The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances

    International Nuclear Information System (INIS)

    Barukčić, M.; Ćorluka, V.; Miklošević, K.

    2015-01-01

    Highlights: • The temperature and irradiance dependent model for the I–V curve estimation is presented. • The purely mathematical model based on the analysis of the I–V curve shape is presented. • The model includes the Gompertz function with temperature and irradiance dependent parameters. • The input data are extracted from the data sheet I–V curves. - Abstract: The temperature and irradiance dependent mathematical model for photovoltaic panel performances estimation is proposed in the paper. The base of the model is the mathematical function of the photovoltaic panel current–voltage curve. The model of the current–voltage curve is based on the sigmoid function with temperature and irradiance dependent parameters. The temperature and irradiance dependencies of the parameters are proposed in the form of analytic functions. The constant parameters are involved in the analytical functions. The constant parameters need to be estimated to get the temperature and irradiance dependent current–voltage curve. The mathematical model contains 12 constant parameters and they are estimated by using the evolutionary algorithm. The optimization problem is defined for this purpose. The optimization problem objective function is based on estimated and extracted (measured) current and voltage values. The current and voltage values are extracted from current–voltage curves given in datasheet of the photovoltaic panels. The new procedure for estimation of open circuit voltage value at any temperature and irradiance is proposed in the model. The performance of the proposed mathematical model is presented for three different photovoltaic panel technologies. The simulation results indicate that the proposed mathematical model is acceptable for estimation of temperature and irradiance dependent current–voltage curve and photovoltaic panel performances within temperature and irradiance ranges

  8. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics

    Science.gov (United States)

    Paechter, Manuela; Macher, Daniel; Martskvishvili, Khatuna; Wimmer, Sigrid; Papousek, Ilona

    2017-01-01

    In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men). Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in the structural

  9. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics.

    Science.gov (United States)

    Paechter, Manuela; Macher, Daniel; Martskvishvili, Khatuna; Wimmer, Sigrid; Papousek, Ilona

    2017-01-01

    In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men). Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in the structural

  10. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics

    Directory of Open Access Journals (Sweden)

    Manuela Paechter

    2017-07-01

    Full Text Available In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men. Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in

  11. New trends in gender and mathematics performance: a meta-analysis.

    Science.gov (United States)

    Lindberg, Sara M; Hyde, Janet Shibley; Petersen, Jennifer L; Linn, Marcia C

    2010-11-01

    In this article, we use meta-analysis to analyze gender differences in recent studies of mathematics performance. First, we meta-analyzed data from 242 studies published between 1990 and 2007, representing the testing of 1,286,350 people. Overall, d = 0.05, indicating no gender difference, and variance ratio = 1.08, indicating nearly equal male and female variances. Second, we analyzed data from large data sets based on probability sampling of U.S. adolescents over the past 20 years: the National Longitudinal Surveys of Youth, the National Education Longitudinal Study of 1988, the Longitudinal Study of American Youth, and the National Assessment of Educational Progress. Effect sizes for the gender difference ranged between -0.15 and +0.22. Variance ratios ranged from 0.88 to 1.34. Taken together, these findings support the view that males and females perform similarly in mathematics.

  12. A Cross-National Comparison of Reported Effort and Mathematics Performance in TIMSS Advanced

    Science.gov (United States)

    Eklöf, Hanna; Pavešic, Barbara Japelj; Grønmo, Liv Sissel

    2014-01-01

    The purpose of the study was to measure students' reported test-taking effort and the relationship between reported effort and performance on the Trends in International Mathematics and Science Study (TIMSS) Advanced mathematics test. This was done in three countries participating in TIMSS Advanced 2008 (Sweden, Norway, and Slovenia), and the…

  13. Gender-Based Differential Item Performance in Mathematics Achievement Items.

    Science.gov (United States)

    Doolittle, Allen E.; Cleary, T. Anne

    1987-01-01

    Eight randomly equivalent samples of high school seniors were each given a unique form of the ACT Assessment Mathematics Usage Test (ACTM). Signed measures of differential item performance (DIP) were obtained for each item in the eight ACTM forms. DIP estimates were analyzed and a significant item category effect was found. (Author/LMO)

  14. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  15. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    Directory of Open Access Journals (Sweden)

    Aulia Nur Arivina

    2017-11-01

    Full Text Available The purposes of this research are: (1 Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2 to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3 test the ability of mathematical reasoning with learning model of LAPS-Heuristik on Trigonometry material of SMK on 10th grade using performance assessment is increase. This is a quantitative research. The population is students of 10th grade of SMK 10 Semarang academic year 2016/2017 and the subject of research is selected by clustering random sampling. The results show that (1 Learning by model LAPS-Heuristic using performance assessment on 10th grade of Trigonometry material is complete (2 there are differences in students' mathematical reasoning ability on 10th grade of Trigonometry materials between LAPS-Heuristic learning model using performance assessment, LAPS-Heuristic learning model, and Expository learning model, (3 The ability of mathematical reasoning with learning model of LAPS-Heuristic on Trigonometry material of SMK class X using performance assessment increased.

  16. School Context and Gender Differences in Mathematical Performance among School Graduates in Russia

    Science.gov (United States)

    Bessudnov, Alexey; Makarov, Alexey

    2015-01-01

    Gender differences in mathematical performance have received considerable scrutiny in the fields of sociology, economics and psychology. We analyse a large data-set of high school graduates who took a standardised mathematical test in Russia in 2011 (n = 738,456) and find no substantial difference in mean test scores across boys and girls.…

  17. Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women's Mathematical Performance

    Science.gov (United States)

    Pennington, Charlotte R.; Heim, Derek

    2016-01-01

    Background: Women in mathematical domains may become attuned to situational cues that signal a discredited social identity, contributing to their lower achievement and underrepresentation. Aim: This study examined whether heightened in-group representation alleviates the effects of stereotype threat on women's mathematical performance. It further…

  18. Preschoolers' precision of the approximate number system predicts later school mathematics performance.

    Science.gov (United States)

    Mazzocco, Michèle M M; Feigenson, Lisa; Halberda, Justin

    2011-01-01

    The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities.

  19. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  20. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  1. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  2. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    DEFF Research Database (Denmark)

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning......-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical.......73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities...

  3. The effects of computer-assisted instruction on the mathematics performance and classroom behavior of children with ADHD.

    Science.gov (United States)

    Mautone, Jennifer A; DuPaul, George J; Jitendra, Asha K

    2005-08-01

    The present study examines the effects of computer-assisted instruction (CAI) on the mathematics performance and classroom behavior of three second-through fourth-grade students with ADHD. A controlled case study is used to evaluate the effects of the computer software on participants' mathematics performance and on-task behavior. Participants' mathematics achievement improve and their on-task behavior increase during the CAI sessions relative to independent seatwork conditions. In addition, students and teachers consider CAI to be an acceptable intervention for some students with ADHD who are having difficulty with mathematics. Implications of these results for practice and research are discussed.

  4. An Examination of the Performance Gains of Culturally and Linguistically Diverse Students on a Mathematics Performance Assessment within the QUASAR Project.

    Science.gov (United States)

    Lane, Suzanne; And Others

    The performance of students from different racial or ethnic subgroups and of students receiving bilingual (Spanish and English) or monolingual (English only) instruction in mathematics was studied using students from schools in the QUASAR (Qualitative Understanding Amplifying Student Achievement and Reasoning) project, a mathematics education…

  5. Children's mathematical performance: five cognitive tasks across five grades.

    Science.gov (United States)

    Moore, Alex M; Ashcraft, Mark H

    2015-07-01

    Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of a Mathematics Fluency Program on Mathematics Performance of Students with Challenging Behaviors

    Science.gov (United States)

    Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.

    2016-01-01

    In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…

  7. Teacher classroom practices and Mathematics performance in ...

    African Journals Online (AJOL)

    The Mathematics teacher questionnaire, administered as part of the Trends in International Mathematics and Science Study (TIMSS) 2011, comprised questions pertaining to the classroom practices of Teacher Clarity, Classroom Discussion, Feedback, Formative Assessment, Problem Solving and Metacognitive Strategies, ...

  8. Developmental dynamics between mathematical performance, task motivation, and teachers' goals during the transition to primary school.

    Science.gov (United States)

    Aunola, Kaisa; Leskinen, Esko; Nurmi, Jari-Erik

    2006-03-01

    It has been suggested that children's learning motivation and interest in a particular subject play an important role in their school performance, particularly in mathematics. However, few cross-lagged longitudinal studies have been carried out to investigate the prospective relationships between academic achievement and task motivation. Moreover, the role that the classroom context plays in this development is largely unknown. The aim of the study was to investigate the developmental dynamics of maths-related motivation and mathematical performance during children's transition to primary school. The role of teachers' pedagogical goals and classroom characteristics on this development was also investigated. A total of 196 Finnish children were examined four times: (0) in October during their preschool year; (1) in October and (2) April during their first grade of primary school; and (3) in October during their second grade. Children's mathematical performance was tested at each measurement point. Task motivation was examined at measurement points 2, 3, and 4 using the Task-value scale for children. First-grade teachers were interviewed in November about their pedagogical goals and classroom characteristics. The results showed that children's mathematical performance and related task motivation formed a cumulative developmental cycle: a high level of maths performance at the beginning of the first grade increased subsequent task motivation towards mathematics, which further predicted a high level of maths performance at the beginning of the second grade. The level of maths-related task motivation increased in those classrooms where the teachers emphasized motivation or self-concept development as their most important pedagogical goal.

  9. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    OpenAIRE

    Aulia Nur Arivina; Masrukan Masrukan; Ardhi Prabowo

    2017-01-01

    The purposes of this research are: (1) Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2) to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3) test the ability of mathematical reasoning with learning model of LAPS-Heuristik o...

  10. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  11. Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy

    Science.gov (United States)

    Kadir; Adelina, R.; Fatma, M.

    2018-01-01

    Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.

  12. Exploring Statistics Anxiety: Contrasting Mathematical, Academic Performance and Trait Psychological Predictors

    Science.gov (United States)

    Bourne, Victoria J.

    2018-01-01

    Statistics anxiety is experienced by a large number of psychology students, and previous research has examined a range of potential correlates, including academic performance, mathematical ability and psychological predictors. These varying predictors are often considered separately, although there may be shared variance between them. In the…

  13. Teacher Classroom Practices and Mathematics Performance in South African Schools: A Reflection on TIMSS 2011

    Science.gov (United States)

    Arends, Fabian; Winnaar, Lolita; Mosimege, Mogege

    2017-01-01

    Teachers play an important role in the provision of quality education. The variety of classroom practices they use in interacting with learners play a critical role in the understanding of mathematical concepts and overall performance in Mathematics. Following the work done by Hattie (2009, 2012) in relation to classroom practices this study…

  14. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

    Science.gov (United States)

    Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

    2016-01-01

    Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

  15. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    National Research Council Canada - National Science Library

    Stuhmiller, James H; Bykanova, Lucy; Chan, Philemon; Dang, Xinglai; Fournier, Adam; Long, Diane W; Lu, Zi; Masiello, Paul; Ng, Laurel; Niu, Eugene

    2006-01-01

    This report summarizes the first year of a 5-year program to develop physiologically and biomechanically based mathematical models that will allow the estimation of physical and cognitive performance...

  16. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  17. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year.

    Science.gov (United States)

    Widlund, Anna; Tuominen, Heta; Korhonen, Johan

    2018-01-01

    It has been suggested that both performance and academic well-being play a role in adolescent students' educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept) and mathematics performance profiles can be identified among lower secondary school students ( N grade 7 = 583, N grade 9 = 497); second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%), average (51%), and negative academic well-being (15%) and four groups of students in ninth grade: thriving (25%), average (50%), negative academic well-being (18%), and low-performing (7%) with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed.

  18. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year

    Science.gov (United States)

    Widlund, Anna; Tuominen, Heta; Korhonen, Johan

    2018-01-01

    It has been suggested that both performance and academic well-being play a role in adolescent students’ educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept) and mathematics performance profiles can be identified among lower secondary school students (Ngrade 7 = 583, Ngrade 9 = 497); second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%), average (51%), and negative academic well-being (15%) and four groups of students in ninth grade: thriving (25%), average (50%), negative academic well-being (18%), and low-performing (7%) with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed. PMID:29593603

  19. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year

    Directory of Open Access Journals (Sweden)

    Anna Widlund

    2018-03-01

    Full Text Available It has been suggested that both performance and academic well-being play a role in adolescent students’ educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept and mathematics performance profiles can be identified among lower secondary school students (Ngrade 7 = 583, Ngrade 9 = 497; second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%, average (51%, and negative academic well-being (15% and four groups of students in ninth grade: thriving (25%, average (50%, negative academic well-being (18%, and low-performing (7% with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed.

  20. Is There Gender Difference between Learning Disabled Students' Performances in Mathematical Activities? (Case Study

    Directory of Open Access Journals (Sweden)

    Somayeh Karimi

    2013-11-01

    Full Text Available Recent studies show that mathematics disorder is a learning disorder. Children with this disorder have math skills is much lower than mean for their age, intelligence, and education. The disorder affects the child's success at school. It is thought that up to 7% of children have this disorder. It affects boys and girls equally. It is also caused dyscalculia. The cause of this disorder is not known. Like other learning disorders, it occurs more in some families. Mathematics disorder may also be the result of damage in certain parts of the brain. It also has led to a weak understanding of mathematical concepts and increased realization of mathematics. In this study, it is tried that studied gender difference between learning disabled students' performances in mathematical activities. Findings indicated that there is not meaningful difference between genders. Since this research was case study, it seems that this difference will be indicated in vast studies. Then it suggests that have to do more study in this field for its causes.

  1. The Relationship between Studying Music and Mathematics Performance on the New Jersey High School Proficiency Assessment

    Science.gov (United States)

    Prokop, Kristie L.

    2011-01-01

    On assessments such as Trends in International Mathematics and Science Study (TIMSS) (Stigler & Hiebert, 1999) and Program for International Assessment (PISA) ("PISA 2006 Science Competencies for Tomorrow's World", 2007) students in the United States have not been performing as well in mathematics as students in other countries. In…

  2. Performance in grade 12 mathematics and science predicts student nurses' performance in first year science modules at a university in the Western Cape.

    Science.gov (United States)

    Mthimunye, Katlego D T; Daniels, Felicity M

    2017-10-26

    The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.

  3. Latent Cluster Analysis of Instructional Practices Reported by High- and Low-performing Mathematics Teachers in Four Countries

    OpenAIRE

    Cheng, Qiang; Hsu, Hsien-Yuan

    2017-01-01

    Using Trends in International Mathematics and Science Study (TIMSS) 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the design of the current study. Latent cluster analysis was applied in the investigation of the profiles of mathematics teachers’ instructional practic...

  4. Modern Versus Traditional Mathematics

    Science.gov (United States)

    Roberts, A. M.

    1974-01-01

    The effect of different secondary school mathematics syllabi on first-year performance in college-level mathematics was studied in an attempt to evaluate the syllabus change. Students with a modern mathematics background performed sigficantly better on most first-year units. A topic-by-topic analysis of results is included. (DT)

  5. Magical mathematics the mathematical ideas that animate great magic tricks

    CERN Document Server

    Diaconis, Persi

    2012-01-01

    Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath Principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem.

  6. Relationships of cognitive and metacognitive learning strategies to mathematics achievement in four high-performing East Asian education systems.

    Science.gov (United States)

    Areepattamannil, Shaljan; Caleon, Imelda S

    2013-01-01

    The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education systems, memorization strategies were negatively associated with mathematics achievement, whereas control strategies were positively associated with mathematics achievement. However, the association between elaboration strategies and mathematics achievement was a mixed bag. In Shanghai-China and Korea, elaboration strategies were not associated with mathematics achievement. In Hong Kong-China and Singapore, on the other hand, elaboration strategies were negatively associated with mathematics achievement. Implications of these findings are briefly discussed.

  7. The Math Gap: a description of the mathematics performance of preschool-aged deaf/hard-of-hearing children.

    Science.gov (United States)

    Pagliaro, Claudia M; Kritzer, Karen L

    2013-04-01

    Over decades and across grade levels, deaf/hard-of-hearing (d/hh) student performance in mathematics has shown a gap in achievement. It is unclear, however, exactly when this gap begins to emerge and in what areas. This study describes preschool d/hh children's knowledge of early mathematics concepts. Both standardized and nonstandardized measures were used to assess understanding in number, geometry, measurement, problem solving, and patterns, reasoning and algebra. Results present strong evidence that d/hh students' difficulty in mathematics may begin prior to the start of formal schooling. Findings also show areas of strength (geometry) and weakness (problem solving and measurement) for these children. Evidence of poor foundational performance may relate to later academic achievement.

  8. PISA mathematics and reading performance differences of mainstream European and Turkish immigrant students

    NARCIS (Netherlands)

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    Lower reading and mathematics performance of Turkish immigrant students as compared to mainstream European students could reflect differential learning outcomes, differential socioeconomic backgrounds of the groups, differential mainstream language proficiency, and/or test bias. Using PISA reading

  9. Effects of Reading Skills on Students’ Performance in Science and Mathematics in Public and Private Secondary Schools

    Directory of Open Access Journals (Sweden)

    Ombra A. Imam

    2016-05-01

    Full Text Available In the Philippine education system, reading, mathematics, and science formed part of the core areas of basic education curriculum. For the last decade, the quality of Philippine education was put into a big question due to poor performance of students in mathematics and science tests both local and abroad. The initial result of current efforts of the government by adopting K-12 curriculum didn’t do much to change the status quo. The purpose of this study is to determine the reading predictors of students’ performance in Mathematics and Science and identify its effects to such performance. A total of 660 freshmen students from public and private high schools in Cotabato City, Philippines were taken as sample. A validated and reliable 150-item test in reading comprehension skills, mathematics and science was used to get primary data to perform correlation and regression analysis. Findings showed that only making inference and getting main idea were predictors of mathematics performance of students in public school and private schools, respectively.  Data analysis also revealed that two reading skills such as noting details and making inference had an influence on science performance of students in public school while skills in getting main idea and drawing conclusion influenced science performance of students in private schools.  However, there was only one skill such as vocabulary in context which was predictor of overall science performance of all students. Moreover, separate effects of making inference, identifying main idea explained only 1.8 percent and 1.3 percent of students’ math performance while their combined effects provided only .1 percent or nearly zero percent. Furthermore, the study found out that separate effects of noting details contributed 3.3 percent and its combined effects with making inference explained 4.2 percent of science performance of students in public schools. In terms of effects of reading to science

  10. Pre-Service Elementary Teachers' Mathematics Content Knowledge: A Predictor of Sixth Graders' Mathematics Performance

    Science.gov (United States)

    Shirvani, Hosin

    2015-01-01

    This study examined the knowledge of mathematics content of elementary pre-service teachers at a sixth grade level. The researcher administered a mathematics test for sixth graders mandated by the Texas Education Agency to pre-service teachers; the same test was given to sixth graders in Texas. The study found that pre-service teachers performed…

  11. Mathematical Modeling of Circadian/Performance Countermeasures

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...

  12. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    Science.gov (United States)

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  13. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    Science.gov (United States)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  14. Gender Differences in Achievement Goals and Performances in English Language and Mathematics of Senior Secondary Schools Students in Borno State, Nigeria

    Science.gov (United States)

    Musa, Alice K. J.; Dauda, Bala; Umar, Mohammad A.

    2016-01-01

    The paper investigated gender difference in achievement goals and performance in English Language and Mathematics of senior secondary schools students in Borno State, Nigeria. The study specifically sought to determine gender differences in students' academic performances in English Language, Mathematics and overall academic performance as well as…

  15. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Science.gov (United States)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao; Gejl, Anne Kær; Andersen, Lars Bo; Froberg, Karsten; Bugge, Anna

    2016-01-01

    To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive performance.

  16. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Directory of Open Access Journals (Sweden)

    Sidsel L Domazet

    Full Text Available To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents.The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer.Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance.Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive

  17. Latent Cluster Analysis of Instructional Practices Reported by High- and Low-Performing Mathematics Teachers in Four Countries

    Science.gov (United States)

    Cheng, Qiang; Hsu, Hsien-Yuan

    2017-01-01

    Using Trends in International Mathematics and Science Study (TIMSS) 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the…

  18. Why do early mathematics skills predict later reading? The role of mathematical language.

    Science.gov (United States)

    Purpura, David J; Logan, Jessica A R; Hassinger-Das, Brenna; Napoli, Amy R

    2017-09-01

    A growing body of evidence indicates that the development of mathematics and literacy skills is highly related. The importance of literacy skills-specifically language-for mathematics development has been well rationalized. However, despite several prominent studies indicating that mathematics skills are highly predictive of literacy development, the reason for this relation is not well understood. The purpose of this study was to identify how and why early mathematics is predictive of early literacy development. Participants included 125 preschool children 3-5 years old (M = 4 years 3 months). Participants were assessed on mathematics, literacy, and cognitive measures in both the fall and spring of their preschool year. Mediation analyses indicated that the relation between early mathematics and literacy skills is mediated by children's mathematical language skills. These findings suggest that, in prior research identifying mathematical performance as a significant predictor of later literacy skills, mathematical performance may have acted only as a proxy measure for more complex language skills such as those assessed on a mathematical language measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Enhancing Learners' Problem Solving Performance in Mathematics: A Cognitive Load Perspective

    Science.gov (United States)

    Dhlamini, Joseph J.

    2016-01-01

    This paper reports on a pilot study that investigated the effect of implementing a context-based problem solving instruction (CBPSI) to enhance the problem solving performance of high school mathematics learners. Primarily, the pilot study aimed: (1) to evaluate the efficiency of data collection instruments; and, (2) to test the efficacy of CBPSI…

  20. Do screencasts help to revise prerequisite mathematics? An investigation of student performance and perception

    Science.gov (United States)

    Loch, Birgit; Jordan, Camilla R.; Lowe, Tim W.; Mestel, Ben D.

    2014-02-01

    Basic calculus skills that are prerequisites for advanced mathematical studies continue to be a problem for a significant proportion of higher education students. While there are many types of revision material that could be offered to students, in this paper we investigate whether short, narrated video recordings of mathematical explanations (screencasts) are a useful tool to enhance student learning when revisiting prerequisite topics. We report on the outcomes of a study that was designed to both measure change in student performance before and after watching screencasts, and to capture students' perception of the usefulness of screencasts in their learning. Volunteers were recruited from students enrolled on an entry module for the Mathematics Master of Science programme at the Open University to watch two screencasts sandwiched between two online calculus quizzes. A statistical analysis of student responses to the quizzes shows that screencasts can have a positive effect on student performance. Further analysis of student feedback shows that student confidence was increased by watching the screencasts. Student views on the value of screencasts for their learning indicated that they appreciated being able to watch a problem being solved and explained by an experienced mathematician; hear the motivation for a particular problem-solving approach; engage more readily with the material being presented, thereby retaining it more easily. The positive student views and impact on student scores indicate that short screencasts could play a useful role in revising prerequisite mathematics.

  1. Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance

    Science.gov (United States)

    Clarke, David C.; Skiba, Philip F.

    2013-01-01

    A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of…

  2. Mathematical adventures in performance analysis from storage systems, through airplane boarding, to express line queues

    CERN Document Server

    Bachmat, Eitan

    2014-01-01

    This monograph describes problems in the field of performance analysis, primarily the study of storage systems and the diverse mathematical techniques that are required for solving such problems. Topics covered include best practices for scheduling I/O requests to a disk drive, how this problem is related to airplane boarding, and how both problems can be modeled using space-time geometry. The author also explains how Riemann's proof of the analytic continuation and functional equation of the Riemann zeta function can be used to analyze express-line queues in a minimarket. Overall, the book reveals the surprising applicability of abstract mathematical ideas that are not usually associated with applied topics. Advanced undergraduate students or graduate students with an interest in the applications of mathematics will find this book a useful resource. It will also be of interest to professional mathematicians who want exposure to the surprising ways that theoretical mathematics may be applied to engineering pr...

  3. Mathematical modeling of optical glazing performance

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.

    1994-01-01

    Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like

  4. Additive and Multiplicative Effects of Working Memory and Test Anxiety on Mathematics Performance in Grade 3 Students

    Science.gov (United States)

    Korhonen, Johan; Nyroos, Mikaela; Jonsson, Bert; Eklöf, Hanna

    2018-01-01

    The aim of this study was to investigate the interplay between test anxiety and working memory (WM) on mathematics performance in younger children. A sample of 624 grade 3 students completed a test battery consisting of a test anxiety scale, WM tasks and the Swedish national examination in mathematics for grade 3. The main effects of test anxiety…

  5. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    Science.gov (United States)

    Huang, Tao; Gejl, Anne Kær; Froberg, Karsten

    2016-01-01

    Objectives To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. Methods The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12–14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Results Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Conclusions Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the

  6. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    CERN Document Server

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  7. Mathematics and engineering in real life through mathematical competitions

    Science.gov (United States)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  8. The role of affordances in children's learning performance and efficiency when using virtual manipulative mathematics touch-screen apps

    Science.gov (United States)

    Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry

    2016-03-01

    This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.

  9. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  10. The Role of Affordances in Children's Learning Performance and Efficiency When Using Virtual Manipulative Mathematics Touch-Screen Apps

    Science.gov (United States)

    Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry

    2016-01-01

    This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…

  11. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  12. Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

    OpenAIRE

    Lina Wu; Wenyi Lu; Ye Li

    2016-01-01

    Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We fin...

  13. A Bayesian Performance Prediction Model for Mathematics Education: A Prototypical Approach for Effective Group Composition

    Science.gov (United States)

    Bekele, Rahel; McPherson, Maggie

    2011-01-01

    This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…

  14. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  15. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  17. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  18. Have Basic Mathematical Skills Grown Obsolete in the Computer Age: Assessing Basic Mathematical Skills and Forecasting Performance in a Business Statistics Course

    Science.gov (United States)

    Noser, Thomas C.; Tanner, John R.; Shah, Situl

    2008-01-01

    The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…

  19. Field Dependency and Performance in Mathematics

    Science.gov (United States)

    Onwumere, Onyebuchi; Reid, Norman

    2014-01-01

    Mathematics is an important school subject but one which often poses problems for learners. It has been found that learners do not possess the cognitive capacity to handle understanding procedures, representations, concepts, and applications at the same time. while the extent of field dependency may hold the key to one way by which the working…

  20. Propensity Score Matching Helps to Understand Sources of DIF and Mathematics Performance Differences of Indonesian, Turkish, Australian, and Dutch Students in PISA

    Science.gov (United States)

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    2018-01-01

    We examined Differential Item Functioning (DIF) and the size of cross-cultural performance differences in the Programme for International Student Assessment (PISA) 2012 mathematics data before and after application of propensity score matching. The mathematics performance of Indonesian, Turkish, Australian, and Dutch students on released items was…

  1. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  2. Didactic strategies through authentic performances in the Mathematics teaching process

    Directory of Open Access Journals (Sweden)

    Enrique Diaz Chong

    2016-09-01

    Full Text Available The main objective of this article is gather a set of Mathematic didactic strategies by improving the academic performance and acquiring skills and abilities through authentic performances during the teaching process. The investigation is going to realize with students of the first semester E and with a teacher of Commercial Studies career, applying the “learn to learn” method described in the fundaments since the application of the teaching strategy until the evaluation. Through this method, they acquire basic competence of the mentioned subject and the knowledge in order to use them as future professionals in any life circumstance. It will verify the obtained results by having a better motivation of the students and the discipline comprehension. It is important to highlight that those strategies could be applied in any other subject.

  3. On the Ability To Infer Deficiency in Mathematics From Performance in Physics Using Hierarchies

    Science.gov (United States)

    Riban, David M.

    1971-01-01

    Presents the procedures, results, and conclusions of a study designed to see if mathematical deficiencies can be inferred from PSSC students' performance by using a hierarchical model of requisite skills. Assuming inferences were possible, remediation was given. No effect due to remediation was observed but analysis indicated incidental learning…

  4. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students.

    Science.gov (United States)

    van Veggel, Nieky; Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.

  5. Can Instructional Reform in Urban Middle Schools Help Students Narrow the Mathematics Performance Gap? Some Evidence from the QUASAR Project.

    Science.gov (United States)

    Silver, Edward A.; Lane, Suzanne

    1995-01-01

    Compared mathematical performance of middle school students in low-income communities involved in the QUASAR project to those of a demographically similar school and of a nationally representative sample. QUASAR mathematics instruction emphasizes reasoning, problem-solving, and understanding. Quasar students outperformed NAEP's disadvantaged urban…

  6. Semiotic Structure and Meaning Making: The Performance of English Language Learners on Mathematics Tests

    Science.gov (United States)

    Solano-Flores, Guillermo; Barnett-Clarke, Carne; Kachchaf, Rachel R.

    2013-01-01

    We examined the performance of English language learners (ELLs) and non-ELLs on Grade 4 and Grade 5 mathematics content knowledge (CK) and academic language (AL) tests. CK and AL items had different semiotic loads (numbers of different types of semiotic features) and different semiotic structures (relative frequencies of different semiotic…

  7. Effects of Mathematics Innovation and Technology on Students Performance in Open and Distance Learning

    Science.gov (United States)

    Israel, Oginni 'Niyi

    2016-01-01

    This study investigated the effect of mathematics innovation and technology on students' academic performance in open and distance learning. Quasi -- experimental research design was adopted for the study. The population for the study consisted of all the 200 level primary education students at the National Open University of Nigeria (Ekiti and…

  8. The Relationship among Self-Concept, Self-Efficacy, and Performance in Mathematics during Secondary School.

    Science.gov (United States)

    Pietsch, James; Walker, Richard; Chapman, Elaine

    2003-01-01

    Examines the relationship among self-concept, self-efficacy, and performance in mathematics among 416 high school students. Confirmatory factor analyses supported the existence of two self-concept components--a competency component and an affective component. Self-efficacy items and the competency items of self-concept also loaded on a single…

  9. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  10. MATHEMATICS EDUCATION FOR LOGISTICS ENGINEERING

    OpenAIRE

    BÉLA ILLÉS; GABRIELLA BOGNÁR

    2012-01-01

    Mathematics is a crucial language in all engineering courses and researches where mathematical modeling, simulation and manipulation are commonly used. Engineering Mathematics courses are considered difficult courses in engineering curricula. This is reflected in engineering students’ performance at the end of each semester for these courses. Our goal is to overview a few questions on mathematics as a core subject of engineering.

  11. The Relations among Mathematics Anxiety, Gender, and Standardized Test Performance

    Science.gov (United States)

    Anis, Yasmeen; Krause, Jeremy A.; Blum, Emily N.

    2016-01-01

    Mathematics anxiety typically involves apprehension toward activities that require computation, which can lead to complications in every-day-life activities (Ashcraft, 2002). Mathematics anxiety also has become accepted as an issue associated with academic success for both children and adults (Ashcraft, 2002; Ashcraft & Moore, 2009; Beilock,…

  12. Mathematics Motivation, Anxiety, and Performance in Female Deaf/Hard-of-Hearing and Hearing Students

    Science.gov (United States)

    Ariapooran, Saeed

    2017-01-01

    Hearing loss can be a major detriment to academic achievement among students. The present comparative study examines the differences in mathematics motivation, anxiety, and performance in female students with hearing loss and their hearing peers. A total of 63 female students with hearing loss (deaf and hard-of-hearing) and 63 hearing female…

  13. To What Extent Is Mathematical Ability Predictive of Performance in a Methodology and Statistics Course? Can an Action Research Approach Be Used to Understand the Relevance of Mathematical Ability in Psychology Undergraduates?

    Science.gov (United States)

    Bourne, Victoria J.

    2014-01-01

    Research methods and statistical analysis is typically the least liked and most anxiety provoking aspect of a psychology undergraduate degree, in large part due to the mathematical component of the content. In this first cycle of a piece of action research, students' mathematical ability is examined in relation to their performance across…

  14. Relationship between teachers' coverage of mathematics curriculum ...

    African Journals Online (AJOL)

    kofi.mereku

    African Journal of Educational Studies in Mathematics and Sciences Vol. ... materials (MCM) and their schools' performance in mathematics ... should be created for mathematics teachers in high performing junior high schools to share their ... in syllabuses which are also spread out in text books, teachers' hand out, etc.

  15. Mathematics teachers' knowledge of the subject content and ...

    African Journals Online (AJOL)

    This paper discusses the need of the mathematics teacher to be equipped adequately in the content areas in mathematics, vis-a-vis the recent concerns about the poor performance of students in the pre-tertiary schools, and the competence of mathematics teachers in the field. The low performance in mathematics at the ...

  16. Diagnosing and alleviating the impact of performance pressure on mathematical problem solving.

    Science.gov (United States)

    DeCaro, Marci S; Rotar, Kristin E; Kendra, Matthew S; Beilock, Sian L

    2010-08-01

    High-pressure academic testing situations can lead people to perform below their actual ability levels by co-opting working memory (WM) resources needed for the task at hand (Beilock, 2008). In the current work we examine how performance pressure impacts WM and design an intervention to alleviate pressure's negative impact. Specifically, we explore the hypothesis that high-pressure situations trigger distracting thoughts and worries that rely heavily on verbal WM. Individuals performed verbally based and spatially based mathematics problems in a low-pressure or high-pressure testing situation. Results demonstrated that performance on problems that rely heavily on verbal WM resources was less accurate under high-pressure than under low-pressure tests. Performance on spatially based problems that do not rely heavily on verbal WM was not affected by pressure. Moreover, the more people reported worrying during test performance, the worse they performed on the verbally based (but not spatially based) maths problems. Asking some individuals to focus on the problem steps by talking aloud helped to keep pressure-induced worries at bay and eliminated pressure's negative impact on performance.

  17. Identifying Affective Domains That Correlate and Predict Mathematics Performance in High-Performing Students in Singapore

    Science.gov (United States)

    Lim, Siew Yee; Chapman, Elaine

    2015-01-01

    Past studies have shown that distinct yet highly correlated sub-constructs of three broad mathematics affective variables: (a) motivation, (b) attitudes and (c) anxiety, have varying degree of correlation with mathematics achievement. The sub-constructs of these three affective constructs are as follows: (a) (i) amotivation, (ii) external…

  18. Performing mathematics activities with non-standard units of measurement using robots controlled via speech-generating devices: three case studies.

    Science.gov (United States)

    Adams, Kim D; Cook, Albert M

    2017-07-01

    Purpose To examine how using a Lego robot controlled via a speech-generating device (SGD) can contribute to how students with physical and communication impairments perform hands-on and communicative mathematics measurement activities. This study was a follow-up to a previous study. Method Three students with cerebral palsy used the robot to measure objects using non-standard units, such as straws, and then compared and ordered the objects using the resulting measurement. Their performance was assessed, and the manipulation and communication events were observed. Teachers and education assistants were interviewed regarding robot use. Results Similar benefits to the previous study were found in this study. Gaps in student procedural knowledge were identified such as knowing to place measurement units tip-to-tip, and students' reporting revealed gaps in conceptual understanding. However, performance improved with repeated practice. Stakeholders identified that some robot tasks took too long or were too difficult to perform. Conclusions Having access to both their SGD and a robot gave the students multiple ways to show their understanding of the measurement concepts. Though they could participate actively in the new mathematics activities, robot use is most appropriate in short tasks requiring reasonable operational skill. Implications for Rehabilitation Lego robots controlled via speech-generating devices (SGDs) can help students to engage in the mathematics pedagogy of performing hands-on activities while communicating about concepts. Students can "show what they know" using the Lego robots, and report and reflect on concepts using the SGD. Level 1 and Level 2 mathematics measurement activities have been adapted to be accomplished by the Lego robot. Other activities can likely be accomplished with similar robot adaptations (e.g., gripper, pen). It is not recommended to use the robot to measure items that are long, or perform measurements that require high

  19. Study Habits and Academic Performance of Secondary School Students in Mathematic: A Case Study of Selected Secondary Schools in Uyo Local Education Council

    Science.gov (United States)

    Sakirudeen, Abisola Oladeni; Sanni, Kudirat Bimbo

    2017-01-01

    The study examined study habits and academic performance of secondary school students in Mathematics. A case study of selected secondary schools in Uyo Local Education Council. The main purpose of the study was to investigate the relationship between study habits and academic performance of secondary school students in Mathematics. To carry out…

  20. Effects of Gender, Mathematics Anxiety and Achievement Motivation on College Students’ Achievement in Mathematics

    Directory of Open Access Journals (Sweden)

    Ajogbeje Oke James

    2013-07-01

    Full Text Available The urge to excel or perform maximally in mathematics varies from individual to individual because achievement motivation is often developed or learnt during socialization and learning experiences. The study examined the relationship between College of Education students’ achievement motivation and mathematics achievement, correlation coefficient between mathematics anxiety and college students’ achievement motivation as well as mathematics anxiety and mathematics achievement. The sample, 268 College of Education students offering mathematics as one of their subject combination, was selected using purposive sampling techniques. Three research instruments namely: Mathematics Anxiety Scale (MAS, Achievement Motivation Scale (AMS and Mathematics Achievement Test (MAT were used to collect data for the study. Data collected for the study were analyzed using correlational analysis and ANOVA. The results showed that a significantly low negative correlation coefficient existed between mathematics anxiety and mathematics achievement. There is a negative and significant correlation coefficient between mathematics anxiety and achievement motivation. Similarly, a positive and significant correlation coefficient also exists between achievement motivation and mathematics achievement. Based on the findings of the study, it was recommended that mathematics teachers should adopt activity based strategies and conducive learning environment in order to reduce college students’ anxieties in mathematics learning.

  1. Application of Adjusted Canonical Correlation Analysis (ACCA) to study the association between mathematics in Level 1 and Level 2 and performance of engineering disciplines in Level 2

    Science.gov (United States)

    Peiris, T. S. G.; Nanayakkara, K. A. D. S. A.

    2017-09-01

    Mathematics plays a key role in engineering sciences as it assists to develop the intellectual maturity and analytical thinking of engineering students and exploring the student academic performance has received great attention recently. The lack of control over covariates motivates the need for their adjustment when measuring the degree of association between two sets of variables in Canonical Correlation Analysis (CCA). Thus to examine the individual effects of mathematics in Level 1 and Level 2 on engineering performance in Level 2, two adjusted analyses in CCA: Part CCA and Partial CCA were applied for the raw marks of engineering undergraduates for three different disciplines, at the Faculty of Engineering, University of Moratuwa, Sri Lanka. The joint influence of mathematics in Level 1 and Level 2 is significant on engineering performance in Level 2 irrespective of the engineering disciplines. The individual effect of mathematics in Level 2 is significantly higher compared to the individual effect of mathematics in Level 1 on engineering performance in Level 2. Furthermore, the individual effect of mathematics in Level 1 can be negligible. But, there would be a notable indirect effect of mathematics in Level 1 on engineering performance in Level 2. It can be concluded that the joint effect of mathematics in both Level 1 and Level 2 is immensely beneficial to improve the overall academic performance at the end of Level 2 of the engineering students. Furthermore, it was found that the impact mathematics varies among engineering disciplines. As partial CCA and partial CCA are not widely explored in applied work, it is recommended to use these techniques for various applications.

  2. The Influence of Symbols and Equations on Understanding Mathematical Equivalence

    Science.gov (United States)

    Powell, Sarah R.

    2015-01-01

    Students with mathematics difficulty demonstrate lower mathematics performance than typical-performing peers. One contributing factor to lower mathematics performance may be misunderstanding of mathematics symbols. In several studies related to the equal sign (=), students who received explicit instruction on the relational definition (i.e.,…

  3. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    Science.gov (United States)

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  4. Longitudinal development of number line estimation and mathematics performance in primary school children.

    Science.gov (United States)

    Friso-van den Bos, Ilona; Kroesbergen, Evelyn H; Van Luit, Johannes E H; Xenidou-Dervou, Iro; Jonkman, Lisa M; Van der Schoot, Menno; Van Lieshout, Ernest C D M

    2015-06-01

    Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the current study, different models were applied to children's longitudinal number placement data to get more insight into the development of number line representations in kindergarten and early primary school years. In addition, longitudinal developmental relations between number line placements and mathematical achievement, measured with a national test of mathematics, were investigated using cross-lagged panel modeling. A group of 442 children participated in a 3-year longitudinal study (ages 5-8 years) in which they completed a number-to-position task every 6 months. Individual number line placements were fitted to various models, of which a one-anchor power model provided the best fit for many of the placements at a younger age (5 or 6 years) and a two-anchor power model provided better fit for many of the children at an older age (7 or 8 years). The number of children who made linear placements also grew with age. Cross-lagged panel analyses indicated that the best fit was provided with a model in which number line acuity and mathematics performance were mutually predictive of each other rather than models in which one ability predicted the other in a non-reciprocal way. This indicates that number line acuity should not be seen as a predictor of math but that both skills influence each other during the developmental process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Effect of external classroom noise on schoolchildren's reading and mathematics performance: correlation of noise levels and gender.

    Science.gov (United States)

    Papanikolaou, M; Skenteris, N; Piperakis, S M

    2015-02-01

    The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (plevel noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors.

  6. The Opinions of Middle School Mathematics Teachers on the Integration of Mathematics Course and Social Issues

    Directory of Open Access Journals (Sweden)

    Buket Turhan Turkkan

    2018-04-01

    Full Text Available The purpose of this study is to examine the opinions of middle school mathematics teachers on the integration of mathematics course and social issues. For this purpose, qualitative research method was used in this study. As for determining the participants of the research, criterion sampling among purposeful sampling methods was used. Being a middle school mathematics teacher as an occupation was considered as a criterion for determining the participants. The participants of the research consist of 13 middle school mathematics teachers in Turkey. So as to collect the research data, the semi-structured interview form created by the researchers was used. The data analysis was performed according to the content analysis, and Nvivo 10 program was used for the analysis. As a result of this study, the themes of the situation and methods of the integration of mathematics course and social issues, the attainment of democratic values in mathematics course and the ways of its attainment, gaining awareness of social justice and equality in mathematics course and the ways of its gaining, the activities performed by teachers for social issues in mathematics course and the teachers’ suggestions for the integration of mathematics course and social issues were reached and the results were discussed within this frame.

  7. Ego Depletion Effects on Mathematics Performance in Primary School Students: Why Take the Hard Road?

    Science.gov (United States)

    Price, Deborah Ann; Yates, Gregory C. R.

    2010-01-01

    Reduction in performance level following on from brief periods of self-control is referred to as ego depletion. This study aimed to investigate if a brief ego depletion experience would impact upon primary school students working through an online mathematics exercise involving 40 computational trials. Seventy-two students participated in the…

  8. The Impact of Individual, Competitive, and Collaborative Mathematics Game Play on Learning, Performance, and Motivation

    Science.gov (United States)

    Plass, Jan L.; O'Keefe, Paul A.; Homer, Bruce D.; Case, Jennifer; Hayward, Elizabeth O.; Stein, Murphy; Perlin, Ken

    2013-01-01

    The present research examined how mode of play in an educational mathematics video game impacts learning, performance, and motivation. The game was designed for the practice and automation of arithmetic skills to increase fluency and was adapted to allow for individual, competitive, or collaborative game play. Participants (N = 58) from urban…

  9. Applying mathematical models to predict resident physician performance and alertness on traditional and novel work schedules.

    Science.gov (United States)

    Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P

    2016-09-13

    In 2011 the U.S. Accreditation Council for Graduate Medical Education began limiting first year resident physicians (interns) to shifts of ≤16 consecutive hours. Controversy persists regarding the effectiveness of this policy for reducing errors and accidents while promoting education and patient care. Using a mathematical model of the effects of circadian rhythms and length of time awake on objective performance and subjective alertness, we quantitatively compared predictions for traditional intern schedules to those that limit work to ≤ 16 consecutive hours. We simulated two traditional schedules and three novel schedules using the mathematical model. The traditional schedules had extended duration work shifts (≥24 h) with overnight work shifts every second shift (including every third night, Q3) or every third shift (including every fourth night, Q4) night; the novel schedules had two different cross-cover (XC) night team schedules (XC-V1 and XC-V2) and a Rapid Cycle Rotation (RCR) schedule. Predicted objective performance and subjective alertness for each work shift were computed for each individual's schedule within a team and then combined for the team as a whole. Our primary outcome was the amount of time within a work shift during which a team's model-predicted objective performance and subjective alertness were lower than that expected after 16 or 24 h of continuous wake in an otherwise rested individual. The model predicted fewer hours with poor performance and alertness, especially during night-time work hours, for all three novel schedules than for either the traditional Q3 or Q4 schedules. Three proposed schedules that eliminate extended shifts may improve performance and alertness compared with traditional Q3 or Q4 schedules. Predicted times of worse performance and alertness were at night, which is also a time when supervision of trainees is lower. Mathematical modeling provides a quantitative comparison approach with potential to aid

  10. Pilot study: EatFit impacts sixth graders' academic performance on achievement of mathematics and english education standards.

    Science.gov (United States)

    Shilts, Mical Kay; Lamp, Cathi; Horowitz, Marcel; Townsend, Marilyn S

    2009-01-01

    Investigate the impact of a nutrition education program on student academic performance as measured by achievement of education standards. Quasi-experimental crossover-controlled study. California Central Valley suburban elementary school (58% qualified for free or reduced-priced lunch). All sixth-grade students (n = 84) in the elementary school clustered in 3 classrooms. 9-lesson intervention with an emphasis on guided goal setting and driven by the Social Cognitive Theory. Multiple-choice survey assessing 5 education standards for sixth-grade mathematics and English at 3 time points: baseline (T1), 5 weeks (T2), and 10 weeks (T3). Repeated measures, paired t test, and analysis of covariance. Changes in total scores were statistically different (P academic performance measured by achievement of specific mathematics and English education standards. Nutrition educators can show school administrators and wellness committee members that this program can positively impact academic performance, concomitant to its primary objective of promoting healthful eating and physical activity.

  11. “How many sums can I do”? : Performative strategies and diffractive thinking as methodological tools for rethinking mathematical subjectivity

    OpenAIRE

    Palmer, Anna

    2011-01-01

    The aim of this article is to illustrate how the understanding of mathematical subjectivity changes when transiting theoretically and methodologically from a discursive and performative thinking, as suggested by Judith Butler (1990, 1993, 1997), to an agential realist and diffractive thinking, inspired by Karen Barad’s theories (2007, 2008). To show this I have examined narrative memory stories about mathematics written by students participating in Teacher Education maths courses. I pro...

  12. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  13. Intra-mathematical connections made by high school students in performing Calculus tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-02-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.

  14. How Readability and Topic Incidence Relate to Performance on Mathematics Story Problems in Computer-Based Curricula

    Science.gov (United States)

    Walkington, Candace; Clinton, Virginia; Ritter, Steven N.; Nathan, Mitchell J.

    2015-01-01

    Solving mathematics story problems requires text comprehension skills. However, previous studies have found few connections between traditional measures of text readability and performance on story problems. We hypothesized that recently developed measures of readability and topic incidence measured by text-mining tools may illuminate associations…

  15. Impact of Instructional Resources on Mathematics Performance of Learners with Dyscalculia in Integrated Primary Schools, Arusha City, Tanzania

    Science.gov (United States)

    Yusta, Nyudule; Karugu, Geoffrey; Muthee, Jessica; Tekle, Tesfu

    2016-01-01

    Learners with dyscalculia in the integrated primary schools in Arusha have been performing poorly in the Primary School Leaving Examination (PSLE). Thus, the journal sought to investigate the impact of instructional resources on mathematics performance of learners with dyscalculia in integrated primary schools found in Arusha city, Tanzania. The…

  16. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  17. Object-Spatial Visualization and Verbal Cognitive Styles, and Their Relation to Cognitive Abilities and Mathematical Performance

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk

    2016-01-01

    The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…

  18. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  19. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    Science.gov (United States)

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  1. Video-games do not negatively impact adolescent academic performance in science, mathematics or reading.

    Science.gov (United States)

    Drummond, Aaron; Sauer, James D

    2014-01-01

    Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA) to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement.

  2. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    DEFF Research Database (Denmark)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao

    2016-01-01

    OBJECTIVES: To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. METHODS: The design was cross-sectional. A convenient sample of 869 sixth and seventh gra...

  3. Working Memory Updating Training Improves Mathematics Performance in Middle School Students With Learning Difficulties.

    Science.gov (United States)

    Zhang, Hongxia; Chang, Lei; Chen, Xiaoying; Ma, Liang; Zhou, Renlai

    2018-01-01

    Working memory (WM) deficit is considered the key cause of learning difficulties (LDs). Studies have shown that WM is plastic and thus can be improved through training. This positive effect is transferable to fluid intelligence and academic performance. This study investigated whether WM updating ability and academic performance in children with LDs could be improved through WM updating training and explored the effects of this training on the children's brain activity. We used a running memory task lasting approximately 40 min per day for 28 days to train a group of 23 children with LDs (TLDs group). We also selected two control groups of 22 children with LDs (CLDs group) and 20 children without LDs (normal control [NC] group). The behavioral results of a pretest indicated that WM updating ability and academic performance in the TLDs and CLDs groups were significantly lower than those in the NC group before training. Compared with the CLDs group, the TLDs group exhibited significant performance improvement in a 2-back WM task, as well as in mathematical ability. Event-related potentials (ERPs) results suggested that the amplitudes of N160 (representative of visual recognition) and P300 (representative of updating processing, which is a valid index for updating WM) in the TLDs and CLDs groups were markedly lower than those in the NC group before training. In the TLDs group, these two components increased considerably after training, approaching levels similar to those in the NC group. The results of this study suggest that WM updating training can improve WM updating ability in children with LDs and the training effect can transfer to mathematical performance in such children. Furthermore, the participants' brain activity levels can exhibit positive changes. This article provides experimental evidence that WM updating training could mitigate the symptoms of LDs to a certain degree.

  4. Differences in mathematics and science performance by economic status, gender, and ethnicity/race: A multiyear Texas statewide study

    Science.gov (United States)

    Anderson, Pamela Bennett

    Purpose. The purpose of the first study was to ascertain the extent to which differences were present in the STAAR Mathematics and Science test scores by Grade 5 and Grade 8 student economic status. The purpose of the second study was to examine differences in Grade 5 STAAR Mathematics and Science test performance by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Finally, with respect to the third study in this journal-ready dissertation, the purpose was to investigate the STAAR Mathematics and Science test scores of Grade 8 students by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Method. For this journal-ready dissertation, a non-experimental, causal-comparative research design (Creswell, 2009) was used in all three studies. Grade 5 and Grade 8 STAAR Mathematics and Science test data were analyzed for the 2011-2012 through the 2014-2015 school years. The dependent variables were the STAAR Mathematics and Science test scores for Grade 5 and Grade 8. The independent variables analyzed in these studies were student economic status, gender, and ethnicity/race. Findings. Regarding the first study, statistically significant differences were present in Grade 5 and Grade 8 STAAR Mathematics and Science test scores by student economic status for each year. Moderate effect sizes (Cohen's d) were present for each year of the study for the Grade 5 STAAR Mathematics and Science exams, Grade 8 Science exams, and the 2014-2015 Grade 8 STAAR Mathematics exam. However, a small effect size was present for the 2011-2012 through 2013-2014 Grade 8 STAAR Mathematics exam. Regarding the second and third study, statistically significant differences were revealed for Grade 5 and Grade 8 STAAR Mathematics and Science test scores based on gender, with trivial effect sizes. Furthermore, statistically significant differences were present in these test scores by ethnicity/race, with moderate effects for each year of the study. With regard to

  5. The Key to Enhancing Students' Mathematical Vocabulary Knowledge

    Science.gov (United States)

    Riccomini, Paul J.; Sanders, Sharon; Jones, Julie

    2008-01-01

    The importance of learning mathematical vocabulary is vital for the development of proficiency in mathematics. In an effort to improve students' mathematical performance, educators must use research-validated instructional methods to teach important mathematical vocabulary. Mnemonic instruction is a set of evidenced-based strategies used to…

  6. Computer mathematics for programmers

    CERN Document Server

    Abney, Darrell H; Sibrel, Donald W

    1985-01-01

    Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p

  7. Accounting for the Gender Gaps in Student Performance in Reading and Mathematics: Evidence from 31 Countries

    Science.gov (United States)

    Marks, Gary N.

    2008-01-01

    In most countries, girls perform better than boys in reading but worse in mathematics. However, there is much variation between countries. Explanations for the gender gaps include the organisation of the school system, students' expectations and macro-societal factors. The purpose of this paper is to account for gender differences in both reading…

  8. DOE Fundamentals Handbook: Mathematics, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  9. DOE Fundamentals Handbook: Mathematics, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  10. Video-games do not negatively impact adolescent academic performance in science, mathematics or reading.

    Directory of Open Access Journals (Sweden)

    Aaron Drummond

    Full Text Available Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement.

  11. Video-Games Do Not Negatively Impact Adolescent Academic Performance in Science, Mathematics or Reading

    Science.gov (United States)

    Drummond, Aaron; Sauer, James D.

    2014-01-01

    Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA) to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement. PMID:24699536

  12. Technology-Enhanced Learning in College Mathematics Remediation

    Science.gov (United States)

    Foshee, Cecile M.; Elliott, Stephen N.; Atkinson, Robert K.

    2016-01-01

    US colleges presently face an academic plight; thousands of high school graduates are performing below the expected ability for college-level mathematics. This paper describes an innovative approach intended to improve the mathematics performance of first-year college students, at a large US university. The innovation involved the integration of…

  13. Using Mathematical Modeling Methods for Estimating Entrance Flow Heterogeneity Impact on Aviation GTE Parameters and Performances

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The paper considers methodological approaches to the mathematical models (MM of various levels, dedicated to estimate an impact of the entrance flow heterogeneity on the main parameters and performances of the aviation GTE and it units. By an example of calculation of a twin-shaft turbofan engine in cruiser mode, demonstrates engineering mathematical model capabilities to define the impact of the total pressure field distortion on engine trust and air flow parameters, and also gas dynamic stability margin of the both compressors.It is shown that the presented first level mathematical model allows us to estimate sufficiently the impact of entrance total pressure heterogeneity on the engine parameters. Here reliability of calculations is proved to be true by their comparison with the results, obtained owing to well fulfilled 2D & 3D mathematical models of the engine, which have been repeatedly identified by the results of experiments.It is shown that received results including those on decreasing values of stability margin of both compressors can be used for tentative estimates when choosing a desirable stability margin, providing steady operation of compressors and engine in an entire range of its operating modes. Carrying out a definitive testing calculation using the specialized engine MM of a higher level will not only confirm the results obtained, but also reduce their expected error with regard to the real values reached as a result of tests.

  14. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  15. Number sense how the mind creates mathematics

    CERN Document Server

    Dehaene, Stanislas

    2011-01-01

    Our understanding of how the human brain performs mathematical calculations is far from complete, but in recent years there have been many exciting breakthroughs by scientists all over the world. Now, in The Number Sense, Stanislas Dehaene offers a fascinating look at this recent research, in an enlightening exploration of the mathematical mind. Dehaene begins with the eye-opening discovery that animals--including rats, pigeons, raccoons, and chimpanzees--can perform simple mathematical calculations, and that human infants also have a rudimentary number sense. Dehaene suggests that this rudime

  16. Ghana's achievement in mathematics in TIMSS 2007 | Mereku ...

    African Journals Online (AJOL)

    performance on the international benchmarks also improved significantly. The mathematics score, 309, placed Ghana at the 47th position on the overall mathematics achievement results table when the 48 participating countries, which met the TIMSS sampling requirements, were ranked by their mean performances.

  17. Mathematical Literacy in Plant Physiology Undergraduates: Results of Interventions Aimed at Improving Students' Performance

    Science.gov (United States)

    Vila, Francisca; Sanz, Amparo

    2013-01-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant…

  18. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  19. Understanding Mathematics: Some Key Factors

    Science.gov (United States)

    Ali, Asma Amanat; Reid, Norman

    2012-01-01

    Mathematics is well known as a subject area where there can be problems in terms of understanding as well as retaining positive attitudes. In a large study involving 813 school students (ages approximately 10-12) drawn from two different school systems in Pakistan, the effect of limited working memory capacity on performance in mathematics was…

  20. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  1. Correlation of Admission Metrics with Eventual Success in Mathematics Academic Performance of Freshmen in AMAIUB's Business Curricula

    Science.gov (United States)

    Calucag, Lina S.; Talisic, Geraldo C.; Caday, Aileen B.

    2016-01-01

    This is a correlational study research design, which aimed to determine the correlation of admission metrics with eventual success in mathematics academic performance of the admitted 177 first year students of Bachelor of Science in Business Informatics and 59 first year students of Bachelor of Science in International Studies. Using Pearson's…

  2. Contributions of executive function and spatial skills to preschool mathematics achievement.

    Science.gov (United States)

    Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-10-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Intra-Mathematical Connections Made by High School Students in Performing Calculus Tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-01-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas,…

  4. Mathematics and Computation in Music

    DEFF Research Database (Denmark)

    The 5th Biennial International Conference for Mathematics and Computation in Music (MCM 2015) took place June 22–25, 2015, at Queen Mary University of London, UK, co-hosted by the School of Electronic Engineering and Computer Science (Centre for Digital Music) and the School of Mathematical...... Sciences. As the flagship conference of the Society for Mathematics and Computation in Music (SMCM), MCM 2015 provided a dedicated platform for the communication and exchange of ideas among researchers in mathematics, informatics, music theory, composition, musicology, and related disciplines. It brought...... together researchers from around the world who combine mathematics or computation with music theory, music analysis, composition, and performance. This year’s program – full details at http://mcm2015.qmul.ac.uk – featured a number of distinguished keynote speakers, including Andrée Ehresmann (who spoke...

  5. Innovative trends in mathematics education: Implications for global ...

    African Journals Online (AJOL)

    Acquisition of Mathematical knowledge and skills requires effective teaching and learning. The traditional method of teaching that is usually adopted by Mathematics Teachers has been identified as one of the causes of students' poor performance Mathematics. However, adoptions of innovative strategies have been ...

  6. Applied Mathematical Problems in Engineering

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2016-10-01

    Full Text Available There is a close relationship between engineering and mathematics, which has led to the development of new techniques in recent years. Likewise the developments in technology and computers have led to new ways of teaching mathematics for engineering students and the use of modern techniques and methods.  This research aims to provide insight on how to deal with mathematical problems for engineering students. This is performed by means of a fuzzy set/Qualitative Comparative Analysis applied to conflict resolution of Public Participation Projects in support to the EU Water Framework Directive.

  7. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  8. Effects of reading picture books on kindergartners’ mathematics performance

    NARCIS (Netherlands)

    Van den Heuvel-Panhuizen, M.; Elia, I.; Robitzsch, Alexander

    2016-01-01

    This article describes a field experiment with a pretest–posttest control group design which investigated the potential of reading picture books to children for supporting their mathematical understanding. The study involved 384 children from 18 kindergarten classes in 18 schools in the Netherlands.

  9. Competence with fractions predicts gains in mathematics achievement.

    Science.gov (United States)

    Bailey, Drew H; Hoard, Mary K; Nugent, Lara; Geary, David C

    2012-11-01

    Competence with fractions predicts later mathematics achievement, but the codevelopmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this codevelopment through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grades (N=212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted 1-year gains in mathematics achievement (ß=.14, pmathematics achievement did not predict gains on the fractions concepts measure (ß=.03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, central executive span, and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  11. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  12. Academic performance in the high school mathematics standardized test at metropolitan and remote areas of Costa Rica schools in 2013

    Directory of Open Access Journals (Sweden)

    Mario Castillo-Sánchez

    2016-01-01

    Full Text Available This article describes the academic performance of students from urban and distant areas in the national mathematics test corresponding to the completion of secondary education, considering the specific test and according to the different types of schools: daytime (daytime scientific, daytime humanistic, nighttime, technical or integrated centers for education of young people and adults (CINDEA, in its Spanish acronym.  The main objective is to describe the students academic performance in the national mathematics test issued to complete high-school level, for the year 2013 and according to the country educational areas.  For the analysis of such information, the main source used was the High-School Education National Report, issued by the Ministry of Public Education for 2013 standardized tests.  One of the conclusions from this study is the need to carry out a historical analysis of the performance of educational institutions which have recently obtained the highest and lowest average grades in the high-school diploma tests, in order to be able to delve into the causes of those performances.

  13. Pattern of mathematic representation ability in magnetic electricity problem

    Science.gov (United States)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  14. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  15. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  16. Working memory resources in young children with mathematical difficulties.

    Science.gov (United States)

    Kyttälä, Minna; Aunio, Pirjo; Hautamäki, Jarkko

    2010-02-01

    Working memory (WM) (Baddeley, 1986, 1997) is argued to be one of the most important cognitive resources underlying mathematical competence (Geary, 2004). Research has established close links between WM deficits and mathematical difficulties. This study investigated the possible deficits in WM, language and fluid intelligence that seem to characterize 4- to 6-year-old children with poor early mathematical skills before formal mathematics education. Children with early mathematical difficulties showed poor performance in both verbal and visuospatial WM tasks as well as on language tests and a fluid intelligence test indicating a thoroughly lower cognitive base. Poor WM performance was not moderated by fluid intelligence, but the extent of WM deficits was related to language skills. The educational implications are discussed.

  17. Mathematical literacy in undergraduates: role of gender, emotional intelligence and emotional self-efficacy

    Science.gov (United States)

    Tariq, Vicki N.; Qualter, Pamela; Roberts, Sian; Appleby, Yvon; Barnes, Lynne

    2013-12-01

    This empirical study explores the roles that Emotional Intelligence (EI) and Emotional Self-Efficacy (ESE) play in undergraduates' mathematical literacy, and the influence of EI and ESE on students' attitudes towards and beliefs about mathematics. A convenience sample of 93 female and 82 male first-year undergraduates completed a test of mathematical literacy, followed by an online survey designed to measure the students' EI, ESE and factors associated with mathematical literacy. Analysis of the data revealed significant gender differences. Males attained a higher mean test score than females and out-performed the females on most of the individual questions and the associated mathematical tasks. Overall, males expressed greater confidence in their mathematical skills, although both males' and females' confidence outweighed their actual mathematical proficiency. Correlation analyses revealed that males and females attaining higher mathematical literacy test scores were more confident and persistent, exhibited lower levels of mathematics anxiety and possessed higher mathematics qualifications. Correlation analyses also revealed that in male students, aspects of ESE were associated with beliefs concerning the learning of mathematics (i.e. that intelligence is malleable and that persistence can facilitate success), but not with confidence or actual performance. Both EI and ESE play a greater role with regard to test performance and attitudes/beliefs regarding mathematics amongst female undergraduates; higher EI and ESE scores were associated with higher test scores, while females exhibiting higher levels of ESE were also more confident and less anxious about mathematics, believed intelligence to be malleable, were more persistent and were learning goal oriented. Moderated regression analyses confirmed mathematics anxiety as a negative predictor of test performance in males and females, but also revealed that in females EI and ESE moderate the effects of anxiety on test

  18. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  19. Limited near and far transfer effects of jungle memory working memory training on learning mathematics in children with attentional and mathematical difficulties

    NARCIS (Netherlands)

    Nelwan, Michel; Kroesbergen, Evelyn H.

    2016-01-01

    The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old (N = 64) with both

  20. Active learning increases student performance in science, engineering, and mathematics.

    Science.gov (United States)

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  1. Mathematical anxiety is linked to reduced cognitive reflection: a potential road from discomfort in the mathematics classroom to susceptibility to biases.

    Science.gov (United States)

    Morsanyi, Kinga; Busdraghi, Chiara; Primi, Caterina

    2014-09-01

    When asked to solve mathematical problems, some people experience anxiety and threat, which can lead to impaired mathematical performance (Curr Dir Psychol Sci 11:181-185, 2002). The present studies investigated the link between mathematical anxiety and performance on the cognitive reflection test (CRT; J Econ Perspect 19:25-42, 2005). The CRT is a measure of a person's ability to resist intuitive response tendencies, and it correlates strongly with important real-life outcomes, such as time preferences, risk-taking, and rational thinking. In Experiments 1 and 2 the relationships between maths anxiety, mathematical knowledge/mathematical achievement, test anxiety and cognitive reflection were analysed using mediation analyses. Experiment 3 included a manipulation of working memory load. The effects of anxiety and working memory load were analysed using ANOVAs. Our experiments with university students (Experiments 1 and 3) and secondary school students (Experiment 2) demonstrated that mathematical anxiety was a significant predictor of cognitive reflection, even after controlling for the effects of general mathematical knowledge (in Experiment 1), school mathematical achievement (in Experiment 2) and test anxiety (in Experiments 1-3). Furthermore, Experiment 3 showed that mathematical anxiety and burdening working memory resources with a secondary task had similar effects on cognitive reflection. Given earlier findings that showed a close link between cognitive reflection, unbiased decisions and rationality, our results suggest that mathematical anxiety might be negatively related to individuals' ability to make advantageous choices and good decisions.

  2. Mathematical anxiety is linked to reduced cognitive reflection: a potential road from discomfort in the mathematics classroom to susceptibility to biases

    Science.gov (United States)

    2014-01-01

    Background When asked to solve mathematical problems, some people experience anxiety and threat, which can lead to impaired mathematical performance (Curr Dir Psychol Sci 11:181–185, 2002). The present studies investigated the link between mathematical anxiety and performance on the cognitive reflection test (CRT; J Econ Perspect 19:25–42, 2005). The CRT is a measure of a person’s ability to resist intuitive response tendencies, and it correlates strongly with important real-life outcomes, such as time preferences, risk-taking, and rational thinking. Methods In Experiments 1 and 2 the relationships between maths anxiety, mathematical knowledge/mathematical achievement, test anxiety and cognitive reflection were analysed using mediation analyses. Experiment 3 included a manipulation of working memory load. The effects of anxiety and working memory load were analysed using ANOVAs. Results Our experiments with university students (Experiments 1 and 3) and secondary school students (Experiment 2) demonstrated that mathematical anxiety was a significant predictor of cognitive reflection, even after controlling for the effects of general mathematical knowledge (in Experiment 1), school mathematical achievement (in Experiment 2) and test anxiety (in Experiments 1–3). Furthermore, Experiment 3 showed that mathematical anxiety and burdening working memory resources with a secondary task had similar effects on cognitive reflection. Conclusions Given earlier findings that showed a close link between cognitive reflection, unbiased decisions and rationality, our results suggest that mathematical anxiety might be negatively related to individuals’ ability to make advantageous choices and good decisions. PMID:25179230

  3. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  4. Effects of Reading Picture Books on Kindergartners' Mathematics Performance

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Elia, Iliada; Robitzsch, Alexander

    2016-01-01

    This article describes a field experiment with a pretest-posttest control group design which investigated the potential of reading picture books to children for supporting their mathematical understanding. The study involved 384 children from 18 kindergarten classes in 18 schools in the Netherlands. During three months, the children in the nine…

  5. Early math matters: kindergarten number competence and later mathematics outcomes.

    Science.gov (United States)

    Jordan, Nancy C; Kaplan, David; Ramineni, Chaitanya; Locuniak, Maria N

    2009-05-01

    Children's number competencies over 6 time points, from the beginning of kindergarten to the middle of 1st grade, were examined in relation to their mathematics achievement over 5 later time points, from the end of 1st grade to the end of 3rd grade. The relation between early number competence and mathematics achievement was strong and significant throughout the study period. A sequential process growth curve model showed that kindergarten number competence predicted rate of growth in mathematics achievement between 1st and 3rd grades as well as achievement level through 3rd grade. Further, rate of growth in early number competence predicted mathematics performance level in 3rd grade. Although low-income children performed more poorly than their middle-income counterparts in mathematics achievement and progressed at a slower rate, their performance and growth were mediated through relatively weak kindergarten number competence. Similarly, the better performance and faster growth of children who entered kindergarten at an older age were explained by kindergarten number competence. The findings show the importance of early number competence for setting children's learning trajectories in elementary school mathematics. Copyright 2009 APA, all rights reserved

  6. Early Math Matters: Kindergarten Number Competence and Later Mathematics Outcomes

    Science.gov (United States)

    Jordan, Nancy C.; Kaplan, David; Ramineni, Chaitanya; Locuniak, Maria N.

    2009-01-01

    Children’s number competencies over 6 time points, from the beginning of kindergarten to the middle of 1st grade, were examined in relation to their mathematics achievement over 5 later time points, from the end of 1st grade to the end of 3rd grade. The relation between early number competence and mathematics achievement was strong and significant throughout the study period. A sequential process growth curve model showed that kindergarten number competence predicted rate of growth in mathematics achievement between 1st and 3rd grades as well as achievement level through 3rd grade. Further, rate of growth in early number competence predicted mathematics performance level in 3rd grade. Although low-income children performed more poorly than their middle-income counterparts in mathematics achievement and progressed at a slower rate, their performance and growth were mediated through relatively weak kindergarten number competence. Similarly, the better performance and faster growth of children who entered kindergarten at an older age were explained by kindergarten number competence. The findings show the importance of early number competence for setting children’s learning trajectories in elementary school mathematics. PMID:19413436

  7. Utilizing Marzano's Summarizing and Note Taking Strategies on Seventh Grade Students' Mathematics Performance

    Science.gov (United States)

    Jeanmarie-Gardner, Charmaine

    2013-01-01

    A quasi-experimental research study was conducted that investigated the academic impact of utilizing Marzano's summarizing and note taking strategies on mathematic achievement. A sample of seventh graders from a middle school located on Long Island's North Shore was tested to determine whether significant differences existed in mathematic test…

  8. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  9. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  10. Benchmarking to the world's best in mathematics. Quality control in curriculum and instruction among the top performers in the TIMSS.

    Science.gov (United States)

    Phelps, R P

    2001-08-01

    This article describes the education quality control systems (for mathematics) used by those countries that performed best on the Third International Mathematics and Science Study (TIMSS). Enforced quality control measures are defined as "decision points"--where adherence to the curriculum and instruction system can be reinforced. Most decision points involve stakes for the student, teacher, or school. They involve potential consequences for failure to adhere to the system and to follow the program at a reasonable pace. Generally, countries with more decision points perform better on the TIMSS. When the number of decision points and TIMSS test scores are adjusted for country wealth, the relationship between the degree of (enforced) quality control and student achievement appears to be positive and exponential. The more (enforced) quality control measures employed in an education system, the greater is students' academic achievement.

  11. Perprof-py: A Python Package for Performance Profile of Mathematical Optimization Software

    Directory of Open Access Journals (Sweden)

    Abel Soares Siqueira

    2016-04-01

    Full Text Available A very important area of research in the field of Mathematical Optimization is the benchmarking of optimization packages to compare solvers. During benchmarking, one usually collects a large amount of information like CPU time, number of functions evaluations, number of iterations, and much more. This information, if presented as tables, can be difficult to analyze and compare due to large amount of data. Therefore tools to better process and understand optimization benchmark data have been developed. One of the most widespread tools is the Performance Profile graphics proposed by Dolan and Moré [2]. In this context, this paper describes perprof-py, a free/open source software that creates 'Performance Profile' graphics. This software produces graphics in PDF using LaTeX with PGF/TikZ [22] and PGFPLOTS [4] packages, in PNG using matplotlib [9], and in HTML using Bokeh [1]. Perprof-py can also be easily extended to be used with other plot libraries. It is implemented in Python 3 with support for internationalization, and is under the General Public License Version 3 (GPLv3.

  12. The Effects of Remedial Mathematics on the Learning of Economics

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students...... and unavailable for the others, controlling for background variables. They found that, consistent with previous studies, the level of and performance in secondary school mathematics have strong predictive power on students' performances at university-level economics. However, they found relatively little evidence...

  13. Note-Taking in a Mathematics Classroom

    Science.gov (United States)

    Hoong, Leong Yew; Guan, Tay Eng; Seng, Quek Khiok; Fwe, Yap Sook; Luen, Tong Cherng; Toh, Wei Yeng Karen; Chia, Alexander; Teck, Ong Yao

    2014-01-01

    The authors are a team of teachers and teacher educators who are deeply interested in helping mathematically-challenged students improve in their learning of mathematics. In Singapore, depending on their performance at the end of a nationwide Year 6 examination, students are channelled into three ability streams for Years 7 to 10: Express (60%),…

  14. Student Performance in Mathematics: Should We Be Concerned? Evidence from a Retail Course

    Science.gov (United States)

    Enderson, Mary C.; Mann, Manveer

    2018-01-01

    This article describes how for many college students the transition to college-level mathematics courses presents new challenges beyond those that were part of the high school experience. In this interdisciplinary study forty-four non-mathematics and non-science majors, enrolled in a retail-buying course, were studied to examine student confidence…

  15. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  16. Proof Auditing Formalised Mathematics

    Directory of Open Access Journals (Sweden)

    Mark Miles Adams

    2016-01-01

    Full Text Available The first three formalisations of major mathematical proofs have heralded a new age in formalised mathematics, establishing that informal proofs at the limits of what can be understood by humans can be checked by machine. However, formalisation itself can be subject to error, and yet there is currently no accepted process in checking, or even much concern that such checks have not been performed. In this paper, we motivate why we should be concerned about correctness, and argue the need for proof auditing, to rigorously and independently check a formalisation. We discuss the issues involved in performing an audit, and propose an effective and efficient auditing process. Throughout we use the Flyspeck Project, that formalises the Kepler Conjecture proof, to illustrate our point.

  17. Behavioral Executive Functions Among Adolescents With Mathematics Difficulties.

    Science.gov (United States)

    Holm, Marja E; Aunio, Pirjo; Björn, Piia M; Klenberg, Liisa; Korhonen, Johan; Hannula, Markku S

    2017-07-01

    This study investigates behavioral executive functions (EFs) in the mathematics classroom context among adolescents with different mathematics performance levels. The EF problems were assessed by teachers using a behavioral rating inventory. Using cutoff scores on a standardized mathematics assessment, groups with mathematics difficulties (MD; n = 124), low mathematics performance (LA; n = 140), and average or higher scores (AC; n = 355) were identified. Results showed that the MD group had more problems with distractibility, directing attention, shifting attention, initiative, execution of action, planning, and evaluation than the LA group, whereas the differences in hyperactivity, impulsivity, and sustaining attention were not significant. Compared to the AC group, the MD group showed more problems with all behavioral EFs except hyperactivity and impulsivity, while the LA group showed more problems only with shifting attention. Male adolescents showed more behavioral EF problems than female adolescents, but this gender difference was negligible within the MD group. The practical implications of the results are discussed.

  18. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  19. Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program

    Science.gov (United States)

    Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy

    2016-01-01

    The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…

  20. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  1. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  2. Dynamic Effects of Performance-Avoidance Goal Orientation on Student Achievement in Language and Mathematics.

    Science.gov (United States)

    Stamovlasis, Dimitrios; Gonida, Sofia-Eleftheria N

    2018-07-01

    The present study used achievement goal theory (AGT) as a theoretical framework and examined the role of mastery and performance goals, both performance-approach and performance-avoidance, on school achieve-ment within the nonlinear dynamical systems (NDS) perspective. A series of cusp catastrophe models were applied on students' achievement in a number of school subjects, such as mathematics and language for elementary school and algebra, geometry, ancient and modern Greek language for high school, using achievement goal orientations as control variables. The participants (N=224) were students attending fifth and eighth grade (aged 11 and 14, respectively) in public schools located in northern Greece. Cusp analysis based on the probability density function was carried out by two procedures, the maximum likelihood and the least squares. The results showed that performance-approach goals had no linear effect on achievement, while the cusp models implementing mastery goals as the asymmetry factor and performance-avoidance as the bifurcation, proved superior to their linear alternatives. The results of the study based on NDS support the multiple goal perspective within AGT. Theoretical issues, educational implications and future directions are discussed.

  3. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  4. Are Disadvantaged Students Given Equal Opportunities to Learn Mathematics? PISA in Focus. No. 63

    Science.gov (United States)

    OECD Publishing, 2016

    2016-01-01

    Socio-economically advantaged and disadvantaged students are not equally exposed to mathematics problems and concepts at school. Exposure to mathematics at school has an impact on performance, and disadvantaged students' relative lack of familiarity with mathematics partly explains their lower performance. Widening access to mathematics content…

  5. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  6. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  7. Delaying Developmental Mathematics: The Characteristics and Costs

    Science.gov (United States)

    Johnson, Marianne; Kuennen, Eric

    2004-01-01

    This paper investigates which students delay taking a required developmental mathematics course and the impact of delay on student performance in introductory microeconomics. Analysis of a sample of 1462 students at a large Midwestern university revealed that, although developmental-level mathematics students did not reach the same level of…

  8. Chinese Number Words, Culture, and Mathematics Learning

    Science.gov (United States)

    Ng, Sharon Sui Ngan; Rao, Nirmala

    2010-01-01

    This review evaluates the role of language--specifically, the Chinese-based system of number words and the simplicity of Chinese mathematical terms--in explaining the relatively superior performance of Chinese and other East Asian students in cross-national studies of mathematics achievement. Relevant research is critically reviewed focusing on…

  9. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  10. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  11. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  12. The possibilities of a modelling perspective for school mathematics

    Directory of Open Access Journals (Sweden)

    Dirk Wessels

    2009-09-01

    Full Text Available The findings of the international TIMSS investigations of a few years ago into the position and application of problem solving strategies in school mathematics in about 50 countries caused serious concern globally. During each survey South Africa was found to be among the poorest performers of the participating countries. The main problem was that the majority of school learners in South Africa do not have the ability to solve mathematical problems; in fact, it would appear that they lack the total spectrum of mathematical problem solving competencies. The present school system does not develop their mathematical abilities or competencies. While Outcomes-based education, which became very popular in the Western world, has the ability to improve participants’ affective values of mathematics, it proved to be inadequate in improving the quality of their mathematical performances. Mathematics teachers are unsuccessful in teaching in a manner that will make a difference with respect to the way learners do, learn or perform in mathematics. The pedagogical and mathematics content knowledge of the teachers are lacking in conceptual depth, clarity and connectedness (integration. The language proficiency of the learners is poor, which means that they do not understand what they should do with a problem and how to interpret, present and verify their findings. Learners still do not know how to handle mathematics and how to utilise mathematics in order to solve problems. They seriously lack the ability to approach problems in a meaningful and constructive way. Real-life and open-ended problems are being perceived as huge obstacles to most learners. Teachers are not trained and educated to assist their learners in bridging this gap. The teaching methodology that will make a difference in the classroom falls in the broad category of problem solving. The day-to-day teaching method should be the problem-centred teaching and learning approach. This rather

  13. The Effects of the Flipped Model of Instruction on Student Engagement and Performance in the Secondary Mathematics Classroom

    Directory of Open Access Journals (Sweden)

    Kevin R. Clark

    2015-01-01

    Full Text Available In many of the secondary classrooms across the country, students are passively engaged in the mathematics content, and academic performance can be described, at best, as mediocre. This research study sought to bring about improvements in student engagement and performance in the secondary mathematics classroom through the implementation of the flipped model of instruction and compared student interaction in the flipped classroom with a traditional format. The flipped model of instruction is a relatively new teaching strategy attempting to improve student engagement and performance by moving the lecture outside the classroom via technology and moving homework and exercises with concepts inside the classroom via learning activities. Changes in the student participants’ perceptions and attitudes were evidenced and evaluated through the completion of a pre- and post-survey, a teacher-created unit test, random interviews, and a focus group session. In addition, the researcher documented observations, experiences, thoughts, and insights regarding the intervention in a journal on a daily basis. Quantitative results and qualitative findings revealed the student participants responded favorably to the flipped model of instruction and experienced an increase in their engagement and communication when compared to the traditional classroom experience. The student participants also recognized improvements in the quality of instruction and use of class of time with the flipped model of instruction. In terms of academic performance, no significant changes were demonstrated between the flipped model of instruction students and those taught in a traditional classroom environment.

  14. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  15. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  16. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  17. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  18. Visual short term memory related brain activity predicts mathematical abilities.

    Science.gov (United States)

    Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah

    2017-07-01

    Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  20. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  1. Teaching Mathematics That Addresses Learners' Multiple Intelligences

    Science.gov (United States)

    Gouws, E.; Dicker, A-M.

    2011-01-01

    To meet the demands of our highly technological and globally competitive society, it is becoming increasingly important for all learners in South Africa to obtain skills and knowledge in mathematics. However, South Africa performed the worst of all the countries who participated in the Trends in International Mathematics and Science Study (TIMMS).…

  2. Keystone Method: A Learning Paradigm in Mathematics

    Science.gov (United States)

    Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram

    2008-01-01

    This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…

  3. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  4. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  5. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  6. Learners' Performance in Mathematics: A Case Study of Public High Schools, South Africa

    Science.gov (United States)

    Mapaire, Lawrence

    2016-01-01

    Mathematics is fundamental to national prosperity in providing tools for understanding science, technology, engineering and economics. It is essential in public decision-making and for participation in the knowledge economy. Mathematics equips pupils with uniquely powerful ways to describe, analyse and change the world. It can stimulate moments of…

  7. Mathematics, the Computer, and the Impact on Mathematics Education.

    Science.gov (United States)

    Tooke, D. James

    2001-01-01

    Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

  8. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  9. Study orientation and knowledge of basic vocabulary in Mathematics in the primary school

    Directory of Open Access Journals (Sweden)

    Marthie van der Walt

    2009-09-01

    Full Text Available Whatever the reason, underachievement in mathematics in South Africa is endemic and tantamount to a national disaster. Despite the transformation of education in South Africa, failure rates in mathematics at school and university remain unacceptably high, and the number of learners who leave Grade 12 with a pass mark in both mathematics and physical science is unacceptably low. Relatively little has been written about inadequate performance of Grade 4 to 7 learners in mathematics in South Africa, and even less about possible solutions to the problem. South African primary school learners’ lack of basic mathematics and vocabulary skills in particular is a source of major concern. In the first national systemic evaluation of learners’ skills in English, mathematics and science in 2001 Grade 3 learners achieved an average of 30% in mathematics. In the follow-up studies, Grade 6 learners achieved a national average of 27% in mathematices, in 2004, while nationally eighty percent of Grade 3 and 6 learners achieved less than 50 percent for mathematics and Languages in 2008. The finding that so many primary school learners today are not numerate or literate has a direct influence both on the teaching and the learning of mathematics. Everything possible needs to be done to change this situation. During the past 15 years, the research focus in mathematics has shifted to an examination of the influence of social, cognitive and metacognitive, conative and affective factors on achievement in mathematics. In this regard, it is of particular importance that an ongoing investigation into “other” aspects that impact on achievement in mathematics is launched, rather than to restrict the investigation to mere assessment of objectives that are aimed at continually evaluating cognitive progress in mathematics. There is sufficient empirical evidence that an adequate orientation to the study of mathematics correlates positively with high achievement in

  10. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  11. The Effects of Game-Based Learning on Mathematical Confidence and Performance: High Ability vs. Low Ability

    Science.gov (United States)

    Ku, Oskar; Chen, Sherry Y.; Wu, Denise H.; Lao, Andrew C. C.; Chan, Tak-Wai

    2014-01-01

    Many students possess low confidence toward learning mathematics, which, in turn, may lead them to give up pursuing more mathematics knowledge. Recently, game-based learning (GBL) is regarded as a potential means in improving students' confidence. Thus, this study tried to promote students' confidence toward mathematics by using GBL. In addition,…

  12. Mathematics anxiety: what have we learned in 60 years?

    Directory of Open Access Journals (Sweden)

    Ann eDowker

    2016-04-01

    Full Text Available The construct of mathematics anxiety has been an important topic of study at least since the concept of 'number anxiety' was introduced by Dreger & Aiken (1957, and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned.

  13. Home and school resources as predictors of mathematics ...

    African Journals Online (AJOL)

    Multiple regression analyses were conducted on the 2011 Trends in International Mathematics and Science Study (TIMSS) data to determine the resources factors that influence South African learners' performance in mathematics. The findings reveal that both school and home environments play significant roles in ...

  14. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II.

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community

  15. Learning Mathematics for Teaching Mathematics: Non-Specialist Teachers' Mathematics Teacher Identity

    Science.gov (United States)

    Crisan, Cosette; Rodd, Melissa

    2017-01-01

    A non-specialist teacher of mathematics is a school teacher who qualified to teach in a subject other than mathematics yet teaches mathematics to students in secondary school. There is an emerging interest internationally in this population, a brief report of which is given in the paper. Because of concerns about the quality of non-specialists'…

  16. Mathematics Anxiety: What Have We Learned in 60 Years?

    Science.gov (United States)

    Dowker, Ann; Sarkar, Amar; Looi, Chung Yen

    2016-01-01

    The construct of mathematics anxiety has been an important topic of study at least since the concept of “number anxiety” was introduced by Dreger and Aiken (1957), and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age, and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned. PMID:27199789

  17. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  18. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  19. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  20. Sex-Differences in Attitudes towards Mathematics of Junior ...

    African Journals Online (AJOL)

    cce

    The study investigated junior secondary school pupils' attitudes towards mathematics. ... They attributed this to their low interest and confidence in learning ... aspirations performed better in mathematics and science than those who did not .... The questionnaire items were hand delivered to respondents on the days that ...

  1. Mathematical Literacy: A new literacy or a new mathematics?

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2006-10-01

    Full Text Available Mathematical Literacy is a ‘hot’ topic at present in most countries, whether it is referred to by that name, or in some cases as Numeracy, or Quantitative Literacy, or Matheracy, or as some part of Ethnomathematics, or related to Mathematics in Society. Questions continue to be asked about what is meant by mathematics in any concept of Mathematical Literacy and the use of the very word ‘Literacy’ in its association with Mathematics has been challenged. Its importance, however, lies in changing our perspective on mathematics teaching, away from the elitism so often associated with much mathematics education, and towards a more equitable, accessible and genuinely educational ideal.

  2. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers.

    Science.gov (United States)

    Battista, Michael T.

    1986-01-01

    Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…

  3. The Relationships among Mathematics Teaching Efficacy, Mathematics Self-Efficacy, and Mathematical Beliefs for Elementary Pre-Service Teachers

    Science.gov (United States)

    Briley, Jason S.

    2012-01-01

    Ninety-five elementary pre-service teachers enrolled in a mathematics content course for elementary school teachers completed 3 surveys to measure mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs. The pre-service teachers who reported stronger beliefs in their capabilities to teach mathematics effectively were…

  4. Videogames as an incipient research object inMathematics Education

    Directory of Open Access Journals (Sweden)

    Lluís Albarracín

    2017-01-01

    Full Text Available This article presents a review of research made in the field of mathematics education on the use of video games in the classroom. These investigations have focused on four areas: impact in academic performance focused on mathematical contents, specific mathematical contents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving.  Finally,  we  propose  two  research  new  approaches that  have  not  been  explored  so  far,  like  the  use  of  commercial  videogames  for  mathematical  activities  or  the  use  of  simulation  games  as  environment  to  promote  mathematical modeling.

  5. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    OpenAIRE

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusiv...

  6. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  7. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Science.gov (United States)

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  8. Will the digital computer transform classical mathematics?

    Science.gov (United States)

    Rotman, Brian

    2003-08-15

    Mathematics and machines have influenced each other for millennia. The advent of the digital computer introduced a powerfully new element that promises to transform the relation between them. This paper outlines the thesis that the effect of the digital computer on mathematics, already widespread, is likely to be radical and far-reaching. To articulate this claim, an abstract model of doing mathematics is introduced based on a triad of actors of which one, the 'agent', corresponds to the function performed by the computer. The model is used to frame two sorts of transformation. The first is pragmatic and involves the alterations and progressive colonization of the content and methods of enquiry of various mathematical fields brought about by digital methods. The second is conceptual and concerns a fundamental antagonism between the infinity enshrined in classical mathematics and physics (continuity, real numbers, asymptotic definitions) and the inherently real and material limit of processes associated with digital computation. An example which lies in the intersection of classical mathematics and computer science, the P=NP problem, is analysed in the light of this latter issue.

  9. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  10. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Raphaela N.; Rotunno Filho, Otto C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Hidrologia e Estudos do Meio Ambiente]. E-mail: otto@hidro.ufrj.br; Ruperti Junior, Nerbe J.; Lavalle Filho, Paulo F. Heilbron [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: nruperti@cnen.gov.br

    2005-07-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  11. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Antonio, Raphaela N.; Rotunno Filho, Otto C.

    2005-01-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  12. Teaching Preschoolers to Count: Effective Strategies for Achieving Early Mathematics Milestones

    Science.gov (United States)

    Jacobi-Vessels, Jill L.; Brown, E. Todd; Molfese, Victoria J.; Do, Ahn

    2016-01-01

    Attention to early childhood mathematics instructional strategies has sharpened due to the relatively poor mathematics performance of U.S. students in comparison to students from other countries and research evidence that early mathematics skills impact later achievement. Early Childhood counting skills form the foundation for subsequent…

  13. Progress, Wealth, and Mathematics Achievement

    DEFF Research Database (Denmark)

    Valero, Paola

    2013-01-01

    I am interested in discussing the historical conditions that make it possible to formulate the idea that the mathematical qualifications of citizens in modern states is connected to the progress and economic development of nations. I interconnect apparently unrelated areas in an attempt to shed l......, H. (1899). Préface. L' Enseignement Mathématique, 1(1), 1-5. Popkewitz, T. S. (2008). Cosmopolitanism and the age of school reform: Science, education, and making society by making the child. New York: Routledge....... to the end of the 19th century. During the second half of the 19th century, mathematics teachers in different countries struggled to make mathematics part of the classic school curricula. During the second industrialization, the justification for the need for mathematics education was formulated in the first...... as a result, among others, of the growing series of comparative information on educational achievement and development. Such reports can be seen as performances of the comparative logic of Modernity that operates differential positioning, not only among individuals but also among nations, with respect to what...

  14. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics

    Science.gov (United States)

    Simzar, Rahila M.; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210

  15. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.

    Science.gov (United States)

    Simzar, Rahila M; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.

  16. Videogames as an incipient research object inMathematics Education

    OpenAIRE

    Albarracín, Lluís; Hernández-Sabaté, Aura; Gorgorió, Núria

    2017-01-01

    [EN] This article presents a review of research made in the eld of mathematics education onthe use of video games in the classroom. These investigations have focused on four areas:impact in academic performance focused on mathematical contents, speci c mathematicalcontents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving. Finally, we propose two research new approachesthat have not been explored so far, like ...

  17. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  18. Mathematics without boundaries surveys in pure mathematics

    CERN Document Server

    Pardalos, Panos

    2014-01-01

    The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

  19. Pre-Service Teachers' Mathematics Self-Efficacy and Mathematics Teaching Self-Efficacy

    Science.gov (United States)

    Zuya, Habila Elisha; Kwalat, Simon Kevin; Attah, Bala Galle

    2016-01-01

    Pre-service mathematics teachers' mathematics self-efficacy and mathematics teaching self-efficacy were investigated in this study. The purpose was to determine the confidence levels of their self-efficacy in mathematics and mathematics teaching. Also, the study was aimed at finding whether their mathematics self-efficacy and teaching…

  20. Mathematics Teachers' Perceptions of Their Students' Mathematical Competence: Relations to Mathematics Achievement, Affect, and Engagement in Singapore and Australia

    Science.gov (United States)

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, drawing on data from the Trends in International Mathematics and Science Study (TIMSS) 2011, examined whether mathematics teachers' perceptions of their students' mathematical competence were related to mathematics achievement, affect toward mathematics, and engagement in mathematics lessons among Grade 8 students in Singapore and…

  1. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  2. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  3. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  4. Mathematics education, democracy and development: Exploring connections

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2012-12-01

    Full Text Available Mathematics education and its links to democracy and development are explored in this article, with specific reference to the case of South Africa. This is done by engaging four key questions. Firstly, the question of whether mathematics education can be a preparation for democracy and include a concern for development, is discussed by drawing on conceptual tools of critical mathematics education and allied areas in a development context. Secondly, the question of how mathematics education is distributed in society and participates in shaping educational possibilities in addressing its development needs and goals is used to examine the issues emerging from mathematics performance in international studies and the national Grade 12 examination; the latter is explored specifically in respect of the South African mathematics curriculum reforms and teacher education challenges. Thirdly, the question of whether a mathematics classroom can be a space for democratic living and learning that equally recognises the importance of issues of development in contexts like South Africa, as a post-conflict society still healing from its apartheid wounds, continuing inequality and poverty, is explored through pedagogies of conflict, dialogue and forgiveness. Finally the question of whether democracy and development can have anything to do with mathematics content matters, is discussed by appropriating, as a metaphor, South Africa’s Truth and Reconciliation Commission’s framework of multiple ‘truths’, to seek links within and across the various forms and movements in mathematics and mathematics education that have emerged in the past few decades.

  5. Exploring Turkish Mathematics Teachers' Content Knowledge of Quadrilaterals

    Science.gov (United States)

    Butuner, Suphi Onder; Filiz, Mehmet

    2017-01-01

    The aim of this research was to examine mathematics teachers' performances in defining special types of quadrilaterals, identifying their family and hierarchically classifying them. In this vein, 33 of 58 primary school mathematics teachers working in the province of Yozgat, Turkey were voluntarily recruited for this survey, and they were asked to…

  6. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  7. A Comparison of PISA and TIMSS 2003 Achievement Results in Mathematics

    Science.gov (United States)

    Wu, Margaret

    2009-01-01

    This study compares the Programme for International Student Assessment (PISA) 2003 Mathematics results with the Trends in International Mathematics and Science Study (TIMSS) 2003 Grade 8 mathematics results, using country mean scores for 22 participants of both studies. It is found that Western countries generally performed better in PISA than in…

  8. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  9. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  10. INTERSUBJECT CONNECTIONS OF COURSE OF MATHEMATICAL LOGIC AND OTHER MATHEMATICAL COURSES AT PREPARATION OF FUTURE TEACHER OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Yu.I. Sinko

    2012-03-01

    Full Text Available In this article the interconnections of course of mathematical logic with other mathematical courses – geometry, algebra and theory of numbers, mathematical analysis, and also with the courses of mathematics teaching methodology, history of mathematics in the system of preparation of teachers of mathematics in pedagogical Institute of higher education are analyzed. The presence of connections between the elements of the system and their quality is the important description of the pedagogical system.

  11. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  12. The Impact of Computer and Mathematics Software Usage on Performance of School Leavers in the Western Cape Province of South Africa: A Comparative Analysis

    Science.gov (United States)

    Smith, Garth Spencer; Hardman, Joanne

    2014-01-01

    In this study the impact of computer immersion on performance of school leavers Senior Certificate mathematics scores was investigated across 31 schools in the EMDC East education district of Cape Town, South Africa by comparing performance between two groups: a control and an experimental group. The experimental group (14 high schools) had access…

  13. Association Between Prenatal Valproate Exposure and Performance on Standardized Language and Mathematics Tests in School-aged Children.

    Science.gov (United States)

    Elkjær, Lars Skou; Bech, Bodil Hammer; Sun, Yuelian; Laursen, Thomas Munk; Christensen, Jakob

    2018-02-19

    Valproate sodium is used for the treatment of epilepsy and other neuropsychiatric disorders in women of childbearing potential. However, there are concerns about impaired cognitive development in children who have been exposed to valproate during pregnancy. To estimate the association between long-term school performance and prenatal exposure to valproate and a number of other antiepileptic drugs (AEDs). In a prospective, population-based cohort study conducted from August 1, 2015, to May 31, 2017, data used in the study were provided by Statistics Denmark on April 15, 2016. All children born alive in Denmark between 1997 and 2006 (n = 656 496) were identified. From this cohort, children who did not participate in the national tests, with presumed coding errors in gestational age and children missing information on their mother's educational level or household income were excluded (n = 177 469) leaving 479 027 children for the analyses. Children were identified and linked across national registers that had information on exposure, covariates, and outcome. The primary outcome was performance in national tests, an academic test taken by students in Danish primary and lower secondary state schools. We assessed performance in Danish and mathematics at different grades among valproate-exposed children and compared their performance with that of unexposed children and children exposed to another AED (lamotrigine). Test scores were standardized to z scores and adjusted for risk factors. Difference in standardized z scores in Danish and mathematics tests among valproate-exposed children compared with unexposed and lamotrigine-exposed children. Of the 656 496 children identified, 479 027 children who participated in the national tests were evaluated, including children exposed to the following AEDs in monotherapy: valproate, 253; phenobarbital, 86; oxcarbazepine, 236; lamotrigine, 396; clonazepam, 188; and carbamazepine, 294. The mean (SD) age of the 244 095

  14. VEDIC MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2015-09-01

    Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

  15. Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls.

    Science.gov (United States)

    Stoet, Gijsbert; Bailey, Drew H; Moore, Alex M; Geary, David C

    2016-01-01

    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls' STEM participation.

  16. Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls

    Science.gov (United States)

    2016-01-01

    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls’ STEM participation. PMID:27100631

  17. Effects of Online Visual and Interactive Technological Tool (OVITT) on Early Adolescent Students' Mathematics Performance, Math Anxiety and Attitudes toward Math

    Science.gov (United States)

    Orabuchi, Nkechi

    2013-01-01

    This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…

  18. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  19. Interest in mathematics and science among students having high mathematics aptitude

    Science.gov (United States)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  20. Exploring Young Children's Self-Efficacy Beliefs Related to Mathematical and Nonmathematical Tasks Performed in Kindergarten: Abused and Neglected Children and Their Peers

    Science.gov (United States)

    Tirosh, Dina; Tsamir, Pessia; Levenson, Esther; Tabach, Michal; Barkai, Ruthi

    2013-01-01

    This article reports on young children's self-efficacy beliefs and their corresponding performance of mathematical and nonmathematical tasks typically encountered in kindergarten. Participants included 132 kindergarten children aged 5-6 years old. Among the participants, 69 children were identified by the social welfare department as being abused…

  1. A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes

    Science.gov (United States)

    Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.

    2018-04-01

    Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.

  2. Mathematical thinking styles of undergraduate students and their achievement in mathematics

    Science.gov (United States)

    Risnanosanti

    2017-08-01

    The main purpose of this study is to analyze the role of mathematical thinking styles in students' achievement in mathematics. On the basis of this study, it is also to generate recommendation for classroom instruction. The two specific aims are; first to observe students' mathematical thinking styles during problem solving, the second to asses students' achievement in mathematics. The data were collected by using Mathematical Thinking Styles questionnaires and test of students' achievement in mathematics. The subject in this study was 35 students from third year at mathematics study program of Muhammadiyah University of Bengkulu in academic year 2016/2017. The result of this study was that the students have three mathematical thinking styles (analytic, visual, and integrated), and the students who have analytic styles have better achievement than those who have visual styles in mathematics.

  3. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  4. Language diversity in the mathematics classroom: does a learner ...

    African Journals Online (AJOL)

    In this study, the researchers developed an 'aid' that would assist learners to relate mathematics terms and concepts in English with terms in their own languages. The study determined whether a visual multilingual learner companion brought change in learners' performance in mathematics. Also what the educators' views ...

  5. The Association between Mathematical Word Problems and Reading Comprehension

    Science.gov (United States)

    Vilenius-Tuohimaa, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2008-01-01

    This study aimed to investigate the interplay between mathematical word problem skills and reading comprehension. The participants were 225 children aged 9-10 (Grade 4). The children's text comprehension and mathematical word problem-solving performance was tested. Technical reading skills were investigated in order to categorise participants as…

  6. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    Science.gov (United States)

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

  7. Understanding in mathematics

    CERN Document Server

    Sierpinska, Anna

    1994-01-01

    The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

  8. Figures of thought mathematics and mathematical texts

    CERN Document Server

    Reed, David

    2003-01-01

    Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.

  9. Why Singaporean 8th Grade Students Gain Highest Mathematics Ranking in TIMSS (1999-2011)

    Science.gov (United States)

    Lessani, Abdolreza; Yunus, Aida Suraya Md; Tarmiz, Rohani Ahmad; Mahmud, Rosnaini

    2014-01-01

    The international comparison of students' mathematics knowledge and competencies is an effective method of evaluating students' mathematics performance and developing policies to improve their achievements in mathematics. Trends in International Mathematics and Science Study (TIMSS) are among the most well-recognized international comparisons that…

  10. Predicting Success in College Mathematics from High School Mathematics Preparation

    OpenAIRE

    Shepley, Richard A.

    1983-01-01

    The purpose of this study was to develop a model to predict the college mathematics courses a freshman could expect to pass by considering their high school mathematics preparation. The high school information that was used consisted of the student's sex, the student's grade point average in mathematics, the highest level of high school mathematics courses taken, and the number of mathematics courses taken in high school. The high school sample was drawn from graduated Seniors in the State...

  11. Visual working memory and number sense: Testing the double deficit hypothesis in mathematics.

    Science.gov (United States)

    Toll, Sylke W M; Kroesbergen, Evelyn H; Van Luit, Johannes E H

    2016-09-01

    Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. The aim of this study was to test the DD hypothesis within a longitudinal time span of 2 years. A total of 670 children participated. The mean age was 4.96 years at the start of the study and 7.02 years at the end of the study. At the end of the first year of kindergarten, both visual-spatial working memory and number sense were measured by two different tasks. At the end of first grade, mathematical performance was measured with two tasks, one for math facts and one for math problems. Multiple regressions revealed that both visual working memory and symbolic number sense are predictors of mathematical performance in first grade. Symbolic number sense appears to be the strongest predictor for both math areas (math facts and math problems). Non-symbolic number sense only predicts performance in math problems. Multivariate analyses of variance showed that a combination of visual working memory and number sense deficits (NSDs) leads to the lowest performance on mathematics. Our DD hypothesis was confirmed. Both visual working memory and symbolic number sense in kindergarten are related to mathematical performance 2 years later, and a combination of visual working memory and NSDs leads to low performance in mathematical performance. © 2016 The British Psychological Society.

  12. Impact of Chess Training on Mathematics Performance and Concentration Ability of Children with Learning Disabilities

    Science.gov (United States)

    Scholz, Markus; Niesch, Harald; Steffen, Olaf; Ernst, Baerbel; Loeffler, Markus; Witruk, Evelin; Schwarz, Hans

    2008-01-01

    The aim of this study is to evaluate the benefit of chess in mathematics lessons for children with learning disabilities based on lower intelligence (IQ 70-85). School classes of four German schools for children with learning disabilities were randomly assigned to receive one hour of chess lesson instead of one hour of regular mathematics lessons…

  13. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  14. Elementary Pre-Service Teachers' Mathematics Anxiety and Mathematics Teaching Anxiety

    Science.gov (United States)

    Haciomeroglu, Guney

    2014-01-01

    The present study examined the structure of elementary pre-service teachers' mathematics anxiety and mathematics teaching anxiety by asking whether the two systems of anxiety are related. The Turkish Mathematics Anxiety Rating Scale Short Version and the Mathematics Teaching Anxiety Scale were administered to 260 elementary pre-service teachers.…

  15. Foreword to the Special Focus on Mathematics, Data and Knowledge

    KAUST Repository

    Chen, Xiaoyu

    2013-12-01

    There is a growing interest in applying mathematical theories and methods from topology, computational geometry, differential equations, fluid dynamics, quantum statistics, etc. to describe and to analyze scientific regularities of diverse, massive, complex, nonlinear, and fast changing data accumulated continuously around the world and in discovering and revealing valid, insightful, and valuable knowledge that data imply. With increasingly solid mathematical foundations, various methods and techniques have been studied and developed for data mining, modeling, and processing, and knowledge representation, organization, and verification; different systems and mechanisms have been designed to perform data-intensive tasks in many application fields for classification, predication, recommendation, ranking, filtering, etc. This special focus of Mathematics in Computer Science is organized to stimulate original research on the interaction of mathematics with data and knowledge, in particular the exploration of new mathematical theories and methodologies for data modeling and analysis and knowledge discovery and management, the study of mathematical models of big data and complex knowledge, and the development of novel solutions and strategies to enhance the performance of existing systems and mechanisms for data and knowledge processing. The present foreword provides a short review of some key ideas and techniques on how mathematics interacts with data and knowledge, together with a few selected research directions and problems and a brief introduction to the four papers published in the focus. © 2013 Springer Basel.

  16. Mathematics across cultures the history of non-Western mathematics

    CERN Document Server

    2000-01-01

    Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  17. Should I take Further Mathematics? Physics undergraduates’ experiences of post-compulsory Mathematics

    Science.gov (United States)

    Bowyer, Jessica; Darlington, Ellie

    2017-01-01

    It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students’ perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level Mathematics and Further Mathematics. The findings suggest that physics undergraduates would benefit from studying Further Mathematics and specialising in mechanics during their A-level studies. As both A-level Mathematics and Further Mathematics are being reformed, universities should look closely at the benefits of Further Mathematics as preparation for their physics courses and either increase their admissions requirements, or recommend that students take Further Mathematics.

  18. New Avenues for History in Mathematics Education: Mathematical Competencies and Anchoring

    DEFF Research Database (Denmark)

    Jankvist, U. T.; Kjeldsen, T. H.

    2011-01-01

    . The first scenario occurs when history is used as a ‘tool’ for the learning and teaching of mathematics, the second when history of mathematics as a ‘goal’ is pursued as an integral part of mathematics education. We introduce a multiple-perspective approach to history, and suggest that research on history......The paper addresses the apparent lack of impact of ‘history in mathematics education’ in mathematics education research in general, and proposes new avenues for research. We identify two general scenarios of integrating history in mathematics education that each gives rise to different problems...... in mathematics education follows one of two different avenues in dealing with these scenarios. The first is to focus on students’ development of mathematical competencies when history is used a tool for the learning of curriculum-dictated mathematical in-issues. A framework for this is described. Secondly, when...

  19. Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities.

    Science.gov (United States)

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2013-12-01

    Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Focus on the use of language in the multicultural mathematics classroom

    DEFF Research Database (Denmark)

    Johansen, Lene Østergaard

    . understanding the meaning of the words "in front of") when they enter first grade in primary school (Nyborg and Nyborg, 1990). Students who lack these abilities either with regard to mathematics or language are from the beginning of schooling limited in their mathematical performance and in a "risk zone......" of developing learning difficulties in mathematics. Teaching the teachers a consciousness for the use of language in mathematics teaching as well as educating them to have a special focus on developing the vocabulary of the students can render the mathematics teaching more inclusive. Furthermore, it may help......Learning mathematics can be seen as learning a foreign language or learning a particular mathematical discourse.  Nolte (2004) calls mathematics the students' first second language. The use of language in mathematics teaching, hence the way we talk and the way we write, differ from the way the same...

  1. Mathematical psychology.

    Science.gov (United States)

    Batchelder, William H

    2010-09-01

    Mathematical psychology is a sub-field of psychology that started in the 1950s and has continued to grow as an important contributor to formal psychological theory, especially in the cognitive areas of psychology such as learning, memory, classification, choice response time, decision making, attention, and problem solving. In addition, there are several scientific sub-areas that were originated by mathematical psychologists such as the foundations of measurement, stochastic memory models, and psychologically motivated reformulations of expected utility theory. Mathematical psychology does not include all uses of mathematics and statistics in psychology, and indeed there is a long history of such uses especially in the areas of perception and psychometrics. What is most unique about mathematical psychology is its approach to theory construction. While accepting the behaviorist dictum that the data in psychology must be observable and replicable, mathematical models are specified in terms of unobservable formal constructs that can predict detailed aspects of data across multiple experimental and natural settings. By now almost all the substantive areas of cognitive and experimental psychology have formal mathematical models and theories, and many of these are due to researchers that identify with mathematical psychology. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Mathematical marriages: intercourse between mathematics and Semiotic choice.

    Science.gov (United States)

    Wagner, Roy

    2009-04-01

    This paper examines the interaction between Semiotic choices and the presentation and solution of a family of contemporary mathematical problems centred around the so-called 'stable marriage problem'. I investigate how a socially restrictive choice of signs impacts mathematical production both in terms of problem formation and of solutions. I further note how the choice of gendered language ends up constructing a reality, which duplicates the very structural framework that it imported into mathematical analysis in the first place. I go on to point out some semiotic lines of flight from this interlocking grip of mathematics and gendered language.

  3. Economic-mathematical substantiation of optimizing the use of technical means, to perform tasks in conditions of uncertainty

    Directory of Open Access Journals (Sweden)

    I. V. Kuksova

    2017-01-01

    Full Text Available In this article a variant of the economic-mathematical substantiation of optimization approaches choice of tools for the survey of airfields, the mechanism of the use of multiple statistical criteria for optimality and usefulness of the decisions taken in this matter, when operating in conditions of uncertainty. Lately in the modern world in many socio-economic areas of human life quite often there are thematic challenges of managerial decision-making in a conflict environment and competition, when several in the General case, reasonable working actors perform collective decision-making, and the benefits of each depends not only on the chosen business strategies, but also from management decisions of other partners and the success of the experiments. Therefore, it is necessary to develop and substantiation of optimum variants of decision of choice of forces and means to perform tasks in conditions of uncertainty, that is also acceptable for military units. The actual problem currently is to optimize system control engineering-airfield security, the components of which perform their tasks under conditions of uncertainty. Analysis of opportunities of technical means (unmanned aerial vehicles shows that under the condition of equipping them with the appropriate equipment can be considered about the possibility of their use as part of a complex of technical means for inspection of airfields after the who enemy action in the runway. Therefore, the scientific goal in this article is to examine the possibilities of using technical means for inspection of airfield engineering and airfield services, and the aim of the study is using mathematical methods to justify the choice of the most effective means, from the point of view of economic cost of its introduction and use when performing tasks in conditions of uncertainty.

  4. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  5. A student's guide to the study, practice, and tools of modern mathematics

    CERN Document Server

    Bindner, Donald

    2010-01-01

    A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica® and Maple™ to MATLAB® and R. Along with a color insert, the text includes exercises and challenges to stimulate creativity and improve problem solving abilities.The first section of the book covers issues pertaining to studying mathematics. The authors explain how to write mathematical proofs and papers, how to perform

  6. The materiality of mathematics: presenting mathematics at the blackboard.

    Science.gov (United States)

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics. © London School of Economics and Political Science 2014.

  7. Teacher Gender and Student Performance in Mathematics. Evidence from Catalonia (Spain)

    Science.gov (United States)

    Escardíbul, Josep-Oriol; Mora, Toni

    2013-01-01

    This paper analyses the impact of teacher gender towards students' test results in a blinded Math test administered to students in Catalonia (Spain). The data for this analysis are drawn from a sample of secondary school students who participated in an international blind-test known as the "Mathematical Kangaroo" in 2008. The estimation…

  8. The Relationship between Neuropsychological and Ecological Measurements of Executive Functioning in Childhood and the Prediction of Mathematics Performance. A Pilot Study

    Science.gov (United States)

    Zorrilla-Silvestre, Lorena; Presentación-Herrero, María Jesús; Gil-Gómez, Jesús

    2016-01-01

    Introduction: This study explored the variables of executive functioning (EF) that permitted the evaluation of EF both at home and at school. The objective was to compare the results of the evaluations of these functions in children aged 5 to 6 years, and see to what extent these variables predicted mathematics performance best. Method: Sixty-six…

  9. Influence of Strengthening Mathematics and Science in Secondary Education (SMASSE) in Service Education and Training(INSET) on the Attitude of Students towards Mathematics Perfomance in Public Secondary Schools of Rangwe Division, Homa-Bay Sub County-Kenya

    Science.gov (United States)

    Wafubwa, Ruth Nanjekho

    2015-01-01

    The general performance in mathematics in Kenya has been declining over the past years. This prompted the researchers to investigate the influence of Strengthening Mathematics and Science in Secondary Education (SMASSE) In Service Education and Training (INSET) on students' attitudes towards mathematics performance in public secondary schools of…

  10. Rainforest Mathematics

    Science.gov (United States)

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  11. Mathematical scandals

    CERN Document Server

    Pappas, Theoni

    1997-01-01

    In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

  12. How Readability Factors Are Differentially Associated with Performance for Students of Different Backgrounds When Solving Mathematics Word Problems

    Science.gov (United States)

    Walkington, Candace; Clinton, Virginia; Shivraj, Pooja

    2018-01-01

    The link between reading and mathematics achievement is well known, and an important question is whether readability factors in mathematics problems are differentially impacting student groups. Using 20 years of data from the National Assessment of Educational Progress and the Trends in International Mathematics and Science Study, we examine how…

  13. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  14. High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics

    Science.gov (United States)

    Dickerson, David S.; Doerr, Helen M.

    2014-12-01

    Proof serves many purposes in mathematics. In this qualitative study of 17 high school mathematics teachers, we found that these teachers perceived that two of the most important purposes for proof in school mathematics were (a) to enhance students' mathematical understanding and (b) to develop generalized thinking skills that were transferable to other fields of endeavor. We found teachers were divided on the characteristics (or features) of proofs that would serve these purposes. Teachers with less experience tended to believe that proofs in the high school should adhere to strict standards of language and reasoning while teachers with more experience tended to believe that proofs based on concrete or visual features were well suited for high school mathematics. This study has implications for teacher preparation because it appears that there is a wide variation in how teachers think about proof. It seems likely that students would experience proof very differently merely because they were seated in different classrooms.

  15. 77 FR 70422 - Agency Information Collection Activities; Comment Request; Mathematics and Science Partnerships...

    Science.gov (United States)

    2012-11-26

    ...; Comment Request; Mathematics and Science Partnerships Program: Annual Performance Report AGENCY: Office of... notice will be considered public records. Title of Collection: Mathematics and Science Partnerships... Mathematics and Science Partnerships (MSP) program is a formula grant program to the States in which states...

  16. Intentional and Automatic Numerical Processing as Predictors of Mathematical Abilities in Primary School Children

    Directory of Open Access Journals (Sweden)

    Violeta ePina

    2015-03-01

    Full Text Available Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1 to 6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved.

  17. Mathematizing Process of Junior High School Students to Improve Mathematics Literacy Refers PISA on RCP Learning

    International Nuclear Information System (INIS)

    Wardono; Mariani, S; Hendikawati, P; Ikayani

    2017-01-01

    Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are

  18. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  19. Mathematics everywhere

    CERN Document Server

    Aigner, Martin; Spain, Philip G

    2010-01-01

    Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

  20. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  1. Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics

    Science.gov (United States)

    Wickstrom, Megan H.

    2017-01-01

    This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…

  2. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    Science.gov (United States)

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  3. The "Mozart Effect" and the Mathematical Connection

    Science.gov (United States)

    Taylor, Judy M.; Rowe, Beverly J.

    2012-01-01

    Educators are always looking for ways to enhance the performance of students on outcome assessments. There is a growing body of research showing the benefits of music on educational performance. The purpose of this study was to determine if a "Mozart Effect" improves student performance on outcome assessments in mathematics. In this study, during…

  4. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  5. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  6. Mathematics Education in Singapore – An Insider’s Perspective

    Directory of Open Access Journals (Sweden)

    Berinderjeet Kaur

    2014-07-01

    Full Text Available Singapore’s Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012 that have shaped the present School Mathematics Curricula in Singapore are direct consequences of developments in the Education System of Singapore during the same period. The curriculum, teachers, leaners and the learning environment may be said to contribute towards Singapore’s performance in international benchmark studies such as TIMSS and PISA.

  7. Mathematical Formula Search using Natural Language Queries

    Directory of Open Access Journals (Sweden)

    YANG, S.

    2014-11-01

    Full Text Available This paper presents how to search mathematical formulae written in MathML when given plain words as a query. Since the proposed method allows natural language queries like the traditional Information Retrieval for the mathematical formula search, users do not need to enter any complicated math symbols and to use any formula input tool. For this, formula data is converted into plain texts, and features are extracted from the converted texts. In our experiments, we achieve an outstanding performance, a MRR of 0.659. In addition, we introduce how to utilize formula classification for formula search. By using class information, we finally achieve an improved performance, a MRR of 0.690.

  8. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  9. Investigating Gender Differences in Mathematics and Science: Results from the 2011 Trends in Mathematics and Science Survey

    Science.gov (United States)

    Reilly, David; Neumann, David L.; Andrews, Glenda

    2017-06-01

    The underrepresentation of women in science, technology, engineering, and mathematics (STEM)-related fields remains a concern for educators and the scientific community. Gender differences in mathematics and science achievement play a role, in conjunction with attitudes and self-efficacy beliefs. We report results from the 2011 Trends in Mathematics and Science Study (TIMSS), a large international assessment of eighth grade students' achievement, attitudes, and beliefs among 45 participating nations (N = 261,738). Small- to medium-sized gender differences were found for most individual nations (from d = -.60 to +.31 in mathematics achievement, and d = -.60 to +.26 for science achievement), although the direction varied and there were no global gender differences overall. Such a pattern cross-culturally is incompatible with the notion of immutable gender differences. Additionally, there were different patterns between OECD and non-OECD nations, with girls scoring higher than boys in mathematics and science achievement across non-OECD nations. An association was found between gender differences in science achievement and national levels of gender equality, providing support for the gender segregation hypothesis. Furthermore, the performance of boys was more variable than that of girls in most nations, consistent with the greater male variability hypothesis. Boys reported more favorable attitudes towards mathematics and science, and girls reported lower self-efficacy beliefs. While the gender gap in STEM achievement may be closing, there are still large sections of the world where differences remain.

  10. Modeling Student Performance in Mathematics Using Binary Logistic Regression at Selected Secondary Schools a Case Study of Mtwara Municipality and Ilemela District

    Science.gov (United States)

    Mabula, Salyungu

    2015-01-01

    This study investigated the performance of secondary school students in Mathematics at the Selected Secondary Schools in Mtwara Municipality and Ilemela District by Absenteeism, Conduct, Type of School and Gender as explanatory Factors. The data used in the study was collected from documented records of 250 form three students with 1:1 gender…

  11. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  12. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  13. DEVELOPING STUDENTS’ ABILITY OF MATHEMATICAL CONNECTION THROUGH USING OUTDOOR MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Saleh Haji

    2017-01-01

    Full Text Available The Purpose of this study is to determine the achievement and improvement of students’ mathematical connectionability through using outdoor mathematics learning. 64 students from the fifth grade of Primary School at SDN 65 and SDN 67 Bengkulu City were taken as the sample of this study. While the method of the research used in this research is experiment with quasi-experimental designs non-equivalent control group. The results of the study are as follows: (1 There is an increasing ability found in mathematical connection of students whom taught by using outdoors mathematics learning is 0,53; (2 Based on statical computation that achievement of students’ ability of mathematical connection is taught by using outdoor mathematics learning score is 71,25. It is higher than the students score 66,25 which were taught by using the conventional learning. So as to improve students’ mathematical connection, teachers are suggested to use the outdoors mathematics learning

  14. Loving + hating mathematics challenging the myths of mathematical life

    CERN Document Server

    Hersh, Reuben

    2011-01-01

    Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions--and inspire more love and hatred--than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. Loving and Hating Mathematics is about the hidden human, emotional, and social forces that shape mathematics and affect the experiences of students and mathematicians. Written in a lively, accessible style, and filled with gripping stories and anecdotes, Loving and Hating Mathema

  15. Dilemma in Teaching Mathematics

    Science.gov (United States)

    Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

    2012-01-01

    The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

  16. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  17. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  18. Mathematical transforms and image compression: A review

    Directory of Open Access Journals (Sweden)

    Satish K. Singh

    2010-07-01

    Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.

  19. Mathematics and Engineering in Real Life through Mathematical Competitions

    Science.gov (United States)

    More, M.

    2018-01-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build…

  20. Secondary School Mathematics Teachers' Attitude in Teaching Mathematics

    OpenAIRE

    Mulugeta Atnafu

    2014-01-01

    The purpose of this study was to examine Addis Ababa secondary school mathematics teachers’ attitude in teaching mathematics. 148 mathematics teachers were selected using cluster sampling from Addis Ababa administration region. The study used survey method of data collection and it includes both quantitative and qualitative research methods. From the independent t-test, ANOVA, tukey test and regression analysis, some of the results obtained were: the majority of the secondary school mathemati...

  1. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    Science.gov (United States)

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  2. Estimating the Distance to the Moon--Its Relevance to Mathematics. Core-Plus Mathematics Project.

    Science.gov (United States)

    Stern, David P.

    This document features an activity for estimating the distance from the earth to the moon during a solar eclipse based on calculations performed by the ancient Greek astronomer Hipparchus. Historical, mathematical, and scientific details about the calculation are provided. Internet resources for teachers to obtain more information on the subject…

  3. Cognitive and Emotional Math Problems Largely Dissociate: Prevalence of Developmental Dyscalculia and Mathematics Anxiety

    OpenAIRE

    Devine, A; Hill, F; Carey, E; Szucs, Denes

    2017-01-01

    © 2017 APA, all rights reserved). A negative correlation between math anxiety and mathematics performance is frequently reported. Thus, some may assume that high levels of mathematics anxiety are associated with poor mathematical understanding. However, no previous research has clearly measured the association between mathematics anxiety and mathematical learning disability. To fill this gap, here we investigated the comorbidity of developmental dyscalculia (a selective, serious deficit in ma...

  4. Characteristics of mathematics teaching in Shanghai, China: Through the lens of a Malaysian

    Science.gov (United States)

    Lim, Chap Sam

    2007-06-01

    The mathematical performance of Chinese students, from mainland China, Hong Kong and Taiwan, is widely acclaimed in international comparisons of mathematics achievement. However, in the eyes of the Western educators, the environments established in Chinese schools are deemed relatively unfavourable for mathematics learning. This paper reports on a study that investigates the characteristics of effective mathematics teaching in five Shanghai schools. Findings reveal that those characteristics include (a) teaching with variation; (b) emphasis of precise and elegant mathematical language; (c) emphasis of logical reasoning, mathematical thinking and proofing during teaching; (d) order and serious classroom discipline; (e) strong and coherence teacher-student rapport, and (f) strong collaborative culture amongst mathematics teachers.

  5. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  6. Improving Mathematics Learning of Kindergarten Students through Computer-Assisted Instruction

    Science.gov (United States)

    Foster, Matthew E.; Anthony, Jason L.; Clements, Doug H.; Sarama, Julie; Williams, Jeffrey M.

    2016-01-01

    This study evaluated the effects of a mathematics software program, the Building Blocks software suite, on young children's mathematics performance. Participants included 247 Kindergartners from 37 classrooms in 9 schools located in low-income communities. Children within classrooms were randomly assigned to receive 21 weeks of computer-assisted…

  7. Teaching Mathematical Problem Solving to Students with Limited English Proficiency.

    Science.gov (United States)

    Kaplan, Rochelle G.; Patino, Rodrigo A.

    Many mainstreamed students with limited English proficiency continue to face the difficulty of learning English as a second language (ESL) while studying mathematics and other content areas framed in the language of native speakers. The difficulty these students often encounter in mathematics classes and their poor performance on subsequent…

  8. MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW

    Directory of Open Access Journals (Sweden)

    John Hammond

    2006-12-01

    Full Text Available MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW The first 17 papers in this (December issue of the Journal of Sports Science and Medicine are selected papers from the Eighth Australasian Conference on Mathematics and Computers in Sport, held in Queensland in July 2006. Of the first seven conferences, five were held at Bond University in Queensland, one at the University of Technology in Sydney during the year of the Sydney Olympics, and the last one was in New Zealand at Massey University. The emerging discipline of mathematics and computers in sport has developed under the auspices of the Australian and New Zealand Industrial and Applied Mathematics (ANZIAM Division of the Australian Mathematics Society through an interest group known as MathSport, bringing together sports scientists who are interested inmathematical and statistical modelling in sport, the use of computers in sport, the application of these to improve coaching and individual performance, and teaching that combines mathematics, computers and sport. This eighth conference in the series returned to Queensland but not at Bond University, because campus accommodation for conference participants was no longer available at that venue. Instead delegates gathered at the Greenmount Beach Resort, which has been used during the past decade for a number of Applied Mathematics Conferences. There were 33 papers presented during the 3 days, across topics that covered a variety of individual and team sports. Participants attended from the United Kingdom, France, Germany, India, New Zealand and Australia. These participants were drawn from those working in mainstream mathematics, statistics, computers science, sports science support, coaching and education.Professor Steve Clarke and Emeritus Professor Neville de Mestre have been to all eight conferences and this year delivered papers on Australian rules football and golf putting respectively. Tony Lewis, of the Duckworth-Lewis formula for

  9. The zone of proximal development in the learning of mathematics

    Directory of Open Access Journals (Sweden)

    Sibawu Siyepu

    2013-01-01

    Full Text Available South Africa has a huge shortage of skilled workers in various fields such as engineering, applied sciences, accountancy, architecture, medicine and law. Mathematics is a requirement for entry in these careers to enable learners to grasp the content of various subjects in these disciplines. Despite that, in South Africa, learners' performance in mathematics is shocking. This article highlights the high failure rate of mathematics in a South African context. It suggests possible causes of learners' poor performance based on the literature. The article brings a socio-cultural theory of learning focusing on the zone ofproximal development as a possible solution in the development of instructional practices. It makes recommendations on what should be done to tackle anticipated problems as suggested in the discussion.

  10. The Joy of Mathematics Discovering Mathematics All Around You

    CERN Document Server

    Pappas, Theoni

    1993-01-01

    Part of the joy of mathematics is that it is everywhere-in soap bubbles, electricity, da Vinci's masterpieces, even in an ocean wave. Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the "real" world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century. THE JOY OF MATHEMATICS is designed to be opened at random…it's mini essays are self-contained providing the reader

  11. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  12. Deaf college students' mathematical skills relative to morphological knowledge, reading level, and language proficiency.

    Science.gov (United States)

    Kelly, Ronald R; Gaustad, Martha G

    2007-01-01

    This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.

  13. Developing entrepreneurship ability of pre-service mathematics teachers through GSSM

    Science.gov (United States)

    Rohaeti, E. E.; Afrilianto, M.; Primandhika, R. B.

    2018-01-01

    This research aimed to describe mathematical entrepreneurship ability of 136 mathematics education students through Gerakan STKIP Siliwangi Mengajar (GSSM) that was conducted in 7 districts (of 17 villages) in West Java. GSSM was a programme that combines devotion to the society and college student internships activity at several schools within three months. The data was obtained through observation towards the activities performed by the students during GSSM. The questionnaire to measure the mathematical entrepreneurship ability of students. The results showed that 1) there were three activities that encourage the mathematical entrepreneurship ability of students; such as tutoring post, teaching practices in school and entrepreneurial activities in society, 2) through those three activities, students can develop their entrepreneurial spirit well and grow creativity, innovation and calculation take risk ability, 3) there was medium-association between student mathematical concept mastery that supports entrepreneurship with their mathematical entrepreneurship ability.

  14. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Science.gov (United States)

    Korshunov, Aleksei D.

    2009-10-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  15. Some unsolved problems in discrete mathematics and mathematical cybernetics

    International Nuclear Information System (INIS)

    Korshunov, Aleksei D

    2009-01-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  16. Mathematics through Millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2005-01-01

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  17. Mathematics through millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  18. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  19. Mathematics unbound

    CERN Document Server

    Parshall, Karen Hunger

    2002-01-01

    Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only develo...

  20. Implementation of several mathematical algorithms to breast tissue density classification

    International Nuclear Information System (INIS)

    Quintana, C.; Redondo, M.; Tirao, G.

    2014-01-01

    The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories. - Highlights: • Breast density classification can be obtained by suitable mathematical algorithms. • Mathematical processing help radiologists to obtain the BI-RADS classification. • The entropy and joint entropy show high performance for density classification

  1. Implementing a new mathematics curriculum: Mathematics teachers’ beliefs and practices

    OpenAIRE

    Ernest Ampadu

    2013-01-01

    Mathematics has become a ‘critical filter’ in the social, economic and professional development of individuals and forms a core component of the school curriculum in most countries. It is upon this utilitarian nature of mathematics to the individual and the society as a whole that the school mathematics curriculum has been undergoing a number of restructuring over the last three decades. In Ghana, a new mathematics curriculum was introduced in September 2007 which aims at shifting the teachin...

  2. Mathematics for physicists

    CERN Document Server

    Martin, B R

    2015-01-01

    Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will ...

  3. Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum

    Science.gov (United States)

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…

  4. Discovering Mathematics with Magma Reducing the Abstract to the Concrete

    CERN Document Server

    Bosma, Wieb

    2006-01-01

    With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning theoretical results.

  5. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  6. Principals' Leadership Practices and Mathematics Pass Rate in Jamaican High Schools

    Science.gov (United States)

    Palmer, David; Hermond, Douglas; Gardiner, Carl

    2014-01-01

    This research was intended to explore the degree to which leadership practices impacted Jamaican schools' mathematics achievement. More specifically, the researchers examined Jamaica's high school students' CSEC mathematics performance in relation to principals' instructional leadership behaviors as measured by teachers' perceptions, using Kouzes…

  7. TIMSS 2003: Relating dimensions of mathematics attitude to mathematics achievement

    Directory of Open Access Journals (Sweden)

    Kadijević Đorđe

    2008-01-01

    Full Text Available This study, which used a sample of 137,346 students from thirty three countries that participated in the TIMSS 2003 project in the eighth grade, examined the features of the individual and collective relations of three dimensions of mathematics attitude to mathematics achievement (MA, searching for the dimension mostly related to that achievement. The three dimensions of mathematics attitude were self-confidence in learning mathematics (SCLM, liking mathematics (LM and usefulness of mathematics (UM. By utilizing psychometrically valid and reliable measures of the three dimensions, it was found that: (1 each dimension of mathematics attitude alone was positively related to MA for almost all thirty three countries; (2 SCLM was primarily related to MA for thirty one countries; (3 when the two other dimensions were held constant, SCLM was positively related to MA for thirty three countries, LM was negatively related to MA for thirty countries, whereas UM was not related to MA for twenty one countries; (4 positive collective relationships of SCLM, LM and UM to MA considerably varied from country to country. Implications for research and practice are included.

  8. Spatial Skill Profile of Mathematics Pre-Service Teachers

    Science.gov (United States)

    Putri, R. O. E.

    2018-01-01

    This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.

  9. Philosophy of mathematics

    CERN Document Server

    Gabbay, Dov M; Woods, John

    2009-01-01

    One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

  10. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Aleksei D [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2009-10-31

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  11. PhiMSAMP: philosophy of mathematics: sociological aspects and mathematical practice

    NARCIS (Netherlands)

    Löwe, B.; Müller, T.

    2010-01-01

    Philosophy of mathematics is moving in a new direction: away from a foundationalism in terms of formal logic and traditional ontology, and towards a broader range of approaches that are united by a focus on mathematical practice. The scientific research network PhiMSAMP (Philosophy of Mathematics:

  12. Mathematical Creativity and Mathematical Aptitude: A Cross-Lagged Panel Analysis

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2016-01-01

    Cross-lagged panel correlation (CLPC) analysis has been used to identify causal relationships between mathematical creativity and mathematical aptitude. For this study, 480 8th standard students were selected through a random cluster technique from 9 intermediate and high schools of Varanasi, India. Mathematical creativity and mathematical…

  13. Students' Attitudes towards Mathematics in Single-Sex and Coeducational Schools.

    Science.gov (United States)

    Norton, Stephen J.; Rennie, Leonie J.

    1998-01-01

    Discusses part of study stimulated by the continuing debate over differences between boys and girls in their attitudes towards mathematics and their participation and performance in this subject at school. Concludes that there were clear differences between boys and girls on the Mathematics as a Male Domain scale with girls being less stereotyped…

  14. Addressing Mathematization Obstacles with Unformalized Problems in Physics Education

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    Abstract: Solving a physics problem requires that the problem solver either implicitly or explicitly structure the problem situation in such a way that she can set up the mathematical equations based on the relevant physics. This part of the mathematization process has been shown to cause obstacles...... for students (Niss, 2016). In the paper, we show how the students’ ability to perform this mathematization process can be trained by using so-called unformalized physics problems. Some examples of how this training can be done are provided from a course on problem solving in physics taught at Roskilde...

  15. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    Science.gov (United States)

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  16. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Science.gov (United States)

    Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio

    2016-01-01

    This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…

  17. "Mathematics Is Like a Lion": Elementary Students' Beliefs about Mathematics

    Science.gov (United States)

    Markovits, Zvia; Forgasz, Helen

    2017-01-01

    The aim of this study was to explore the beliefs of elementary school students about mathematics and about themselves as mathematics learners. The participants, Israeli grade 4 and grade 6 students, completed questionnaires. Using an "animal metaphor" to tap beliefs, some students perceived mathematics as difficult and complicated, while…

  18. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  19. Pre-Service Secondary Mathematics Teachers' Reflections on Good and Bad Mathematics Teaching

    Science.gov (United States)

    Dayal, Hem Chand

    2013-01-01

    Researchers suggest that teachers' beliefs about teaching are strongly influenced by their personal experiences with mathematics. This study aimed to explore Pacific Island pre-service secondary mathematics teachers' perceptions about good and bad mathematics teachers. Thirty pre-service teachers, enrolled in a mathematics teaching methods course…

  20. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  1. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  2. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  3. Experiencing mathematics what do we do, when we do mathematics?

    CERN Document Server

    Hersh, Reuben

    2014-01-01

    The question "What am I doing?" haunts many creative people, researchers, and teachers. Mathematics, poetry, and philosophy can look from the outside sometimes as ballet en pointe, and at other times as the flight of the bumblebee. Reuben Hersh looks at mathematics from the inside; he collects his papers written over several decades, their edited versions, and new chapters in his book Experiencing Mathematics, which is practical, philosophical, and in some places as intensely personal as Swann's madeleine. -Yuri Manin, Max Planck Institute, Bonn, Germany What happens when mid-career a mathemat

  4. Socioeconomic variation, number competence, and mathematics learning difficulties in young children.

    Science.gov (United States)

    Jordan, Nancy C; Levine, Susan C

    2009-01-01

    As a group, children from disadvantaged, low-income families perform substantially worse in mathematics than their counterparts from higher-income families. Minority children are disproportionately represented in low-income populations, resulting in significant racial and social-class disparities in mathematics learning linked to diminished learning opportunities. The consequences of poor mathematics achievement are serious for daily functioning and for career advancement. This article provides an overview of children's mathematics difficulties in relation to socioeconomic status (SES). We review foundations for early mathematics learning and key characteristics of mathematics learning difficulties. A particular focus is the delays or deficiencies in number competencies exhibited by low-income children entering school. Weaknesses in number competence can be reliably identified in early childhood, and there is good evidence that most children have the capacity to develop number competence that lays the foundation for later learning.

  5. The Influence of Reading Literacy on Mathematics and Science Achievement

    Science.gov (United States)

    Caponera, Elisa; Sestito, Paolo; Russo, Paolo M.

    2016-01-01

    The aim of this study was to evaluate the influence of students' reading literacy, measured by the PIRLS (Progress in International Reading Literacy Study) test, on their performance in the TIMSS (Trends in International Mathematics and Science Study) mathematics and science tests. The data on 4,125 Italian students from 199 schools were analyzed:…

  6. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    Science.gov (United States)

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  7. Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling

    Science.gov (United States)

    Karali, Diren; Durmus, Soner

    2015-01-01

    The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…

  8. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  9. An Invitation to Mathematics

    CERN Document Server

    Schleicher, Dierk

    2011-01-01

    This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is

  10. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-06-01

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  11. The Mathematical Event: Mapping the Axiomatic and the Problematic in School Mathematics

    Science.gov (United States)

    de Freitas, Elizabeth

    2013-01-01

    Traditional philosophy of mathematics has been concerned with the nature of mathematical objects rather than events. This traditional focus on reified objects is reflected in dominant theories of learning mathematics whereby the learner is meant to acquire familiarity with ideal mathematical objects, such as number, polygon, or tangent. I argue…

  12. A mathematics vocabulary questionnaire for use in the intermediate phase

    Directory of Open Access Journals (Sweden)

    Marthie van der Walt

    2008-11-01

    Full Text Available Teachers and psychologists need an instrument to assess learners' language proficiency in mathematics to enable them to plan and evaluate interventions and to facilitate best practice in mathematics classrooms. We describe the development of a mathematics vocabulary questionnaire to measure learners' language proficiency in mathematics in the intermediate phase. It covers all the steps from designing the preliminary questionnaire to standardising the final instrument. A sample of 1 103 Grades 4 to 7 Afrikaans-, English- and Tswana-speaking learners in North West Province completed the Mathematics Vocabulary questionnaire (Primary (MV(P, consisting of 12 items. We analysed the data by calculating discrimination values, performing a factor analysis, determining reliability coefficients, and investigating item bias by language, gender, and grade. We concluded that there was strong evidence of validity and reliability for the MV(P.

  13. Speed mathematics secrets skills for quick calculation

    CERN Document Server

    Handley, Bill

    2011-01-01

    Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract

  14. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  15. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  16. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  17. Mathematics Connection: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. Kofi Mereku Executive Editor Department of Mathematics Education, UCE Mathematical Association of Ghana, C/o Department of Mathematics Education University College of Education of Winneba P. O. Box 25, Winneba, Ghana Phone: +233244961318. Email: dkmereku@uew.edu.gh ...

  18. Middle School Mathematics Students' Perspectives on the Study of Mathematics

    Science.gov (United States)

    Vaughn, Christy H.

    2012-01-01

    This qualitative study addressed the perceptions toward the study of mathematics by middle school students who had formerly been in a remedial mathematics program. The purpose of the study was to explore the past experiences of nine students in order to determine what is needed for them to feel successful in mathematics. The conceptual framework…

  19. Mathematics disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...

  20. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-04-01

    Full Text Available Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret.Here we compared the BOLD-response of 18 participants with high (HMAs and 18 participants with low mathematics anxiety (LMAs matched for their mathematical performance to two numerical tasks (number comparison, number bisection. During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  1. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    Science.gov (United States)

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  2. 1st Joint India-AMS Meeting in Mathematics : History of Indian Mathematics at the AMS-India Mathematics Conference

    CERN Document Server

    Sridharan, R; Srinivas, M

    2005-01-01

    This volume consists of a collection of articles based on lectures given by scholars from India, Europe and USA at the sessions on 'History of Indian Mathematics' at the AMS-India mathematics conference in Bangalore during December 2003. These articles cover a wide spectrum of themes in Indian mathematics. They begin with the mathematics of the ancient period dealing with Vedic Prosody and Buddhist Logic, move on to the work of Brahmagupta, of Bhaskara, and that of the mathematicians of the Kerala school of the classical and medieval period, and end with the work of Ramanaujan, and Indian contributions to Quantum Statistics during the modern era. The volume should be of value to those interested in the history of mathematics.

  3. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  4. An Analysis of Instruments that Measure the Quality of Mathematics Teaching in Early Childhood

    Science.gov (United States)

    Kilday, Carolyn R.; Kinzie, Mable B.

    2009-01-01

    The evaluation of teaching quality in mathematics has become increasingly important following research reports indicating that preschoolers are developmentally able to engage in mathematic thought and that child performance in mathematics at this level is a strong predictor of later school achievement. As attention turns to early mathematics…

  5. Mathematical Modeling in the People's Republic of China--Indicators of Participation and Performance on COMAP's Modeling Contest

    Science.gov (United States)

    Tian, Xiaoxi

    2014-01-01

    In recent years, Mainland Chinese teams have been the dominant participants in the two COMAP-sponsored mathematical modeling competitions: the Mathematical Contest in Modeling (MCM) and the Interdisciplinary Contest in Modeling (ICM). This study examines five factors that lead to the Chinese teams' dramatic increase in participation rate and…

  6. Self-Contained versus Departmentalized Settings in Urban Elementary Schools: An Analysis of Fifth-Grade Student Mathematics Performance

    Science.gov (United States)

    Jack, Diamond Marie

    2014-01-01

    Student achievement in mathematics, particularly in urban areas, is a consistent concern in the United States. Research suggests that teachers either are under qualified or have a negative perception of themselves as mathematics teachers. Departmentalization on the elementary level is an organizational structure that may benefit urban students and…

  7. Facilitating mathematics learning for students with upper extremity disabilities using touch-input system.

    Science.gov (United States)

    Choi, Kup-Sze; Chan, Tak-Yin

    2015-03-01

    To investigate the feasibility of using tablet device as user interface for students with upper extremity disabilities to input mathematics efficiently into computer. A touch-input system using tablet device as user interface was proposed to assist these students to write mathematics. User-switchable and context-specific keyboard layouts were designed to streamline the input process. The system could be integrated with conventional computer systems only with minor software setup. A two-week pre-post test study involving five participants was conducted to evaluate the performance of the system and collect user feedback. The mathematics input efficiency of the participants was found to improve during the experiment sessions. In particular, their performance in entering trigonometric expressions by using the touch-input system was significantly better than that by using conventional mathematics editing software with keyboard and mouse. The participants rated the touch-input system positively and were confident that they could operate at ease with more practice. The proposed touch-input system provides a convenient way for the students with hand impairment to write mathematics and has the potential to facilitate their mathematics learning. Implications for Rehabilitation Students with upper extremity disabilities often face barriers to learning mathematics which is largely based on handwriting. Conventional computer user interfaces are inefficient for them to input mathematics into computer. A touch-input system with context-specific and user-switchable keyboard layouts was designed to improve the efficiency of mathematics input. Experimental results and user feedback suggested that the system has the potential to facilitate mathematics learning for the students.

  8. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  9. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  10. Mathematics Teaching Today

    Science.gov (United States)

    Martin, Tami S.; Speer, William R.

    2009-01-01

    This article describes features, consistent messages, and new components of "Mathematics Teaching Today: Improving Practice, Improving Student Learning" (NCTM 2007), an updated edition of "Professional Standards for Teaching Mathematics" (NCTM 1991). The new book describes aspects of high-quality mathematics teaching; offers a model for observing,…

  11. Perspectives on mathematical practices bringing together philosophy of mathematics, sociology of mathematics, and mathematics education

    CERN Document Server

    van Kerkhove, Bart

    2007-01-01

    Philosophy of mathematics today has transformed into a very complex network of diverse ideas, viewpoints, and theories. Sometimes the emphasis is on the ""classical"" foundational work (often connected with the use of formal logical methods), sometimes on the sociological dimension of the mathematical research community and the ""products"" it produces, then again on the education of future mathematicians and the problem of how knowledge is or should be transmitted from one generation to the next. The editors of this book felt the urge, first of all, to bring together the widest variety of aut

  12. Developmental Mathematics Students: Who are They and What is Their Mathematics Self-Efficacy?

    OpenAIRE

    Baxter, Ryan; Bates, Alan; Al-Bataineh, Adel Tawfig

    2017-01-01

    The purpose of this quantitative study was to determine differences indevelopmental mathematics students’ self-efficacy within the demographic datafrom the survey. Data from a sample of 240 Intermediate Algebra students at asingle four-year university using the Mathematics Self-Efficacy Resultsindicate that males possess higher levels of mathematics self-efficacy andconfidence with their mathematical abilities than females. Students whocompleted a lower developmental mathematics course prior ...

  13. Science Curiosity as a Correlate of Academic Performance in Mathematics Education: Insights from Nigerian Higher Education

    OpenAIRE

    Abakpa , Benjamin ,; Abah , Joshua ,; Okoh Agbo-Egwu , Abel

    2018-01-01

    International audience; This study investigated the relationship between the science curiosity levels of undergraduate of mathematics education in a Nigerian higher educational institution and their academic grade point averages. The study employed a correlational survey research design on a random sample of 104 mathematics education students. The Science Curiosity Scale – Comparative Self Report was adapted to measure the students' distinctive appetite for consuming science-related media for...

  14. Professional Communities in the Context of Teachers' Professional lives: A Case of Mathematics Specialists

    Science.gov (United States)

    Nickerson, Susan D.; Moriarty, Gail

    2005-01-01

    We describe an urban school initiative aimed at teachers' professional development with the goal of increasing their mathematics content knowledge and helping them improve their practice. In the lowest performing schools, mathematics specialists were employed to teach only mathematics in upper-elementary grades (ages 9-12). One aspect of this…

  15. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  16. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  17. First-year seminar intervention: Enhancing firstyear mathematics ...

    African Journals Online (AJOL)

    First-year seminar intervention: Enhancing firstyear mathematics performance at ... South Africa has opened up access to higher education over the past 20 years. ... The research question that this paper addresses is: What is the relationship ...

  18. Partial Support of Meeting of the Board on Mathematical Sciences and Their Applications

    Energy Technology Data Exchange (ETDEWEB)

    Weidman, Scott [National Academy of Sciences, Washington DC (United States)

    2014-08-31

    During the performance period, BMSA released the following major reports: Transforming Combustion Research through Cyberinfrastructure (2011); Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification (2012); Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century (2012); Aging and the Macroeconomy: Long-Term Implications of an Older Population (2012); The Mathematical Sciences in 2025 (2013); Frontiers in Massive Data Analysis (2013); and Developing a 21st Century Global Library for Mathematics Research (2014).

  19. Number sense and mathematics: Which, when and how?

    Science.gov (United States)

    Tosto, Maria G; Petrill, Stephen A; Malykh, Sergey; Malki, Karim; Haworth, Claire M A; Mazzocco, Michele M M; Thompson, Lee; Opfer, John; Bogdanova, Olga Y; Kovas, Yulia

    2017-10-01

    Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Psychological effects and epistemological education through mathematics "abstraction" and "construction"

    Directory of Open Access Journals (Sweden)

    Aurel Pera

    2015-10-01

    Full Text Available This study is part of a broader research which will be found in future work, Psychology and epistemology of mathematical creation, complementary work of experimental research psychology mathematics, whose investigative approach, promoting the combination type cross section paradigms and quantitative methods and qualitative and comparative method and the analytic-synthetic, based on the following idea: to make learning as efficient, contents and methods must be appropriate to the individual particularities of the pupils, a measure of the balance between converging and diverging dosing tasks as a promising opening to the transition from education proficiency in math performance. At this juncture, mathematical existence as ontological approach against the background of a history of "abstraction" mathematical and theoretical observations on the abstraction, realization and other mathematical thought processes, explanatory approach fulfills the context in which s mathematics constituted an important factor in psychological and methodological perspective, in a context of maximizing the educational effectiveness that depends on the quality of the methods used in teaching, focused on knowledge of the general principles of psycho-didactics not only mathematical and mental organization individual student or knowledge of the factors that make possible psycho-educational learning process.

  1. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model.

    Science.gov (United States)

    Moruzzi, R B; Reali, M A P

    2014-12-01

    The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit was investigated in the light of a known mathematical model. The following design and operational parameters were considered: the hydraulic detention time (tdcz) and hydraulic loading rate in the contact zone, the down-flow loading rate in the clarification zone, the particle size distribution (d F), and the recirculation rate (p). As a reference for DAF performance analysis, the proposed β.td parameter from the above mentioned mathematical model was employed. The results indicated that tdcz is an important factor in DAF performance and that d F and floc size are also determinants of DAF efficiency. Further, β.td was sensitive to both design and operational parameters, which were varied in the DAF pilot plant. The performance of the DAF unit decreases with increasing β.td values because a higher td (considering a fixed β) or a higher β (e.g., higher hydrophobicity of the flocs for a fixed td) would be necessary in the reaction zone to reach desired flotation efficiency.

  2. The Link between Logic, Mathematics and Imagination: Evidence from Children with Developmental Dyscalculia and Mathematically Gifted Children

    Science.gov (United States)

    Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szucs, Denes

    2013-01-01

    This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized…

  3. Building mathematics cellular phone learning communities

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2011-04-01

    Full Text Available Researchers emphasize the importance of maintaining learning communities and environments. This article describes the building and nourishment of a learning community, one comprised of middle school students who learned mathematics out-of-class using the cellular phone. The building of the learning community was led by three third year pre-service teachers majoring in mathematics and computers. The pre-service teachers selected thirty 8th grade students to learn mathematics with the cellular phone and be part of a learning community experimenting with this learning. To analyze the building and development stages of the cellular phone learning community, two models of community building stages were used; first the team development model developed by Tuckman (1965, second the life cycle model of a virtual learning community developed by Garber (2004. The research findings indicate that a learning community which is centered on a new technology has five 'life' phases of development: Pre-birth, birth, formation, performing, and maturity. Further, the research finding indicate that the norms that were encouraged by the preservice teachers who initiated the cellular phone learning community resulted in a community which developed, nourished and matured to be similar to a community of experienced applied mathematicians who use mathematical formulae to study everyday phenomena.

  4. Developmental Mathematics Students: Who are They and What is Their Mathematics Self-Efficacy?

    OpenAIRE

    Ryan Baxter; Alan Bates; Adel Tawfig Al-Bataineh

    2016-01-01

    The purpose of this quantitative study was to determine differences in developmental mathematics students’ self-efficacy within the demographic data from the survey. Data from a sample of 240 Intermediate Algebra students at a single four-year university using the Mathematics Self-Efficacy Results indicate that males possess higher levels of mathematics self-efficacy and confidence with their mathematical abilities than females. Students who completed a lower developmental mathematics course ...

  5. Mathematical physics

    CERN Document Server

    Geroch, Robert

    1985-01-01

    Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle

  6. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  7. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  8. Schooling and Sex Roles: The Case of GCE 'O' Level Mathematics.

    Science.gov (United States)

    Sharma, Shiam; Meighan, Roland

    1980-01-01

    Questions why girls, who perform at least as well as boys in mathematical reasoning until the age of 11, experience an ever-decreasing set of educational possibilities and consequential achievements during the secondary years of schooling. Relates sex stereotyping to differences in mathematics achievement among male and female students in…

  9. Masculinities in mathematics

    CERN Document Server

    Mendick, Heather

    2006-01-01

    The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.

  10. Mathematics at University

    DEFF Research Database (Denmark)

    Winsløw, Carl

    2015-01-01

    Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...... and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined...

  11. Mathematics in civilization

    CERN Document Server

    Resnikoff, Howard L

    2015-01-01

    Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co

  12. Mathematics in India

    CERN Document Server

    Plofker, Kim

    2009-01-01

    Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc

  13. Meaning in mathematics

    CERN Document Server

    2011-01-01

    Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.

  14. The Use of the History of Mathematics in the Teaching Pre-Service Mathematics Teachers

    Science.gov (United States)

    Galante, Dianna

    2014-01-01

    Many scholars have written about using the history of mathematics in the teaching of pre-service mathematics teachers. For this study, pre-service mathematics teachers developed an electronic journal of reflections based on presentations in the history of mathematics in a secondary mathematics education course. The main purpose of the…

  15. Construction of mathematical knowledge using graphic calculators (CAS) in the mathematics classroom

    Science.gov (United States)

    Hitt, Fernando

    2011-09-01

    Mathematics education researchers are asking themselves about why technology has impacted heavily on the social environment and not in the mathematics classroom. The use of technology in the mathematics classroom has not had the expected impact, as it has been its use in everyday life (i.e. cell phone). What about teachers' opinions? Mathematics teachers can be divided into three categories: those with a boundless overflow (enthusiasm) who want to use the technology without worrying much about the construction of mathematical concepts, those who reject outright the use of technology because they think that their use inhibits the development of mathematical skills and others that reflect on the balance that must exist between paper-pencil activities and use of technology. The mathematics teacher, by not having clear examples that support this last option about the balance of paper-pencil activities and technology, opt for one of the extreme positions outlined above. In this article, we show the results of research on a methodology based on collaborative learning (ACODESA) in the training of mathematics teachers in secondary schools and implementation of activities in an environment of paper-pencil and CAS in the mathematics classroom. We also note that with the development of technology on the use of electronic tablets and interactive whiteboards, these activities will take on greater momentum in the near future.

  16. Mathematical Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Glimm, J.

    2009-10-14

    Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

  17. Empowering Mathematical Practices

    Science.gov (United States)

    Coomes, Jacqueline; Lee, Hyung Sook

    2017-01-01

    Mathematics teachers want to empower students as mathematical thinkers and doers (NCTM 2000). Specific ways of thinking and doing mathematics were described in the Process Standards (NCTM 2000); they were further characterized as habits of mind (Mark, Goldenberg, and Sword 2010); and more recently, they were detailed in the Common Core's Standards…

  18. Learners with learning difficulties in mathematics : attitudes, curriculum and methods of teaching mathematics

    OpenAIRE

    2012-01-01

    D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...

  19. Limited near and far transfer effects of Jungle Memory working memory training on learning mathematics in children with attentional and mathematical difficulties

    Directory of Open Access Journals (Sweden)

    Michel Nelwan

    2016-09-01

    Full Text Available The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT in school aged children between 9-12 years old (N = 64 with both difficulties in mathematics, as well as in attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1 JM first, followed by MT, (2 MT first, followed by JM, and (3 a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on math improvement were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.

  20. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  1. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  2. Mathematics for the liberal arts

    CERN Document Server

    Bindner, Donald; Hemmeter, Joe

    2014-01-01

    Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

  3. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  4. The Gap between Expectations and Reality: Integrating Computers into Mathematics Classrooms

    Science.gov (United States)

    Guven, Bulent; Cakiroglu, Unal; Akkan, Yasar

    2009-01-01

    As a result of dramatic changes in mathematics education around the world, in Turkey both elementary and secondary school mathematics curriculums have changed in the light of new demands since 2005. In order to perform the expected change in newly developed curriculum, computer should be integrated into learning and teaching process. Teachers'…

  5. Preservice Elementary Mathematics Teachers' Level of Relating Mathematical Concepts in Daily Life Contexts

    Science.gov (United States)

    Akkus, Oylum

    2008-01-01

    The purpose of this study was to investigate preservice elementary mathematics teachers' ability of relating mathematical concepts and daily life context. Two research questions were set; what is the preservice elementary mathematics teachers' level of relating mathematical concepts and daily life context regarding to their education year and…

  6. Academic performance in high school as factor associated to academic performance in college

    Directory of Open Access Journals (Sweden)

    Mileidy Salcedo Barragán

    2008-12-01

    Full Text Available This study intends to find the relationship between academic performance in High School and College, focusing on Natural Sciences and Mathematics. It is a descriptive correlational study, and the variables were academic performance in High School, performance indicators and educational history. The correlations between variables were established with Spearman’s correlation coefficient. Results suggest that there is a positive relationship between academic performance in High School and Educational History, and a very weak relationship between performance in Science and Mathematics in High School and performance in College.

  7. A Pilot Study in the Application of the Analytic Hierarchy Process to Predict Student Performance in Mathematics

    Science.gov (United States)

    Warwick, Jon

    2007-01-01

    The decline in the development of mathematical skills in students prior to university entrance has been a matter of concern to UK higher education staff for a number of years. This article describes a pilot study that uses the Analytic Hierarchy Process to quantify the mathematical experiences of computing students prior to the start of a first…

  8. Secondary Mathematics Coaching: The Components of Effective Mathematics Coaching and Implications

    Science.gov (United States)

    Bengo, Priscilla

    2016-01-01

    Mathematics coaching, which can be defined broadly as job-embedded learning for mathematics teachers with someone who can help, is being used in Canada to improve teaching practice and increase student achievement. Mathematics coaching research is quite new with little written on the components of effective coaching. The paper attempts to…

  9. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  10. The effects of presenting multidigit mathematics problems in a realistic context on sixth graders' problem solving

    NARCIS (Netherlands)

    Hickendorff, M.

    2013-01-01

    Mathematics education and assessments increasingly involve arithmetic problems presented in context: a realistic situation that requires mathematical modeling. This study assessed the effects of such typical school mathematics contexts on two aspects of problem solving: performance and strategy use.

  11. Structural Modeling for Influence of Mathematics Self-Concept, Motivation to Learn Mathematics and Self-Regulation Learning on Mathematics Academic Achievement

    OpenAIRE

    Hamideh Jafari Koshkouei; Ahmad Shahvarani; Mohammad Hassan Behzadi; Mohsen Rostamy-Malkhalifeh

    2016-01-01

    The present study was carried out to investigate the influence of mathematics self-concept (MSC), motivation to learn mathematics (SMOT) and self-regulation learning (SRL) on students' mathematics academic achievement. This study is of a descriptive survey type. 300 female students at the first grade of high school (the second period) in City Qods, were selected by multiple step cluster sampling method and completed MSC, SMOT and SRL questionnaires. Mathematics academic achievement was measur...

  12. Making Sense of Mathematics

    Science.gov (United States)

    Umphrey, Jan

    2011-01-01

    The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…

  13. Where mathematics come from how the embodied mind brings mathematics into being

    CERN Document Server

    Lakoff, George

    2001-01-01

    This book is about mathematical ideas, about what mathematics means-and why. Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.

  14. Pluralism in mathematics a new position in philosophy of mathematics

    CERN Document Server

    Friend, Michèle

    2014-01-01

    This book is about philosophy, mathematics and logic, giving a philosophical account of Pluralism which is a family of positions in the philosophy of mathematics. There are four parts to this book, beginning with a look at motivations for Pluralism by way of Realism, Maddy's Naturalism, Shapiro's Structuralism and Formalism. In the second part of this book the author covers: the philosophical presentation of Pluralism; using a formal theory of logic metaphorically; rigour and proof for the Pluralist; and mathematical fixtures. In the third part the author goes on to focus on the transcendental presentation of Pluralism, and in part four looks at applications of Pluralism, such as a Pluralist approach to proof in mathematics and how Pluralism works in regard to together-inconsistent philosophies of mathematics. The book finishes with suggestions for further Pluralist enquiry. In this work the author takes a deeply radical approach in developing a new position that will either convert readers, or act as a stron...

  15. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  16. Longitudinal development of number line estimation and mathematics performance in primary school children

    NARCIS (Netherlands)

    Friso-van den Bos, I.; Kroesbergen, E.H.; van Luit, J.E.H.; Xenidou-Dervou, I.; Jonkman, L.M.; van der Schoot, M.; van Lieshout, E.C.D.M.

    2015-01-01

    Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the

  17. Secondary School Mathematics Teachers' Knowledge Levels and Use of History of Mathematics

    Science.gov (United States)

    Bütüner, Suphi Önder

    2018-01-01

    This study describes secondary school mathematics teachers' use of history of mathematics in their classes and their knowledge levels in this field. The study population included a total of 58 secondary school mathematics teachers working at the secondary schools located in Yozgat city center, and the sample included 32 mathematics teachers from…

  18. Mathematical mind-benders

    CERN Document Server

    Winkler, Peter

    2007-01-01

    Peter Winkler is at it again. Following the enthusiastic reaction to Mathematical Puzzles: A Connoisseur's Collection, Peter has compiled a new collection of elegant mathematical puzzles to challenge and entertain the reader. The original puzzle connoisseur shares these puzzles, old and new, so that you can add them to your own anthology. This book is for lovers of mathematics, lovers of puzzles, lovers of a challenge. Most of all, it is for those who think that the world of mathematics is orderly, logical, and intuitive-and are ready to learn otherwise! A pdf with errata is updated by the aut

  19. Mathematical knowledge for teaching: Making the tacit more explicit in mathematics teacher education

    Science.gov (United States)

    Abdullah, Mohd Faizal Nizam Lee; Vimalanandan, Lena

    2017-05-01

    Teaching practice during school based experiences, afford an opportunity for pre service teachers to put into practice their knowledge for teaching mathematics. Like all knowledge, Mathematical Knowledge for Teaching (MKT) is held in both tacit and explicit form, making it especially difficult to study and map during instruction. This study investigates the tacit and explicit nature of MKT held by pre service teachers in a Malaysian Teacher Education Program and how it impacts the Mathematical Quality of their instruction (MQI). This study of three mathematics pre-service teachers (PSTs), utilised videos of mathematics lessons, reflective debriefs and interviews. The findings suggest that factors such as reflecting, peer-sharing, conferencing with mentors and observing support in making tacit knowledge more explicit during planning and instruction. Implications for preparation of mathematics teachers capable of high Mathematical Quality of Instruction are also discussed.

  20. Teaching mathematics using excel

    OpenAIRE

    Bonello, Mary Rose; Camilleri, Silvana

    2004-01-01

    'Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.' (Principles and Standards for School Mathematics-NCTM April 2000)