WorldWideScience

Sample records for mathematics performance assessment

  1. Math Self-Assessment, but Not Negative Feelings, Predicts Mathematics Performance of Elementary School Children

    Directory of Open Access Journals (Sweden)

    Vitor Geraldi Haase

    2012-01-01

    Full Text Available Mathematics anxiety has been associated to performance in school mathematics. The association between math anxiety and psychosocial competencies as well as their specific contribution to explain school mathematics performance are still unclear. In the present study, the impact of sociodemographic factors, psychosocial competencies, and math anxiety on mathematics and spelling performance was examined in school children with and without mathematics difficulties. The specific contributions of psychosocial competencies (i.e., general anxiety and attentional deficits with hyperactivity and math anxiety (i.e., self-assessment in mathematics to school mathematics performance were found to be statistically independent from each other. Moreover, psychosocial competencies—but not math anxiety—were related also to spelling performance. These results suggest that psychosocial competencies are more related to general mechanisms of emotional regulation and emotional response towards academic performance, while mathematics anxiety is related to the specific cognitive aspect of self-assessment in mathematics.

  2. Self-Assessment in Mathematics as Correlate of Performance of ...

    African Journals Online (AJOL)

    This study was conducted to investigate the relationship between students self assessment in Mathematics and academic performance in Senior Secondary School Physics. The research is descriptive and of the survey type as there was no treatment and manipulation of subjects. Instead it involves the use of questionnaire ...

  3. Assessing the Relation between Seventh-Grade Students' Engagement and Mathematical Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, Jon R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  4. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    Directory of Open Access Journals (Sweden)

    Aulia Nur Arivina

    2017-11-01

    Full Text Available The purposes of this research are: (1 Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2 to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3 test the ability of mathematical reasoning with learning model of LAPS-Heuristik on Trigonometry material of SMK on 10th grade using performance assessment is increase. This is a quantitative research. The population is students of 10th grade of SMK 10 Semarang academic year 2016/2017 and the subject of research is selected by clustering random sampling. The results show that (1 Learning by model LAPS-Heuristic using performance assessment on 10th grade of Trigonometry material is complete (2 there are differences in students' mathematical reasoning ability on 10th grade of Trigonometry materials between LAPS-Heuristic learning model using performance assessment, LAPS-Heuristic learning model, and Expository learning model, (3 The ability of mathematical reasoning with learning model of LAPS-Heuristic on Trigonometry material of SMK class X using performance assessment increased.

  5. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    OpenAIRE

    Aulia Nur Arivina; Masrukan Masrukan; Ardhi Prabowo

    2017-01-01

    The purposes of this research are: (1) Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2) to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3) test the ability of mathematical reasoning with learning model of LAPS-Heuristik o...

  6. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  7. The Relationship between Studying Music and Mathematics Performance on the New Jersey High School Proficiency Assessment

    Science.gov (United States)

    Prokop, Kristie L.

    2011-01-01

    On assessments such as Trends in International Mathematics and Science Study (TIMSS) (Stigler & Hiebert, 1999) and Program for International Assessment (PISA) ("PISA 2006 Science Competencies for Tomorrow's World", 2007) students in the United States have not been performing as well in mathematics as students in other countries. In…

  8. Sex Differences in Mathematics Performance among Senior High ...

    African Journals Online (AJOL)

    This study explored sex differences in mathematics performance of students in the final year of high school and changes in these differences over a 3-year period in Ghana. A convenience sample of 182 students, 109 boys and 72 girls in three high schools in Ghana was used. Mathematics performance was assessed using ...

  9. Assessing Senior Secondary School Students' Mathematical Proficiency as Related to Gender and Performance in Mathematics in Nigeria

    Science.gov (United States)

    Awofala, Adeneye O. A.

    2017-01-01

    The study investigated mathematical proficiency as related to gender and performance in mathematics among 400 Nigerian senior secondary school students from 10 elitist senior secondary schools in Lagos State using the quantitative research method within the blueprint of descriptive survey design. Data collected were analysed using the descriptive…

  10. Assessing Preservice Teachers' Mathematics Cognitive Failures as Related to Mathematics Anxiety and Performance in Undergraduate Calculus

    Science.gov (United States)

    Awofala, Adeneye O. A.; Odogwu, Helen N.

    2017-01-01

    The study investigated mathematics cognitive failures as related to mathematics anxiety, gender and performance in calculus among 450 preservice teachers from four public universities in the South West geo-political zone of Nigeria using the quantitative research method within the blueprint of the descriptive survey design. Data collected were…

  11. Alignment between South African mathematics assessment standards and the TIMSS assessment frameworks

    Directory of Open Access Journals (Sweden)

    Mdutshekelwa Ndlovu

    2012-12-01

    Full Text Available South Africa’s performance in international benchmark tests is a major cause for concern amongst educators and policymakers, raising questions about the effectiveness of the curriculum reform efforts of the democratic era. The purpose of the study reported in this article was to investigate the degree of alignment between the TIMSS 2003 Grade 8 Mathematics assessment frameworks and the Revised National Curriculum Statements (RNCS assessment standards for Grade 8 Mathematics, later revised to become the Curriculum and Assessment Policy Statements (CAPS. Such an investigation could help to partly shed light on why South African learners do not perform well and point out discrepancies that need to be attended to. The methodology of document analysis was adopted for the study, with the RNCS and the TIMSS 2003 Grade 8 Mathematics frameworks forming the principal documents. Porter’s moderately complex index of alignment was adopted for its simplicity. The computed index of 0.751 for the alignment between the RNCS assessment standards and the TIMSS assessment objectives was found to be significantly statistically low, at the alpha level of 0.05, according to Fulmer’s critical values for 20 cells and 90 or 120 standard points. The study suggests that inadequate attention has been paid to the alignment of the South African mathematics curriculum to the successive TIMSS assessment frameworks in terms of the cognitive level descriptions. The study recommends that participation in TIMSS should rigorously and critically inform ongoing curriculum reform efforts.

  12. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II.

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community

  13. Gender, culture, and mathematics performance

    OpenAIRE

    Hyde, Janet S.; Mertz, Janet E.

    2009-01-01

    Using contemporary data from the U.S. and other nations, we address 3 questions: Do gender differences in mathematics performance exist in the general population? Do gender differences exist among the mathematically talented? Do females exist who possess profound mathematical talent? In regard to the first question, contemporary data indicate that girls in the U.S. have reached parity with boys in mathematics performance, a pattern that is found in some other nations as well. Focusing on the ...

  14. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  15. Mathematics Anxiety in Young Children: Concurrent and Longitudinal Associations with Mathematical Performance

    Science.gov (United States)

    Vukovic, Rose K.; Kieffer, Michael J.; Bailey, Sean P.; Harari, Rachel R.

    2013-01-01

    This study explored mathematics anxiety in a longitudinal sample of 113 children followed from second to third grade. We examined how mathematics anxiety related to different types of mathematical performance concurrently and longitudinally and whether the relations between mathematics anxiety and mathematical performance differed as a function of…

  16. Getting Real: Implementing Assessment Alternatives in Mathematics.

    Science.gov (United States)

    Hopkins, Martha H.

    1997-01-01

    Recounts experiences of a university professor who returned to the elementary classroom and attempted to implement the National Council of Teachers of Mathematics Standards and appropriate assessment methods, including nontraditional paper-and-pencil tasks, journal-like writing assignments, focused observations, and performance-based assessments…

  17. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study.

    Science.gov (United States)

    Mercader, Jessica; Miranda, Ana; Presentación, M Jesús; Siegenthaler, Rebeca; Rosel, Jesús F

    2017-01-01

    The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions), executive functioning (inhibition and working memory), and early numeracy skills (logical operations, counting, and magnitude comparison abilities), assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5-6 and 7-8 years old). The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  18. A Diagnostic Comparison of Turkish and Korean Students’ Mathematics Performances on the TIMSS 2011 Assessment

    Directory of Open Access Journals (Sweden)

    Sedat Şen

    2015-11-01

    Full Text Available The purpose of the present study was to analyze an international large-scale data set using a cognitive assessment approach. Although some researchers question the usefulness of international large-scale assessments (e.g., TIMSS, participating countries have continued to use the results from these large-scale assessments to improve their curricula and teaching methods. Despite the common reporting practice—single-score—in these large scale assessments gives useful insights about students’ overall performances, they still lack diagnostic information. Cognitive diagnosis models (CDMs were developed to provide more feedback on students’ cognitive strengths and weaknesses. This study retrofitted the TIMSS 2011 eighth grade mathematics assessment by applying a specific CDM called the DINA (the deterministic, inputs, noisy, “and” gate model to data from South Korea and Turkey. Results of the DINA model were used to make a detailed comparison between students of these two countries.

  19. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  20. Contributions of Motivation, Early Numeracy Skills, and Executive Functioning to Mathematical Performance. A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Jessica Mercader

    2018-01-01

    Full Text Available The main goal of this longitudinal study is to examine the power of different variables and its dynamic interactions in predicting mathematical performance. The model proposed in this study includes indicators of motivational constructs (learning motivation and attributions, executive functioning (inhibition and working memory, and early numeracy skills (logical operations, counting, and magnitude comparison abilities, assessed during kindergarten, and mathematical performance in the second year of Primary Education. The sample consisted of 180 subjects assessed in two moments (5–6 and 7–8 years old. The results showed an indirect effect of initial motivation on later mathematical performance. Executive functioning and early numeracy skills mediated the effect of motivation on later mathematic achievement. Practical implications of these findings for mathematics education are discussed.

  1. Process of performance assessment

    International Nuclear Information System (INIS)

    King, C.M.; Halford, D.K.

    1987-01-01

    Performance assessment is the process used to evaluate the environmental consequences of disposal of radioactive waste in the biosphere. An introductory review of the subject is presented. Emphasis is placed on the process of performance assessment from the standpoint of defining the process. Performance assessment, from evolving experience at DOE sites, has short-term and long-term subprograms, the components of which are discussed. The role of mathematical modeling in performance assessment is addressed including the pros and cons of current approaches. Finally, the system/site/technology issues as the focal point of this symposium are reviewed

  2. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Raphaela N.; Rotunno Filho, Otto C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Hidrologia e Estudos do Meio Ambiente]. E-mail: otto@hidro.ufrj.br; Ruperti Junior, Nerbe J.; Lavalle Filho, Paulo F. Heilbron [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: nruperti@cnen.gov.br

    2005-07-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  3. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Antonio, Raphaela N.; Rotunno Filho, Otto C.

    2005-01-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  4. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  5. The process of performance assessment

    International Nuclear Information System (INIS)

    King, C.M.; Halford, D.K.

    1986-01-01

    An introductory review of the subject of ''Performance Assessment'' will be presented. Emphasis will be placed on the process of performance assessment from the standpoint of defining the process. Performance assessment, from evolving experience at DOE sites, has short-term and long-term subprograms, the components of which will be discussed. The role of mathematical modeling in performance assessment will be addressed including the pros and cons of current approaches. Finally, the ''system/site/technology'' issues as the focal point of this symposium will be reviewed

  6. Correlation of Numerical Anxiety and Mathematics Performance

    Directory of Open Access Journals (Sweden)

    Michael Howard D. Morada

    2015-12-01

    Full Text Available It has been observed that most students had negative view towards mathematics and as a result, they also performed poorly.As such, it is imperative for every math teacher to understand the reasons behind this negative view to improve their student’s performance. This observation led the researcher to conduct a study on Correlation of Mathematics Performance and Anxiety of third and fourth year students for school year 2012-2013 across the different programs.This study determined the numerical anxiety level and mathematics performance of the respondents along age, gender and programs. The study revealed that students, regardless of age had passing performance. However, female and male students had fair and passing mathematics performance, respectively. Students from College of Business Education, Teacher Education and Computer Studies had fair performance while those from Marine Transportation, Criminal Justice Education and Engineering had passing performance. The study also revealed that students across different variables had moderate numerical anxiety level. Furthermore, it was found out that mathematics performance is significantly related to numerical anxiety. However, the relationship was inverse and small.

  7. Visuospatial training improves elementary students' mathematics performance.

    Science.gov (United States)

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-06-01

    Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.

  8. Increased environmental sensitivity in high mathematics performance

    NARCIS (Netherlands)

    Schwabe, I.; Boomsma, D. I.; van den Berg, S. M.

    2017-01-01

    Results of international comparisons of students in studies such as PISA (Program for International Student Assessment) and TIMSS (Trends in International Mathematics and Science Study) are often taken to indicate that mathematical education in Dutch schools is not appropriate for mathematically

  9. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  10. A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities.

    Science.gov (United States)

    Shin, Mikyung; Bryant, Diane Pedrotty

    2015-01-01

    The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.

  11. Cognitive assessment in mathematics with the least squares distance method.

    Science.gov (United States)

    Ma, Lin; Çetin, Emre; Green, Kathy E

    2012-01-01

    This study investigated the validation of comprehensive cognitive attributes of an eighth-grade mathematics test using the least squares distance method and compared performance on attributes by gender and region. A sample of 5,000 students was randomly selected from the data of the 2005 Turkish national mathematics assessment of eighth-grade students. Twenty-five math items were assessed for presence or absence of 20 cognitive attributes (content, cognitive processes, and skill). Four attributes were found to be misspecified or nonpredictive. However, results demonstrated the validity of cognitive attributes in terms of the revised set of 17 attributes. The girls had similar performance on the attributes as the boys. The students from the two eastern regions significantly underperformed on the most attributes.

  12. The Role of Self-Assessment in Foundation of Mathematics Learning

    Science.gov (United States)

    Masriyah

    2018-01-01

    This research is motivated by the low performance of students who took Foundations of Mathematics course. This study was aimed to describe (1) the learning outcomes of students who learned Mathematics Foundation after learning axiomatic applying self-assessment; (2) the difficulty of students and the alternative solutions; and (3) the response of students toward Foundation of Mathematics learning taught by applying self-assessment. This research was a descriptive research. The subjects were 25 mathematics students who studied Foundation of Mathematics in odd semester of the 2015/2016 academic year. Data collection was done using questionnaires, and testing methods. Based on the results of data analysis, it can be concluded that the learning outcomes of students were categorized as “good.” Student responses were positive; the difficulties lied in the sub material: Classification of Axiom Systems and the requirements, Theorem and how the formation, and finite geometry. The alternatives deal with these difficulties are to give emphasis and explanation as needed on these materials, as well as provide some more exercises to reinforce their understanding.

  13. When Mathematics and Statistics Collide in Assessment Tasks

    Science.gov (United States)

    Bargagliotti, Anna; Groth, Randall

    2016-01-01

    Because the disciplines of mathematics and statistics are naturally intertwined, designing assessment questions that disentangle mathematical and statistical reasoning can be challenging. We explore the writing statistics assessment tasks that take into consideration potential mathematical reasoning they may inadvertently activate.

  14. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety.

    Science.gov (United States)

    Devine, Amy; Fawcett, Kayleigh; Szűcs, Dénes; Dowker, Ann

    2012-07-09

    Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys' mathematics performance is more negatively affected by MA than girls' performance is. The aim of the current study was to measure girls' and boys' mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on 'online' mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because

  15. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety

    Science.gov (United States)

    2012-01-01

    Background Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in

  16. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety

    Directory of Open Access Journals (Sweden)

    Devine Amy

    2012-07-01

    Full Text Available Abstract Background Mathematics anxiety (MA, a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education

  17. Gender, culture, and mathematics performance.

    Science.gov (United States)

    Hyde, Janet S; Mertz, Janet E

    2009-06-02

    Using contemporary data from the U.S. and other nations, we address 3 questions: Do gender differences in mathematics performance exist in the general population? Do gender differences exist among the mathematically talented? Do females exist who possess profound mathematical talent? In regard to the first question, contemporary data indicate that girls in the U.S. have reached parity with boys in mathematics performance, a pattern that is found in some other nations as well. Focusing on the second question, studies find more males than females scoring above the 95th or 99th percentile, but this gender gap has significantly narrowed over time in the U.S. and is not found among some ethnic groups and in some nations. Furthermore, data from several studies indicate that greater male variability with respect to mathematics is not ubiquitous. Rather, its presence correlates with several measures of gender inequality. Thus, it is largely an artifact of changeable sociocultural factors, not immutable, innate biological differences between the sexes. Responding to the third question, we document the existence of females who possess profound mathematical talent. Finally, we review mounting evidence that both the magnitude of mean math gender differences and the frequency of identification of gifted and profoundly gifted females significantly correlate with sociocultural factors, including measures of gender equality across nations.

  18. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  19. Oral Assessment in Mathematics: Implementation and Outcomes

    Science.gov (United States)

    Iannone, P.; Simpson, A.

    2012-01-01

    In this article, we report the planning and implementation of an oral assessment component in a first-year pure mathematics module of a degree course in mathematics. Our aim was to examine potential barriers to using oral assessments, explore the advantages and disadvantages compared to existing common assessment methods and document the outcomes…

  20. Assessing mathematics within advanced school science qualifications

    OpenAIRE

    McAlinden, Mary; Noyes, Andrew

    2017-01-01

    Following sustained discussion regarding the relationship between advanced mathematics and science learning in England, the government has pursued a reform agenda in which mathematics is embedded in national, high stakes A-level science qualifications and their assessments for 18-year-olds. For example, A-level Chemistry must incorporate the assessment of relevant mathematics for at least 20% of the qualification. Other sciences have different mandated percentages. This embedding policy is ru...

  1. The Chicken or the Egg? The Direction of the Relationship Between Mathematics Anxiety and Mathematics Performance.

    Science.gov (United States)

    Carey, Emma; Hill, Francesca; Devine, Amy; Szücs, Dénes

    2015-01-01

    This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory), in which MA and mathematics performance can influence one another in a vicious cycle.

  2. What Is the Basis for Self-Assessment of Comprehension When Reading Mathematical Expository Texts?

    Science.gov (United States)

    Österholm, Magnus

    2015-01-01

    The purpose of this study was to characterize students' self-assessments when reading mathematical texts, in particular regarding what students use as a basis for evaluations of their own reading comprehension. A total of 91 students read two mathematical texts, and for each text, they performed a self-assessment of their comprehension and…

  3. Using Assessment for Learning Mathematics with Mobile Tablet Based Solutions

    Directory of Open Access Journals (Sweden)

    Ghislain Maurice Norbert Isabwe

    2014-03-01

    Full Text Available This article discusses assessment for learning in mathematics subjects. Teachers of large classes face the challenge of regularly assessing studentsཿ ongoing mathematical learning achievements. Taking the complexity of assessment and feedback for learning as a background, we have developed a new approach to the assessment for learning mathematics at university level. We devised mobile tablet technology supported assessment processes, and we carried out user studies in both Rwanda and Norway. Results of our study indicated that students found it fruitful to be involved in assessing other studentsཿ mathematics work, i.e. assessing fellow studentsཿ answers to mathematical tasks. By being involved in the assessment process, the students expected mathematical learning gains. Their providing and obtaining of feedback to/from their fellow students using technology supported tools were highly appreciated as regards their own mathematical learning process.

  4. The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance

    Directory of Open Access Journals (Sweden)

    Emma eCarey

    2016-01-01

    Full Text Available This review considers the two possible causal directions between mathematics anxiety (MA and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory, or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model. The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory, in which MA and mathematics performance can influence one another in a vicious cycle.

  5. Gender-Based Differential Item Performance in Mathematics Achievement Items.

    Science.gov (United States)

    Doolittle, Allen E.; Cleary, T. Anne

    1987-01-01

    Eight randomly equivalent samples of high school seniors were each given a unique form of the ACT Assessment Mathematics Usage Test (ACTM). Signed measures of differential item performance (DIP) were obtained for each item in the eight ACTM forms. DIP estimates were analyzed and a significant item category effect was found. (Author/LMO)

  6. Using assessment to individualize early mathematics instruction.

    Science.gov (United States)

    Connor, Carol McDonald; Mazzocco, Michèle M M; Kurz, Terri; Crowe, Elizabeth C; Tighe, Elizabeth L; Wood, Taffeta S; Morrison, Frederick J

    2018-02-01

    Accumulating evidence suggests that assessment-informed personalized instruction, tailored to students' individual skills and abilities, is more effective than more one-size-fits-all approaches. In this study, we evaluate the efficacy of Individualizing Student Instruction in Mathematics (ISI-Math) compared to Reading (ISI-Reading) where classrooms were randomly assigned to ISI-Math or ISI-Reading. The literature on child characteristics X instruction or skill X treatment interaction effects point to the complexities of tailoring instruction for individual students who present with constellations of skills. Second graders received mathematics instruction in small flexible learning groups based on their assessed learning needs. Results of the study (n=32 teachers, 370 students) revealed significant treatment effects on standardized mathematics assessments. With effect sizes (d) of 0.41-0.60, we show that we can significantly improve 2nd graders' mathematics achievement, including for children living in poverty, by using assessment data to individualize the mathematics instruction they receive. The instructional regime, ISI-Math, was implemented by regular classroom teachers and it led to about a 4-month achievement advantage on standardized mathematics tests when compared to students in control classrooms. These results were realized within one school year. Moreover, treatment effects were the same regardless of school-level poverty and students' gender, initial mathematics or vocabulary scores. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  7. Implication of formative assessment practices among mathematics teacher

    Science.gov (United States)

    Samah, Mas Norbany binti Abu; Tajudin, Nor'ain binti Mohd

    2017-05-01

    Formative assessment of school-based assessment (SBA) is implemented in schools as a move to improve the National Education Assessment System (NEAS). Formative assessment focuses on assessment for learning. There are various types of formative assessment instruments used by teachers of mathematics, namely the form of observation, questioning protocols, worksheets and quizzes. This study aims to help teachers improve skills in formative assessments during the teaching and learning (t&l) Mathematics. One mathematics teacher had been chosen as the study participants. The collecting data using document analysis, observation and interviews. Data were analyzed narrative and assessments can help teachers implement PBS. Formative assessment is conducted to improve the skills of students in t&l effectively.

  8. Reorganizing Freshman Business Mathematics II: Authentic Assessment in Mathematics through Professional Memos

    Science.gov (United States)

    Green, Kris; Emerson, Allen

    2008-01-01

    The first part of this two-part paper [see EJ787497] described the development of a new freshman business mathematics (FBM) course at our college. In this paper, we discuss our assessment tool, the business memo, as a venue for students to apply mathematical skills, via mathematical modelling, to realistic business problems. These memos have…

  9. An Examination of the Performance Gains of Culturally and Linguistically Diverse Students on a Mathematics Performance Assessment within the QUASAR Project.

    Science.gov (United States)

    Lane, Suzanne; And Others

    The performance of students from different racial or ethnic subgroups and of students receiving bilingual (Spanish and English) or monolingual (English only) instruction in mathematics was studied using students from schools in the QUASAR (Qualitative Understanding Amplifying Student Achievement and Reasoning) project, a mathematics education…

  10. The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations in R

    Directory of Open Access Journals (Sweden)

    Giorgio Alfredo Spedicato

    2013-11-01

    Full Text Available It is possible to model life contingency insurances with the lifecontingencies R package, which is capable of performing financial and actuarial mathematics calculations. Its functions permit one to determine both the expected value and the stochastic distribution of insured benefits. Therefore, life insurance coverage can be priced and portfolios risk-based capital requirements can be assessed. This paper briefly summarizes the theory regarding life contingencies that is based on financial mathematics and demographic con- cepts. Then, with the aid of applied examples, it shows how the lifecontingencies package can be a useful tool for executing routine, deterministic, or stochastic calculations for life-contingencies actuarial mathematics.

  11. Teacher classroom practices and Mathematics performance in ...

    African Journals Online (AJOL)

    The Mathematics teacher questionnaire, administered as part of the Trends in International Mathematics and Science Study (TIMSS) 2011, comprised questions pertaining to the classroom practices of Teacher Clarity, Classroom Discussion, Feedback, Formative Assessment, Problem Solving and Metacognitive Strategies, ...

  12. Relationship of Mathematics Olympiad Performance of Gifted Students with IQ and Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Ali İhsan BORAN

    2015-04-01

    Full Text Available The purpose of this study is to investigate relationship of mathematics Olympiad (analysis-algebra and geometry scores of gifted students with IQ scores (verbal, performance and general and mathematics achievement scores of the gifted students. Study group of the study included 64 gifted students (27 girls and 37 boys who took courses from one Science and Art Center. Data of study involved scores of the participants on mathematics Olympiad exam, WISC-R test and school mathematics achievement. For analysis of the data Pearson correlation analysis, Spearman correlation analysis, independent groups’ t-test and Mann Whitney U test were utilized. The findings showed that there was no significant relationship between the Olympiad scores on analysis-algebra and geometry and IQ scores (general, performance and verbal. But the Olympiad scores on analysis-algebra and geometry factors were significantly related to school mathematics achievement. Comparing IQ scores of highest and lowest scorer groups on the Olympiad scores showed that there were no significant differences between IQ scores (general, performance and verbal of the groups. However school mathematics scores of the participants significantly differed in terms of groups determined based on analysis-algebra and geometry scores.

  13. Accessing and assessing young learner’s mathematical dispositions

    Directory of Open Access Journals (Sweden)

    mellony Graven

    2012-07-01

    Full Text Available It is argued in this paper that there is an absence of literature relating to research on learner mathematical dispositions, particularly with young learners. Drawing on Kilpatrick, Swafford and Findell’s (2001 five interrelated strands of mathematical proficiency, which include: conceptual understanding, procedural fluency, strategic competence, adaptive reasoning and productive disposition, it is argued that there has been little engagement with productive disposition in the field of mathematics education and how we might access and assess this strand. Despite competence in all strands being essential for mathematical proficiency, literature and assessments that seek to establish learner levels of mathematical proficiency have tended to focus on the first four and have neglected the last; productive disposition. Finding ways in which to access student mathematical learning dispositions can be challenging, especially with young learners who struggle to articulate their views. An instrument is shared that the author has designed with doctoral fellow, Debbie Stott, in order to access and assess the productive disposition of learners participating in maths clubs run within the South African Numeracy Chair. The findings that emerge in one Grade 3 club with six learners is shared. These findings are related to the data collected through instruments that assess the other four strands of mathematical proficiency. This enables a holistic picture of learner’s mathematical proficiency as intended in the conceptualisation of the interrelated five strands of proficiency.

  14. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia.

    Science.gov (United States)

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  15. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Karin Kucian

    2018-04-01

    Full Text Available Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect.We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls. All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction that was preceded by a prime (positive/negative/neutral or mathematics-related was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  16. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    Science.gov (United States)

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  17. An analysis of mathematical connection ability based on student learning style on visualization auditory kinesthetic (VAK) learning model with self-assessment

    Science.gov (United States)

    Apipah, S.; Kartono; Isnarto

    2018-03-01

    This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.

  18. A synthesis of mathematics writing: Assessments, interventions, and surveys

    Directory of Open Access Journals (Sweden)

    Sarah R. Powell

    2017-02-01

    Full Text Available Mathematics standards in the United States describe communication as an essential part of mathematics. One outlet for communication is writing. To understand the mathematics writing of students, we conducted a synthesis to evaluate empirical research about mathematics writing. We identified 29 studies that included a mathematics-writing assessment, intervention, or survey for students in 1st through 12th grade. All studies were published between 1991 and 2015. The majority of assessments required students to write explanations to mathematical problems, and fewer than half scored student responses according to a rubric. Approximately half of the interventions involved the use of mathematics journals as an outlet for mathematics writing. Few intervention studies provided explicit direction on how to write in mathematics, and a small number of investigations provided statistical evidence of intervention efficacy. From the surveys, the majority of students expressed enjoyment when writing in mathematics settings but teachers reported using mathematics writing rarely. Across studies, findings indicate mathematics writing is used for a variety of purposes, but the quality of the studies is variable and more empirical research is needed.

  19. Mathematics-Related Emotions among Finnish Adolescents across Different Performance Levels

    Science.gov (United States)

    Holm, Marja Eliisa; Hannula, Markku Sakari; Björn, Piia Maria

    2017-01-01

    This study examined the relation of mathematics performance and gender with seven mathematics-related emotions (enjoyment, pride, anger, anxiety, shame, hopelessness and boredom) among adolescents. Using strict and lenient mathematics performance cut-off scores, respective groups of adolescents with mathematics difficulties (MD, n = 136), low (LA,…

  20. Identifying Domain-General and Domain-Specific Predictors of Low Mathematics Performance: A Classification and Regression Tree Analysis

    Directory of Open Access Journals (Sweden)

    David J. Purpura

    2017-12-01

    Full Text Available Many children struggle to successfully acquire early mathematics skills. Theoretical and empirical evidence has pointed to deficits in domain-specific skills (e.g., non-symbolic mathematics skills or domain-general skills (e.g., executive functioning and language as underlying low mathematical performance. In the current study, we assessed a sample of 113 three- to five-year old preschool children on a battery of domain-specific and domain-general factors in the fall and spring of their preschool year to identify Time 1 (fall factors associated with low performance in mathematics knowledge at Time 2 (spring. We used the exploratory approach of classification and regression tree analyses, a strategy that uses step-wise partitioning to create subgroups from a larger sample using multiple predictors, to identify the factors that were the strongest classifiers of low performance for younger and older preschool children. Results indicated that the most consistent classifier of low mathematics performance at Time 2 was children’s Time 1 mathematical language skills. Further, other distinct classifiers of low performance emerged for younger and older children. These findings suggest that risk classification for low mathematics performance may differ depending on children’s age.

  1. Making instruction and assessment responsive to diverse students' progress: group-administered dynamic assessment in teaching mathematics.

    Science.gov (United States)

    Jeltova, Ida; Birney, Damian; Fredine, Nancy; Jarvin, Linda; Sternberg, Robert J; Grigorenko, Elena L

    2011-01-01

    This study entailed a 3 (instructional intervention) × 2 (assessment-type) between-subjects experimental design employing a pretest-intervention-posttest methodology. The instructional interventions were administered between subjects in three conditions: (a) dynamic instruction, (b) triarchic or theory of successful intelligence-control instruction, and (c) standard-control instruction. The assessment-type consisted between subjects of either (a) a group-administered dynamic posttest or (b) the same group-administered posttest interspersed with a control filler activity. Performance in different mathematics content areas taught in fourth grade was investigated. In total, 1,332 students and 63 classroom teachers in 24 schools across six school districts participated in the study. The results indicate the advantages of using dynamic instruction and assessment in regular classrooms while teaching mathematics, especially when the student body is highly ethnically diverse.

  2. The impact of high-stakes, state-mandated student performance assessment on 10th grade English, mathematics, and science teachers' instructional practices

    Science.gov (United States)

    Vogler, Kenneth E.

    The purpose of this study was to determine if the public release of student results on high-stakes, state-mandated performance assessments influence instructional practices, and if so in what manner. The research focused on changes in teachers' instructional practices and factors that may have influenced such changes since the public release of high-stakes, state-mandated student performance assessment scores. The data for this study were obtained from a 54-question survey instrument given to a stratified random sample of teachers teaching at least one section of 10th grade English, mathematics, or science in an academic public high school within Massachusetts. Two hundred and fifty-seven (257) teachers, or 62% of the total sample, completed the survey instrument. An analysis of the data found that teachers are making changes in their instructional practices. The data show notable increases in the use of open-response questions, creative/critical thinking questions, problem-solving activities, use of rubrics or scoring guides, writing assignments, and inquiry/investigation. Teachers also have decreased the use of multiple-choice and true-false questions, textbook-based assignments, and lecturing. Also, the data show that teachers felt that changes made in their instructional practices were most influenced by an "interest in helping my students attain MCAS assessment scores that will allow them to graduate high school" and by an "interest in helping my school improve student (MCAS) assessment scores," Finally, mathematics teachers and teachers with 13--19 years of experience report making significantly more changes than did others. It may be interpreted from the data that the use of state-mandated student performance assessments and the high-stakes attached to this type of testing program contributed to changes in teachers' instructional practices. The changes in teachers' instructional practices have included increases in the use of instructional practices deemed

  3. New trends in gender and mathematics performance: a meta-analysis.

    Science.gov (United States)

    Lindberg, Sara M; Hyde, Janet Shibley; Petersen, Jennifer L; Linn, Marcia C

    2010-11-01

    In this article, we use meta-analysis to analyze gender differences in recent studies of mathematics performance. First, we meta-analyzed data from 242 studies published between 1990 and 2007, representing the testing of 1,286,350 people. Overall, d = 0.05, indicating no gender difference, and variance ratio = 1.08, indicating nearly equal male and female variances. Second, we analyzed data from large data sets based on probability sampling of U.S. adolescents over the past 20 years: the National Longitudinal Surveys of Youth, the National Education Longitudinal Study of 1988, the Longitudinal Study of American Youth, and the National Assessment of Educational Progress. Effect sizes for the gender difference ranged between -0.15 and +0.22. Variance ratios ranged from 0.88 to 1.34. Taken together, these findings support the view that males and females perform similarly in mathematics.

  4. International note: Prediction of mathematics work ethic and performance from behavioral, normative, and control beliefs among Qatari adolescents.

    Science.gov (United States)

    Areepattamannil, Shaljan; Abdelfattah, Faisal; Mahasneh, Randa Ali; Khine, Myint Swe; Welch, Anita G; Melkonian, Michael; Al Nuaimi, Samira Ahmed

    2016-01-01

    Over half-a-million adolescents take part in each cycle of the Program for International Student Assessment (PISA). Yet often, researchers and policy makers across the globe tend to focus their attention primarily on the academic trajectories of adolescents hailing from highly successful education systems. Hence, a vast majority of the adolescent population who regionally and globally constitute the 'long tail of underachievement' often remain unnoticed and underrepresented in the growing literature on adolescents' academic trajectories. The present study, therefore, explored the relations of dispositions toward mathematics, subjective norms in mathematics, and perceived control of success in mathematics to mathematics work ethic as well as mathematics performance; and the mediational role of mathematics work ethic in the association between dispositional, normative, and control beliefs and mathematics performance among adolescents in one of the lowest performing education systems, Qatar. Structural equation modeling (SEM) analyses revealed that Qatari adolescents' dispositional, normative, and control beliefs about mathematics were significantly associated with their mathematics work ethic and mathematics performance, and mathematics work ethic significantly mediated the relationship between dispositional, normative, and control beliefs about mathematics and mathematics performance. However, multi-group SEM analyses indicated that these relationships were not invariant across the gender and the SES groups. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  5. The Chicken or the Egg? The Direction of the Relationship Between Mathematics Anxiety and Mathematics Performance

    OpenAIRE

    Carey, Emma; Hill, Francesca; Devine, Amy; Sz?cs, D?nes

    2016-01-01

    This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by ...

  6. The Interactional Accomplishment of Not Knowing in Elementary School Science and Mathematics: Implications for Classroom Performance Assessment Practices

    Science.gov (United States)

    Reis, Giuliano; Barwell, Richard

    2013-01-01

    The day-to-day business of being a science or mathematics teacher involves the continuous assessment of students. This, in turn, is an inherently discursive process. The aim of the present study is to examine some of the specific discursive practices through which science and mathematics knowing is jointly produced through classroom interaction.…

  7. Development Mathematic Assessment to Increase Mathematical Prerequisite Ability on The Student with Learning Disabilities in Inclusive Elementary School

    Science.gov (United States)

    Robiansyah, S. T. U.; Nanang, F.; Hidayat

    2018-01-01

    The purpose of this study was to introduce about mathematic assessment is a process of obtaining data or information about the mastery of a student's mathematical skills as an ingredient in preparing a learning program. With this mathematics assessment can be known obstacles, difficulties and needs of students especially in the field of mathematic, so that the learning program will be in accordance with the potential students because it is tailored to what is required of students. This research study was conducted at elementary school of inclusive precisely at SDN Sukagalih I Bandung City based learning in setting of inclusive education. This research study is motivated by the existence of a first-grade student who has disabilities learning in mathematics, the ability of the mathematical prerequisite mastery of the classification of objects by color. The results of the research can provide a profile picture of student data information, the data obtained from the results of the development of systematic and formal mathematical assessment. After doing the development of mathematics assessment then the teacher gets important related information: 1. process the analysis of students’ learning needs, especially in the field of mathematics, 2. preparing the learning program planning according to student learning needs, 3. Designing procedural of method remedial program.

  8. Achievement Gaps: How Hispanic and White Students in Public Schools Perform in Mathematics and Reading on the National Assessment of Educational Progress. Highlights. NCES 2011-485

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    This report provides a detailed portrait of Hispanic and White academic achievement gaps and how students' performance has changed over time at both the national and state levels. The report presents achievement gaps using reading and mathematics assessment data from the National Assessment of Educational Progress (NAEP) for the 4th- and 8th-grade…

  9. Developing a Multi-Dimensional Early Elementary Mathematics Screener and Diagnostic Tool: The Primary Mathematics Assessment.

    Science.gov (United States)

    Brendefur, Jonathan L; Johnson, Evelyn S; Thiede, Keith W; Strother, Sam; Severson, Herb H

    2018-01-01

    There is a critical need to identify primary level students experiencing difficulties in mathematics to provide immediate and targeted instruction that remediates their deficits. However, most early math screening instruments focus only on the concept of number, resulting in inadequate and incomplete information for teachers to design intervention efforts. We propose a mathematics assessment that screens and provides diagnostic information in six domains that are important to building a strong foundation in mathematics. This article describes the conceptual framework and psychometric qualities of a web-based assessment tool, the Primary Math Assessment (PMA). The PMA includes a screener to identify students at risk for poor math outcomes and a diagnostic tool to provide a more in-depth profile of children's specific strengths and weaknesses in mathematics. The PMA allows teachers and school personnel to make better instructional decisions by providing more targeted analyses.

  10. ORIGINAL ARTICLE An Assessment of Mathematics Classroom ...

    African Journals Online (AJOL)

    Bdu

    ORIGINAL ARTICLE. An Assessment of Mathematics Classroom Teaching- ... the study was to assess whether the learning classroom environment was compliant with constructivism. ... of our education system. Applefield ... share control of the design, management, and evaluation ..... development of formative assessment.

  11. Is There a Causal Relation between Mathematical Creativity and Mathematical Problem-Solving Performance?

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2016-01-01

    The relationship between mathematical creativity (MC) and mathematical problem-solving performance (MP) has often been studied but the causal relation between these two constructs has yet to be clearly reported. The main purpose of this study was to define the causal relationship between MC and MP. Data from a representative sample of 480…

  12. Students' Perceptions of Assessment in Undergraduate Mathematics

    Science.gov (United States)

    Iannone, Paola; Simpson, Adrian

    2013-01-01

    A consistent message emerges from research on undergraduate students' perceptions of assessment which describes traditional assessment as detrimental to learning. However this literature has not included students in the pure sciences. Mathematics education literature advocates the introduction of innovative assessment at university. In this…

  13. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Science.gov (United States)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao; Gejl, Anne Kær; Andersen, Lars Bo; Froberg, Karsten; Bugge, Anna

    2016-01-01

    To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive performance.

  14. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Directory of Open Access Journals (Sweden)

    Sidsel L Domazet

    Full Text Available To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents.The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer.Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance.Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive

  15. Why do early mathematics skills predict later reading? The role of mathematical language.

    Science.gov (United States)

    Purpura, David J; Logan, Jessica A R; Hassinger-Das, Brenna; Napoli, Amy R

    2017-09-01

    A growing body of evidence indicates that the development of mathematics and literacy skills is highly related. The importance of literacy skills-specifically language-for mathematics development has been well rationalized. However, despite several prominent studies indicating that mathematics skills are highly predictive of literacy development, the reason for this relation is not well understood. The purpose of this study was to identify how and why early mathematics is predictive of early literacy development. Participants included 125 preschool children 3-5 years old (M = 4 years 3 months). Participants were assessed on mathematics, literacy, and cognitive measures in both the fall and spring of their preschool year. Mediation analyses indicated that the relation between early mathematics and literacy skills is mediated by children's mathematical language skills. These findings suggest that, in prior research identifying mathematical performance as a significant predictor of later literacy skills, mathematical performance may have acted only as a proxy measure for more complex language skills such as those assessed on a mathematical language measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Students' Preferences in Undergraduate Mathematics Assessment

    Science.gov (United States)

    Iannone, P.; Simpson, A.

    2015-01-01

    Existing research into students' preferences for assessment methods has been developed from a restricted sample: in particular, the voice of students in the 'hard-pure sciences' has rarely been heard. We conducted a mixed method study to explore mathematics students' preferences of assessment methods. In contrast to the message from the general…

  17. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  18. Mathematical Performance: What's in It for Developmental Educators?

    Science.gov (United States)

    Garofalo, Joe

    1985-01-01

    Points out that successful mathematical performance depends not only on declarative and procedural content knowledge, but also upon mathematical thinking skills such as problem-schema knowledge, decision-making skills, and metacognitive knowledge. Argues that the growing need for remediation should influence schools' traditional overemphasis on…

  19. An Evaluation of the Mathematics Foundation Course in Sultan Qaboos University: Does High School Performance Matter?

    Directory of Open Access Journals (Sweden)

    Mohammad Mazharul Islam

    2018-01-01

    Full Text Available Although the mathematics foundation program was introduced in Sultan Qaboos University (SQU half a decade ago, there has been no evaluation or assessment of the program. The aim of this study was to evaluate the students’ performance in the Mathematics foundation course in SQU and to examine the predictive value of  a student’s high school performance for success in the math foundation course. The study considered a sample of 551 students who took the math course (MATH2107 during 2014 Spring semester. More than 95% of the students were admitted to SQU with a high school score of 80 and above.  The analysis revealed that, in general, female students were admitted to SQU with a significantly higher average high school score than the male students. The findings indicate a very unsatisfactory performance of the students in the mathematics foundation course as the mean GPA was 1.66 and more than half (59% of the students obtained a GPA less than 2 (i.e. below grade C, of which 14% failed and 35% obtained grade D. Female students outperformed male students in the mathematics course. High school mathematics performance, gender and cohort of students were identified as significant predictors of success in the mathematics foundation course.  To increase the success rate of the mathematics course, the high school curriculum needs to be aligned with the University standards and the admission authority should continue to give more attention to high school mathematics scores along with overall high school performance while making admission decisions for the College of Science in SQU.

  20. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance

    Directory of Open Access Journals (Sweden)

    Bashirah Ibrahim

    2017-10-01

    Full Text Available We examine students’ mathematical performance on quantitative “synthesis problems” with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students’ mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students’ formulation and combination of equations. Several reasons may explain this difference, including the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  1. Performance assessment: a peer review

    International Nuclear Information System (INIS)

    Lieberman, J.A.; Lee, W.W.L.

    1986-01-01

    This paper describes the rationale, membership, operation and major observations of the Performance Assessment National Review Group. The Group was assembled by Weston at the request of the US Department of Energy Office of Civilian Radioactive Waste Management to review performance assessment work in the US basalt, salt and tuff repository projects. The purposes were to evaluate the adequacy of the current methods, identify deficiencies, and suggest potential improvement on repository performance assessment. To perform the review, Weston retained a group of distinguished consultants who have had extensive experience in disciplines pertinent to management of radioactive wastes including mathematical modeling of fluid transport. Topics reviewed included flow and transport, source term and uncertainty analysis. While the emphasis was on methodologies, the Projects were specifically requested to show currently available results so that the way they utilized familiar methodologies could be evaluated. This paper will highlight some of the technical observations of the Group as well as some managerial and institutional issues

  2. Stereotype Threat, Test Anxiety, and Mathematics Performance

    Science.gov (United States)

    Tempel, Tobias; Neumann, Roland

    2014-01-01

    We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…

  3. Mathematics Anxiety and Mathematics Self-Efficacy in Relation to Medication Calculation Performance in Nurses

    Science.gov (United States)

    Melius, Joyce

    2012-01-01

    The purpose of this study is to identify and analyze the relationships that exist between mathematics anxiety and nurse self-efficacy for mathematics, and the medication calculation performance of acute care nurses. This research used a quantitative correlational research design and involved a sample of 84 acute care nurses, LVNs and RNs, from a…

  4. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    Science.gov (United States)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  5. Assessing the Relation between Seventh-Grade Students' Engagement and Proportional Problem Solving Performance

    Science.gov (United States)

    Lein, Amy E.; Jitendra, Asha K.; Starosta, Kristin M.; Dupuis, Danielle N.; Hughes-Reid, Cheyenne L.; Star, John R.

    2016-01-01

    In this study, the authors assessed the contribution of engagement (on-task behavior) to the mathematics problem-solving performance of seventh-grade students after accounting for prior mathematics achievement. A subsample of seventh-grade students in four mathematics classrooms (one high-, two average-, and one low-achieving) from a larger…

  6. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    Science.gov (United States)

    Huang, Tao; Gejl, Anne Kær; Froberg, Karsten

    2016-01-01

    Objectives To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. Methods The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12–14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Results Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Conclusions Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the

  7. Subjective and Objective Assessment of Mathematics Anxiety Levels among College Students

    OpenAIRE

    Baloğlu, Mustafa

    2015-01-01

    The study investigated the relationship between college students’ subjective and objective assessment of mathematics anxiety levels. Students rated their general and current mathematics anxiety levels, mathematical ability levels, and confidence in doing mathematics. The Revised Mathematics Anxiety Rating Scale was used as an objective measure of their mathematics anxiety levels. Participants were 559 students, 406 (72.6%) women and 151 (27.0%) men. Results showed that perceived general mathe...

  8. Have Basic Mathematical Skills Grown Obsolete in the Computer Age: Assessing Basic Mathematical Skills and Forecasting Performance in a Business Statistics Course

    Science.gov (United States)

    Noser, Thomas C.; Tanner, John R.; Shah, Situl

    2008-01-01

    The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…

  9. Changes in Elementary Mathematics Teachers' Understanding of Cognitive Demand: When Adapting, Creating, and Using Mathematical Performance Tasks

    Science.gov (United States)

    Jamieson, Thad Spencer

    2015-01-01

    The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…

  10. Propensity Score Matching Helps to Understand Sources of DIF and Mathematics Performance Differences of Indonesian, Turkish, Australian, and Dutch Students in PISA

    Science.gov (United States)

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    2018-01-01

    We examined Differential Item Functioning (DIF) and the size of cross-cultural performance differences in the Programme for International Student Assessment (PISA) 2012 mathematics data before and after application of propensity score matching. The mathematics performance of Indonesian, Turkish, Australian, and Dutch students on released items was…

  11. The Math Gap: a description of the mathematics performance of preschool-aged deaf/hard-of-hearing children.

    Science.gov (United States)

    Pagliaro, Claudia M; Kritzer, Karen L

    2013-04-01

    Over decades and across grade levels, deaf/hard-of-hearing (d/hh) student performance in mathematics has shown a gap in achievement. It is unclear, however, exactly when this gap begins to emerge and in what areas. This study describes preschool d/hh children's knowledge of early mathematics concepts. Both standardized and nonstandardized measures were used to assess understanding in number, geometry, measurement, problem solving, and patterns, reasoning and algebra. Results present strong evidence that d/hh students' difficulty in mathematics may begin prior to the start of formal schooling. Findings also show areas of strength (geometry) and weakness (problem solving and measurement) for these children. Evidence of poor foundational performance may relate to later academic achievement.

  12. An assessment experiment for Mathematics at the University of ...

    African Journals Online (AJOL)

    Formative assessment in distance teaching is a complex issue, particularly when diverse students are involved. At Unisa many students from previously disadvantage backgrounds need to be accommodated in tertiary mathematics and science. However, many such students have limited entry-level mathematical knowledge

  13. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics

    Science.gov (United States)

    Paechter, Manuela; Macher, Daniel; Martskvishvili, Khatuna; Wimmer, Sigrid; Papousek, Ilona

    2017-01-01

    In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men). Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in the structural

  14. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics.

    Science.gov (United States)

    Paechter, Manuela; Macher, Daniel; Martskvishvili, Khatuna; Wimmer, Sigrid; Papousek, Ilona

    2017-01-01

    In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men). Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in the structural

  15. Mathematics Anxiety and Statistics Anxiety. Shared but Also Unshared Components and Antagonistic Contributions to Performance in Statistics

    Directory of Open Access Journals (Sweden)

    Manuela Paechter

    2017-07-01

    Full Text Available In many social science majors, e.g., psychology, students report high levels of statistics anxiety. However, these majors are often chosen by students who are less prone to mathematics and who might have experienced difficulties and unpleasant feelings in their mathematics courses at school. The present study investigates whether statistics anxiety is a genuine form of anxiety that impairs students' achievements or whether learners mainly transfer previous experiences in mathematics and their anxiety in mathematics to statistics. The relationship between mathematics anxiety and statistics anxiety, their relationship to learning behaviors and to performance in a statistics examination were investigated in a sample of 225 undergraduate psychology students (164 women, 61 men. Data were recorded at three points in time: At the beginning of term students' mathematics anxiety, general proneness to anxiety, school grades, and demographic data were assessed; 2 weeks before the end of term, they completed questionnaires on statistics anxiety and their learning behaviors. At the end of term, examination scores were recorded. Mathematics anxiety and statistics anxiety correlated highly but the comparison of different structural equation models showed that they had genuine and even antagonistic contributions to learning behaviors and performance in the examination. Surprisingly, mathematics anxiety was positively related to performance. It might be that students realized over the course of their first term that knowledge and skills in higher secondary education mathematics are not sufficient to be successful in statistics. Part of mathematics anxiety may then have strengthened positive extrinsic effort motivation by the intention to avoid failure and may have led to higher effort for the exam preparation. However, via statistics anxiety mathematics anxiety also had a negative contribution to performance. Statistics anxiety led to higher procrastination in

  16. ASSESSMENT OF STUDENTS’ PROFESSIONAL COMPETENCIES – THE FUTURE TEACHERS OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Mariya B. Shashkina

    2015-01-01

    Full Text Available The aim of the investigation is to describe the authors’ approach to the assessment of the professional competence of the future teacher of mathematics.Methods. The methods involve comparative analysis of the Professional Standard of the teacher and the Federal State Educational Standards in teacher education, as well as the method of predictive analysis of modern educational situation.Results. Qualimetric approach to the structuring of the professional competencies of students is described; it allows concretizing the assessment object, to select the criteria and levels of its formedness, to trace the dynamics of development in the medium of profile preparation of a bachelor. The methodology of assessment a professional-profile competence of the future mathematics teachers is proposed; examples of the competence-assessment tools are provided.Scientific novelty. The study gives a detailed analysis of developing the innovative approach to competencies assessment as metasubject learning outcomes.Practical significance. The proposed method of competencies assessment can be used in the mathematical preparation of the future mathematics teacher, and can serve as a basis for monitoring the professional competencies of students.

  17. The role of affordances in children's learning performance and efficiency when using virtual manipulative mathematics touch-screen apps

    Science.gov (United States)

    Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry

    2016-03-01

    This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.

  18. Sex differences in mathematics and reading achievement are inversely related: within- and across-nation assessment of 10 years of PISA data.

    Science.gov (United States)

    Stoet, Gijsbert; Geary, David C

    2013-01-01

    We analyzed one decade of data collected by the Programme for International Student Assessment (PISA), including the mathematics and reading performance of nearly 1.5 million 15 year olds in 75 countries. Across nations, boys scored higher than girls in mathematics, but lower than girls in reading. The sex difference in reading was three times as large as in mathematics. There was considerable variation in the extent of the sex differences between nations. There are countries without a sex difference in mathematics performance, and in some countries girls scored higher than boys. Boys scored lower in reading in all nations in all four PISA assessments (2000, 2003, 2006, 2009). Contrary to several previous studies, we found no evidence that the sex differences were related to nations' gender equality indicators. Further, paradoxically, sex differences in mathematics were consistently and strongly inversely correlated with sex differences in reading: Countries with a smaller sex difference in mathematics had a larger sex difference in reading and vice versa. We demonstrate that this was not merely a between-nation, but also a within-nation effect. This effect is related to relative changes in these sex differences across the performance continuum: We did not find a sex difference in mathematics among the lowest performing students, but this is where the sex difference in reading was largest. In contrast, the sex difference in mathematics was largest among the higher performing students, and this is where the sex difference in reading was smallest. The implication is that if policy makers decide that changes in these sex differences are desired, different approaches will be needed to achieve this for reading and mathematics. Interventions that focus on high-achieving girls in mathematics and on low achieving boys in reading are likely to yield the strongest educational benefits.

  19. The Influence of Instructional Minutes on Grade 11 Language Arts and Mathematics High School Proficiency Assessment Performance

    Science.gov (United States)

    Welcome, Simone E.

    2017-01-01

    The purpose for this cross-sectional, non-experimental explanatory quantitative research study was to explain the amount of variance in the High School Proficiency Assessment-11 Language Arts and Mathematics scores accounted for by the amount of instructional minutes at high schools in New Jersey. A proportional, stratified random sample which…

  20. Classroom Assessment in Malawi: Teachersâ Perceptions and Practices in Mathematics

    OpenAIRE

    Susuwele-Banda, William John

    2005-01-01

    This study investigated teachersâ perceptions of classroom assessment in mathematics and their current classroom assessments practices. Specifically, the study sought to gain an understanding of the extent to which teachers use different classroom assessment methods and tools to understand and to support both the learning and teaching processes. The following three questions guided the study: 1) How do primary school teachers perceive classroom assessment in mathematics? 2) What kinds of a...

  1. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. What Math Matters? Types of Mathematics Knowledge and Relationships to Methods Course Performance

    Science.gov (United States)

    Kajander, Ann; Holm, Jennifer

    2016-01-01

    This study investigated the effect of a departmental focus on enhanced mathematics knowledge for teaching on overall performance in upper elementary mathematics methods courses. The study examined the effect of performance on a new course in mathematics for teaching on performance at the methods course level. In addition, the effect of performance…

  3. Using video games to combine learning and assessment in mathematics education

    Directory of Open Access Journals (Sweden)

    Kristian Juha Mikael Kiili

    2015-12-01

    Full Text Available One problem with most education systems is that learning and (summative assessment are generally treated as quite separate things in schools. We argue that video games can provide an opportunity to combine these processes in an engaging and effective way. The present study focuses on investigating the effectiveness and the assessment power of two different mathematics video games, Semideus and Wuzzit Trouble. In the current study, we validated the Semideus game as a rational number test instrument. We used it as a pre- and a post-test for a three-hour intervention in which we studied the effectiveness of Wuzzit Trouble, a game built on whole number arithmetic and designed to enhance mathematical thinking and problem solving skills. The results showed that (1 games can be used to assess mathematical knowledge validly, and (2 even short game-based interventions can be very effective. Based on the results, we argue that game-based assessment can create a more complete picture of mathematical knowledge than simply measuring students' accuracy, providing indicators of student misconceptions and conceptual change processes

  4. DEVELOPING PISA-LIKE MATHEMATICS TASK WITH INDONESIA NATURAL AND CULTURAL HERITAGE AS CONTEXT TO ASSESS STUDENTS MATHEMATICAL LITERACY

    Directory of Open Access Journals (Sweden)

    Wuli Oktiningrum

    2016-01-01

    Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.Keywords: development research, PISA task, mathematics literacy, fundamental mathematical capabilities DOI: http://dx.doi.org/10.22342/jme.7.1.2812.1-8

  5. Formative assessment in mathematics for engineering students

    Science.gov (United States)

    Ní Fhloinn, Eabhnat; Carr, Michael

    2017-07-01

    In this paper, we present a range of formative assessment types for engineering mathematics, including in-class exercises, homework, mock examination questions, table quizzes, presentations, critical analyses of statistical papers, peer-to-peer teaching, online assessments and electronic voting systems. We provide practical tips for the implementation of such assessments, with a particular focus on time or resource constraints and large class sizes, as well as effective methods of feedback. In addition, we consider the benefits of such formative assessments for students and staff.

  6. Classroom assessment in Chinese primary school mathematics education

    NARCIS (Netherlands)

    Zhao, X.

    2018-01-01

    In mainland China, where there exists a deeply-rooted examination culture, an assessment reform promoting the use of assessment to support teaching and learning has been carried out since 2001. After a decade, however, only a few studies have been done that focus on primary school mathematics

  7. Helping Early Childhood Educators to Understand and Assess Young Children's Mathematical Minds

    Science.gov (United States)

    Ginsburg, Herbert P.

    2016-01-01

    This issue of "ZDM Mathematics Education" focuses on the formative assessment of young children's mathematical thinking, with an emphasis on computer-based approaches drawing upon on cognitive and educational research. The authors discuss several different assessment methods, including clinical interviewing, observation, and testing,…

  8. The Effects of a Tier 3 Intervention on the Mathematics Performance of Second Grade Students With Severe Mathematics Difficulties.

    Science.gov (United States)

    Bryant, Brian R; Bryant, Diane Pedrotty; Porterfield, Jennifer; Dennis, Minyi Shih; Falcomata, Terry; Valentine, Courtney; Brewer, Chelsea; Bell, Kathy

    2016-01-01

    The purpose of this study was to determine the effectiveness of a systematic, explicit, intensive Tier 3 (tertiary) intervention on the mathematics performance of students in second grade with severe mathematics difficulties. A multiple-baseline design across groups of participants showed improved mathematics performance on number and operations concepts and procedures, which are the foundation for later mathematics success. In the previous year, 12 participants had experienced two doses (first and second semesters) of a Tier 2 intervention. In second grade, the participants continued to demonstrate low performance, falling below the 10th percentile on a researcher-designed universal screener and below the 16th percentile on a distal measure, thus qualifying for the intensive intervention. A project interventionist, who met with the students 5 days a week for 10 weeks (9 weeks for one group), conducted the intensive intervention. The intervention employed more intensive instructional design features than the previous Tier 2 secondary instruction, and also included weekly games to reinforce concepts and skills from the lessons. Spring results showed significantly improved mathematics performance (scoring at or above the 25th percentile) for most of the students, thus making them eligible to exit the Tier 3 intervention. © Hammill Institute on Disabilities 2014.

  9. Achievement of Eighth-Grade Students in Korea on the TIMSS 2011 Assessment: Effects of Confidence in Mathematics and Engagement in Mathematics Lessons

    Science.gov (United States)

    House, J. Daniel; Telese, James A.

    2016-01-01

    Research studies have identified several factors related to mathematics achievement of students in Korea. Further, results from the Trends in International Mathematics and Science Study (TIMSS) assessments have shown that instructional practices and beliefs about mathematics were significantly associated with mathematics achievement of students in…

  10. The Study of the Relationship between Mothers' Anxiety with the Mathematical Performance and Students' Anxiety

    Directory of Open Access Journals (Sweden)

    Sepideh Moradpour

    2015-04-01

    Full Text Available Today mathematics stress have considered under interesting of many psychologists of mathematics education and cognitive psychologists too so that recognize emotion and mental stimulations of students in mathematics and to find scientific strategies for removing and controlling them. Anxiety is one of important and effective issues of 21th century. This study is done with aim of the study of relationship between mothers' anxiety with mathematics performance and anxiety of their children at first grade of high school at zone one of Tehran. Among population, 97 students and their mothers are chosen. Data of this research are collected by Cattell standard questionnaire for studying mothers' anxiety and standard questionnaire of mathematics anxiety for studying mathematics anxiety and a math exam for studying of students' performance. Research findings indicate that there is significant relationship between mothers' anxiety with mathematics anxiety and performance of students. Also it indicated that there is significant difference between students with high and low mathematics anxiety in term of mathematics performance.

  11. DEVELOPING PISA-LIKE MATHEMATICS TASK WITH INDONESIA NATURAL AND CULTURAL HERITAGE AS CONTEXT TO ASSESS STUDENTS MATHEMATICAL LITERACY

    Directory of Open Access Journals (Sweden)

    Wuli Oktiningrum

    2016-01-01

    Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.

  12. Assessing the Potential of Mathematics Textbooks to Promote Deep Learning

    Science.gov (United States)

    Shield, Malcolm; Dole, Shelley

    2013-01-01

    Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep…

  13. Recognising "Good at Mathematics": Using a Performative Lens for Identity

    Science.gov (United States)

    Darragh, Lisa

    2015-01-01

    Many students do not recognise in themselves positive learner identities in mathematics and thus exclude themselves from further mathematics education, limiting their life opportunities. In this study, I use a performance metaphor for identity, drawing on G.H. Mead, Erving Goffman and Judith Butler to analyse interviews with students, taken at…

  14. An Early Mathematical Patterning Assessment: identifying young Australian Indigenous children's patterning skills

    Science.gov (United States)

    Papic, Marina

    2015-12-01

    This paper presents an Early Mathematical Patterning Assessment (EMPA) tool that provides early childhood educators with a valuable opportunity to identify young children's mathematical thinking and patterning skills through a series of hands-on and drawing tasks. EMPA was administered through one-to-one assessment interviews to children aged 4 to 5 years in the year prior to formal school. Two hundred and seventeen assessments indicated that the young low socioeconomic and predominantly Australian Indigenous children in the study group had varied patterning and counting skills. Three percent of the study group was able to consistently copy and draw an ABABAB pattern made with coloured blocks. Fifty percent could count to six by ones and count out six items with 4 % of the total group able to identify six items presented in regular formations without counting. The integration of patterning into early mathematics learning is critical to the abstraction of mathematical ideas and relationships and to the development of mathematical reasoning in young children. By using the insights into the children's thinking that the EMPA tool provides, early childhood educators can better inform mathematics teaching and learning and so help close the persistent gap in numeracy between Indigenous and non-Indigenous children.

  15. Performance assessment and licensing issues for United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S. M.

    1997-01-01

    This paper covers the performance assessment and licensing issues, the performance the objectives, the performance assessment phases, the scenario selection, the mathematical modeling and computer programs, the final results of performance assessments submitted for license applications, the institutional control period, and the licensing issues. 38 refs

  16. The Association between Working Memory and Educational Attainment as Measured in Different Mathematical Subtopics in the Swedish National Assessment: Primary Education

    Science.gov (United States)

    Nyroos, Mikaela; Wiklund-Hornqvist, Carola

    2012-01-01

    The aim of this study was to examine the relationship between working memory capacity and mathematical performance measured by the national curriculum assessment in third-grade children (n = 40). The national tests concerned six subareas within mathematics. One-way ANOVA, two-tailed Pearson correlation and multiple regression analyses were…

  17. The Study of the Relationship between Mother's Studies with Study Skills and Mathematics Performance of Students

    Directory of Open Access Journals (Sweden)

    Behnoush Taheri

    2015-07-01

    Full Text Available Certainly teaching study skills of mathematics has special importance and plays important role in mathematics performance of students. As mothers spend more times with self-children then they can be effect on study and their mathematics performance. Present research implements to study of the relationship between mothers' studies with study skills and mathematics performance of their children. Population of this research is all girl students of first grade in high school at zone one of Tehran and sample is 97 people. For collecting data of this research through standard questionnaire of mathematics studies skills is used for measuring of study skill of mathematics and questions for studying information related to mothers' studies and a math exam for getting information of mathematics performance of students are used. The results indicated that there is not significant relationship between mothers' studies and study skill of mathematics among students. Also, it is indicated that there is positive significant relationship between mothers' studies and mathematic performance of students.

  18. Technological pedagogical content knowledge of prospective mathematics teachers regarding evaluation and assessment

    Directory of Open Access Journals (Sweden)

    Ercan Atasoy

    2016-04-01

    Full Text Available The ‘technology integrated assessment process’ is an innovative method to capture and determine students’ understanding of mathematics. This assessment process is claimed to provide a singular dynamism for teaching and learning activities and it is also claimed to be of the most important elements of instruction in the educational system. In this sense, this study aims to investigate technological pedagogical content knowledge (TPACK of prospective mathematics teachers regarding the ‘evaluation’ and ‘assessment’ process. To achieve this aim, the method of qualitative research was conducted with 20 teachers. Video records and lesson plans were collected and a Mathematics Teacher TPACK Development Model was utilized to reveal themes and key features of the data. The findings revealed that, although the majority of teachers stated that they would like to use technology-integrated tools in the assessment and evaluation processes, they strongly preferred to use traditional assessment and evaluation techniques, such as pen and paper activities, multiple-choice questions in virtual environments, etc. Hence, the evidence suggests that teachers would be unable to use appropriately the technological assessment process in order to reveal students’ understanding of mathematics. As seen from the teachers’ lectures, they perceived that technology would be suitable for evaluation and assessment but in a limited way.

  19. Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    Directory of Open Access Journals (Sweden)

    Marios A. Pappas

    2018-02-01

    Full Text Available Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques.

  20. The Role of Mathematical Homework and Prior Knowledge on the Relationship between Students' Mathematical Performance, Cognitive Style and Working Memory Capacity

    Science.gov (United States)

    Mousavi, Shima; Radmehr, Farzad; Alamolhodaei, Hasan

    2012-01-01

    Introduction: The main objective of this study is (a) to investigate whether cognitive styles and working memory capacity could predict mathematical performance and which variable is relatively most important in predicting mathematical performance and b) to explore whether cognitive styles and working memory capacity could predict mathematical…

  1. Home and school resources as predictors of mathematics performance in South Africa

    Directory of Open Access Journals (Sweden)

    Mariette Visser

    2015-02-01

    Full Text Available The creation of an environment conducive to learning is vitally important in the academic achievement of learners. Such an environment extends beyond the classroom and school to include the home. It is from these environments that learners draw resources, both tangible and intangible, that impact on their educational experience. While current bodies of literature focus on either school or home resources, this paper looks at both. Multiple regression analyses were conducted on the 2011 Trends in International Mathematics and Science Study (TIMSS data to determine the resources factors that influence South African learners' performance in mathematics. The findings reveal that both school and home environments play significant roles in learners' mathematics performance. This paper therefore suggests that it is not only the socio-economic factors of schools that impact learners' mathematics performance, but also that higher levels of parental education have a significant positive influence.

  2. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    Science.gov (United States)

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  3. Mathematics Anxiety, Working Memory and Mathematics Performance in Secondary-School Children

    Directory of Open Access Journals (Sweden)

    Maria Chiara ePassolunghi

    2016-02-01

    Full Text Available Mathematics anxiety (MA has been defined as a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations. Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM also plays an important part in such anxious feelings.The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA and low math anxiety (LMA. Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  4. Performance of engineering undergraduate students in mathematics: A case study in UniMAP

    Science.gov (United States)

    Saad, Syafawati Ab.; Azziz, Nor Hizamiyani Abdul; Zakaria, Siti Aisyah; Yazid, Nornadia Mohd

    2015-12-01

    The purpose of this paper is to study the trend performance of the first year engineering students at a public university in Mathematics course: Engineering Mathematics I. We analyze how ethnicity factor influenced students' performance in mathematics course over three years period. The performance of the undergraduate students in this study is measured by their cumulative grade point average (CGPA) in the first semester. Analysis of Variance (ANOVA) will be used to test the significance difference between three variables (Malay, Chinese and Indian). Method of simple linear regression (SLR) is used to test the relationship between the performances and to predict the future performance for this course. The findings of the study show that Chinese students perform better than Malay and Indian students.

  5. Performance Analysis of Parallel Mathematical Subroutine library PARCEL

    International Nuclear Information System (INIS)

    Yamada, Susumu; Shimizu, Futoshi; Kobayashi, Kenichi; Kaburaki, Hideo; Kishida, Norio

    2000-01-01

    The parallel mathematical subroutine library PARCEL (Parallel Computing Elements) has been developed by Japan Atomic Energy Research Institute for easy use of typical parallelized mathematical codes in any application problems on distributed parallel computers. The PARCEL includes routines for linear equations, eigenvalue problems, pseudo-random number generation, and fast Fourier transforms. It is shown that the results of performance for linear equations routines exhibit good parallelization efficiency on vector, as well as scalar, parallel computers. A comparison of the efficiency results with the PETSc (Portable Extensible Tool kit for Scientific Computations) library has been reported. (author)

  6. An investigation into the mathematics performance of Grade 6 learners in South Africa

    Directory of Open Access Journals (Sweden)

    Gary S. Kotzé

    2007-10-01

    Full Text Available The aim of this article is to investigate mathematics performance of intermediate phase learners. The quality of learners’ scholastic achievement in mathematics are analysed based on the empirical evidence obtained from an international survey. The method of inquiry is based on an analysis of existing statistic-al data concerning present-oriented problems. The effects of particular variables on mathematics learn-ing are explored, such as male and female learners and those from less advantaged social backgrounds. Overall performance and competence levels are analysed. Although there are no outstanding contributing factors that influence mathematics achievement of  grade 6 learners in South Africa conclusions are drawn that may influence school system organisation and also the quality of mathematics teaching.

  7. A Cognition Analysis of QUASAR's Mathematics Performance Assessment Tasks and Their Sensitivity to Measuring Changes in Middle School Students' Thinking and Reasoning.

    Science.gov (United States)

    Cai, Jinfa, And Others

    1996-01-01

    Presents a conceptual framework for analyzing students' mathematical understanding, reasoning, problem solving, and communication. Analyses of student responses indicated that the tasks appear to measure the complex thinking and reasoning processes that they were designed to assess. Concludes that the QUASAR assessment tasks can capture changes in…

  8. Recognising `good at mathematics': using a performative lens for identity

    Science.gov (United States)

    Darragh, Lisa

    2015-03-01

    Many students do not recognise in themselves positive learner identities in mathematics and thus exclude themselves from further mathematics education, limiting their life opportunities. In this study, I use a performance metaphor for identity, drawing on G.H. Mead, Erving Goffman and Judith Butler to analyse interviews with students, taken at four time points as they make the transition from primary to secondary school. The question I focus on is `How do you recognise someone who is "good at mathematics"?' The students' responses reveal that there is a wide variety of scripts available when enacting the role of `good at mathematics', and these include getting high marks, knowing the answer quickly, helping others and demonstrating the confidence to put up their hand to answer questions. Despite the variety of ways in which to demonstrate `good at mathematics', most of the students did not recognise themselves in their own descriptions. This goes some way towards explaining why students may opt out of further study in mathematics, despite high achievement in this subject.

  9. Assessment of the Assessment Tool: Analysis of Items in a Non-MCQ Mathematics Exam

    Science.gov (United States)

    Khoshaim, Heba Bakr; Rashid, Saima

    2016-01-01

    Assessment is one of the vital steps in the teaching and learning process. The reported action research examines the effectiveness of an assessment process and inspects the validity of exam questions used for the assessment purpose. The instructors of a college-level mathematics course studied questions used in the final exams during the academic…

  10. Teachers’ learning and assessing of mathematical processes with emphasis on representations, reasoning and proof

    Directory of Open Access Journals (Sweden)

    Satsope Maoto

    2018-03-01

    Full Text Available This article focuses mainly on two key mathematical processes (representation, and reasoning and proof. Firstly, we observed how teachers learn these processes and subsequently identify what and how to assess learners on the same processes. Secondly, we reviewed one teacher’s attempt to facilitate the learning of the processes in his classroom. Two interrelated questions were pursued: ‘what are the teachers’ challenges in learning mathematical processes?’ and ‘in what ways are teachers’ approaches to learning mathematical processes influencing how they assess their learners on the same processes?’ A case study was undertaken involving 10 high school mathematics teachers who enrolled for an assessment module towards a Bachelor in Education Honours degree in mathematics education. We present an interpretive analysis of two sets of data. The first set consisted of the teachers’ written responses to a pattern searching activity. The second set consisted of a mathematical discourse on matchstick patterns in a Grade 9 class. The overall finding was that teachers rush through forms of representation and focus more on manipulation of numerical representations with a view to deriving symbolic representation. Subsequently, this unidirectional approach limits the scope of assessment of mathematical processes. Interventions with regard to the enhancement of these complex processes should involve teachers’ actual engagements in and reflections on similar learning.

  11. Performance assessment and optimisation of a large information system by combined customer relationship management and resilience engineering: a mathematical programming approach

    Science.gov (United States)

    Azadeh, A.; Foroozan, H.; Ashjari, B.; Motevali Haghighi, S.; Yazdanparast, R.; Saberi, M.; Torki Nejad, M.

    2017-10-01

    ISs and ITs play a critical role in large complex gas corporations. Many factors such as human, organisational and environmental factors affect IS in an organisation. Therefore, investigating ISs success is considered to be a complex problem. Also, because of the competitive business environment and the high amount of information flow in organisations, new issues like resilient ISs and successful customer relationship management (CRM) have emerged. A resilient IS will provide sustainable delivery of information to internal and external customers. This paper presents an integrated approach to enhance and optimise the performance of each component of a large IS based on CRM and resilience engineering (RE) in a gas company. The enhancement of the performance can help ISs to perform business tasks efficiently. The data are collected from standard questionnaires. It is then analysed by data envelopment analysis by selecting the optimal mathematical programming approach. The selected model is validated and verified by principle component analysis method. Finally, CRM and RE factors are identified as influential factors through sensitivity analysis for this particular case study. To the best of our knowledge, this is the first study for performance assessment and optimisation of large IS by combined RE and CRM.

  12. Contributions of executive function and spatial skills to preschool mathematics achievement.

    Science.gov (United States)

    Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-10-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The influence of gender on performance in mathematics in in the ...

    African Journals Online (AJOL)

    The influence of gender on performance in mathematics in in the foundation phase: the perceptions of selected teachers in a specific school. ... Again, the study has suggested strategies to encourage girls to do mathematics so as to improve their chances of following career options in engineering, accounting, medicine, ...

  14. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  15. Systematic Assessment Through Mathematical Model For Sustainability Reporting In Malaysia Context

    Science.gov (United States)

    Lanang, Wan Nurul Syahirah Wan; Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Sustainability assessment have been studied and increasingly recognized as a powerful and valuable tool to measure the performance of sustainability in a company or industry. Nowadays, there are many existing tools that the users can use for sustainable development. There are various initiatives exists on tools for sustainable development, though most of the tools focused on environmental, economy and social aspects. Using the Green Project Management (GPM) P5 concept that suggests the firms not only needs to engage in mainly 3Ps principle: planet, profit, people responsible behaviours, but also, product and process need to be included in the practices, this study will introduce a new mathematical model for assessing the level of sustainability practice in the company. Based on multiple case studies, involving in-depth interviews with senior directors, feedback from experts, and previous engineering report, a systematic approach is done with the aims to obtain the respective data from the feedbacks and to be developed into a new mathematical model. By reviewing on the methodology of this research it comprises of several phases where it starts with the analyzation of the parameters and criteria selection according to the Malaysian context of industry. Moving on to the next step is data analysis involving regression and finally the normalisation process will be done to determine the result of this research either succeeded or not. Lastly, this study is expected to provide a clear guideline to any company or organization to assimilate the sustainability assessment in their development stage. In future, the better understanding towards the sustainability assessment is attained to be aligned unitedly in order to integrated the process approach into the systematic approach for the sustainability assessment.

  16. Competence with fractions predicts gains in mathematics achievement.

    Science.gov (United States)

    Bailey, Drew H; Hoard, Mary K; Nugent, Lara; Geary, David C

    2012-11-01

    Competence with fractions predicts later mathematics achievement, but the codevelopmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this codevelopment through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grades (N=212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted 1-year gains in mathematics achievement (ß=.14, pmathematics achievement did not predict gains on the fractions concepts measure (ß=.03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, central executive span, and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Spatial transformation abilities and their relation to later mathematics performance.

    Science.gov (United States)

    Frick, Andrea

    2018-04-10

    Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.

  18. Video-games do not negatively impact adolescent academic performance in science, mathematics or reading.

    Science.gov (United States)

    Drummond, Aaron; Sauer, James D

    2014-01-01

    Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA) to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement.

  19. Dynamic Assessment, Potential Giftedness and Mathematics Achievement in Elementary School

    Science.gov (United States)

    Popa, Nicoleta Laura; Pauc, Ramona Loredana

    2015-01-01

    Dynamic assessment is currently discussed in educational literature as one of the most promising practices in stimulating learning among various groups of students, including gifted and potentially gifted students. The present study investigates effects of dynamic assessment on mathematics achievement among elementary school students, with…

  20. The Development of the Assessment for Learning Model of Mathematics for Rajamangala University of Technology Rattanakosin

    Directory of Open Access Journals (Sweden)

    Wannaree Pansiri

    2016-12-01

    Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.

  1. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  2. The implementation of skill assessment by the educators on the mathematics learning process in senior high school

    Science.gov (United States)

    Lestariani, I.; Sujadi, I.; Pramudya, I.

    2018-03-01

    The purpose of research to describe and know the implementation of skill assessment on the mathematics learning process with the high school mathematics teacher as the subject because it is less fully implemented. This research is the type of the descriptive qualitative method. The data was collecting observation method, interview and documentation. The result showed that on the planning stage of the implementation of skill assessment, there were many teachers who had not prepared all the completeness with various assessment techniques through performance, project and portfolio. The teacher was prepared the list of questions. On the implementation stage, there were many teachers who had not understand the stage of completing the assessment with the appropriate instrument method and development. On the reporting stage, discovered that teachers faced the difficulty on preparing scoring report with the range value. Aside from that, the teachers had not prepared the assessment instrument very well on the planning stage. It can be concluded that the implementation of skill assessment has been implemented but not maximally because educators don’t understand about the skill assessment and the number of instrument that must be prepared before the assessment.

  3. Factors involved in making post-performance judgments in mathematics problem-solving.

    Science.gov (United States)

    García Fernández, Trinidad; Kroesbergen, Evelyn; Rodríguez Pérez, Celestino; González-Castro, Paloma; González-Pienda, Julio A

    2015-01-01

    This study examines the impact of executive functions, affective-motivational variables related to mathematics, mathematics achievement and task characteristics on fifth and sixth graders’ calibration accuracy after completing two mathematical problems. A sample of 188 students took part in the study. They were divided into two groups as function of their judgment accuracy after completing the two tasks (accurate= 79, inaccurate= 109). Differences between these groups were examined. The discriminative value of these variables to predict group membership was analyzed, as well as the effect of age, gender, and grade level. The results indicated that accurate students showed better levels of executive functioning, and more positive feelings, beliefs, and motivation related to mathematics. They also spent more time on the tasks. Mathematics achievement, perceived usefulness of mathematics, and time spent on Task 1 significantly predicted group membership, classifying 71.3% of the sample correctly. These results support the relationship between academic achievement and calibration accuracy, suggesting the need to consider a wide range of factors when explaining performance judgments.

  4. Enhancing Formative Assessment Practice and Encouraging Middle School Mathematics Engagement and Persistence

    Science.gov (United States)

    Beesley, Andrea D.; Clark, Tedra F.; Dempsey, Kathleen; Tweed, Anne

    2018-01-01

    In the transition to middle school, and during the middle school years, students' motivation for mathematics tends to decline from what it was during elementary school. Formative assessment strategies in mathematics can help support motivation by building confidence for challenging tasks. In this study, the authors developed and piloted a…

  5. MATHEMATICAL SUPPORT OF THE INTELLIGENT INFORMATION SYSTEM OF ASSESSING THE OBJECT STATE

    Directory of Open Access Journals (Sweden)

    Sofiia Yakubovska

    2017-11-01

    Full Text Available At present, information technologies (IT are intensively used all over the world in various sectors, and today medical institutions cannot do without them when organizing the process of medical diagnostic. The IT efficiency is determined by the degree of their intellectualization that is by including knowledge bases as their component and by the transition from data processing to the processing of knowledge. The efficiency of making decisions in various areas of activity is determined by the quality and quick delivery of information. Medicine constitutes no exception in this sense. The advanced level of computer technology, applied tools, diagnostics on the basis of automated systems of decision support made it possible to solve the tasks of assessing the state of the object at a qualitatively new level. The subject matter of this study is to ensure the mathematical support of the intelligent information system (IS of assessing the state of the object. The object is understood as a patient who came through a myocardial infarction (MI. The goal of the study is to develop mathematical support of the intelligent IS of assessing and predicting a patient’s condition. To achieve the stated goal, the following tasks were solved: statistically valid and uncorrelated signs were specified; these signs enable distinguishing the group of patients who survived from those who died, “decisive rules” were formulated for predicting the MI clinical outcome. In the process of the study, the mathematical IT of assessing the state of the object was developed. The following result was obtained: the suggested mathematical models for predicting the outcome of myocardial infarction that were developed with the use of the method of discriminant function and took into account human blood values can prevent sudden coronary death and improve the diagnostic efficiency. Conclusions. Mathematical models were developed to predict the state of the object in the event of

  6. The influence of second language teaching on undergraduate mathematics performance

    Science.gov (United States)

    Gerber, Ans; Engelbrecht, Johann; Harding, Ansie; Rogan, John

    2005-10-01

    Understanding abstract concepts and ideas in mathematics, if instruction takes place in the first language of the student, is difficult. Yet worldwide students often have to master mathematics via a second or third language. The majority of students in South Africa — a country with eleven official languages — has to face this difficulty. In a quantitative study of first year calculus students, we investigated two groups of students. For one group tuition took place in their home language; for the second group, tuition was in English, a second or even a third language. Performance data on their secondary mathematics and first year tertiary calculus were analysed. The study showed that there was no significant difference between the adjusted means of the entire group of first language learners and the entire group of second language learners. Neither was there any statistically significant difference between the performances of the two groups of second language learners (based on the adjusted means). Yet, there did seem to be a significant difference between the achievement of Afrikaans students attending Afrikaans lectures and Afrikaans students attending English lectures.

  7. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  8. Pilot study: EatFit impacts sixth graders' academic performance on achievement of mathematics and english education standards.

    Science.gov (United States)

    Shilts, Mical Kay; Lamp, Cathi; Horowitz, Marcel; Townsend, Marilyn S

    2009-01-01

    Investigate the impact of a nutrition education program on student academic performance as measured by achievement of education standards. Quasi-experimental crossover-controlled study. California Central Valley suburban elementary school (58% qualified for free or reduced-priced lunch). All sixth-grade students (n = 84) in the elementary school clustered in 3 classrooms. 9-lesson intervention with an emphasis on guided goal setting and driven by the Social Cognitive Theory. Multiple-choice survey assessing 5 education standards for sixth-grade mathematics and English at 3 time points: baseline (T1), 5 weeks (T2), and 10 weeks (T3). Repeated measures, paired t test, and analysis of covariance. Changes in total scores were statistically different (P academic performance measured by achievement of specific mathematics and English education standards. Nutrition educators can show school administrators and wellness committee members that this program can positively impact academic performance, concomitant to its primary objective of promoting healthful eating and physical activity.

  9. Video-games do not negatively impact adolescent academic performance in science, mathematics or reading.

    Directory of Open Access Journals (Sweden)

    Aaron Drummond

    Full Text Available Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement.

  10. Video-Games Do Not Negatively Impact Adolescent Academic Performance in Science, Mathematics or Reading

    Science.gov (United States)

    Drummond, Aaron; Sauer, James D.

    2014-01-01

    Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA) to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and reading. Contrary to claims that increased video-gaming can impair academic performance, differences in academic performance were negligible across the relative frequencies of videogame use. Videogame use had little impact on adolescent academic achievement. PMID:24699536

  11. Behavioral Executive Functions Among Adolescents With Mathematics Difficulties.

    Science.gov (United States)

    Holm, Marja E; Aunio, Pirjo; Björn, Piia M; Klenberg, Liisa; Korhonen, Johan; Hannula, Markku S

    2017-07-01

    This study investigates behavioral executive functions (EFs) in the mathematics classroom context among adolescents with different mathematics performance levels. The EF problems were assessed by teachers using a behavioral rating inventory. Using cutoff scores on a standardized mathematics assessment, groups with mathematics difficulties (MD; n = 124), low mathematics performance (LA; n = 140), and average or higher scores (AC; n = 355) were identified. Results showed that the MD group had more problems with distractibility, directing attention, shifting attention, initiative, execution of action, planning, and evaluation than the LA group, whereas the differences in hyperactivity, impulsivity, and sustaining attention were not significant. Compared to the AC group, the MD group showed more problems with all behavioral EFs except hyperactivity and impulsivity, while the LA group showed more problems only with shifting attention. Male adolescents showed more behavioral EF problems than female adolescents, but this gender difference was negligible within the MD group. The practical implications of the results are discussed.

  12. Developing classroom formative assessment in dutch primary mathematics education

    NARCIS (Netherlands)

    van den Berg, M.; Harskamp, E.G.; Suhre, C.J.M.

    2016-01-01

    In the last two decades Dutch primary school students scored below expectation in international mathematics tests. An explanation for this may be that teachers fail to adequately assess their students’ understanding of learning goals and provide timely feedback. To improve the teachers’ formative

  13. Japanese Pupils’ Attribution of their Perceived Mathematics Performance and the Relationships Between their Attribution of Mathematics Performance and their Affective Attitudes Promoted by Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Tomomi Saeki

    2006-04-01

    Full Text Available This research used a questionnaire survey to explore the relationship between pupils’ attribution of their perceived mathematics performance and their affective attitudes towards mathematics learning as promoted by the different teaching methods they were exposed to in their mathematics classes. Both 5th and 8th graders attributed their success in learning mathematics to effort, although support from the teacher and support at home were also perceived as important factors in their success. The 5th graders and 8th graders overall gave effort-based attributions in the case of failure, while for 5th graders, ability was regarded as being as important as effort, in attributing failure in mathematics learning. Pupils who attributed their success in mathematics learning to effort, support at school and home, preferred teacher explanation and reading a textbook as learning strategies, while those attributing it to their ability preferred Individual work. Where pupils attributed success to luck, this seemed to have a negative effect on their affective attitudes towards mathematics learning as promoted by different teaching methods, while attributing failure to luck seemed to have positive effect. Attributing failure to poor teaching seemed to have a negative effect on their perception of teacher explanation. The relationships between pupil effort or ability based attributions of failure and their preference for different teaching methods were not clear. Adopting various teaching methods in mathematics classes would seem to support pupils who have different attribution styles.

  14. Developing non-routine problems for assessing students’ mathematical literacy

    Science.gov (United States)

    Murdiyani, N. M.

    2018-03-01

    The purpose of this study is to develop non-routine problems for assessing the mathematics literacy skills of students, which is valid, practical, and effective. It is based on the previous research said that Indonesian students’ mathematical literacy is still low. The results of this study can be used as a guide in developing the evaluation questions that can train students to improve the ability of solving non-routine problems in everyday life. This research type is formative evaluation that consists of preliminary, self evaluation, expert reviews, one-to-one, small group, and field test. The sample of this research is grade 8 students at one of Junior High School in Yogyakarta. This study results in mathematics literacy problems prototype consisting of level 1 to level 6 problems similar to PISA problems. This study also discusses the examples of students’ answer and their reasoning.

  15. An Examination of Stereotype Threat Effects on Girls' Mathematics Performance

    Science.gov (United States)

    Ganley, Colleen M.; Mingle, Leigh A.; Ryan, Allison M.; Ryan, Katherine; Vasilyeva, Marina; Perry, Michelle

    2013-01-01

    Stereotype threat has been proposed as 1 potential explanation for the gender difference in standardized mathematics test performance among high-performing students. At present, it is not entirely clear how susceptibility to stereotype threat develops, as empirical evidence for stereotype threat effects across the school years is inconsistent. In…

  16. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  17. Open-Start Mathematics Problems: An Approach to Assessing Problem Solving

    Science.gov (United States)

    Monaghan, John; Pool, Peter; Roper, Tom; Threlfall, John

    2009-01-01

    This article describes one type of mathematical problem, open-start problems, and discusses their potential for use in assessment. In open-start problems how one starts to address the problem can vary but they have a correct answer. We argue that the use of open-start problems in assessment could positively influence classroom mathematics…

  18. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  19. Performance assessment methodology (PAM) for low level radioactive waste (LLRW) disposal facilities

    International Nuclear Information System (INIS)

    Selander, W.N.

    1992-01-01

    An overview is given for Performance Assessment Methodology (PAM) for Low Level Radioactive Waste (LLRW) disposal technologies, as required for licensing and safety studies. This is a multi-disciplinary activity, emphasizing applied mathematics, mass transfer, geohydrology and radiotoxicity effects on humans. (author). 2 refs

  20. Effects of reading picture books on kindergartners’ mathematics performance

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Elia, Iliada; Robitzsch, Alexander

    2016-01-01

    This article describes a field experiment with a pretest–posttest control group design which investigated the potential of reading picture books to children for supporting their mathematical understanding. The study involved 384 children from 18 kindergarten classes in 18 schools in the Netherlands. During three months, the children in the nine experimental classes were read picture books. Data analysis revealed that, when controlled for relevant covariates, the picture book reading programme had a positive effect (d = .13) on kindergartners’ mathematics performance as measured by a project test containing items on number, measurement and geometry. Compared to the increase from pretest to posttest in the control group, the increase in the experimental group was 22% larger. No significant differential intervention effects were found between subgroups based on kindergarten year, age, home language, socio-economic status and mathematics and language ability, but a significant intervention effect was found for girls and not for boys. PMID:26855457

  1. Mathematics authentic assessment on statistics learning: the case for student mini projects

    Science.gov (United States)

    Fauziah, D.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    Mathematics authentic assessment is a form of meaningful measurement of student learning outcomes for the sphere of attitude, skill and knowledge in mathematics. The construction of attitude, skill and knowledge achieved through the fulfilment of tasks which involve active and creative role of the students. One type of authentic assessment is student mini projects, started from planning, data collecting, organizing, processing, analysing and presenting the data. The purpose of this research is to learn the process of using authentic assessments on statistics learning which is conducted by teachers and to discuss specifically the use of mini projects to improving students’ learning in the school of Surakarta. This research is an action research, where the data collected through the results of the assessments rubric of student mini projects. The result of data analysis shows that the average score of rubric of student mini projects result is 82 with 96% classical completeness. This study shows that the application of authentic assessment can improve students’ mathematics learning outcomes. Findings showed that teachers and students participate actively during teaching and learning process, both inside and outside of the school. Student mini projects also provide opportunities to interact with other people in the real context while collecting information and giving presentation to the community. Additionally, students are able to exceed more on the process of statistics learning using authentic assessment.

  2. The "Mozart Effect" and the Mathematical Connection

    Science.gov (United States)

    Taylor, Judy M.; Rowe, Beverly J.

    2012-01-01

    Educators are always looking for ways to enhance the performance of students on outcome assessments. There is a growing body of research showing the benefits of music on educational performance. The purpose of this study was to determine if a "Mozart Effect" improves student performance on outcome assessments in mathematics. In this study, during…

  3. LATENT CLUSTER ANALYSIS OF INSTRUCTIONAL PRACTICES REPORTED BY HIGH- AND LOW-PERFORMING MATHEMATICS TEACHERS IN FOUR COUNTRIES

    Directory of Open Access Journals (Sweden)

    Qiang Cheng

    2017-06-01

    Full Text Available Using Trends in International Mathematics and Science Study (TIMSS 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the design of the current study. Latent cluster analysis was applied in the investigation of the profiles of mathematics teachers’ instructional practices across the four education systems. It was found that all mathematics teachers in the high- and low-performing groups used procedurally as well as conceptually oriented practices in their teaching. However, one group of high-performing mathematics teachers from the U.S. sample and all the high-performing teachers from Finland, Korea, and Russia showed more frequent use of conceptually oriented practices than their corresponding low-performing teachers. Another group of U.S. high-performing mathematics teachers showed a distinctive procedurally oriented pattern, which presented a rather different picture. Such results provide useful suggestions for practitioners and policy makers in their effort to improve mathematics teaching and learning in the US and in other countries as well.DOI: http://dx.doi.org/10.22342/jme.8.2.4066.115-132

  4. Effects of Vigorous Intensity Physical Activity on Mathematics Test Performance

    Science.gov (United States)

    Phillips, David S.; Hannon, James C.; Castelli, Darla M.

    2015-01-01

    The effect of an acute bout of physical activity on academic performance in school-based settings is under researched. The purpose of this study was to examine associations between a single, vigorous (70-85%) bout of physical activity completed during physical education on standardized mathematics test performance among 72, eighth grade students…

  5. Effects of flipped instruction on the performance and attitude of high school students in mathematics

    Directory of Open Access Journals (Sweden)

    Remalyn Q. Casem

    2017-03-01

    Full Text Available This study aimed to determine the effects of flipped instruction on the performance and attitude of high school students in Mathematics. The study made use of the true experimental design, specifically the pretest-posttest control group design. There were two instruments used to gather data, the pretest-posttest which was subjected to validity and reliability tests and the Modified Fennema-Sherman Attitudes Scale. It was found out that the experimental and control groups were comparable in the pretest and posttest. Comparison on their gain scores revealed significant difference with performance of the experimental group higher than the control group. There was no significant difference on the level of attitude of the participants in the experimental group before and after the study in terms of confidence in learning mathematics, attitude toward success in mathematics, mathematics anxiety and perception of teacher's attitudes. A very weak positive relationship existed between performance and attitudes toward mathematics.

  6. Mathematics beliefs and achievement of adolescent students in Japan: results from the TIMSS 1999 assessment.

    Science.gov (United States)

    House, J Daniel

    2005-12-01

    A recent study (1) of undergraduate students in a precalculus course indicated that they expressed slightly positive attitudes toward mathematics. It is important, however, to examine relationships between students' initial attitudes and achievement outcomes. The present purpose was to assess the relationship between self-beliefs and mathematics achievement for a large national sample of students from the TIMSS 1999 international sample (eighth graders) from Japan. Several significant relationships between mathematics beliefs and test scores were noted. In addition, the overall multiple regression equation that assessed the joint significance of the complete set of self-belief variables was significant (F7.65 = 159.48, p < .001) and explained 20.6% of the variance in mathematics achievement test scores.

  7. Gender, Parental Beliefs and Children's Mathematics Performance: Insights from the Longitudinal Study of Australian Children

    Science.gov (United States)

    Carmichael, Colin

    2014-01-01

    With reports of declining participation in mathematics related careers and low female participation rates, the issue of gender differences in mathematics remains relevant. This study seeks to examine the relationship between: children's sex, parents' beliefs regarding their children's education, and, the children's mathematics performance. Through…

  8. Peer assessment of aviation performance: inconsistent for good reasons.

    Science.gov (United States)

    Roth, Wolff-Michael; Mavin, Timothy J

    2015-03-01

    Research into expertise is relatively common in cognitive science concerning expertise existing across many domains. However, much less research has examined how experts within the same domain assess the performance of their peer experts. We report the results of a modified think-aloud study conducted with 18 pilots (6 first officers, 6 captains, and 6 flight examiners). Pairs of same-ranked pilots were asked to rate the performance of a captain flying in a critical pre-recorded simulator scenario. Findings reveal (a) considerable variance within performance categories, (b) differences in the process used as evidence in support of a performance rating, (c) different numbers and types of facts (cues) identified, and (d) differences in how specific performance events affect choice of performance category and gravity of performance assessment. Such variance is consistent with low inter-rater reliability. Because raters exhibited good, albeit imprecise, reasons and facts, a fuzzy mathematical model of performance rating was developed. The model provides good agreement with observed variations. Copyright © 2014 Cognitive Science Society, Inc.

  9. Primary School Teachers’ Assessment Profiles in Mathematics Education

    Science.gov (United States)

    Veldhuis, Michiel; van den Heuvel-Panhuizen, Marja

    2014-01-01

    The aim of this study was to contribute to knowledge about classroom assessment by identifying profiles of teachers’ assessment of their students’ understanding of mathematics. For carrying out this study we used data of a nationwide teacher survey (N = 960) in the Netherlands. The data were collected by an online questionnaire. Through exploratory factor analyses the underlying structure of what is measured by this questionnaire was uncovered as consisting of five factors: Goal centeredness of assessment, Authentic nature of assessment, Perceived usefulness of assessment, Diversity of assessment problem format, and Allocated importance of assessing skills and knowledge. By using a latent class analysis four different assessment profiles of teachers were identified: Enthusiastic assessors, Mainstream assessors, Non-enthusiastic assessors, and Alternative assessors. The findings suggest that teachers with particular assessment profiles have qualitatively different assessment practices. The paper concludes with discussing theoretical implications of these assessment profiles and indications these profiles can offer both for designing material for professional development in classroom assessment and for evaluating changes in teachers’ classroom assessment practice. PMID:24466255

  10. Primary school teachers' assessment profiles in mathematics education.

    Science.gov (United States)

    Veldhuis, Michiel; van den Heuvel-Panhuizen, Marja

    2014-01-01

    The aim of this study was to contribute to knowledge about classroom assessment by identifying profiles of teachers' assessment of their students' understanding of mathematics. For carrying out this study we used data of a nationwide teacher survey (N = 960) in the Netherlands. The data were collected by an online questionnaire. Through exploratory factor analyses the underlying structure of what is measured by this questionnaire was uncovered as consisting of five factors: Goal centeredness of assessment, Authentic nature of assessment, Perceived usefulness of assessment, Diversity of assessment problem format, and Allocated importance of assessing skills and knowledge. By using a latent class analysis four different assessment profiles of teachers were identified: Enthusiastic assessors, Mainstream assessors, Non-enthusiastic assessors, and Alternative assessors. The findings suggest that teachers with particular assessment profiles have qualitatively different assessment practices. The paper concludes with discussing theoretical implications of these assessment profiles and indications these profiles can offer both for designing material for professional development in classroom assessment and for evaluating changes in teachers' classroom assessment practice.

  11. Primary school teachers' assessment profiles in mathematics education.

    Directory of Open Access Journals (Sweden)

    Michiel Veldhuis

    Full Text Available The aim of this study was to contribute to knowledge about classroom assessment by identifying profiles of teachers' assessment of their students' understanding of mathematics. For carrying out this study we used data of a nationwide teacher survey (N = 960 in the Netherlands. The data were collected by an online questionnaire. Through exploratory factor analyses the underlying structure of what is measured by this questionnaire was uncovered as consisting of five factors: Goal centeredness of assessment, Authentic nature of assessment, Perceived usefulness of assessment, Diversity of assessment problem format, and Allocated importance of assessing skills and knowledge. By using a latent class analysis four different assessment profiles of teachers were identified: Enthusiastic assessors, Mainstream assessors, Non-enthusiastic assessors, and Alternative assessors. The findings suggest that teachers with particular assessment profiles have qualitatively different assessment practices. The paper concludes with discussing theoretical implications of these assessment profiles and indications these profiles can offer both for designing material for professional development in classroom assessment and for evaluating changes in teachers' classroom assessment practice.

  12. Assessing Student Learning in Gender Inclusive Tertiary Mathematics and Physics Education.

    Science.gov (United States)

    Wistedt, Inger

    1998-01-01

    The merits and limitations of an alternative assessment method implemented in an inclusive university education program are discussed based on data from a study in which 24 Swedish university students presented mathematics and physics project results. The study shows how an interdisciplinary approach to assessment can promote critical reflection…

  13. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  14. Some Factors That Affecting the Performance of Mathematics Teachers in Junior High School in Medan

    Science.gov (United States)

    Manullang, Martua; Rajagukguk, Waminton

    2016-01-01

    Some Factor's That Affecting The Mathematic Teacher Performance For Junior High School In Medan. This research will examine the effect of direct and indirect of the Organizational Knowledge towards the achievement motivation, decision making, organizational commitment, the performance of mathematics teacher. The research method is a method of…

  15. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  16. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    Science.gov (United States)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  17. The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances

    International Nuclear Information System (INIS)

    Barukčić, M.; Ćorluka, V.; Miklošević, K.

    2015-01-01

    Highlights: • The temperature and irradiance dependent model for the I–V curve estimation is presented. • The purely mathematical model based on the analysis of the I–V curve shape is presented. • The model includes the Gompertz function with temperature and irradiance dependent parameters. • The input data are extracted from the data sheet I–V curves. - Abstract: The temperature and irradiance dependent mathematical model for photovoltaic panel performances estimation is proposed in the paper. The base of the model is the mathematical function of the photovoltaic panel current–voltage curve. The model of the current–voltage curve is based on the sigmoid function with temperature and irradiance dependent parameters. The temperature and irradiance dependencies of the parameters are proposed in the form of analytic functions. The constant parameters are involved in the analytical functions. The constant parameters need to be estimated to get the temperature and irradiance dependent current–voltage curve. The mathematical model contains 12 constant parameters and they are estimated by using the evolutionary algorithm. The optimization problem is defined for this purpose. The optimization problem objective function is based on estimated and extracted (measured) current and voltage values. The current and voltage values are extracted from current–voltage curves given in datasheet of the photovoltaic panels. The new procedure for estimation of open circuit voltage value at any temperature and irradiance is proposed in the model. The performance of the proposed mathematical model is presented for three different photovoltaic panel technologies. The simulation results indicate that the proposed mathematical model is acceptable for estimation of temperature and irradiance dependent current–voltage curve and photovoltaic panel performances within temperature and irradiance ranges

  18. A Cross-National Comparison of Reported Effort and Mathematics Performance in TIMSS Advanced

    Science.gov (United States)

    Eklöf, Hanna; Pavešic, Barbara Japelj; Grønmo, Liv Sissel

    2014-01-01

    The purpose of the study was to measure students' reported test-taking effort and the relationship between reported effort and performance on the Trends in International Mathematics and Science Study (TIMSS) Advanced mathematics test. This was done in three countries participating in TIMSS Advanced 2008 (Sweden, Norway, and Slovenia), and the…

  19. Performing mathematics activities with non-standard units of measurement using robots controlled via speech-generating devices: three case studies.

    Science.gov (United States)

    Adams, Kim D; Cook, Albert M

    2017-07-01

    Purpose To examine how using a Lego robot controlled via a speech-generating device (SGD) can contribute to how students with physical and communication impairments perform hands-on and communicative mathematics measurement activities. This study was a follow-up to a previous study. Method Three students with cerebral palsy used the robot to measure objects using non-standard units, such as straws, and then compared and ordered the objects using the resulting measurement. Their performance was assessed, and the manipulation and communication events were observed. Teachers and education assistants were interviewed regarding robot use. Results Similar benefits to the previous study were found in this study. Gaps in student procedural knowledge were identified such as knowing to place measurement units tip-to-tip, and students' reporting revealed gaps in conceptual understanding. However, performance improved with repeated practice. Stakeholders identified that some robot tasks took too long or were too difficult to perform. Conclusions Having access to both their SGD and a robot gave the students multiple ways to show their understanding of the measurement concepts. Though they could participate actively in the new mathematics activities, robot use is most appropriate in short tasks requiring reasonable operational skill. Implications for Rehabilitation Lego robots controlled via speech-generating devices (SGDs) can help students to engage in the mathematics pedagogy of performing hands-on activities while communicating about concepts. Students can "show what they know" using the Lego robots, and report and reflect on concepts using the SGD. Level 1 and Level 2 mathematics measurement activities have been adapted to be accomplished by the Lego robot. Other activities can likely be accomplished with similar robot adaptations (e.g., gripper, pen). It is not recommended to use the robot to measure items that are long, or perform measurements that require high

  20. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  1. Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…

  2. The effects of presenting multidigit mathematics problems in a realistic context on sixth graders' problem solving

    NARCIS (Netherlands)

    Hickendorff, M.

    2013-01-01

    Mathematics education and assessments increasingly involve arithmetic problems presented in context: a realistic situation that requires mathematical modeling. This study assessed the effects of such typical school mathematics contexts on two aspects of problem solving: performance and strategy use.

  3. District Results for the 2013 Mathematics and Reading Assessments. Executive Summary

    Science.gov (United States)

    National Center for Education Statistics, 2013

    2013-01-01

    NAEP Trial Urban District Assessment (TUDA) results in mathematics and reading are based on representative samples of 1,100 to 2,300 public school students at grade 4 and 900 to 2,100 public school students at grade 8 in each participating urban district in 2013. Twenty-one urban districts participated in the 2013 assessments. The assessments…

  4. The foundations of the HMIP system simulation approach to performance assessment

    International Nuclear Information System (INIS)

    Thompson, B.G.J.; Grindrod, P.

    1995-01-01

    Her Majesty's Inspectorate of Polution (HMIP) of the United Kingdom has developed a procedure for the post closure assessment of the underground disposal of radioactive waste. In this paper the method of using theory and ideas from the mathematical sciences for assessment is described. The system simulation methodology seeks to discover key combinations of processes or effects which may yield behaviour of interest by sampling across functional and parametric uncertainties, and treating the systems within a probabilistic framework. This paper also discusses how HMIP assessment methodology has been presented, independent of any current application, for review by leading scientists who are independent of the performance assessment field

  5. School Context and Gender Differences in Mathematical Performance among School Graduates in Russia

    Science.gov (United States)

    Bessudnov, Alexey; Makarov, Alexey

    2015-01-01

    Gender differences in mathematical performance have received considerable scrutiny in the fields of sociology, economics and psychology. We analyse a large data-set of high school graduates who took a standardised mathematical test in Russia in 2011 (n = 738,456) and find no substantial difference in mean test scores across boys and girls.…

  6. Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women's Mathematical Performance

    Science.gov (United States)

    Pennington, Charlotte R.; Heim, Derek

    2016-01-01

    Background: Women in mathematical domains may become attuned to situational cues that signal a discredited social identity, contributing to their lower achievement and underrepresentation. Aim: This study examined whether heightened in-group representation alleviates the effects of stereotype threat on women's mathematical performance. It further…

  7. Preschoolers' precision of the approximate number system predicts later school mathematics performance.

    Science.gov (United States)

    Mazzocco, Michèle M M; Feigenson, Lisa; Halberda, Justin

    2011-01-01

    The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities.

  8. "Fair" Mathematics in Assessing Delictual Damages

    Directory of Open Access Journals (Sweden)

    L Steynberg

    2011-05-01

    Full Text Available In assessing delictual damages the plaintiff is burdened with the duty to prove loss with a preponderance of probability, including uncertain future loss. In quantifying such a claim an actuary is often used to make actuarial calculations based on proven facts and realistic assumptions regarding the future. The role of the actuary is to guide the court in the calculations to be made. Relying on its wide judicial discretion the court will have the final say regarding the correctness of the assumptions on which these calculations are based. The court should give detailed reasons if any assumptions or parts of the calculations made by the actuary are rejected. It should preferably refrain from making its own calculations if an actuary is involved and should rather instruct the actuary to do recalculations if necessary. It does, however, fall within the wide discretion of the court to make a general contingency adjustment after the basic calculations have been accepted. In assessing delictual damages it is the duty of the court to ensure that both objective and subjective factors are considered in such a manner that the assessment may be regarded as an application of "fair" mathematics.

  9. A Comparison of PISA and TIMSS 2003 Achievement Results in Mathematics

    Science.gov (United States)

    Wu, Margaret

    2009-01-01

    This study compares the Programme for International Student Assessment (PISA) 2003 Mathematics results with the Trends in International Mathematics and Science Study (TIMSS) 2003 Grade 8 mathematics results, using country mean scores for 22 participants of both studies. It is found that Western countries generally performed better in PISA than in…

  10. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  11. Mathematical aspects of assessing extreme events for the safety of nuclear plants

    Science.gov (United States)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw

    2015-04-01

    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  12. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    OpenAIRE

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusiv...

  13. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    DEFF Research Database (Denmark)

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning......-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical.......73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities...

  14. The effects of computer-assisted instruction on the mathematics performance and classroom behavior of children with ADHD.

    Science.gov (United States)

    Mautone, Jennifer A; DuPaul, George J; Jitendra, Asha K

    2005-08-01

    The present study examines the effects of computer-assisted instruction (CAI) on the mathematics performance and classroom behavior of three second-through fourth-grade students with ADHD. A controlled case study is used to evaluate the effects of the computer software on participants' mathematics performance and on-task behavior. Participants' mathematics achievement improve and their on-task behavior increase during the CAI sessions relative to independent seatwork conditions. In addition, students and teachers consider CAI to be an acceptable intervention for some students with ADHD who are having difficulty with mathematics. Implications of these results for practice and research are discussed.

  15. Children's mathematical performance: five cognitive tasks across five grades.

    Science.gov (United States)

    Moore, Alex M; Ashcraft, Mark H

    2015-07-01

    Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of a Mathematics Fluency Program on Mathematics Performance of Students with Challenging Behaviors

    Science.gov (United States)

    Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.

    2016-01-01

    In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…

  17. Assessing Adult Learner’s Numeracy as Related to Gender and Performance in Arithmetic

    Directory of Open Access Journals (Sweden)

    Adeneye O. A. Awofala

    2014-07-01

    Full Text Available The study investigated adult learner numeracy as related to gender and performance in arithmetic among 32 Nigerian adult learners from one government accredited adult literacy centre in Lagos State using the quantitative research method within the blueprint of descriptive survey design. Data collected were analysed using the descriptive statistics of percentages, mean, and standard deviation and inferential statistics of factor analysis, independent samples t-test, and multiple regression analysis. Findings revealed that numeracy skill assessed by the numeracy self-assessment scale was a multi-dimensional construct (numeracy in everyday life, numeracy in workplace, and numeracy in mathematical tasks. Adult learners showed average numeracy strength as gender differences in perception of numeracy skills and performance in arithmetic among adult learners reached zero-tolerance level. Numeracy in workplace and numeracy in mathematical tasks made statistically significant contributions to the variance in adult learners’ performance in arithmetic. Based on this base line study, it was thus, recommended that future studies in Nigeria should investigate adult learners’ numeracy skills using more robust and psychometrically sound instruments such as the Adult Literacy and Life Skills Survey (ALLS and the International Adult Literacy Survey (IALS.

  18. Effective Computer-Aided Assessment of Mathematics; Principles, Practice and Results

    Science.gov (United States)

    Greenhow, Martin

    2015-01-01

    This article outlines some key issues for writing effective computer-aided assessment (CAA) questions in subjects with substantial mathematical or statistical content, especially the importance of control of random parameters and the encoding of wrong methods of solution (mal-rules) commonly used by students. The pros and cons of using CAA and…

  19. An assessment of Mathematics self – efficacy of secondary school ...

    African Journals Online (AJOL)

    The study examined an assessment of mathematics self-efficacy of secondary school students in Osun State. It drawn on 500 students comprising 250 males and 250 females randomly selected from 5 secondary schools in Osogbo. Their ages range between 11-17 years with a mean age of 14 years and a standard ...

  20. Some concepts of model uncertainty for performance assessments of nuclear waste repositories

    International Nuclear Information System (INIS)

    Eisenberg, N.A.; Sagar, B.; Wittmeyer, G.W.

    1994-01-01

    Models of the performance of nuclear waste repositories will be central to making regulatory decisions regarding the safety of such facilities. The conceptual model of repository performance is represented by mathematical relationships, which are usually implemented as one or more computer codes. A geologic system may allow many conceptual models, which are consistent with the observations. These conceptual models may or may not have the same mathematical representation. Experiences in modeling the performance of a waste repository representation. Experiences in modeling the performance of a waste repository (which is, in part, a geologic system), show that this non-uniqueness of conceptual models is a significant source of model uncertainty. At the same time, each conceptual model has its own set of parameters and usually, it is not be possible to completely separate model uncertainty from parameter uncertainty for the repository system. Issues related to the origin of model uncertainty, its relation to parameter uncertainty, and its incorporation in safety assessments are discussed from a broad regulatory perspective. An extended example in which these issues are explored numerically is also provided

  1. What Form of Mathematics Are Assessments Assessing? The Case of Multiplication and Division in Fourth Grade NAEP Items

    Science.gov (United States)

    Kosko Karl W.; Singh, Rashmi

    2018-01-01

    Multiplicative reasoning is a key concept in elementary school mathematics. Item statistics reported by the National Assessment of Educational Progress (NAEP) assessment provide the best current indicator for how well elementary students across the U.S. understand this, and other concepts. However, beyond expert reviews and statistical analysis,…

  2. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database

  3. How Readability Factors Are Differentially Associated with Performance for Students of Different Backgrounds When Solving Mathematics Word Problems

    Science.gov (United States)

    Walkington, Candace; Clinton, Virginia; Shivraj, Pooja

    2018-01-01

    The link between reading and mathematics achievement is well known, and an important question is whether readability factors in mathematics problems are differentially impacting student groups. Using 20 years of data from the National Assessment of Educational Progress and the Trends in International Mathematics and Science Study, we examine how…

  4. Developmental dynamics between mathematical performance, task motivation, and teachers' goals during the transition to primary school.

    Science.gov (United States)

    Aunola, Kaisa; Leskinen, Esko; Nurmi, Jari-Erik

    2006-03-01

    It has been suggested that children's learning motivation and interest in a particular subject play an important role in their school performance, particularly in mathematics. However, few cross-lagged longitudinal studies have been carried out to investigate the prospective relationships between academic achievement and task motivation. Moreover, the role that the classroom context plays in this development is largely unknown. The aim of the study was to investigate the developmental dynamics of maths-related motivation and mathematical performance during children's transition to primary school. The role of teachers' pedagogical goals and classroom characteristics on this development was also investigated. A total of 196 Finnish children were examined four times: (0) in October during their preschool year; (1) in October and (2) April during their first grade of primary school; and (3) in October during their second grade. Children's mathematical performance was tested at each measurement point. Task motivation was examined at measurement points 2, 3, and 4 using the Task-value scale for children. First-grade teachers were interviewed in November about their pedagogical goals and classroom characteristics. The results showed that children's mathematical performance and related task motivation formed a cumulative developmental cycle: a high level of maths performance at the beginning of the first grade increased subsequent task motivation towards mathematics, which further predicted a high level of maths performance at the beginning of the second grade. The level of maths-related task motivation increased in those classrooms where the teachers emphasized motivation or self-concept development as their most important pedagogical goal.

  5. Teachers' use of classroom assessment in primary school mathematics education in the Netherlands

    NARCIS (Netherlands)

    Veldhuis, M.; van den Heuvel-Panhuizen, M.; Vermeulen, Jorine; Eggen, Theodorus Johannes Hendrikus Maria

    2013-01-01

    This paper reports on a survey of the classroom assessment practices of Dutch primary school teachers in mathematics education. We investigated, using an online questionnaire, how teachers collect information on their studentś progress and how teacherś assessment methods, purposes, and beliefs about

  6. Mathematics beliefs and achievement of a national sample of Native American students: results from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States assessment.

    Science.gov (United States)

    House, J Daniel

    2009-04-01

    Recent mathematics assessment findings indicate that Native American students tend to score below students of the ethnic majority. Findings suggest that students' beliefs about mathematics are significantly related to achievement outcomes. This study examined relations between self-beliefs and mathematics achievement for a national sample of 130 Grade 8 Native American students from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States sample of (M age = 14.2 yr., SD = 0.5). Multiple regression indicated several significant relations of mathematics beliefs with achievement and accounted for 26.7% of the variance in test scores. Students who earned high test scores tended to hold more positive beliefs about their ability to learn mathematics quickly, while students who earned low scores expressed negative beliefs about their ability to learn new mathematics topics.

  7. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  8. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  9. Assessing Journal Quality in Mathematics Education

    Science.gov (United States)

    Nivens, Ryan Andrew; Otten, Samuel

    2017-01-01

    In this Research Commentary, we describe 3 journal metrics--the Web of Science's Impact Factor, Scopus's SCImago Journal Rank, and Google Scholar Metrics' h5-index--and compile the rankings (if they exist) for 69 mathematics education journals. We then discuss 2 paths that the mathematics education community should consider with regard to these…

  10. Becoming a Reflective Mathematics Teacher: A Guide for Observations and Self-Assessment. Studies in Mathematical Thinking and Learning Series.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    This activity-oriented book for preservice mathematics teachers who are taking methods courses or who have been student teaching offers a framework for teacher reflection and self- assessment. It supplies detailed observation instruments for observing other teachers, reflective activities, and guidelines and instruments for supervisors. There are…

  11. Secondary School Results for the Fourth NAEP Mathematics Assessment: Discrete Mathematics, Data Organization and Interpretation, Measurement, Number and Operations.

    Science.gov (United States)

    Brown, Catherine A.; And Others

    1988-01-01

    Suggests that secondary school students seem to have reasonably good procedural knowledge in areas of mathematics as rational numbers, probability, measurement, and data organization and interpretation. It appears, however, that students are lacking the conceptual knowledge enabling them to successfully do the assessment items on applications,…

  12. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  13. Mathematics, curriculum and assessment: The role of taxonomies in the quest for coherence

    Directory of Open Access Journals (Sweden)

    Caroline Long

    2014-12-01

    Full Text Available A challenge encountered when monitoring mathematics teaching and learning at high school is that taxonomies such as Bloom’s, and variations of this work, are not entirely adequate for providing meaningful feedback to teachers beyond very general cognitive categories that are difficult to interpret. Challenges of this nature are also encountered in the setting of examinations, where the requirement is to cover a range of skills and cognitive domains. The contestation as to the cognitive level is inevitable as it is necessary to analyse the relationship between the problem and the learners’ background experience. The challenge in the project described in this article was to find descriptive terms that would be meaningful to teachers. The first attempt at providing explicit feedback was to apply the assessment frameworks that include a content component and a cognitive component, namely knowledge, routine procedures, complex procedures and problem solving, currently used in the South African curriculum documents. The second attempt investigated various taxonomies, including those used in international assessments and in mathematics education research, for constructs that teachers of mathematics might find meaningful. The final outcome of this investigation was to apply the dimensions required to understand a mathematical concept proposed by Usiskin (2012: the skills-algorithm, property-proof, use-application and representation-metaphor dimension. A feature of these dimensions is that they are not hierarchical; rather, within each of the dimensions, the mathematical task may demand recall but may also demand the highest level of creativity. For our purpose, we developed a two-way matrix using Usiskin’s dimensions on one axis and a variation of Bloom’s revised taxonomy on the second axis. Our findings are that this two-way matrix provides an alternative to current taxonomies, is more directly applicable to mathematics and provides the

  14. Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy

    Science.gov (United States)

    Kadir; Adelina, R.; Fatma, M.

    2018-01-01

    Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.

  15. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  16. Confidence in Mathematics and Algebra Achievement of Eighth-Grade Students in Japan: Findings from the TIMSS 2011 Assessment

    Science.gov (United States)

    House, J. Daniel; Telese, James A.

    2014-01-01

    There is continuing interest in the identification of student and instructional factors associated with the mathematics achievement of students in Japan. The Trends in International Mathematics and Science Study (TIMSS) assessments have provided opportunities to examine factors associated with mathematics achievement. The purpose of this study was…

  17. Usability of American Sign Language Videos for Presenting Mathematics Assessment Content.

    Science.gov (United States)

    Hansen, Eric G; Loew, Ruth C; Laitusis, Cara C; Kushalnagar, Poorna; Pagliaro, Claudia M; Kurz, Christopher

    2018-04-12

    There is considerable interest in determining whether high-quality American Sign Language videos can be used as an accommodation in tests of mathematics at both K-12 and postsecondary levels; and in learning more about the usability (e.g., comprehensibility) of ASL videos with two different types of signers - avatar (animated figure) and human. The researchers describe the results of administering each of nine pre-college mathematics items in both avatar and human versions to each of 31 Deaf participants with high school and post-high school backgrounds. This study differed from earlier studies by obliging the participants to rely on the ASL videos to answer the items. While participants preferred the human version over the avatar version (apparently due largely to the better expressiveness and fluency of the human), there was no discernible relationship between mathematics performance and signed version.

  18. Meeting the requirements of both classroom-based and systemic assessment of mathematics proficiency: The potential of Rasch measurement theory

    Directory of Open Access Journals (Sweden)

    Tim Dunne

    2012-11-01

    Full Text Available The challenges inherent in assessing mathematical proficiency depend on a number of factors, amongst which are an explicit view of what constitutes mathematical proficiency, an understanding of how children learn and the purpose and function of teaching. All of these factors impact on the choice of approach to assessment. In this article we distinguish between two broad types of assessment, classroom-based and systemic assessment. We argue that the process of assessment informed by Rasch measurement theory (RMT can potentially support the demands of both classroom-based and systemic assessment, particularly if a developmental approach to learning is adopted, and an underlying model of developing mathematical proficiency is explicit in the assessment instruments and their supporting material. An example of a mathematics instrument and its analysis which illustrates this approach, is presented. We note that the role of assessment in the 21st century is potentially powerful. This influential role can only be justified if the assessments are of high quality and can be selected to match suitable moments in learning progress and the teaching process. Users of assessment data must have sufficient knowledge and insight to interpret the resulting numbers validly, and have sufficient discernment to make considered educational inferences from the data for teaching and learning responses.

  19. Exploring Statistics Anxiety: Contrasting Mathematical, Academic Performance and Trait Psychological Predictors

    Science.gov (United States)

    Bourne, Victoria J.

    2018-01-01

    Statistics anxiety is experienced by a large number of psychology students, and previous research has examined a range of potential correlates, including academic performance, mathematical ability and psychological predictors. These varying predictors are often considered separately, although there may be shared variance between them. In the…

  20. Using video games to combine learning and assessment in mathematics education

    OpenAIRE

    Kristian Juha Mikael Kiili; Keith Devlin; Arttu Perttula; Pauliina Tuomi; Antero Lindstedt

    2015-01-01

    One problem with most education systems is that learning and (summative) assessment are generally treated as quite separate things in schools. We argue that video games can provide an opportunity to combine these processes in an engaging and effective way. The present study focuses on investigating the effectiveness and the assessment power of two different mathematics video games, Semideus and Wuzzit Trouble. In the current study, we validated the Semideus game as a rational number test inst...

  1. Teacher Classroom Practices and Mathematics Performance in South African Schools: A Reflection on TIMSS 2011

    Science.gov (United States)

    Arends, Fabian; Winnaar, Lolita; Mosimege, Mogege

    2017-01-01

    Teachers play an important role in the provision of quality education. The variety of classroom practices they use in interacting with learners play a critical role in the understanding of mathematical concepts and overall performance in Mathematics. Following the work done by Hattie (2009, 2012) in relation to classroom practices this study…

  2. Mathematics Objectives and Measurement Specifications 1986-1990. Exit Level. Texas Educational Assessment of Minimum Skills (TEAMS).

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Educational Assessment.

    This document lists the objectives for the Texas educational assessment program in mathematics. Eighteen objectives for exit level mathematics are listed, by category: number concepts (4); computation (3); applied computation (5); statistical concepts (3); geometric concepts (2); and algebraic concepts (1). Then general specifications are listed…

  3. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

    Science.gov (United States)

    Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

    2016-01-01

    Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

  4. Assessment Mathematics Teacher's Competencies

    Science.gov (United States)

    Alnoor, A. G.; Yuanxiang, Guo; Abudhuim, F. S.

    2007-01-01

    This paper aimed to identifying the professional efficiencies for the intermediate schools mathematics teachers and tries to know at what level the math teachers experience those competencies. The researcher used a descriptive research approach, the study data collected from specialist educators and teacher's experts and previous studies to…

  5. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    National Research Council Canada - National Science Library

    Stuhmiller, James H; Bykanova, Lucy; Chan, Philemon; Dang, Xinglai; Fournier, Adam; Long, Diane W; Lu, Zi; Masiello, Paul; Ng, Laurel; Niu, Eugene

    2006-01-01

    This report summarizes the first year of a 5-year program to develop physiologically and biomechanically based mathematical models that will allow the estimation of physical and cognitive performance...

  6. Using the Mixture Rasch Model to Explore Knowledge Resources Students Invoke in Mathematic and Science Assessments

    Science.gov (United States)

    Zhang, Danhui; Orrill, Chandra; Campbell, Todd

    2015-01-01

    The purpose of this study was to investigate whether mixture Rasch models followed by qualitative item-by-item analysis of selected Programme for International Student Assessment (PISA) mathematics and science items offered insight into knowledge students invoke in mathematics and science separately and combined. The researchers administered an…

  7. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  8. Modeling Student Motivation and Students’ Ability Estimates From a Large-Scale Assessment of Mathematics

    Directory of Open Access Journals (Sweden)

    Carlos Zerpa

    2011-09-01

    Full Text Available When large-scale assessments (LSA do not hold personal stakes for students, students may not put forth their best effort. Low-effort examinee behaviors (e.g., guessing, omitting items result in an underestimate of examinee abilities, which is a concern when using results of LSA to inform educational policy and planning. The purpose of this study was to explore the relationship between examinee motivation as defined by expectancy-value theory, student effort, and examinee mathematics abilities. A principal components analysis was used to examine the data from Grade 9 students (n = 43,562 who responded to a self-report questionnaire on their attitudes and practices related to mathematics. The results suggested a two-component model where the components were interpreted as task-values in mathematics and student effort. Next, a hierarchical linear model was implemented to examine the relationship between examinee component scores and their estimated ability on a LSA. The results of this study provide evidence that motivation, as defined by the expectancy-value theory and student effort, partially explains student ability estimates and may have implications in the information that get transferred to testing organizations, school boards, and teachers while assessing students’ Grade 9 mathematics learning.

  9. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  10. Sources/treatment of uncertainties in the performance assessment of geologic radioactive waste repositories

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1987-01-01

    Uncertainties in the performance assessment of geologic radioactive waste repositories have several sources. The more important ones include: 1) uncertainty in the conditions of a disposal system over the temporal scales set forth in regulations, 2) uncertainty in the conceptualization of the geohydrologic system, 3) uncertainty in the theoretical description of a given conceptual model of the system, 4) uncertainty in the development of computer codes to implement the solution of a mathematical model, and 5) uncertainty in the parameters and data required in the models and codes used to assess the long-term performance of the disposal system. This paper discusses each of these uncertainties and outlines methods for addressing these uncertainties

  11. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year.

    Science.gov (United States)

    Widlund, Anna; Tuominen, Heta; Korhonen, Johan

    2018-01-01

    It has been suggested that both performance and academic well-being play a role in adolescent students' educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept) and mathematics performance profiles can be identified among lower secondary school students ( N grade 7 = 583, N grade 9 = 497); second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%), average (51%), and negative academic well-being (15%) and four groups of students in ninth grade: thriving (25%), average (50%), negative academic well-being (18%), and low-performing (7%) with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed.

  12. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year

    Science.gov (United States)

    Widlund, Anna; Tuominen, Heta; Korhonen, Johan

    2018-01-01

    It has been suggested that both performance and academic well-being play a role in adolescent students’ educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept) and mathematics performance profiles can be identified among lower secondary school students (Ngrade 7 = 583, Ngrade 9 = 497); second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%), average (51%), and negative academic well-being (15%) and four groups of students in ninth grade: thriving (25%), average (50%), negative academic well-being (18%), and low-performing (7%) with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed. PMID:29593603

  13. Academic Well-Being, Mathematics Performance, and Educational Aspirations in Lower Secondary Education: Changes Within a School Year

    Directory of Open Access Journals (Sweden)

    Anna Widlund

    2018-03-01

    Full Text Available It has been suggested that both performance and academic well-being play a role in adolescent students’ educational attainment and school dropout. In this study, we therefore examined, first, what kinds of academic well-being (i.e., school burnout, schoolwork engagement, and mathematics self-concept and mathematics performance profiles can be identified among lower secondary school students (Ngrade 7 = 583, Ngrade 9 = 497; second, how stable these profiles are across one school year during the seventh and ninth grades; and, third, how students with different academic well-being and mathematics performance profiles differ with respect to their educational aspirations. By means of latent profile analyses, three groups of students in seventh grade: thriving (34%, average (51%, and negative academic well-being (15% and four groups of students in ninth grade: thriving (25%, average (50%, negative academic well-being (18%, and low-performing (7% with distinct well-being and mathematics performance profiles were identified. Configural frequency analyses revealed that the profiles were relatively stable across one school year; 60% of the students displayed identical profiles over time. The thriving students reported the highest educational aspirations compared to the other groups. In addition, the low-performing students in the ninth grade had the lowest educational aspirations just before the transition to upper secondary school. Practical implications as well as directions for future research are discussed.

  14. Is There Gender Difference between Learning Disabled Students' Performances in Mathematical Activities? (Case Study

    Directory of Open Access Journals (Sweden)

    Somayeh Karimi

    2013-11-01

    Full Text Available Recent studies show that mathematics disorder is a learning disorder. Children with this disorder have math skills is much lower than mean for their age, intelligence, and education. The disorder affects the child's success at school. It is thought that up to 7% of children have this disorder. It affects boys and girls equally. It is also caused dyscalculia. The cause of this disorder is not known. Like other learning disorders, it occurs more in some families. Mathematics disorder may also be the result of damage in certain parts of the brain. It also has led to a weak understanding of mathematical concepts and increased realization of mathematics. In this study, it is tried that studied gender difference between learning disabled students' performances in mathematical activities. Findings indicated that there is not meaningful difference between genders. Since this research was case study, it seems that this difference will be indicated in vast studies. Then it suggests that have to do more study in this field for its causes.

  15. Performance assessment

    International Nuclear Information System (INIS)

    Doe, T.

    1985-01-01

    The purpose of performance assessment is to show that the repository is expected to serve its stated function - disposing of radioactive waste safely both during operation and for the postclosure period. Performance assessment is a straightforward concept, but its application may be very complicated. The concept of performance assessment has been clarified by the Nuclear Regulatory Commission (NRC) in their Draft Generic Technical Position on Licensing Assessment Methodology for High-Level Waste Geologic Repositories (NRC, 1984). This document has gone a long way toward defining the criteria that the NRC will use to determine whether or not information from site characterization is adequate to meet the regulations of the Nuclear Regulatory Commission and the Environmental Protection Agency (EPA). A favorable determination is required for issuance of a construction authorization, which is the first major regulatory requirement for developing a working repository. It is, therefore, essential that a research program be developed that not only resolves the outstanding technical issues, but also does it in such a way that the results are clearly applicable to the formal performance assessment and licensing procedures. The definitions of performance assessment are reviewed and the current NRC thinking is summarized

  16. Math Fundamentals: Selected Results from the First National Assessment of Mathematics.

    Science.gov (United States)

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    This report, the first of several to be published on the results of the 1972-73 assessment of mathematics, begins with a brief general discussion of the project. The findings with respect to pure computation and computation with translation are then presented in some detail. Data collected from subjects at four age levels (9, 13, 17, and adult)…

  17. Evolution in performance assessment modeling as a result of regulatory review

    Energy Technology Data Exchange (ETDEWEB)

    Rowat, J.H.; Dolinar, G.M.; Stephens, M.E. [AECL Chalk River Labs., Ontario (Canada)] [and others

    1995-12-31

    AECL is planning to build the IRUS (Intrusion Resistant Underground Structure) facility for near-surface disposal of LLRW. The PSAR (preliminary safety assessment report) was subject to an initial regulatory review during mid-1992. The regulatory authority provided comments on many aspects of the safety assessment documentation including a number of questions on specific PA (Performance Assessment) modelling assumptions. As a result of these comments as well as a separate detailed review of the IRUS disposal concept, changes were made to the conceptual and mathematical models. The original disposal concept included a non-sorbing vault backfill, with a strong reliance on the wasteform as a barrier. This concept was altered to decrease reliance on the wasteform by replacing the original backfill with a sand/clinoptilolite mix, which is a better sorber of metal cations. This change lead to changes in the PA models which in turn altered the safety case for the facility. This, and other changes that impacted performance assessment modelling are the subject of this paper.

  18. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  19. A comparative study of students' performance in preclinical physiology assessed by multiple choice and short essay questions.

    Science.gov (United States)

    Oyebola, D D; Adewoye, O E; Iyaniwura, J O; Alada, A R; Fasanmade, A A; Raji, Y

    2000-01-01

    This study was designed to compare the performance of medical students in physiology when assessed by multiple choice questions (MCQs) and short essay questions (SEQs). The study also examined the influence of factors such as age, sex, O/level grades and JAMB scores on performance in the MCQs and SEQs. A structured questionnaire was administered to 264 medical students' four months before the Part I MBBS examination. Apart from personal data of each student, the questionnaire sought information on the JAMB scores and GCE O' Level grades of each student in English Language, Biology, Chemistry, Physics and Mathematics. The physiology syllabus was divided into five parts and the students were administered separate examinations (tests) on each part. Each test consisted of MCQs and SEQs. The performance in MCQs and SEQs were compared. Also, the effects of JAMB scores and GCE O/level grades on the performance in both the MCQs and SEQs were assessed. The results showed that the students performed better in all MCQ tests than in the SEQs. JAMB scores and O' level English Language grade had no significant effect on students' performance in MCQs and SEQs. However O' level grades in Biology, Chemistry, Physics and Mathematics had significant effects on performance in MCQs and SEQs. Inadequate knowledge of physiology and inability to present information in a logical sequence are believed to be major factors contributing to the poorer performance in the SEQs compared with MCQs. In view of the finding of significant association between performance in MCQs and SEQs and GCE O/level grades in science subjects and mathematics, it was recommended that both JAMB results and the GCE results in the four O/level subjects above may be considered when selecting candidates for admission into the medical schools.

  20. Performance in grade 12 mathematics and science predicts student nurses' performance in first year science modules at a university in the Western Cape.

    Science.gov (United States)

    Mthimunye, Katlego D T; Daniels, Felicity M

    2017-10-26

    The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.

  1. Latent Cluster Analysis of Instructional Practices Reported by High- and Low-performing Mathematics Teachers in Four Countries

    OpenAIRE

    Cheng, Qiang; Hsu, Hsien-Yuan

    2017-01-01

    Using Trends in International Mathematics and Science Study (TIMSS) 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the design of the current study. Latent cluster analysis was applied in the investigation of the profiles of mathematics teachers’ instructional practic...

  2. The role of performance assessment in validation, regulation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1992-01-01

    This paper reports that regulation of public health and safety for a geologic repository for radioactive waste requires that performance assessment show that radioactive releases will not violate a safety limit. Accurate predictions of actual performance are not required. Because of the long times in the future when radioactivity can be released, performance predictions must be based on sound hypothesis of the mechanisms that control and mitigate releases. Such hypotheses are useful only if they lead to clear mathematical formulations, specify clearly the parameters that are expected to control the releases, and specify means of accelerated testing or other means for validating the hypotheses. useful hypotheses usually lead to conservative and bounding analyses that can be more reliable for this purpose than efforts to predict actual repository performance

  3. Modern Versus Traditional Mathematics

    Science.gov (United States)

    Roberts, A. M.

    1974-01-01

    The effect of different secondary school mathematics syllabi on first-year performance in college-level mathematics was studied in an attempt to evaluate the syllabus change. Students with a modern mathematics background performed sigficantly better on most first-year units. A topic-by-topic analysis of results is included. (DT)

  4. Magical mathematics the mathematical ideas that animate great magic tricks

    CERN Document Server

    Diaconis, Persi

    2012-01-01

    Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath Principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem.

  5. Performance assessment and licensing issues for United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    The final objective of performance assessment for a near-surface LLW disposal facility is to demonstrate that potential radiological impacts for each of the human exposure pathways will not violate applicable standards. This involves determining potential pathways and specific receptor locations for human exposure to radionuclides; developing appropriate scenarios for each of the institutional phases of a disposal facility; and maintaining quality assurance and control of all data, computer codes, and documentation. The results of a performance assessment should be used to demonstrate that the expected impacts are expected to be less than the applicable standards. The results should not be used to try to predict the actual impact. This is an important distinction that results from the uncertainties inherent in performance assessment calculations. The paper discusses performance objectives; performance assessment phases; scenario selection; mathematical modeling and computer programs; final results of performance assessments submitted for license application; institutional control period; licensing issues; and related research and development activities

  6. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  7. Licensure tests for special education teachers: how well they assess knowledge of reading instruction and mathematics.

    Science.gov (United States)

    Stotsky, Sandra

    2009-01-01

    To determine the extent to which knowledge of evidence-based reading instruction and mathematics is assessed on licensure tests for prospective special education teachers, this study drew on information provided by Educational Testing Service (ETS), the American Board for Certification of Teacher Excellence, and National Evaluation Systems (now Evaluation Systems group of Pearson). It estimated the percentage of test items on phonemic awareness, phonics, and vocabulary knowledge and on mathematics content. It also analyzed descriptions of ETS's tests of "principles of teaching and learning." Findings imply that prospective special education teachers should be required to take both a dedicated test of evidence-based reading instructional knowledge, as in California, Massachusetts, and Virginia, and a test of mathematical knowledge, as in Massachusetts. States must design their own tests of teaching principles to assess knowledge of evidence-based educational theories.

  8. Core skills assessment to improve mathematical competency

    Science.gov (United States)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  9. Relationships of cognitive and metacognitive learning strategies to mathematics achievement in four high-performing East Asian education systems.

    Science.gov (United States)

    Areepattamannil, Shaljan; Caleon, Imelda S

    2013-01-01

    The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education systems, memorization strategies were negatively associated with mathematics achievement, whereas control strategies were positively associated with mathematics achievement. However, the association between elaboration strategies and mathematics achievement was a mixed bag. In Shanghai-China and Korea, elaboration strategies were not associated with mathematics achievement. In Hong Kong-China and Singapore, on the other hand, elaboration strategies were negatively associated with mathematics achievement. Implications of these findings are briefly discussed.

  10. Mathematics beliefs and instructional strategies in achievement of elementary-school students in Japan: results from the TIMSS 2003 assessment.

    Science.gov (United States)

    House, J Daniel

    2007-04-01

    Recent findings concerning mathematics assessment indicate that students in Japan consistently score above international averages. Researchers have examined specific mathematics beliefs and instructional strategies associated with mathematics achievement for students in Japan. This study examined relationships among self-beliefs, classroom instructional strategies, and mathematics achievement for a large national sample of students (N=4,207) from the TIMSS 2003 international sample of fourth graders in Japan. Several significant relationships between mathematics beliefs and test scores were found; a number of classroom teaching strategies were also significantly associated with test scores. However, multiple regression using the complete set of five mathematics beliefs and five instructional strategies explained only 25.1% of the variance in mathematics achievement test scores.

  11. PISA mathematics and reading performance differences of mainstream European and Turkish immigrant students

    NARCIS (Netherlands)

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    Lower reading and mathematics performance of Turkish immigrant students as compared to mainstream European students could reflect differential learning outcomes, differential socioeconomic backgrounds of the groups, differential mainstream language proficiency, and/or test bias. Using PISA reading

  12. Effects of Reading Skills on Students’ Performance in Science and Mathematics in Public and Private Secondary Schools

    Directory of Open Access Journals (Sweden)

    Ombra A. Imam

    2016-05-01

    Full Text Available In the Philippine education system, reading, mathematics, and science formed part of the core areas of basic education curriculum. For the last decade, the quality of Philippine education was put into a big question due to poor performance of students in mathematics and science tests both local and abroad. The initial result of current efforts of the government by adopting K-12 curriculum didn’t do much to change the status quo. The purpose of this study is to determine the reading predictors of students’ performance in Mathematics and Science and identify its effects to such performance. A total of 660 freshmen students from public and private high schools in Cotabato City, Philippines were taken as sample. A validated and reliable 150-item test in reading comprehension skills, mathematics and science was used to get primary data to perform correlation and regression analysis. Findings showed that only making inference and getting main idea were predictors of mathematics performance of students in public school and private schools, respectively.  Data analysis also revealed that two reading skills such as noting details and making inference had an influence on science performance of students in public school while skills in getting main idea and drawing conclusion influenced science performance of students in private schools.  However, there was only one skill such as vocabulary in context which was predictor of overall science performance of all students. Moreover, separate effects of making inference, identifying main idea explained only 1.8 percent and 1.3 percent of students’ math performance while their combined effects provided only .1 percent or nearly zero percent. Furthermore, the study found out that separate effects of noting details contributed 3.3 percent and its combined effects with making inference explained 4.2 percent of science performance of students in public schools. In terms of effects of reading to science

  13. Pre-Service Elementary Teachers' Mathematics Content Knowledge: A Predictor of Sixth Graders' Mathematics Performance

    Science.gov (United States)

    Shirvani, Hosin

    2015-01-01

    This study examined the knowledge of mathematics content of elementary pre-service teachers at a sixth grade level. The researcher administered a mathematics test for sixth graders mandated by the Texas Education Agency to pre-service teachers; the same test was given to sixth graders in Texas. The study found that pre-service teachers performed…

  14. Examining the Relationships among Mathematics Coaches and Specialists, Student Achievement, and Disability Status: A Multilevel Analysis Using National Assessment of Educational Progress Data

    Science.gov (United States)

    Harbour, Kristin E.; Adelson, Jill L.; Pittard, Caroline M.; Karp, Karen S.

    2018-01-01

    Using restricted-use data from the 2011 National Assessment of Educational Progress mathematics assessment, the current study examined the relationship between the presence of elementary mathematics coaches and specialists (MCSs) and the mathematics achievement of more than 190,000 fourth-grade students in more than 7,400 schools nationwide. In…

  15. Mathematical Modeling of Circadian/Performance Countermeasures

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...

  16. Environmental performance assessment of a company of aluminum surface treatment

    Directory of Open Access Journals (Sweden)

    Susan Catieri Ramalho

    2013-08-01

    Full Text Available The purpose of this article was to evaluate the environmental performance of a medium-sized company that provides services for surface treatment of aluminum. The treatment is known as anodizing. The research method was qualitative numerical modeling. The environmental performance of the company was organized into five constructs: atmosphere, wastewater, energy and natural resources, solid waste, and legislation and management. Nineteen indicators were chosen to explain the five constructs. Ten employees of the company prioritized the constructs and evaluated the situation of the indicators by means of a scale of assessment. By means of a mathematical model, the general performance of the environmental operation was calculated at 74.5% of the maximum possible. The indicators that most contributed to the performance not to reach 100% were consumption of electricity and water consumption. The construct of worse performance was natural and energy resources. These are the priorities for future environmental improvement actions that the company may promote.

  17. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    Science.gov (United States)

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  18. Students’ Information Literacy: A Perspective from Mathematical Literacy

    Directory of Open Access Journals (Sweden)

    Ariyadi Wijaya

    2016-09-01

    Full Text Available Information literacy is mostly seen from the perspective of library science or information and communication technology. Taking another point of view, this study was aimed to explore students’ information literacy from the perspective of mathematical literacy. For this purpose, a test addressing Programme for International Student Assessment (PISA mathematics tasks were administered to 381 eighth and ninth graders from nine junior high schools in the Province of Yogyakarta. PISA mathematics tasks which were used in this test had specific characteristics regarding information processing, i.e. containing superfluous information, having missing information, and requiring connection across information sources. An error analysis was performed to analyze students’ incorrect responses. The result of this study shows that students did not acquire three characteristics of information literacy; i.e. recognizing information needs, locating and evaluating the quality of information, and making effective and ethical use of information. This result indicates students’ low ability in information literacy.Keywords: information literacy, mathematical literacy, Programme for International Student Assessment (PISA DOI: http://dx.doi.org/10.22342/jme.7.2.3532.73-82

  19. Caries assessment: establishing mathematical link of clinical and benchtop method

    Science.gov (United States)

    Amaechi, Bennett T.

    2009-02-01

    It is well established that the development of new technologies for early detection and quantitative monitoring of dental caries at its early stage could provide health and economic benefits ranging from timely preventive interventions to reduction of the time required for clinical trials of anti-caries agents. However, the new technologies currently used in clinical setting cannot assess and monitor caries using the actual mineral concentration within the lesion, while a laboratory-based microcomputed tomography (MCT) has been shown to possess this capability. Thus we envision the establishment of mathematical equations relating the measurements of each of the clinical technologies to that of MCT will enable the mineral concentration of lesions detected and assessed in clinical practice to be extrapolated from the equation, and this will facilitate preventitive care in dentistry to lower treatment cost. We utilize MCT and the two prominent clinical caries assessment devices (Quantitative Light-induced Fluorescence [QLF] and Diagnodent) to longitudinally monitor the development of caries in a continuous flow mixed-organisms biofilm model (artificial mouth), and then used the collected data to establish mathematical equation relating the measurements of each of the clinical technologies to that of MCT. A linear correlation was observed between the measurements of MicroCT and that of QLF and Diagnodent. Thus mineral density in a carious lesion detected and measured using QLF or Diagnodent can be extrapolated using the developed equation. This highlights the usefulness of MCT for monitoring the progress of an early caries being treated with therapeutic agents in clinical practice or trials.

  20. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Dina Aleksandrovna Kirillova

    2015-12-01

    Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

  1. Improvement of biosphere assessment methodology for performance assessment of geological disposal facility. 2

    International Nuclear Information System (INIS)

    Miki, Takahito; Yoshida, Hideji; Ikeda, Takao

    2002-02-01

    This report contains results on study of Geosphere-Biosphere Interface (GBI), development of biosphere assessment model for gaseous and volatile radionuclides, review of biosphere assessment and research on safety indicators. Regarding study of Geosphere-Biosphere Interface (GBI), FEP database for the Geosphere-Biosphere Transitions Zone (GBTZ) were compiled. Furthermore, release scenarios were identified from the FEP database, and review of conservativeness and robustness of the conceptual and mathematical models developed previously by JNC were undertaken. Regarding development of biosphere assessment model for gaseous and volatile radionuclides, the conceptual and mathematical models were developed, and it was confirmed that the impact of the exposure pathway regarding gas release to flux-to-dose conversion factor is small. Regarding review of biosphere assessment data, the parameters which were used on JNC second progress report were reviewed and classified using the biosphere data protocol categories. Furthermore, the data for key parameter (important but poorly characterized parameters) were revised. Regarding research on safety indicator, some kinds of safety indicators, especially for the non-radioactive contaminant and for the non-human biota, are reviewed. (author)

  2. Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics

    Science.gov (United States)

    Sangwin, Christopher J.; Naismith, Laura

    2008-01-01

    We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…

  3. Mathematical models of cancer and their use in risk assessment. Technical report No. 27

    International Nuclear Information System (INIS)

    Whittemore, A.S.

    1979-08-01

    The sensitivity of risk predictions to certain assumptions in the underlying mathematical model is illustrated. To avoid the misleading and erroneous predictions that can result from the use of models incorporating assumptions whose validity is questionable, the following steps should be taken. First, state the assumptions used in a proposed model in terms that are clear to all who will use the model to assess risk. Second, assess the sensitivity of predictions to changes in model assumptions. Third, scrutinize pivotal assumptions in light of the best available human and animal data. Fourth, stress inconsistencies between model assumptions and experimental or epidemiological observations. The model fitting procedure will yield the most information when the data discriminates between theories because of their inconsistency with one or more assumptions. In this sense, mathematical theories are most successful when they fail. Finally, exclude value judgments from the quantitative procedures used to assess risk; instead include them explicitly in that part of the decision process concerned with cost-benefit analysis

  4. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    Science.gov (United States)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  5. African Americans and Mathematics Outcomes on National Assessment of Educational Progress: Parental and Individual Influences

    Science.gov (United States)

    Noble, Richard, III; Morton, Crystal Hill

    2013-01-01

    This study investigated within group differences between African American female and male students who participated in the 2009 National Assessment of Educational Progress mathematics assessment. Using results from participating states, we compare average scale scores of African American students based on home regulatory environment and interest…

  6. Partial Support of Meeting of the Board on Mathematical Sciences and Their Applications

    Energy Technology Data Exchange (ETDEWEB)

    Weidman, Scott [National Academy of Sciences, Washington DC (United States)

    2014-08-31

    During the performance period, BMSA released the following major reports: Transforming Combustion Research through Cyberinfrastructure (2011); Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification (2012); Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century (2012); Aging and the Macroeconomy: Long-Term Implications of an Older Population (2012); The Mathematical Sciences in 2025 (2013); Frontiers in Massive Data Analysis (2013); and Developing a 21st Century Global Library for Mathematics Research (2014).

  7. Gender Differences in Achievement Goals and Performances in English Language and Mathematics of Senior Secondary Schools Students in Borno State, Nigeria

    Science.gov (United States)

    Musa, Alice K. J.; Dauda, Bala; Umar, Mohammad A.

    2016-01-01

    The paper investigated gender difference in achievement goals and performance in English Language and Mathematics of senior secondary schools students in Borno State, Nigeria. The study specifically sought to determine gender differences in students' academic performances in English Language, Mathematics and overall academic performance as well as…

  8. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    Science.gov (United States)

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2017-11-13

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Latent Cluster Analysis of Instructional Practices Reported by High- and Low-Performing Mathematics Teachers in Four Countries

    Science.gov (United States)

    Cheng, Qiang; Hsu, Hsien-Yuan

    2017-01-01

    Using Trends in International Mathematics and Science Study (TIMSS) 2011 eighth-grade international dataset, this study explored the profiles of instructional practices reported by high- and low-performing mathematics teachers across the US, Finland, Korea, and Russia. Concepts of conceptual teaching and procedural teaching were used to frame the…

  10. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.

    Science.gov (United States)

    Falco, Gianluca; Pini, Marco; Marucco, Gianluca

    2017-01-29

    Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performance improvements enabled by the tight integration, using low-cost sensors and a mass-market GNSS receiver. Performance is assessed through a series of tests carried out in real urban scenarios and is compared against commercial modules, operating in standalone mode or featuring loosely-coupled integrations. The paper describes the developed tight-integration algorithms with a terse mathematical model and assesses their efficacy from a practical perspective.

  11. Authentic assessment based showcase portfolio on learning of mathematical problem solving in senior high school

    Science.gov (United States)

    Sukmawati, Zuhairoh, Faihatuz

    2017-05-01

    The purpose of this research was to develop authentic assessment model based on showcase portfolio on learning of mathematical problem solving. This research used research and development Method (R & D) which consists of four stages of development that: Phase I, conducting a preliminary study. Phase II, determining the purpose of developing and preparing the initial model. Phase III, trial test of instrument for the initial draft model and the initial product. The respondents of this research are the students of SMAN 8 and SMAN 20 Makassar. The collection of data was through observation, interviews, documentation, student questionnaire, and instrument tests mathematical solving abilities. The data were analyzed with descriptive and inferential statistics. The results of this research are authentic assessment model design based on showcase portfolio which involves: 1) Steps in implementing the authentic assessment based Showcase, assessment rubric of cognitive aspects, assessment rubric of affective aspects, and assessment rubric of skill aspect. 2) The average ability of the students' problem solving which is scored by using authentic assessment based on showcase portfolio was in high category and the students' response in good category.

  12. Nature and origins of mathematics difficulties in very preterm children: a different etiology than developmental dyscalculia.

    Science.gov (United States)

    Simms, Victoria; Gilmore, Camilla; Cragg, Lucy; Clayton, Sarah; Marlow, Neil; Johnson, Samantha

    2015-02-01

    Children born very preterm (mathematics learning difficulties that are out of proportion to other academic and cognitive deficits. However, the etiology of mathematics difficulties in very preterm children is unknown. We sought to identify the nature and origins of preterm children's mathematics difficulties. One hundred and fifteen very preterm children aged 8-10 y were assessed in school with a control group of 77 term-born classmates. Achievement in mathematics, working memory, visuospatial processing, inhibition, and processing speed were assessed using standardized tests. Numerical representations and specific mathematics skills were assessed using experimental tests. Very preterm children had significantly poorer mathematics achievement, working memory, and visuospatial skills than term-born controls. Although preterm children had poorer performance in specific mathematics skills, there was no evidence of imprecise numerical representations. Difficulties in mathematics were associated with deficits in visuospatial processing and working memory. Mathematics difficulties in very preterm children are associated with deficits in working memory and visuospatial processing not numerical representations. Thus, very preterm children's mathematics difficulties are different in nature from those of children with developmental dyscalculia. Interventions targeting general cognitive problems, rather than numerical representations, may improve very preterm children's mathematics achievement.

  13. AN ASSESSMENT OF THE ATTITUDES AND OUTCOMES OF STUDENTS ENROLLED IN DEVELOPMENTAL BASIC MATHEMATICS CLASSES AT PRINCE GEORGE'S COMMUNITY COLLEGE

    OpenAIRE

    Bassette, Lorraine Pratt

    2004-01-01

    The purposes of this study were to assess the effect of the initial and exiting attitudes toward mathematics and academic outcomes of students placed in the Developmental Mathematics Basic Arithmetic course at a community college in Maryland. Major research questions included were: (1) What is the difference, if any, between the pretest and posttest attitudes toward mathematics of students placed in Basic Arithmetic as measured by the Aiken Mathematics Attitude Survey? (...

  14. Mathematical model for water quality impact assessment and its computer application in coal mine water

    International Nuclear Information System (INIS)

    Sundararajan, M.; Chakraborty, M.K.; Gupta, J.P.; Saxena, N.C.; Dhar, B.B.

    1994-01-01

    This paper presents a mathematical model to assess the Water Quality Impact in coal mine or in river system by accurate and rational method. Algorithm, flowchart and computer programme have been developed upon this model to assess the quality of coal mine water. 3 refs., 2 figs., 2 tabs

  15. Enhancing Learners' Problem Solving Performance in Mathematics: A Cognitive Load Perspective

    Science.gov (United States)

    Dhlamini, Joseph J.

    2016-01-01

    This paper reports on a pilot study that investigated the effect of implementing a context-based problem solving instruction (CBPSI) to enhance the problem solving performance of high school mathematics learners. Primarily, the pilot study aimed: (1) to evaluate the efficiency of data collection instruments; and, (2) to test the efficacy of CBPSI…

  16. Do screencasts help to revise prerequisite mathematics? An investigation of student performance and perception

    Science.gov (United States)

    Loch, Birgit; Jordan, Camilla R.; Lowe, Tim W.; Mestel, Ben D.

    2014-02-01

    Basic calculus skills that are prerequisites for advanced mathematical studies continue to be a problem for a significant proportion of higher education students. While there are many types of revision material that could be offered to students, in this paper we investigate whether short, narrated video recordings of mathematical explanations (screencasts) are a useful tool to enhance student learning when revisiting prerequisite topics. We report on the outcomes of a study that was designed to both measure change in student performance before and after watching screencasts, and to capture students' perception of the usefulness of screencasts in their learning. Volunteers were recruited from students enrolled on an entry module for the Mathematics Master of Science programme at the Open University to watch two screencasts sandwiched between two online calculus quizzes. A statistical analysis of student responses to the quizzes shows that screencasts can have a positive effect on student performance. Further analysis of student feedback shows that student confidence was increased by watching the screencasts. Student views on the value of screencasts for their learning indicated that they appreciated being able to watch a problem being solved and explained by an experienced mathematician; hear the motivation for a particular problem-solving approach; engage more readily with the material being presented, thereby retaining it more easily. The positive student views and impact on student scores indicate that short screencasts could play a useful role in revising prerequisite mathematics.

  17. Differentiating Instruction through Multiple Intelligences in a Middle School Mathematics Classroom

    Science.gov (United States)

    Jones, Marcella

    2017-01-01

    Eighth grade students at a middle school in a southern state were required a mathematics pass rate of 67.6% to meet annual yearly progress (AYP). Black and Hispanic students performed below the required pass rate on state assessments; thus, the school did not make AYP from 2007-2010. In an attempt to address low test scores in mathematics, the…

  18. Deaf college students' mathematical skills relative to morphological knowledge, reading level, and language proficiency.

    Science.gov (United States)

    Kelly, Ronald R; Gaustad, Martha G

    2007-01-01

    This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.

  19. Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance

    Science.gov (United States)

    Clarke, David C.; Skiba, Philip F.

    2013-01-01

    A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of…

  20. Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities.

    Science.gov (United States)

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2013-12-01

    Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Mathematical adventures in performance analysis from storage systems, through airplane boarding, to express line queues

    CERN Document Server

    Bachmat, Eitan

    2014-01-01

    This monograph describes problems in the field of performance analysis, primarily the study of storage systems and the diverse mathematical techniques that are required for solving such problems. Topics covered include best practices for scheduling I/O requests to a disk drive, how this problem is related to airplane boarding, and how both problems can be modeled using space-time geometry. The author also explains how Riemann's proof of the analytic continuation and functional equation of the Riemann zeta function can be used to analyze express-line queues in a minimarket. Overall, the book reveals the surprising applicability of abstract mathematical ideas that are not usually associated with applied topics. Advanced undergraduate students or graduate students with an interest in the applications of mathematics will find this book a useful resource. It will also be of interest to professional mathematicians who want exposure to the surprising ways that theoretical mathematics may be applied to engineering pr...

  2. Supplemental mathematical formulations, Atmospheric pathway: The Multimedia Environmental Pollutant Assessment System (MEPAS)

    International Nuclear Information System (INIS)

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a ''multimedia'' model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations

  3. Performance assessment of sealing systems. Conceptual and integrated modelling of plugs and seals

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Andre; Buhmann, Dieter; Kindlein, Jonathan; Lauke, Thomas

    2016-08-15

    The long-time isolation of radionuclides from the biosphere is the goal of the storage of radioactive waste in deep geological repositories. For repositories in rock salt, this goal is achieved on the one hand by the impermeable undisturbed part of the salt host rock formation and on the other hand by crushed salt, which is used to backfill the mine openings in the emplacement areas and galleries created during the construction of the repository. The crushed salt backfill is compacted over time and achieves a sufficiently high hydraulic resistance to avoid inflow of brines into the emplacement areas of the repository in the long-term. Plugs and seals must additionally provide their sealing function during the early post closure phase, until the compaction of the backfill is adequate and the permeability of the backfill is sufficiently low. To assess the future development of the waste repository, an adequate knowledge of the material behaviour is necessary and related mathematical models must be developed to be able to perform predictions on the long-term safety of the repository. An integrated performance assessment model was formulated that describes the long-term behaviour of a sealing built from salt concrete. The average permeability of the sealing changes with time after its emplacement from various processes of which two were regarded in a constitutive model: first, the healing of the EDZ in the host rock around the sealing, and second, the corrosion of the salt concrete material resulting from brine attack. Empirical parameter model functions were defined for both processes to reflect the actual behaviour. The mathematical model was implemented in the integrated performance assessment model LOPOS which is used by GRS as near-field model for repositories in salt. Deterministic and probabilistic calculations were performed with realistic parameters showing how the permeability of the sealing decreases during the first 2 000 years due to the healing of the EDZ

  4. Performance assessment of sealing systems. Conceptual and integrated modelling of plugs and seals

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Kindlein, Jonathan; Lauke, Thomas

    2016-08-01

    The long-time isolation of radionuclides from the biosphere is the goal of the storage of radioactive waste in deep geological repositories. For repositories in rock salt, this goal is achieved on the one hand by the impermeable undisturbed part of the salt host rock formation and on the other hand by crushed salt, which is used to backfill the mine openings in the emplacement areas and galleries created during the construction of the repository. The crushed salt backfill is compacted over time and achieves a sufficiently high hydraulic resistance to avoid inflow of brines into the emplacement areas of the repository in the long-term. Plugs and seals must additionally provide their sealing function during the early post closure phase, until the compaction of the backfill is adequate and the permeability of the backfill is sufficiently low. To assess the future development of the waste repository, an adequate knowledge of the material behaviour is necessary and related mathematical models must be developed to be able to perform predictions on the long-term safety of the repository. An integrated performance assessment model was formulated that describes the long-term behaviour of a sealing built from salt concrete. The average permeability of the sealing changes with time after its emplacement from various processes of which two were regarded in a constitutive model: first, the healing of the EDZ in the host rock around the sealing, and second, the corrosion of the salt concrete material resulting from brine attack. Empirical parameter model functions were defined for both processes to reflect the actual behaviour. The mathematical model was implemented in the integrated performance assessment model LOPOS which is used by GRS as near-field model for repositories in salt. Deterministic and probabilistic calculations were performed with realistic parameters showing how the permeability of the sealing decreases during the first 2 000 years due to the healing of the EDZ

  5. Improvement of biosphere assessment methodology for performance assessment of geological disposal facility. 2. Outline

    International Nuclear Information System (INIS)

    Miki, Takahito; Yoshida, Hideji; Ikeda, Takao

    2002-02-01

    This report contains results on study of Geosphere-Biosphere Interface (GBI), development of biosphere assessment model for gaseous and volatile radionuclides, review of biosphere assessment and research on safety indicators. Regarding study of Geosphere-Biosphere Interface (GBI), FEP database for the Geosphere-Biosphere Transitions Zone (GBTZ) were compiled. Furthermore, release scenarios were identified from the FEP database, and review of conservativeness and robustness of the conceptual and mathematical models developed previously by JNC were undertaken. Regarding development of biosphere assessment model for gaseous and volatile radionuclides, the conceptual and mathematical models were developed, and it was confirmed that the impact of the exposure pathway regarding gas release to flux-to-dose conversion factor is small. Regarding review of biosphere assessment data, the parameters which were used on JNC second progress report were reviewed and classified using the biosphere data protocol categories. Furthermore, the data for key parameter (important but poorly characterized parameters) were revised. Regarding research on safety indicator, some kinds of safety indicators, especially for the non-radioactive contaminant and for the non-human biota, are reviewed. (author)

  6. Mathematical modeling of optical glazing performance

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.

    1994-01-01

    Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like

  7. Mathematical knowledge in teaching

    CERN Document Server

    Rowland, Tim

    2011-01-01

    This book examines issues of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing approaches to characterizing, assessing and developing mathematical knowledge for teaching.

  8. Additive and Multiplicative Effects of Working Memory and Test Anxiety on Mathematics Performance in Grade 3 Students

    Science.gov (United States)

    Korhonen, Johan; Nyroos, Mikaela; Jonsson, Bert; Eklöf, Hanna

    2018-01-01

    The aim of this study was to investigate the interplay between test anxiety and working memory (WM) on mathematics performance in younger children. A sample of 624 grade 3 students completed a test battery consisting of a test anxiety scale, WM tasks and the Swedish national examination in mathematics for grade 3. The main effects of test anxiety…

  9. Assessing Mathematical Competencies: An Analysis of Swedish National Mathematics Tests

    Science.gov (United States)

    Boesen, Jesper; Lithner, Johan; Palm, Torulf

    2018-01-01

    Internationally, education reform has been directed towards describing educational goals that go beyond topic and content descriptions. The idea of mathematical competencies describes such goals. National tests have been seen as one way of communicating these goals and influence teaching. The present study analyses Swedish national tests in…

  10. How could the replica method improve accuracy of performance assessment of channel coding?

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of technology, Yokohama 226-8502 (Japan)], E-mail: kaba@dis.titech.ac.jp

    2009-12-01

    We explore the relation between the techniques of statistical mechanics and information theory for assessing the performance of channel coding. We base our study on a framework developed by Gallager in IEEE Trans. Inform. Theory IT-11, 3 (1965), where the minimum decoding error probability is upper-bounded by an average of a generalized Chernoff's bound over a code ensemble. We show that the resulting bound in the framework can be directly assessed by the replica method, which has been developed in statistical mechanics of disordered systems, whereas in Gallager's original methodology further replacement by another bound utilizing Jensen's inequality is necessary. Our approach associates a seemingly ad hoc restriction with respect to an adjustable parameter for optimizing the bound with a phase transition between two replica symmetric solutions, and can improve the accuracy of performance assessments of general code ensembles including low density parity check codes, although its mathematical justification is still open.

  11. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    CERN Document Server

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  12. Mathematics and engineering in real life through mathematical competitions

    Science.gov (United States)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  13. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Directory of Open Access Journals (Sweden)

    Yaoran Li

    Full Text Available Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4 were larger than gains in the capacity of the central executive (d = 1.6 that in turn were larger than gains in phonological memory span (d = 1.1. First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  14. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Science.gov (United States)

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  15. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    Science.gov (United States)

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154

  16. Mastering mathematics for Edexcel GCSE

    CERN Document Server

    Davis, Heather; Liggett, Linda

    2015-01-01

    Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty

  17. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  18. The Role of Affordances in Children's Learning Performance and Efficiency When Using Virtual Manipulative Mathematics Touch-Screen Apps

    Science.gov (United States)

    Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry

    2016-01-01

    This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…

  19. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  20. Intentional and Automatic Numerical Processing as Predictors of Mathematical Abilities in Primary School Children

    Directory of Open Access Journals (Sweden)

    Violeta ePina

    2015-03-01

    Full Text Available Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1 to 6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved.

  1. A mathematics vocabulary questionnaire for use in the intermediate phase

    Directory of Open Access Journals (Sweden)

    Marthie van der Walt

    2008-11-01

    Full Text Available Teachers and psychologists need an instrument to assess learners' language proficiency in mathematics to enable them to plan and evaluate interventions and to facilitate best practice in mathematics classrooms. We describe the development of a mathematics vocabulary questionnaire to measure learners' language proficiency in mathematics in the intermediate phase. It covers all the steps from designing the preliminary questionnaire to standardising the final instrument. A sample of 1 103 Grades 4 to 7 Afrikaans-, English- and Tswana-speaking learners in North West Province completed the Mathematics Vocabulary questionnaire (Primary (MV(P, consisting of 12 items. We analysed the data by calculating discrimination values, performing a factor analysis, determining reliability coefficients, and investigating item bias by language, gender, and grade. We concluded that there was strong evidence of validity and reliability for the MV(P.

  2. Assessment of Training Programs for Elementary Mathematics Teachers on Developed Curricula and Attitudes towards Teaching in Najran-Saudi Arabia

    Science.gov (United States)

    Aly, Hassan Shawky; Abdulhakeem, Hassan Daker

    2016-01-01

    This study aimed at assessing the training programs for Mathematics teachers at elementary stage on developed Curricula and attitudes toward teaching at Najran educational administration in Saudi Arabia. To achieve this objective, two instruments were developed, one of them measures the opinions of Mathematics teachers about the training programs…

  3. Assessment of Students' Mathematical Competency, a case Study in ...

    African Journals Online (AJOL)

    *Department of mathematics, Dire-Dawa University Ethiopia, e-mail: ... Statistics. Unless the university mathematical competency of these students reaches the desired level, any effort to ..... Applications of Derivative. • Partial Derivatives.

  4. [Joint application of mathematic models in assessing the residual risk of hepatitis C virus transmitted through blood transfusion].

    Science.gov (United States)

    Wang, Xun; Jia, Yao; Xie, Yun-zheng; Li, Xiu-mei; Liu, Xiao-ying; Wu, Xiao-fei

    2011-09-01

    The practicable and effective methods for residual risk assessment on transfusion-transmitted disease was to establish the mathematic models. Based on the characteristics of the repeat donors which donated their blood on a regular base, a model of sero-conversion during the interval of donations was established to assess the incidence of the repeat donors. Based on the characteristics of the prevalence in the population, a model of 'prevalence increased with the age of the donor' was established to assess the incidence of those first-time donors. And based on the impact of the windows period through blood screening program, a model of residual risk associated with the incidence and the length of the windows period was established to assess the residual risk of blood transfusion. In this paper, above said 3 kinds of mathematic models were jointly applied to assess the residual risk of hepatitis C virus (HCV) which was transmitted through blood transfusion in Shanghai, based on data from the routine blood collection and screening program. All the anti-HCV unqualified blood donations were confirmed before assessment. Results showed that the residual risk of HCV transmitted through blood transfusion during Jan. 1(st), 2007 to Dec. 31(st), 2008 in Shanghai was 1:101 000. Data showed that the results of residual risk assessment with mathematic models was valuable. The residual risk of transfusion-transmitted HCV in Shanghai was at a safe level, according to the results in this paper.

  5. Berkeley's Philosophy of Mathematics

    CERN Document Server

    Jesseph, Douglas M

    1993-01-01

    In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

  6. Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls.

    Science.gov (United States)

    Stoet, Gijsbert; Bailey, Drew H; Moore, Alex M; Geary, David C

    2016-01-01

    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls' STEM participation.

  7. Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls

    Science.gov (United States)

    2016-01-01

    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls’ STEM participation. PMID:27100631

  8. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  9. Unfolding the assessment process in a whole class mathematics setting

    Directory of Open Access Journals (Sweden)

    Radišić Jelena

    2014-01-01

    Full Text Available Assessment activities in the class are an important aspect of classroom practice, while there is much debate with respect to the formative vs. summative assessment routines and the outcomes that each of them provides for students' learning. As classroom assessment does not occur in seclusion of other aspects of classroom life, the process is seen as rather complex. In this study we wished to explore how assessment serves the function of supporting students' learning and whether this evidence is used to adapt teacher's practices in meeting different learning needs in the mathematics classroom. The authors observed assessment practices of an experienced math teacher in a grammar school in Belgrade. Teacher's assessment practices were observed during a three week period. The analysis has shown the teacher to hold a somewhat complex perception of assessment, yet the perception is largely detached from teaching, which is in line with the previously reported results. However, the elements of formative assessment do emerge, thus contributing to the assessment being in service of learning. In spite of this, a narrow set of practices are visible when observing how the teacher keeps track of students' progress. A mismatch is visible between students' and teacher's perceptions of the assessment as a whole and some of the practices exercised in the process. The teacher struggled to verbalize some aspects of own assessment practices, especially those related to more formative aspects.

  10. Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

    OpenAIRE

    Lina Wu; Wenyi Lu; Ye Li

    2016-01-01

    Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We fin...

  11. Mathematics education and students with learning disabilities: introduction to the special series.

    Science.gov (United States)

    Rivera, D P

    1997-01-01

    The prevalence of students with mathematics learning disabilities has triggered an interest among special education researchers and practitioners in developing an understanding of the needs of this group of students, and in identifying effective instructional programming to foster their mathematical performance during the school years and into adulthood. Research into the characteristics of students with mathematics learning disabilities is being approached from different perspectives, including developmental, neurological and neuropsychological, and educational. This diversity helps us develop a broader understanding of students' learning needs and difficulties. Special education assessment practices encompass a variety of approaches, including norm-referenced, criterion-referenced, and nonstandardized procedures, depending on the specific assessment questions professionals seek to answer. Students' mathematical knowledge and conceptual understanding must be examined to determine their strengths and weaknesses, curriculum-based progress, and use of cognitive strategies to arrive at mathematical solutions. Research findings have identified empirically validated interventions for teaching mathematics curricula to students with mathematics learning disabilities. Research studies have been grounded in behavioral theory and cognitive psychology, with an emergent interest in the constructivist approach. Although research studies have focused primarily on computational performance, more work is being conducted in the areas of story-problem solving and technology. These areas as well as other math curricular skills require further study. Additionally, the needs of adults with math LD have spurred educators to examine the elementary and secondary math curricula and determine ways to infuse them with life skills instruction accordingly. As the field of mathematics special education continues to evolve, special educators must remain cognizant of the developments in and

  12. A Bayesian Performance Prediction Model for Mathematics Education: A Prototypical Approach for Effective Group Composition

    Science.gov (United States)

    Bekele, Rahel; McPherson, Maggie

    2011-01-01

    This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…

  13. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  14. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  15. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  16. Field Dependency and Performance in Mathematics

    Science.gov (United States)

    Onwumere, Onyebuchi; Reid, Norman

    2014-01-01

    Mathematics is an important school subject but one which often poses problems for learners. It has been found that learners do not possess the cognitive capacity to handle understanding procedures, representations, concepts, and applications at the same time. while the extent of field dependency may hold the key to one way by which the working…

  17. Re-Examining Test Item Issues in the TIMSS Mathematics and Science Assessments

    Science.gov (United States)

    Wang, Jianjun

    2011-01-01

    As the largest international study ever taken in history, the Trend in Mathematics and Science Study (TIMSS) has been held as a benchmark to measure U.S. student performance in the global context. In-depth analyses of the TIMSS project are conducted in this study to examine key issues of the comparative investigation: (1) item flaws in mathematics…

  18. An Analysis of Mathematics Interventions: Increased Time-on-Task Compared with Computer-Assisted Mathematics Instruction

    Science.gov (United States)

    Calhoun, James M., Jr.

    2011-01-01

    Student achievement is not progressing on mathematics as measured by state, national, and international assessments. Much of the research points to mathematics curriculum and instruction as the root cause of student failure to achieve at levels comparable to other nations. Since mathematics is regarded as a gate keeper to many educational…

  19. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  20. A Developmental Mapping Program Integrating Geography and Mathematics.

    Science.gov (United States)

    Muir, Sharon Pray; Cheek, Helen Neely

    Presented and discussed is a model which can be used by educators who want to develop an interdisciplinary map skills program in geography and mathematics. The model assumes that most children in elementary schools perform cognitively at Piaget's concrete operational stage, that readiness for map skills can be assessed with Piagetian or…

  1. Curriculum-Based Language Assessment With Culturally and Linguistically Diverse Students in the Context of Mathematics.

    Science.gov (United States)

    Newkirk-Turner, Brandi L; Johnson, Valerie E

    2018-04-05

    The purpose of this tutorial is to discuss the use of curriculum-based language assessment (CBLA) with students who are English language learners and students who speak nonmainstream varieties of English, such as African American English. The article begins with a discussion of the discourse of mathematics and the role of the speech-language pathologist (SLP), followed by a review of studies that includes those that examined the performance of English language learner and nonmainstream dialect-speaking students on word-based math items. The literature review highlights the linguistic and content biases associated with word-based math problems. Useful strategies that SLPs and educators can incorporate in culturally and linguistically appropriate assessments are discussed. The tutorial ends with a discussion of CBLA as a viable assessment approach to use with culturally and linguistically diverse students. Tests used at national, state, and school levels to assess students' math abilities have associated linguistic bias and content bias often leading to an inaccurate depiction of culturally and linguistically diverse students' math skills. CBLA as an assessment method can be used by school-based SLPs to gather valid and useful information about culturally and linguistically diverse students' language for learning math. By using CBLA, SLPs can help modify curricular tasks in broader contexts in an effort to make math, including high-level math, "accessible and achievable for all" students (American Speech-Language-Hearing Association, 2017).

  2. Didactic strategies through authentic performances in the Mathematics teaching process

    Directory of Open Access Journals (Sweden)

    Enrique Diaz Chong

    2016-09-01

    Full Text Available The main objective of this article is gather a set of Mathematic didactic strategies by improving the academic performance and acquiring skills and abilities through authentic performances during the teaching process. The investigation is going to realize with students of the first semester E and with a teacher of Commercial Studies career, applying the “learn to learn” method described in the fundaments since the application of the teaching strategy until the evaluation. Through this method, they acquire basic competence of the mentioned subject and the knowledge in order to use them as future professionals in any life circumstance. It will verify the obtained results by having a better motivation of the students and the discipline comprehension. It is important to highlight that those strategies could be applied in any other subject.

  3. On the Ability To Infer Deficiency in Mathematics From Performance in Physics Using Hierarchies

    Science.gov (United States)

    Riban, David M.

    1971-01-01

    Presents the procedures, results, and conclusions of a study designed to see if mathematical deficiencies can be inferred from PSSC students' performance by using a hierarchical model of requisite skills. Assuming inferences were possible, remediation was given. No effect due to remediation was observed but analysis indicated incidental learning…

  4. The History of Mathematics and Mathematical Education

    Science.gov (United States)

    Grattan-Guinness, I.

    1977-01-01

    Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)

  5. Investigating Gender Differences in Mathematics and Science: Results from the 2011 Trends in Mathematics and Science Survey

    Science.gov (United States)

    Reilly, David; Neumann, David L.; Andrews, Glenda

    2017-06-01

    The underrepresentation of women in science, technology, engineering, and mathematics (STEM)-related fields remains a concern for educators and the scientific community. Gender differences in mathematics and science achievement play a role, in conjunction with attitudes and self-efficacy beliefs. We report results from the 2011 Trends in Mathematics and Science Study (TIMSS), a large international assessment of eighth grade students' achievement, attitudes, and beliefs among 45 participating nations (N = 261,738). Small- to medium-sized gender differences were found for most individual nations (from d = -.60 to +.31 in mathematics achievement, and d = -.60 to +.26 for science achievement), although the direction varied and there were no global gender differences overall. Such a pattern cross-culturally is incompatible with the notion of immutable gender differences. Additionally, there were different patterns between OECD and non-OECD nations, with girls scoring higher than boys in mathematics and science achievement across non-OECD nations. An association was found between gender differences in science achievement and national levels of gender equality, providing support for the gender segregation hypothesis. Furthermore, the performance of boys was more variable than that of girls in most nations, consistent with the greater male variability hypothesis. Boys reported more favorable attitudes towards mathematics and science, and girls reported lower self-efficacy beliefs. While the gender gap in STEM achievement may be closing, there are still large sections of the world where differences remain.

  6. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students.

    Science.gov (United States)

    van Veggel, Nieky; Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.

  7. NRC performance assessment program

    International Nuclear Information System (INIS)

    Coplan, S.M.

    1986-01-01

    The U.S. Nuclear Regulatory Commission's (NRC) performance assessment program includes the development of guidance to the U.S. Department of Energy (DOE) on preparation of a license application and on conducting the studies to support a license application. The nature of the licensing requirements of 10 CFR Part 60 create a need for performance assessments by the DOE. The NRC and DOE staffs each have specific roles in assuring the adequacy of those assessments. Performance allocation is an approach for determining what testing and analysis will be needed during site characterization to assure that an adequate data base is available to support the necessary performance assessments. From the standpoint of establishing is implementable methodology, the most challenging performance assessment needed for licensing is the one that will be used to determine compliance with the U.S. Environmental Protection Agency's (EPA) containment requirement

  8. Can Instructional Reform in Urban Middle Schools Help Students Narrow the Mathematics Performance Gap? Some Evidence from the QUASAR Project.

    Science.gov (United States)

    Silver, Edward A.; Lane, Suzanne

    1995-01-01

    Compared mathematical performance of middle school students in low-income communities involved in the QUASAR project to those of a demographically similar school and of a nationally representative sample. QUASAR mathematics instruction emphasizes reasoning, problem-solving, and understanding. Quasar students outperformed NAEP's disadvantaged urban…

  9. Semiotic Structure and Meaning Making: The Performance of English Language Learners on Mathematics Tests

    Science.gov (United States)

    Solano-Flores, Guillermo; Barnett-Clarke, Carne; Kachchaf, Rachel R.

    2013-01-01

    We examined the performance of English language learners (ELLs) and non-ELLs on Grade 4 and Grade 5 mathematics content knowledge (CK) and academic language (AL) tests. CK and AL items had different semiotic loads (numbers of different types of semiotic features) and different semiotic structures (relative frequencies of different semiotic…

  10. Effects of Mathematics Innovation and Technology on Students Performance in Open and Distance Learning

    Science.gov (United States)

    Israel, Oginni 'Niyi

    2016-01-01

    This study investigated the effect of mathematics innovation and technology on students' academic performance in open and distance learning. Quasi -- experimental research design was adopted for the study. The population for the study consisted of all the 200 level primary education students at the National Open University of Nigeria (Ekiti and…

  11. The Relationship among Self-Concept, Self-Efficacy, and Performance in Mathematics during Secondary School.

    Science.gov (United States)

    Pietsch, James; Walker, Richard; Chapman, Elaine

    2003-01-01

    Examines the relationship among self-concept, self-efficacy, and performance in mathematics among 416 high school students. Confirmatory factor analyses supported the existence of two self-concept components--a competency component and an affective component. Self-efficacy items and the competency items of self-concept also loaded on a single…

  12. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  13. Mathematical Modeling in the High School Curriculum

    Science.gov (United States)

    Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary

    2016-01-01

    In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…

  14. Mathematics Self-Related Beliefs and Online Learning

    Science.gov (United States)

    Ichinose, Cherie; Bonsangue, Martin

    2016-01-01

    This study examined students' mathematical self-related beliefs in an online mathematics course. Mathematical self-related beliefs of a sample of high school students learning mathematics online were compared with student response data from the 2012 Programme for International Student Assessment (PISA). The treatment group reported higher levels…

  15. Role of natural analogs in performance assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Sagar, B.; Wittmeyer, G.W.

    1995-01-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemical processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present

  16. MATHEMATICS EDUCATION FOR LOGISTICS ENGINEERING

    OpenAIRE

    BÉLA ILLÉS; GABRIELLA BOGNÁR

    2012-01-01

    Mathematics is a crucial language in all engineering courses and researches where mathematical modeling, simulation and manipulation are commonly used. Engineering Mathematics courses are considered difficult courses in engineering curricula. This is reflected in engineering students’ performance at the end of each semester for these courses. Our goal is to overview a few questions on mathematics as a core subject of engineering.

  17. Assessment for Learning in Norway and Portugal: The Case of Primary School Mathematics Teaching

    Science.gov (United States)

    Nortvedt, Guri A.; Santos, Leonor; Pinto, Jorge

    2016-01-01

    In this study, we aim to understand the forces driving assessment for learning (AfL) in primary school teaching. By applying a case study design, including the two cases of Norway and Portugal and using mathematics teaching as an example, available policy documents and research reports are analysed to identify the differences and similarities that…

  18. The Construction of Mathematical Literacy Problems for Geometry

    Science.gov (United States)

    Malasari, P. N.; Herman, T.; Jupri, A.

    2017-09-01

    The students of junior high school should have mathematical literacy ability to formulate, apply, and interpret mathematics in problem solving of daily life. Teaching these students are not enough by giving them ordinary mathematics problems. Teaching activities for these students brings consequence for teacher to construct mathematical literacy problems. Therefore, the aim of this study is to construct mathematical literacy problems to assess mathematical literacy ability. The steps of this study that consists of analysing, designing, theoretical validation, revising, limited testing to students, and evaluating. The data was collected with written test to 38 students of grade IX at one of state junior high school. Mathematical literacy problems consist of three essays with three indicators and three levels at polyhedron subject. The Indicators are formulating and employing mathematics. The results show that: (1) mathematical literacy problems which are constructed have been valid and practical, (2) mathematical literacy problems have good distinguishing characteristics and adequate distinguishing characteristics, (3) difficulty levels of problems are easy and moderate. The final conclusion is mathematical literacy problems which are constructed can be used to assess mathematical literacy ability.

  19. The Effects of Performance-Based Assessment Criteria on Student Performance and Self-Assessment Skills

    Science.gov (United States)

    Fastre, Greet Mia Jos; van der Klink, Marcel R.; van Merrienboer, Jeroen J. G.

    2010-01-01

    This study investigated the effect of performance-based versus competence-based assessment criteria on task performance and self-assessment skills among 39 novice secondary vocational education students in the domain of nursing and care. In a performance-based assessment group students are provided with a preset list of performance-based…

  20. The Relations among Mathematics Anxiety, Gender, and Standardized Test Performance

    Science.gov (United States)

    Anis, Yasmeen; Krause, Jeremy A.; Blum, Emily N.

    2016-01-01

    Mathematics anxiety typically involves apprehension toward activities that require computation, which can lead to complications in every-day-life activities (Ashcraft, 2002). Mathematics anxiety also has become accepted as an issue associated with academic success for both children and adults (Ashcraft, 2002; Ashcraft & Moore, 2009; Beilock,…

  1. Mathematics Motivation, Anxiety, and Performance in Female Deaf/Hard-of-Hearing and Hearing Students

    Science.gov (United States)

    Ariapooran, Saeed

    2017-01-01

    Hearing loss can be a major detriment to academic achievement among students. The present comparative study examines the differences in mathematics motivation, anxiety, and performance in female students with hearing loss and their hearing peers. A total of 63 female students with hearing loss (deaf and hard-of-hearing) and 63 hearing female…

  2. Assessing K-5 Teacher Leaders' Mathematical Understanding: What Have the Test Makers and the Test Takers Learned?

    Science.gov (United States)

    Ellington, Aimee J.; Whitenack, Joy W.; Inge, Vickie L.; Murray, Megan K.; Schneider, Patti J.

    2012-01-01

    This article describes the design and implementation of an assessment instrument for Numbers and Operations, the first course in a program to train elementary mathematics specialists. We briefly describe the course and its content, and then we elaborate on the process we used to develop the assessment instrument and the corresponding rubric for…

  3. To What Extent Is Mathematical Ability Predictive of Performance in a Methodology and Statistics Course? Can an Action Research Approach Be Used to Understand the Relevance of Mathematical Ability in Psychology Undergraduates?

    Science.gov (United States)

    Bourne, Victoria J.

    2014-01-01

    Research methods and statistical analysis is typically the least liked and most anxiety provoking aspect of a psychology undergraduate degree, in large part due to the mathematical component of the content. In this first cycle of a piece of action research, students' mathematical ability is examined in relation to their performance across…

  4. Number sense and mathematics: Which, when and how?

    Science.gov (United States)

    Tosto, Maria G; Petrill, Stephen A; Malykh, Sergey; Malki, Karim; Haworth, Claire M A; Mazzocco, Michele M M; Thompson, Lee; Opfer, John; Bogdanova, Olga Y; Kovas, Yulia

    2017-10-01

    Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Relationship between teachers' coverage of mathematics curriculum ...

    African Journals Online (AJOL)

    kofi.mereku

    African Journal of Educational Studies in Mathematics and Sciences Vol. ... materials (MCM) and their schools' performance in mathematics ... should be created for mathematics teachers in high performing junior high schools to share their ... in syllabuses which are also spread out in text books, teachers' hand out, etc.

  6. 24 CFR 115.206 - Performance assessments; Performance standards.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Performance assessments; Performance standards. 115.206 Section 115.206 Housing and Urban Development Regulations Relating to Housing... AGENCIES Certification of Substantially Equivalent Agencies § 115.206 Performance assessments; Performance...

  7. Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach.

    Science.gov (United States)

    Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M

    2018-04-24

    Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.

  8. Mathematics teachers' knowledge of the subject content and ...

    African Journals Online (AJOL)

    This paper discusses the need of the mathematics teacher to be equipped adequately in the content areas in mathematics, vis-a-vis the recent concerns about the poor performance of students in the pre-tertiary schools, and the competence of mathematics teachers in the field. The low performance in mathematics at the ...

  9. The Nation's Report Card: Mathematics 2011. Trial Urban District Assessment Results at Grades 4 and 8. NCES 2012-452

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    Representative samples of fourth- and eighth-grade public school students from 21 urban districts participated in the 2011 National Assessment of Educational Progress (NAEP) in mathematics. Eighteen of the districts participating in the 2011 NAEP Trial Urban District Assessment (TUDA) participated in earlier assessment years, while three districts…

  10. Application of fuzzy expert system on LILW performance assessment

    International Nuclear Information System (INIS)

    Lemos, F.L. de; Sullivan, T.

    2002-01-01

    A complete LILW repository performance assessment requires the involvement between several experts in many fields of science. Many sources of uncertainties arise due to complexity of interaction of environmental parameters, lack of data and ignorance, this makes predictive analysis and interpretation difficult. This difficulty in understanding the impact of the ambiguities is even higher when it comes to public and decision makers involvement. Traditional methods of data analysis, while having strong mathematical basis, many times are not adequate to deal with ambiguous data. These ambiguities can be an obstacle to make the results easier to understand and defensible. A methodology of decision making, based on fuzzy logic, can help the interaction between experts, decision makers and the public. This method is the basis of an expert system which can help the analysis of very complex and ambiguous processes. (author)

  11. Assessment in the Context of Mathematics Instruction Reform: The Design of Assessment in the QUASAR Project.

    Science.gov (United States)

    Silver, Edward A.; Lane, Suzanne

    Recent reports on mathematics education reform have focused the attention of educational practitioners and policymakers on new goals for mathematics education and new descriptions of mathematical proficiency. QUASAR is a national project (Quantitative Understanding: Amplifying Student Achievement and Reasoning) designed to improve the mathematics…

  12. Diagnosing and alleviating the impact of performance pressure on mathematical problem solving.

    Science.gov (United States)

    DeCaro, Marci S; Rotar, Kristin E; Kendra, Matthew S; Beilock, Sian L

    2010-08-01

    High-pressure academic testing situations can lead people to perform below their actual ability levels by co-opting working memory (WM) resources needed for the task at hand (Beilock, 2008). In the current work we examine how performance pressure impacts WM and design an intervention to alleviate pressure's negative impact. Specifically, we explore the hypothesis that high-pressure situations trigger distracting thoughts and worries that rely heavily on verbal WM. Individuals performed verbally based and spatially based mathematics problems in a low-pressure or high-pressure testing situation. Results demonstrated that performance on problems that rely heavily on verbal WM resources was less accurate under high-pressure than under low-pressure tests. Performance on spatially based problems that do not rely heavily on verbal WM was not affected by pressure. Moreover, the more people reported worrying during test performance, the worse they performed on the verbally based (but not spatially based) maths problems. Asking some individuals to focus on the problem steps by talking aloud helped to keep pressure-induced worries at bay and eliminated pressure's negative impact on performance.

  13. Identifying Affective Domains That Correlate and Predict Mathematics Performance in High-Performing Students in Singapore

    Science.gov (United States)

    Lim, Siew Yee; Chapman, Elaine

    2015-01-01

    Past studies have shown that distinct yet highly correlated sub-constructs of three broad mathematics affective variables: (a) motivation, (b) attitudes and (c) anxiety, have varying degree of correlation with mathematics achievement. The sub-constructs of these three affective constructs are as follows: (a) (i) amotivation, (ii) external…

  14. Examining Calculator Use among Students with and without Disabilities Educated with Different Mathematical Curricula

    Science.gov (United States)

    Bouck, Emily C.; Joshi, Gauri S.; Johnson, Linley

    2013-01-01

    This study assessed if students with and without disabilities used calculators (fourfunction, scientific, or graphing) to solve mathematics assessment problems and whether using calculators improved their performance. Participants were sixth and seventh-grade students educated with either National Science Foundation (NSF)-funded or traditional…

  15. Short report The DeDiMa battery: a tool for identifying students’ mathematical learning profiles

    Directory of Open Access Journals (Sweden)

    Giannis Karagiannakis

    2014-10-01

    Full Text Available Background The DeDiMa battery is designed for assessing students’ mathematical learning profiles, and it has been used to validate a 4-dimensional model for classifying mathematical learning difficulties. The model arises from existing hypotheses in the cognitive psychology and neuroscience literature, while the DeDiMa battery provides a reliable set of mathematical tasks that help to match characteristics of students’ mathematical performances to their more basic learning difficulties. Participants and procedure In this report we address the question of how these tools can help sketch out a student’s mathematical learning profile. The participants are 5th and 6th grade students. Results We compare the emerging profiles of two students with mathematical learning difficulties (MLD matched for age, performance on a standardized test, non-verbal IQ, and educational experiences. The profiles are very different. Conclusions We believe that this approach can inform the design of individualized remedial interventions for MLD students.

  16. Potential for accidents in a nuclear power plant: probabilistic risk assessment, applied statistical decision theory, and implications of such considerations to mathematics education

    International Nuclear Information System (INIS)

    Dios, R.A.

    1984-01-01

    This dissertation focuses upon the field of probabilistic risk assessment and its development. It investigates the development of probabilistic risk assessment in nuclear engineering. To provide background for its development, the related areas of population dynamics (demography), epidemiology and actuarial science are studied by presenting information upon how risk has been viewed in these areas over the years. A second major problem involves presenting an overview of the mathematical models related to risk analysis to mathematics educators and making recommendations for presenting this theory in classes of probability and statistics for mathematics and engineering majors at the undergraduate and graduate levels

  17. Mathematics Anxiety and the Affective Drop in Performance

    Science.gov (United States)

    Ashcraft, Mark H.; Moore, Alex M.

    2009-01-01

    The authors provide a brief review of the history and assessment of math anxiety, its relationship to personal and educational consequences, and its important impact on measures of performance. Overall, math anxiety causes an "affective drop," a decline in performance when math is performed under timed, high-stakes conditions, both in laboratory…

  18. Impact of a required pharmaceutical calculations course on mathematics ability and knowledge retention.

    Science.gov (United States)

    Hegener, Michael A; Buring, Shauna M; Papas, Elizabeth

    2013-08-12

    To assess doctor of pharmacy (PharmD) students' mathematics ability by content area before and after completing a required pharmaceutical calculations course and to analyze changes in scores. A mathematics skills assessment was administered to 2 cohorts of pharmacy students (class of 2013 and 2014) before and after completing a pharmaceutical calculations course. The posttest was administered to the second cohort 6 months after completing the course to assess knowledge retention. Both cohorts performed significantly better on the posttest (cohort 1, 13% higher scores; cohort 2, 15.9% higher scores). Significant improvement on posttest scores was observed in 6 of the 10 content areas for cohorts 1 and 2. Both cohorts scored lower in percentage calculations on the posttest than on the pretest. A required, 1-credit-hour pharmaceutical calculations course improved PharmD students' overall ability to perform fundamental and application-based calculations.

  19. Video-Games Do Not Negatively Impact Adolescent Academic Performance in Science, Mathematics or Reading

    OpenAIRE

    Drummond, Aaron; Sauer, James D.

    2014-01-01

    Video-gaming is a common pastime among adolescents, particularly adolescent males in industrialized nations. Despite widespread suggestions that video-gaming negatively affects academic achievement, the evidence is inconclusive. We reanalyzed data from over 192,000 students in 22 countries involved in the 2009 Programme for International Student Assessment (PISA) to estimate the true effect size of frequency of videogame use on adolescent academic achievement in science, mathematics and readi...

  20. Who Succeeds in Mathematics? Caribbean Perspectives on the Mix of Schools and Mathematics

    Science.gov (United States)

    George, Patricia

    2012-01-01

    Within the Caribbean, there has been a perception that students are underachieving in mathematics. This assessment has seemingly been based amongst other things upon the proportion of students who are successful in mathematics compared to other subjects in external examinations. This notion was investigated in a case study of secondary schools in…

  1. Study Habits and Academic Performance of Secondary School Students in Mathematic: A Case Study of Selected Secondary Schools in Uyo Local Education Council

    Science.gov (United States)

    Sakirudeen, Abisola Oladeni; Sanni, Kudirat Bimbo

    2017-01-01

    The study examined study habits and academic performance of secondary school students in Mathematics. A case study of selected secondary schools in Uyo Local Education Council. The main purpose of the study was to investigate the relationship between study habits and academic performance of secondary school students in Mathematics. To carry out…

  2. Effects of Gender, Mathematics Anxiety and Achievement Motivation on College Students’ Achievement in Mathematics

    Directory of Open Access Journals (Sweden)

    Ajogbeje Oke James

    2013-07-01

    Full Text Available The urge to excel or perform maximally in mathematics varies from individual to individual because achievement motivation is often developed or learnt during socialization and learning experiences. The study examined the relationship between College of Education students’ achievement motivation and mathematics achievement, correlation coefficient between mathematics anxiety and college students’ achievement motivation as well as mathematics anxiety and mathematics achievement. The sample, 268 College of Education students offering mathematics as one of their subject combination, was selected using purposive sampling techniques. Three research instruments namely: Mathematics Anxiety Scale (MAS, Achievement Motivation Scale (AMS and Mathematics Achievement Test (MAT were used to collect data for the study. Data collected for the study were analyzed using correlational analysis and ANOVA. The results showed that a significantly low negative correlation coefficient existed between mathematics anxiety and mathematics achievement. There is a negative and significant correlation coefficient between mathematics anxiety and achievement motivation. Similarly, a positive and significant correlation coefficient also exists between achievement motivation and mathematics achievement. Based on the findings of the study, it was recommended that mathematics teachers should adopt activity based strategies and conducive learning environment in order to reduce college students’ anxieties in mathematics learning.

  3. Elective Drama Course in Mathematics Education: An Assessment of Pre-Service Teachers

    Science.gov (United States)

    Sagirli, Meryem Özturan

    2014-01-01

    This study aimed to evaluate a newly introduced elective course "Drama in Mathematics Education" into mathematics education curriculum from the viewpoints of pre-service mathematics teachers. A case study was employed in the study. The study group consisted of 37 pre-service mathematics teachers who were enrolled in a Turkish state…

  4. Application of Adjusted Canonical Correlation Analysis (ACCA) to study the association between mathematics in Level 1 and Level 2 and performance of engineering disciplines in Level 2

    Science.gov (United States)

    Peiris, T. S. G.; Nanayakkara, K. A. D. S. A.

    2017-09-01

    Mathematics plays a key role in engineering sciences as it assists to develop the intellectual maturity and analytical thinking of engineering students and exploring the student academic performance has received great attention recently. The lack of control over covariates motivates the need for their adjustment when measuring the degree of association between two sets of variables in Canonical Correlation Analysis (CCA). Thus to examine the individual effects of mathematics in Level 1 and Level 2 on engineering performance in Level 2, two adjusted analyses in CCA: Part CCA and Partial CCA were applied for the raw marks of engineering undergraduates for three different disciplines, at the Faculty of Engineering, University of Moratuwa, Sri Lanka. The joint influence of mathematics in Level 1 and Level 2 is significant on engineering performance in Level 2 irrespective of the engineering disciplines. The individual effect of mathematics in Level 2 is significantly higher compared to the individual effect of mathematics in Level 1 on engineering performance in Level 2. Furthermore, the individual effect of mathematics in Level 1 can be negligible. But, there would be a notable indirect effect of mathematics in Level 1 on engineering performance in Level 2. It can be concluded that the joint effect of mathematics in both Level 1 and Level 2 is immensely beneficial to improve the overall academic performance at the end of Level 2 of the engineering students. Furthermore, it was found that the impact mathematics varies among engineering disciplines. As partial CCA and partial CCA are not widely explored in applied work, it is recommended to use these techniques for various applications.

  5. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  6. The Influence of Symbols and Equations on Understanding Mathematical Equivalence

    Science.gov (United States)

    Powell, Sarah R.

    2015-01-01

    Students with mathematics difficulty demonstrate lower mathematics performance than typical-performing peers. One contributing factor to lower mathematics performance may be misunderstanding of mathematics symbols. In several studies related to the equal sign (=), students who received explicit instruction on the relational definition (i.e.,…

  7. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    Science.gov (United States)

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  8. The possibilities of a modelling perspective for school mathematics

    Directory of Open Access Journals (Sweden)

    Dirk Wessels

    2009-09-01

    complex teaching methodology requires in-depth thinking about the role of the teacher, the role of the learner, the nature of the classroom culture, the nature of the negotiation of meaning between the teacher and individuals or groups, the nature of selected problems and material, as well as the kind of integrative assessment used in the mathematics classroom. Modelling is closely related to the problem-centred teaching approach, but it also smoothly relates to bigger and longer mathematical tasks. This article gives a theoretical exposition of the scope and depth of mathematical modelling. It is possible to introduce modelling at every school phase in our educational sytem. Modelling in school mathematics seems to make the learning of mathematics more effective. The mastering of problem solving and modelling strategies has definitely changed the orientation, the competencies and performances of learners at each school level. It would appear from research that learners like the application side of mathematics and that they want to see it in action. Genuine real life problems should be selected, which is why a modelling perspective is so important for the teaching and mastering of mathematics. Modelling should be integrated into the present curriculum because learners will then get full access to involvement in the classroom, to mathematisation, to doing problems, to criticising arguments, to finding proofs, to recognising concepts and to obtaining the ability to abstract these from the realistic situation. Modelling should be given a full opportunity in mathematics teacher education so that our learners can get the full benefit of it. This will put the mathematical performances of learners in our country on a more solid base, which will make our learners more competitive at all levels in the future. 

  9. 33rd International School of Mathematics "G Stampacchia ": High Performance Algorithms and Software for Nonlinear Optics "Ettore Majorana"

    CERN Document Server

    Murli, Almerico; High Performance Algorithms and Software for Nonlinear Optics

    2003-01-01

    This volume contains the edited texts of the lectures presented at the Workshop on High Performance Algorithms and Software for Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 30 - July 8, 2001. In the first year of the new century, the aim of the Workshop was to assess the past and to discuss the future of Nonlinear Optimization, and to highlight recent achieve­ ments and promising research trends in this field. An emphasis was requested on algorithmic and high performance software developments and on new computational experiences, as well as on theoretical advances. We believe that such goal was basically achieved. The Workshop was attended by 71 people from 22 countries. Although not all topics were covered, the presentations gave indeed a wide overview of the field, from different and complementary stand­ points. Besides the lectures, several formal and informal discussions took place. We wish ...

  10. Emotional and cognitive effects of peer tutoring among secondary school mathematics students

    Science.gov (United States)

    Alegre Ansuategui, Francisco José; Moliner Miravet, Lidón

    2017-11-01

    This paper describes an experience of same-age peer tutoring conducted with 19 eighth-grade mathematics students in a secondary school in Castellon de la Plana (Spain). Three constructs were analysed before and after launching the program: academic performance, mathematics self-concept and attitude of solidarity. Students' perceptions of the method were also analysed. The quantitative data was gathered by means of a mathematics self-concept questionnaire, an attitude of solidarity questionnaire and the students' numerical ratings. A statistical analysis was performed using Student's t-test. The qualitative information was gathered by means of discussion groups and a field diary. This information was analysed using descriptive analysis and by categorizing the information. Results show statistically significant improvements in all the variables and the positive assessment of the experience and the interactions that took place between the students.

  11. Longitudinal development of number line estimation and mathematics performance in primary school children.

    Science.gov (United States)

    Friso-van den Bos, Ilona; Kroesbergen, Evelyn H; Van Luit, Johannes E H; Xenidou-Dervou, Iro; Jonkman, Lisa M; Van der Schoot, Menno; Van Lieshout, Ernest C D M

    2015-06-01

    Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the current study, different models were applied to children's longitudinal number placement data to get more insight into the development of number line representations in kindergarten and early primary school years. In addition, longitudinal developmental relations between number line placements and mathematical achievement, measured with a national test of mathematics, were investigated using cross-lagged panel modeling. A group of 442 children participated in a 3-year longitudinal study (ages 5-8 years) in which they completed a number-to-position task every 6 months. Individual number line placements were fitted to various models, of which a one-anchor power model provided the best fit for many of the placements at a younger age (5 or 6 years) and a two-anchor power model provided better fit for many of the children at an older age (7 or 8 years). The number of children who made linear placements also grew with age. Cross-lagged panel analyses indicated that the best fit was provided with a model in which number line acuity and mathematics performance were mutually predictive of each other rather than models in which one ability predicted the other in a non-reciprocal way. This indicates that number line acuity should not be seen as a predictor of math but that both skills influence each other during the developmental process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. How working on mathematics impacts primary teaching: Mathematics Specialist Teachers make the connections

    OpenAIRE

    Hilton, C.; Houssart, J.

    2014-01-01

    We draw on analysis of assignments by primary teachers as part of the assessment for the Mathematics Specialist Teachers programme (MaST). In the assignment teachers are asked to work on some mathematics themselves, write up the mathematical part of their work then write about how this experience has impacted on their practice as a primary teacher. We focus first on case studies of teachers who included algebraic work in the first part of their assignments and look at what they say about the ...

  13. Comparing Differences in Math Achievement and Attitudes toward Math in a Sixth Grade Mathematics Enrichment Pilot Program

    Science.gov (United States)

    Tow, Tamara

    2011-01-01

    High-stakes assessments have encouraged educators to ignore the needs of the top performers. Therefore, the Oakwood School District decided to implement a mathematics pilot enrichment program in order to meet the needs of the advanced mathematics students. As a result, this study used quantitative data to determine if there was a significant…

  14. Game Development as Students’ Engagement Project in High School Mathematics

    Directory of Open Access Journals (Sweden)

    Ryan V. Dio

    2015-12-01

    Full Text Available The general expectancies of the enhanced basic education curriculum in the Philippines focuses on the performance standards which can be expressed when students are able to produce products as evidence that they can transfer or use their learning in real-life situations. One way to assess students achievement is through an engaging activities that would require them apply the knowledge and skills acquired in the subject as the outcome of their learning. This descriptive method of research employed content analysis procedures and survey in describing and assessing the significant feature of the mathematical games as potential learning devices developed by the high school students through an engaging task assignment. It utilized purposive sampling techniques in the selection of the respondents and the submitted write-ups of mathematical games for analysis as typical sample in this study. The study revealed that the high school students developed mathematical board games with different objectives and mechanics as inspired by their learning, experiences, hobbies, and interest. Mathematical concepts and processes along numbers and number sense, measurements, algebra, geometry, and probability and statistics were integrated in the game through question card and mechanics of the game itself. The groups of students and teachers have high level of agreement as to the workmanship and usability, mechanics and organization, relevance to instruction/learning, and fun and enjoyment of the game as revealed by their assessment from very satisfactory to excellent level. Results implied that teachers in any subject area may use students’ engagement project as teaching strategy to produce products and performance that would provide evidence of students’ learning. The school curriculum makers may consider the students’ output as subjects of research for further improvements, exhibits, and classroom utilization.

  15. Modelling of Factors Influencing Gender Difference in Mathematics Achievement Using TIMSS 2011 Data for Singaporean Eighth Grade Students

    Science.gov (United States)

    Yoo, Yang Seok

    2018-01-01

    Numerous studies have attributed gender difference in mathematics achievement to various sociocultural influences. Singapore is a country of higher gender equality as represented in the Global Gender Gap Index and Singaporean girls perform as well or higher than boys in international mathematics assessments. This study develops a conceptual model…

  16. Effect of external classroom noise on schoolchildren's reading and mathematics performance: correlation of noise levels and gender.

    Science.gov (United States)

    Papanikolaou, M; Skenteris, N; Piperakis, S M

    2015-02-01

    The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (plevel noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors.

  17. The Opinions of Middle School Mathematics Teachers on the Integration of Mathematics Course and Social Issues

    Directory of Open Access Journals (Sweden)

    Buket Turhan Turkkan

    2018-04-01

    Full Text Available The purpose of this study is to examine the opinions of middle school mathematics teachers on the integration of mathematics course and social issues. For this purpose, qualitative research method was used in this study. As for determining the participants of the research, criterion sampling among purposeful sampling methods was used. Being a middle school mathematics teacher as an occupation was considered as a criterion for determining the participants. The participants of the research consist of 13 middle school mathematics teachers in Turkey. So as to collect the research data, the semi-structured interview form created by the researchers was used. The data analysis was performed according to the content analysis, and Nvivo 10 program was used for the analysis. As a result of this study, the themes of the situation and methods of the integration of mathematics course and social issues, the attainment of democratic values in mathematics course and the ways of its attainment, gaining awareness of social justice and equality in mathematics course and the ways of its gaining, the activities performed by teachers for social issues in mathematics course and the teachers’ suggestions for the integration of mathematics course and social issues were reached and the results were discussed within this frame.

  18. Ego Depletion Effects on Mathematics Performance in Primary School Students: Why Take the Hard Road?

    Science.gov (United States)

    Price, Deborah Ann; Yates, Gregory C. R.

    2010-01-01

    Reduction in performance level following on from brief periods of self-control is referred to as ego depletion. This study aimed to investigate if a brief ego depletion experience would impact upon primary school students working through an online mathematics exercise involving 40 computational trials. Seventy-two students participated in the…

  19. The Impact of Individual, Competitive, and Collaborative Mathematics Game Play on Learning, Performance, and Motivation

    Science.gov (United States)

    Plass, Jan L.; O'Keefe, Paul A.; Homer, Bruce D.; Case, Jennifer; Hayward, Elizabeth O.; Stein, Murphy; Perlin, Ken

    2013-01-01

    The present research examined how mode of play in an educational mathematics video game impacts learning, performance, and motivation. The game was designed for the practice and automation of arithmetic skills to increase fluency and was adapted to allow for individual, competitive, or collaborative game play. Participants (N = 58) from urban…

  20. Study orientation and knowledge of basic vocabulary in Mathematics in the primary school

    Directory of Open Access Journals (Sweden)

    Marthie van der Walt

    2009-09-01

    Full Text Available Whatever the reason, underachievement in mathematics in South Africa is endemic and tantamount to a national disaster. Despite the transformation of education in South Africa, failure rates in mathematics at school and university remain unacceptably high, and the number of learners who leave Grade 12 with a pass mark in both mathematics and physical science is unacceptably low. Relatively little has been written about inadequate performance of Grade 4 to 7 learners in mathematics in South Africa, and even less about possible solutions to the problem. South African primary school learners’ lack of basic mathematics and vocabulary skills in particular is a source of major concern. In the first national systemic evaluation of learners’ skills in English, mathematics and science in 2001 Grade 3 learners achieved an average of 30% in mathematics. In the follow-up studies, Grade 6 learners achieved a national average of 27% in mathematices, in 2004, while nationally eighty percent of Grade 3 and 6 learners achieved less than 50 percent for mathematics and Languages in 2008. The finding that so many primary school learners today are not numerate or literate has a direct influence both on the teaching and the learning of mathematics. Everything possible needs to be done to change this situation. During the past 15 years, the research focus in mathematics has shifted to an examination of the influence of social, cognitive and metacognitive, conative and affective factors on achievement in mathematics. In this regard, it is of particular importance that an ongoing investigation into “other” aspects that impact on achievement in mathematics is launched, rather than to restrict the investigation to mere assessment of objectives that are aimed at continually evaluating cognitive progress in mathematics. There is sufficient empirical evidence that an adequate orientation to the study of mathematics correlates positively with high achievement in

  1. The effects of a digital formative assessment tool on mathematics achievement and student motivation : Results of a randomized experiment

    NARCIS (Netherlands)

    Faber, Janke; Luyten, Johannes W.; Visscher, Arend J.

    2017-01-01

    In this study a randomized experimental design was used to examine the effects of a digital formative assessment tool on mathematics achievement and motivation in grade three primary education (n schools = 79, n students = 1808). Experimental schools used a digital formative assessment tool whereas

  2. Uncovering student thinking about mathematics in the common core, grades 6-8 25 formative assessment probes

    CERN Document Server

    Tobey, Cheryl Rose

    2013-01-01

    Pinpoint and reverse math misconceptions with laser-like accuracyQuickly and reliably uncover common math misconceptions in Grades 6-8 with these convenient and easy-to-implement diagnostic tools! Bestselling authors Cheryl Tobey and Carolyn Arline provide 25 new assessment probes that pinpoint subconcepts within the new Common Core Standards for Mathematics to promote deep learning and expert math instruction--while learning is already underway.Completely CCSM aligned, these grade-specific probes eliminate the guesswork and help teachers: Systematically address conceptual and procedural mistakes Help students better understand areas of struggle Plan targeted instruction that covers Grades 6-8 CCSM mathematical processes and proficiencies.

  3. Introduction to radiological performance assessment

    International Nuclear Information System (INIS)

    Moss, G.

    1995-02-01

    A radiological performance assessment is conducted to provide reasonable assurance that performance objectives for low-level radioactive waste (LLW) disposal will be met. Beginning in the early stages of development, a radiological performance assessment continues through the operational phase, and is instrumental in the postclosure of the facility. Fundamental differences exist in the regulation of commercial and defense LLW, but the radiological performance assessment process is essentially the same for both. The purpose of this document is to describe that process in a concise and straightforward manner. This document focuses on radiological performance assessment as it pertains to commercial LLW disposal, but is applicable to US Department of Energy sites as well. Included are discussions on performance objectives, site characterization, and how a performance assessment is conducted. A case study is used to illustrate how the process works as a whole. A bibliography is provided to assist in locating additional information

  4. Early numerical foundations of young children's mathematical development.

    Science.gov (United States)

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2015-04-01

    This study focused on the relative contributions of the acuity of the approximate number system (ANS) and knowledge of quantitative symbols to young children's early mathematical learning. At the beginning of preschool, 191 children (Mage=46 months) were administered tasks that assessed ANS acuity and explicit knowledge of the cardinal values represented by number words, and their mathematics achievement was assessed at the end of the school year. Children's executive functions, intelligence, and preliteracy skills and their parents' educational levels were also assessed and served as covariates. Both the ANS and cardinality tasks were significant predictors of end-of-year mathematics achievement with and without control of the covariates. As simultaneous predictors and with control of the covariates, cardinality remained significantly related to mathematics achievement, but ANS acuity did not. Mediation analyses revealed that the relation between ANS acuity and mathematics achievement was fully mediated by cardinality, suggesting that the ANS may facilitate children's explicit understanding of cardinal value and in this way may indirectly influence early mathematical learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Applying mathematical models to predict resident physician performance and alertness on traditional and novel work schedules.

    Science.gov (United States)

    Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P

    2016-09-13

    In 2011 the U.S. Accreditation Council for Graduate Medical Education began limiting first year resident physicians (interns) to shifts of ≤16 consecutive hours. Controversy persists regarding the effectiveness of this policy for reducing errors and accidents while promoting education and patient care. Using a mathematical model of the effects of circadian rhythms and length of time awake on objective performance and subjective alertness, we quantitatively compared predictions for traditional intern schedules to those that limit work to ≤ 16 consecutive hours. We simulated two traditional schedules and three novel schedules using the mathematical model. The traditional schedules had extended duration work shifts (≥24 h) with overnight work shifts every second shift (including every third night, Q3) or every third shift (including every fourth night, Q4) night; the novel schedules had two different cross-cover (XC) night team schedules (XC-V1 and XC-V2) and a Rapid Cycle Rotation (RCR) schedule. Predicted objective performance and subjective alertness for each work shift were computed for each individual's schedule within a team and then combined for the team as a whole. Our primary outcome was the amount of time within a work shift during which a team's model-predicted objective performance and subjective alertness were lower than that expected after 16 or 24 h of continuous wake in an otherwise rested individual. The model predicted fewer hours with poor performance and alertness, especially during night-time work hours, for all three novel schedules than for either the traditional Q3 or Q4 schedules. Three proposed schedules that eliminate extended shifts may improve performance and alertness compared with traditional Q3 or Q4 schedules. Predicted times of worse performance and alertness were at night, which is also a time when supervision of trainees is lower. Mathematical modeling provides a quantitative comparison approach with potential to aid

  6. Ranking of options of real estate use by expert assessments mathematical processing

    Science.gov (United States)

    Lepikhina, O. Yu; Skachkova, M. E.; Mihaelyan, T. A.

    2018-05-01

    The article is devoted to the development of the real estate assessment concept. In conditions of multivariate using of the real estate method based on calculating, the integral indicator of each variant’s efficiency is proposed. In order to calculate weights of criteria of the efficiency expert method, Analytic hierarchy process and its mathematical support are used. The method allows fulfilling ranking of alternative types of real estate use in dependence of their efficiency. The method was applied for one of the land parcels located on Primorsky district in Saint Petersburg.

  7. “How many sums can I do”? : Performative strategies and diffractive thinking as methodological tools for rethinking mathematical subjectivity

    OpenAIRE

    Palmer, Anna

    2011-01-01

    The aim of this article is to illustrate how the understanding of mathematical subjectivity changes when transiting theoretically and methodologically from a discursive and performative thinking, as suggested by Judith Butler (1990, 1993, 1997), to an agential realist and diffractive thinking, inspired by Karen Barad’s theories (2007, 2008). To show this I have examined narrative memory stories about mathematics written by students participating in Teacher Education maths courses. I pro...

  8. Comprehensive Assessment of Step Aerobics Exercises Effect on Women’s Physical Performance and Physical Health

    Directory of Open Access Journals (Sweden)

    І. П. Масляк

    2015-03-01

    Full Text Available Objective: To identify the dynamics of physical performance and physical health indicators in young and middle-aged women under the effect of step aerobics exercises. Material and methods. The grounds for the study were Kharkiv fitness club “Zorianyi”. The participants were 28 women aged 20-35. The study used the following methods: theoretical analysis of scientific and methodical literature, pedagogical experiment, methods of mathematical statistics, methods of determining physical performance (Harvard step test and physical health (anthropometry, pulsometry, tonometry, spirometry, dynamometry. Results: The study assessed the level of physical performance and physical health; analyzed age-related performance differences; determined the level of the effect of step aerobics on women’s physical performance and physical health. Conclusions: Step-aerobics exercises proved to have a positive effect on the level of physical performance and physical health of the young and middle-aged women.

  9. The physical and mathematical model of dynamic economic analysis and assessment for NPP

    International Nuclear Information System (INIS)

    Xu Jiming

    1992-01-01

    A set physical and mathematical model of dynamic economic analysis referring to international general sub-item and account of investment and constant money levelized model and combining current economic analysis method in China for nuclear power plant was established. The model can be used in economic analysis not only for nuclear power plant but also for coal-fired power plant and can satisfy demand of doing economic analysis and assessment for nuclear power plant and conventional power plant

  10. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  11. Intra-mathematical connections made by high school students in performing Calculus tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-02-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.

  12. How Readability and Topic Incidence Relate to Performance on Mathematics Story Problems in Computer-Based Curricula

    Science.gov (United States)

    Walkington, Candace; Clinton, Virginia; Ritter, Steven N.; Nathan, Mitchell J.

    2015-01-01

    Solving mathematics story problems requires text comprehension skills. However, previous studies have found few connections between traditional measures of text readability and performance on story problems. We hypothesized that recently developed measures of readability and topic incidence measured by text-mining tools may illuminate associations…

  13. Using Citation Analysis Methods to Assess the Influence of Science, Technology, Engineering, and Mathematics Education Evaluations

    Science.gov (United States)

    Greenseid, Lija O.; Lawrenz, Frances

    2011-01-01

    This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…

  14. Reasoning and mathematical skills contribute to normatively superior decision making under risk: evidence from the game of dice task.

    Science.gov (United States)

    Pertl, Marie-Theres; Zamarian, Laura; Delazer, Margarete

    2017-08-01

    In this study, we assessed to what extent reasoning improves performance in decision making under risk in a laboratory gambling task (Game of Dice Task-Double, GDT-D). We also investigated to what degree individuals with above average mathematical competence decide better than those with average mathematical competence. Eighty-five participants performed the GDT-D and several numerical tasks. Forty-two individuals were asked to calculate the probabilities and the outcomes associated with the different options of the GDT-D before performing it. The other 43 individuals performed the GDT-D at the beginning of the test session. Both reasoning and mathematical competence had a positive effect on decision making. Different measures of mathematical competence correlated with advantageous performance in decision making. Results suggest that decision making under explicit risk conditions improves when individuals are encouraged to reflect about the contingencies of a decision situation. Interventions based on numerical reasoning may also be useful for patients with difficulties in decision making.

  15. Communicating Performance Assessments Results - 13609

    Energy Technology Data Exchange (ETDEWEB)

    Layton, Mark [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

    2013-07-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is

  16. Communicating Performance Assessments Results - 13609

    International Nuclear Information System (INIS)

    Layton, Mark

    2013-01-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is

  17. Impact of Instructional Resources on Mathematics Performance of Learners with Dyscalculia in Integrated Primary Schools, Arusha City, Tanzania

    Science.gov (United States)

    Yusta, Nyudule; Karugu, Geoffrey; Muthee, Jessica; Tekle, Tesfu

    2016-01-01

    Learners with dyscalculia in the integrated primary schools in Arusha have been performing poorly in the Primary School Leaving Examination (PSLE). Thus, the journal sought to investigate the impact of instructional resources on mathematics performance of learners with dyscalculia in integrated primary schools found in Arusha city, Tanzania. The…

  18. Association Between Prenatal Valproate Exposure and Performance on Standardized Language and Mathematics Tests in School-aged Children.

    Science.gov (United States)

    Elkjær, Lars Skou; Bech, Bodil Hammer; Sun, Yuelian; Laursen, Thomas Munk; Christensen, Jakob

    2018-02-19

    Valproate sodium is used for the treatment of epilepsy and other neuropsychiatric disorders in women of childbearing potential. However, there are concerns about impaired cognitive development in children who have been exposed to valproate during pregnancy. To estimate the association between long-term school performance and prenatal exposure to valproate and a number of other antiepileptic drugs (AEDs). In a prospective, population-based cohort study conducted from August 1, 2015, to May 31, 2017, data used in the study were provided by Statistics Denmark on April 15, 2016. All children born alive in Denmark between 1997 and 2006 (n = 656 496) were identified. From this cohort, children who did not participate in the national tests, with presumed coding errors in gestational age and children missing information on their mother's educational level or household income were excluded (n = 177 469) leaving 479 027 children for the analyses. Children were identified and linked across national registers that had information on exposure, covariates, and outcome. The primary outcome was performance in national tests, an academic test taken by students in Danish primary and lower secondary state schools. We assessed performance in Danish and mathematics at different grades among valproate-exposed children and compared their performance with that of unexposed children and children exposed to another AED (lamotrigine). Test scores were standardized to z scores and adjusted for risk factors. Difference in standardized z scores in Danish and mathematics tests among valproate-exposed children compared with unexposed and lamotrigine-exposed children. Of the 656 496 children identified, 479 027 children who participated in the national tests were evaluated, including children exposed to the following AEDs in monotherapy: valproate, 253; phenobarbital, 86; oxcarbazepine, 236; lamotrigine, 396; clonazepam, 188; and carbamazepine, 294. The mean (SD) age of the 244 095

  19. Mathematics achievement of Serbian eighth grade students and characteristics of mathematics curriculum

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan M.

    2006-01-01

    Full Text Available This paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia, in the fields of mathematics achievement of Serbian eighth grade students and the mathematics curriculum context of their achievement. It was confirmed that Serbian eighth graders have made average scale score of 477 points, and with this achievement they are placed in the zone of intermediate international benchmarking level. The average mathematics achievement of the Serbian eighth graders is somewhat above the average international mathematics achievement. The best result was achieved in the content domain of "algebra", and the lower result in the content domains of "measurement" and "data". In the defined cognitive domains the Serbian students have achieved the best results in "solving routine problems" and "knowing facts and procedures", and the weaker result in "reasoning". Statistically significant difference was found in the mathematics achievement between girls and boys in the Serbian TIMSS 2003 sample, so the girls’ average scale score was 480 points and the same value for the boys was 473 points. The achieved results raise many questions about the contents of mathematics curriculum in Serbia, its quality and basic characteristics of its implementation. These results can be eligibly used to improve the mathematics curriculum and teaching in Serbian primary school.

  20. Technology Performance Level Assessment Methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Bull, Diana L; Malins, Robert Joseph; Costello, Ronan Patrick; Aurelien Babarit; Kim Nielsen; Claudio Bittencourt Ferreira; Ben Kennedy; Kathryn Dykes; Jochem Weber

    2017-04-01

    The technology performance level (TPL) assessments can be applied at all technology development stages and associated technology readiness levels (TRLs). Even, and particularly, at low TRLs the TPL assessment is very effective as it, holistically, considers a wide range of WEC attributes that determine the techno-economic performance potential of the WEC farm when fully developed for commercial operation. The TPL assessment also highlights potential showstoppers at the earliest possible stage of the WEC technology development. Hence, the TPL assessment identifies the technology independent “performance requirements.” In order to achieve a successful solution, the entirety of the performance requirements within the TPL must be considered because, in the end, all the stakeholder needs must be achieved. The basis for performing a TPL assessment comes from the information provided in a dedicated format, the Technical Submission Form (TSF). The TSF requests information from the WEC developer that is required to answer the questions posed in the TPL assessment document.

  1. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  2. Motivational Qualities of Instructional Strategies and Computer Use for Mathematics Teaching in Japan and the United States: Results from the Timss 1999 Assessment.

    Science.gov (United States)

    House, J. Daniel

    2005-01-01

    Recent mathematics assessments have indicated that students in several Asian countries have tended to score above international averages. Research findings indicate that there are cultural differences in expectations for student achievement in mathematics and in classroom practices and instructional strategies. The importance of the motivational…

  3. Object-Spatial Visualization and Verbal Cognitive Styles, and Their Relation to Cognitive Abilities and Mathematical Performance

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk

    2016-01-01

    The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…

  4. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  5. Unpacking the Male Superiority Myth and Masculinization of Mathematics at the Intersections: A Review of Research on Gender in Mathematics Education

    Science.gov (United States)

    Leyva, Luis A.

    2017-01-01

    Gender research in mathematics education has experienced methodological and theoretical shifts over the past 45 years. Although achievement studies have used assessment tools to explore and subsequently challenge the assumption of male superiority on mathematics assessments, research on participation has unpacked these studies' sex-based…

  6. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1986-01-01

    The analysis of the processes involved in the burial of nuclear wastes can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission

  7. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    Science.gov (United States)

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  9. Mathematics Competency Test: User's Manual.

    Science.gov (United States)

    Vernon, P. E.; And Others

    The Mathematics Competency Test is a 46-question written test assessing mathematics achievement for groups or individuals aged 11 to adult. It is suitable for use with groups or individuals in school, college and workplace contexts. The questions are open-ended and require constructed responses rather than recognition of a correct answer in a…

  10. Teaching mathematics to non-mathematicians

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga

    2017-01-01

    Over the past years, a number of engineering programs have arisen that transcend the division between technical, scientific and art-related disciplines. Media Technology at Aalborg University, Denmark is such an engineering program. In relation to mathematics education, this new development has...... changed the way mathematics is applied in practice and is taught in these disciplines. This paper discusses a doctoral dissertation that investigated and assessed interventions to increase student motivation and engagement in mathematics among Media Technology students. The results of this dissertation...

  11. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    DEFF Research Database (Denmark)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao

    2016-01-01

    OBJECTIVES: To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. METHODS: The design was cross-sectional. A convenient sample of 869 sixth and seventh gra...

  12. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Garcia L, O.; Zequera J, T.

    1996-01-01

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  13. mathematical models for estimating radio channels utilization

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.

  14. Pre-service teachers' mathematical knowledge for teaching basic ...

    African Journals Online (AJOL)

    This study measured pre-service teachers' mathematical knowledge for teaching (MKT) basic school mathematics. MKT multiple-choice test was administered to 100 pre-service teachers from two colleges of education (located at Mampong in the Ashanti Region of Ghana) to assess their mathematical knowledge for ...

  15. Differences in the quality of school-based assessment: Evidence in Grade 9 mathematics achievement

    Directory of Open Access Journals (Sweden)

    Surette van Staden

    2017-10-01

    Full Text Available This non-experimental, exploratory and descriptive study, using a qualitative case study approach, aims to investigate whether there is evidence of variance in the quality of school-based assessment (SBA in Grade 9 mathematics. Participants were purposefully selected from five schools in a district in the Northern Cape in South Africa. After questionnaires were completed, individual face-to-face semi-structured interviews were conducted with participants from the participating schools. Documents were collected and analysed to corroborate or contradict data from the questionnaires and interviews. Lack of adherence to policy, variation in classroom practice and inconsistent monitoring and moderation practices were identified as themes of possible sources of variation in SBA. An analysis of the interviews and document analysis revealed that most of the Heads of Department and principals lacked in-depth knowledge and understanding of their roles and functions in making SBA reliable, credible and valid. This was not only due to a lack of capacity to perform such functions, but was also due to a lack of effective induction and training by the district and provincial offices. Findings from the current study point to the necessary role that a periodic evaluation of SBA may play to ensure its effectiveness, credibility and reliability as part of successful assessment practices in a mostly developing context.

  16. Study of the Factors Affecting the Mathematics Achievement of Turkish Students According to Data from the Programme for International Student Assessment (PISA) 2012

    Science.gov (United States)

    Güzeller, Cem Oktay; Eser, Mehmet Taha; Aksu, Gökhan

    2016-01-01

    This study attempts to determine the factors affecting the mathematics achievement of students in Turkey based on data from the Programme for International Student Assessment 2012 and the correct classification ratio of the established model. The study used mathematics achievement as a dependent variable while sex, having a study room, preparation…

  17. Engineering Undergraduates' Views of A-Level Mathematics and Further Mathematics as Preparation for Their Degree

    Science.gov (United States)

    Darlington, Ellie; Bowyer, Jessica

    2017-01-01

    An ongoing reform programme of the post-16 Advanced "A"-level qualifications in England and Wales means that pre-university mathematics content and assessment will change from 2017. Undergraduate engineering is a subject that relies heavily on mathematics, and applicants to engineering degree programmes in the UK are required to have…

  18. Need to use probabilistic risk approach in performance assessment of waste disposal facilities

    International Nuclear Information System (INIS)

    Bonano, E.J.; Gallegos, D.P.

    1991-01-01

    Regulations governing the disposal of radioactive, hazardous, and/or mixed wastes will likely require, either directly or indirectly, that the performance of disposal facilities be assessed quantitatively. Such analyses, commonly called ''performance assessments,'' rely on the use of predictive models to arrive at a quantitative estimate of the potential impact of disposal on the environment and the safety and health of the public. It has been recognized that a suite of uncertainties affect the results of a performance assessment. These uncertainties are conventionally categorized as (1) uncertainty in the future state of the disposal system (facility and surrounding medium), (2) uncertainty in models (including conceptual models, mathematical models, and computer codes), and (3) uncertainty in data and parameters. Decisions regarding the suitability of a waste disposal facility must be made in light of these uncertainties. Hence, an approach is needed that would allow the explicit consideration of these uncertainties so that their impact on the estimated consequences of disposal can be evaluated. While most regulations for waste disposal do not prescribe the consideration of uncertainties, it is proposed that, even in such cases, a meaningful decision regarding the suitability of a waste disposal facility cannot be made without considering the impact of the attendant uncertainties. A probabilistic risk assessment (PRA) approach provides the formalism for considering the uncertainties and the technical basis that the decision makers can use in discharging their duties. A PRA methodology developed and demonstrated for the disposal of high-level radioactive waste provides a general framework for assessing the disposal of all types of wastes (radioactive, hazardous, and mixed). 15 refs., 1 fig., 1 tab

  19. Addressing Priorities for Elementary School Mathematics

    Science.gov (United States)

    Venenciano, Linda; Dougherty, Barbara

    2014-01-01

    Findings from international assessments present an opportunity to reconsider mathematics education across the grades. If concepts taught in elementary grades lay the foundation for continued study, then children's introduction to school mathematics deserves particular attention. We consider Davydov's theory (1966), which sequences…

  20. Working Memory Updating Training Improves Mathematics Performance in Middle School Students With Learning Difficulties.

    Science.gov (United States)

    Zhang, Hongxia; Chang, Lei; Chen, Xiaoying; Ma, Liang; Zhou, Renlai

    2018-01-01

    Working memory (WM) deficit is considered the key cause of learning difficulties (LDs). Studies have shown that WM is plastic and thus can be improved through training. This positive effect is transferable to fluid intelligence and academic performance. This study investigated whether WM updating ability and academic performance in children with LDs could be improved through WM updating training and explored the effects of this training on the children's brain activity. We used a running memory task lasting approximately 40 min per day for 28 days to train a group of 23 children with LDs (TLDs group). We also selected two control groups of 22 children with LDs (CLDs group) and 20 children without LDs (normal control [NC] group). The behavioral results of a pretest indicated that WM updating ability and academic performance in the TLDs and CLDs groups were significantly lower than those in the NC group before training. Compared with the CLDs group, the TLDs group exhibited significant performance improvement in a 2-back WM task, as well as in mathematical ability. Event-related potentials (ERPs) results suggested that the amplitudes of N160 (representative of visual recognition) and P300 (representative of updating processing, which is a valid index for updating WM) in the TLDs and CLDs groups were markedly lower than those in the NC group before training. In the TLDs group, these two components increased considerably after training, approaching levels similar to those in the NC group. The results of this study suggest that WM updating training can improve WM updating ability in children with LDs and the training effect can transfer to mathematical performance in such children. Furthermore, the participants' brain activity levels can exhibit positive changes. This article provides experimental evidence that WM updating training could mitigate the symptoms of LDs to a certain degree.

  1. Linguistic Simplification of Mathematics Items: Effects for Language Minority Students in Germany

    Science.gov (United States)

    Haag, Nicole; Heppt, Birgit; Roppelt, Alexander; Stanat, Petra

    2015-01-01

    In large-scale assessment studies, language minority students typically obtain lower test scores in mathematics than native speakers. Although this performance difference was related to the linguistic complexity of test items in some studies, other studies did not find linguistically demanding math items to be disproportionally more difficult for…

  2. Two Teacher Educators’ Approaches to Developing Preservice Elementary Teachers’ Mathematics Assessment Literacy: Intentions, Outcomes, and New Learning

    Directory of Open Access Journals (Sweden)

    Ji-Eun Lee

    2015-03-01

    approaches to developing preservice elementary teachers’ mathematics assessment literacy. We explored the similarities and differences in preservice teachers’ conceptions of good assessment practices and their critique of assessment items. We found that we, as course instructors, had different assumptions pertaining to the role of preservice teachers in the development of assessment and offered different assessment-related course activities. Despite these differences, there were more similarities than differences between the two groups of the preservice teachers with regard to their overall perceptions about good assessment practices and their critique of assessment items. However, we also observed differences in the criteria they used in critiquing assessment items. Discussions and implications are presented in accordance with these findings as a means to improve our own teaching and student learning.

  3. The effects of performance-based assessment criteria on student performance and self-assessment skills

    NARCIS (Netherlands)

    Fastré, Greet; Van der Klink, Marcel; Van Merriënboer, Jeroen

    2010-01-01

    Fastré, G. M. J., Van der Klink, M. R., & Van Merriënboer, J. J. G. (2010). The effects of performance-based assessment criteria on student performance and self-assessment skills. Advances in Health Science Education, 15(4), 517-532.

  4. Differences in mathematics and science performance by economic status, gender, and ethnicity/race: A multiyear Texas statewide study

    Science.gov (United States)

    Anderson, Pamela Bennett

    Purpose. The purpose of the first study was to ascertain the extent to which differences were present in the STAAR Mathematics and Science test scores by Grade 5 and Grade 8 student economic status. The purpose of the second study was to examine differences in Grade 5 STAAR Mathematics and Science test performance by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Finally, with respect to the third study in this journal-ready dissertation, the purpose was to investigate the STAAR Mathematics and Science test scores of Grade 8 students by gender and by ethnicity/race (i.e., Asian, Black, Hispanic, and White). Method. For this journal-ready dissertation, a non-experimental, causal-comparative research design (Creswell, 2009) was used in all three studies. Grade 5 and Grade 8 STAAR Mathematics and Science test data were analyzed for the 2011-2012 through the 2014-2015 school years. The dependent variables were the STAAR Mathematics and Science test scores for Grade 5 and Grade 8. The independent variables analyzed in these studies were student economic status, gender, and ethnicity/race. Findings. Regarding the first study, statistically significant differences were present in Grade 5 and Grade 8 STAAR Mathematics and Science test scores by student economic status for each year. Moderate effect sizes (Cohen's d) were present for each year of the study for the Grade 5 STAAR Mathematics and Science exams, Grade 8 Science exams, and the 2014-2015 Grade 8 STAAR Mathematics exam. However, a small effect size was present for the 2011-2012 through 2013-2014 Grade 8 STAAR Mathematics exam. Regarding the second and third study, statistically significant differences were revealed for Grade 5 and Grade 8 STAAR Mathematics and Science test scores based on gender, with trivial effect sizes. Furthermore, statistically significant differences were present in these test scores by ethnicity/race, with moderate effects for each year of the study. With regard to

  5. Online Mathematics Homework Increases Student Achievement

    Directory of Open Access Journals (Sweden)

    Jeremy Roschelle

    2016-10-01

    Full Text Available In a randomized field trial with 2,850 seventh-grade mathematics students, we evaluated whether an educational technology intervention increased mathematics learning. Assigning homework is common yet sometimes controversial. Building on prior research on formative assessment and adaptive teaching, we predicted that combining an online homework tool with teacher training could increase learning. The online tool ASSISTments (a provides timely feedback and hints to students as they do homework and (b gives teachers timely, organized information about students’ work. To test this prediction, we analyzed data from 43 schools that participated in a random assignment experiment in Maine, a state that provides every seventh-grade student with a laptop to take home. Results showed that the intervention significantly increased student scores on an end-of-the-year standardized mathematics assessment as compared with a control group that continued with existing homework practices. Students with low prior mathematics achievement benefited most. The intervention has potential for wider adoption.

  6. The Key to Enhancing Students' Mathematical Vocabulary Knowledge

    Science.gov (United States)

    Riccomini, Paul J.; Sanders, Sharon; Jones, Julie

    2008-01-01

    The importance of learning mathematical vocabulary is vital for the development of proficiency in mathematics. In an effort to improve students' mathematical performance, educators must use research-validated instructional methods to teach important mathematical vocabulary. Mnemonic instruction is a set of evidenced-based strategies used to…

  7. Computer mathematics for programmers

    CERN Document Server

    Abney, Darrell H; Sibrel, Donald W

    1985-01-01

    Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p

  8. Advanced Mathematics Online: Assessing Particularities in the Online Delivery of a Second Linear Algebra Course

    Science.gov (United States)

    Montiel, Mariana; Bhatti, Uzma

    2010-01-01

    This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…

  9. Accounting for the Gender Gaps in Student Performance in Reading and Mathematics: Evidence from 31 Countries

    Science.gov (United States)

    Marks, Gary N.

    2008-01-01

    In most countries, girls perform better than boys in reading but worse in mathematics. However, there is much variation between countries. Explanations for the gender gaps include the organisation of the school system, students' expectations and macro-societal factors. The purpose of this paper is to account for gender differences in both reading…

  10. An applied artificial intelligence approach towards assessing building performance simulation tools

    Energy Technology Data Exchange (ETDEWEB)

    Yezioro, Abraham [Faculty of Architecture and Town Planning, Technion IIT (Israel); Dong, Bing [Center for Building Performance and Diagnostics, School of Architecture, Carnegie Mellon University (United States); Leite, Fernanda [Department of Civil and Environmental Engineering, Carnegie Mellon University (United States)

    2008-07-01

    With the development of modern computer technology, a large amount of building energy simulation tools is available in the market. When choosing which simulation tool to use in a project, the user must consider the tool's accuracy and reliability, considering the building information they have at hand, which will serve as input for the tool. This paper presents an approach towards assessing building performance simulation results to actual measurements, using artificial neural networks (ANN) for predicting building energy performance. Training and testing of the ANN were carried out with energy consumption data acquired for 1 week in the case building called the Solar House. The predicted results show a good fitness with the mathematical model with a mean absolute error of 0.9%. Moreover, four building simulation tools were selected in this study in order to compare their results with the ANN predicted energy consumption: Energy{sub 1}0, Green Building Studio web tool, eQuest and EnergyPlus. The results showed that the more detailed simulation tools have the best simulation performance in terms of heating and cooling electricity consumption within 3% of mean absolute error. (author)

  11. Performance-based alternative assessments as a means of eliminating gender achievement differences on science tests

    Science.gov (United States)

    Brown, Norman Merrill

    1998-09-01

    Historically, researchers have reported an achievement difference between females and males on standardized science tests. These differences have been reported to be based upon science knowledge, abstract reasoning skills, mathematical abilities, and cultural and social phenomena. This research was designed to determine how mastery of specific science content from public school curricula might be evaluated with performance-based assessment models, without producing gender achievement differences. The assessment instruments used were Harcourt Brace Educational Measurement's GOALSsp°ler: A Performance-Based Measure of Achievement and the performance-based portion of the Stanford Achievement Testspcopyright, Ninth Edition. The identified independent variables were test, gender, ethnicity, and grade level. A 2 x 2 x 6 x 12 (test x gender x ethnicity x grade) factorial experimental design was used to organize the data. A stratified random sample (N = 2400) was selected from a national pool of norming data: N = 1200 from the GOALSsp°ler group and N = 1200 from the SAT9spcopyright group. The ANOVA analysis yielded mixed results. The factors of test, gender, ethnicity by grade, gender by grade, and gender by grade by ethnicity failed to produce significant results (alpha = 0.05). The factors yielding significant results were ethnicity, grade, and ethnicity by grade. Therefore, no significant differences were found between female and male achievement on these performance-based assessments.

  12. ASSESSING CONCEPTUAL UNDERSTANDING IN MATHEMATICS: Using Derivative Function to Solve Connected Problems

    Directory of Open Access Journals (Sweden)

    Nevin ORHUN

    2013-07-01

    Full Text Available Open and distance education plays an important role in the actualization of cultural goals as well as in societal developments. This is an independent teaching and learning method for mathematics which forms the dynamic of scientific thinking. Distance education is an important alternative to traditional teaching applications. These contributions brought by technology enable students to participate actively in having access to information and questioning it. Such an application increases students’ motivation and teaches how mathematics can be used in daily life. Derivative is a mathematical concept which can be used in many areas of daily life. The aim of this study is to enable the concept of derivatives to be understood well by using the derivative function in the solution of various problems. It also aims at interpreting difficulties theoretically in the solution of problems and determining mistakes in terms of teaching methods. In this study, how various aspects of derivatives are understood is emphasized. These aspects concern the explanation of concepts and process, and also their application to certain concepts in physics. Students’ depth of understanding of derivatives was analyzed based on two aspects of understanding; theoretical analysis and contextual application. Follow-up interviews were conducted with five students. The results show that the students preferred to apply an algebraic symbolic aspect instead of using logical meanings of function and its derivative. In addition, in relation to how the graph of the derivative function affects the aspect of function, it was determined that the students displayed low performance.

  13. Development of performance assessment methodology for nuclear waste isolation in geologic media

    Science.gov (United States)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  14. Friend Influence and Susceptibility to Influence: Changes in Mathematical Reasoning as a Function of Relative Peer Acceptance and Interest in Mathematics

    Science.gov (United States)

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa

    2016-01-01

    This study investigated friend influence over mathematics achievement in 202 same-sex friendship dyads (106 girl dyads). Participants were in the third grade (around age 9) at the outset. Each friend completed a questionnaire describing interest in mathematics and a standardized mathematical reasoning assessment. Peer nominations provided a…

  15. Latent Class Analysis of Students' Mathematics Learning Strategies and the Relationship between Learning Strategy and Mathematical Literacy

    Science.gov (United States)

    Lin, Su-Wei; Tai, Wen-Chun

    2015-01-01

    This study investigated how various mathematics learning strategies affect the mathematical literacy of students. The data for this study were obtained from the 2012 Programme for International Student Assessment (PISA) data of Taiwan. The PISA learning strategy survey contains three types of learning strategies: elaboration, control, and…

  16. Mathematics for Maths Anxious Tertiary Students: Integrating the cognitive and affective domains using interactive multimedia

    Directory of Open Access Journals (Sweden)

    Janet Taylor

    2011-04-01

    Full Text Available Today, commencing university students come from a diversity of backgrounds and have a broad range of abilities and attitudes. It is well known that attitudes towards mathematics, especially mathematics anxiety, can affect students’ performance to the extent that mathematics is often seen as a barrier to success by many. This paper reports on the design, development and evaluation of an interactive multimedia resource designed to explicitly address students’ beliefs and attitudes towards mathematics by following five characters as they progress through the highs and low of studying a preparatory mathematics course. The resource was built within two theoretical frameworks, one related to effective numeracy teaching (Marr and Helme 1991 and the other related to effective educational technology development (Laurillard 2002. Further, it uses a number of multimedia alternatives (video, audio, animations, diarying, interactive examples and self assessment to encourage students to feel part of a group, to reflect on their feelings and beliefs about mathematics, to expose students to authentic problem solving and generally build confidence through practice and self-assessment. Evaluation of the resource indicated that it encouraged students to value their own mathematical ability and helped to build confidence, while developing mathematical problem solving skills. The evaluation clearly demonstrated that it is possible to address the affective domain through multimedia initiatives and that this can complement the current focus on computer mediated communication as the primary method of addressing affective goals within the online environment.

  17. Performance assessment calculational exercises

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1990-01-01

    The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs

  18. DOE Fundamentals Handbook: Mathematics, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  19. DOE Fundamentals Handbook: Mathematics, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  20. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    OpenAIRE

    Mančić Marko V.; Živković Dragoljub S.; Milosavljević Peđa M.; Todorović Milena N.

    2014-01-01

    Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming po...

  1. Research trends in mathematics teacher education

    CERN Document Server

    Lo, Jane-Jane; Zoest, Laura RVan

    2014-01-01

    Research on the preparation and continued development of mathematics teachers is becoming an increasingly important subset of mathematics education research. Such research explores the attributes, knowledge, skills and beliefs of mathematics teachers as well as methods for assessing and developing these critical aspects of teachers and influences on teaching.Research Trends in Mathematics Teacher Education focuses on three major themes in current mathematics teacher education research: mathematical knowledge for teaching, teacher beliefs and identities, and tools and techniques to support teacher learning. Through careful reports of individual research studies and cross-study syntheses of the state of research in these areas, the book provides insights into teachers' learning processes and how these processes can be harnessed to develop effective teachers. Chapters investigate bedrock skills needed for working with primary and secondary learners (writing relevant problems, planning lessons, being attentive to...

  2. Influence of Writing Ability and Computation Skill on Mathematics Writing

    Science.gov (United States)

    Powell, Sarah R.; Hebert, Michael A.

    2016-01-01

    Mathematics standards expect students to communicate about mathematics using oral and written methods, and some high-stakes assessments ask students to answer mathematics questions by writing. Assumptions about mathematics communication via writing include (a) students possess writing skill, (b) students can transfer this writing skill to…

  3. The Preschool Rating Instrument for Science and Mathematics (PRISM)

    Science.gov (United States)

    Brenneman, Kimberly; Stevenson-Garcia, Judi; Jung, Kwanghee; Frede, Ellen

    2011-01-01

    Until recently, few valid and reliable assessments were available to measure young children's mathematics and science learning in a "comprehensive" way. Now, a number of mathematics assessments have been developed and subjected to testing (Klein, Starkey, & Wakeley, 2000; Ginsburg, 2008; Clements & Sarama, 2008), and progress has…

  4. Mathematics ability and related skills in preschoolers born very preterm.

    Science.gov (United States)

    Hasler, Holly M; Akshoomoff, Natacha

    2017-12-12

    Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.

  5. Single-gender mathematics and science classes and the effects on urban middle school boys and girls

    Science.gov (United States)

    Sudler, Dawn M.

    This study compared the differences in the Criterion-Referenced Competency Test (CRCT) mathematics and science achievement scores of boys and girls in Grade 7 at two urban middle schools. The data allowed the researcher to determine to what degree boys and girls in Grade 7 differ in their mathematics and science achievements within a single-gender environment versus a coeducational learning environment. The study compared any differences between boys and girls in Grade 7 within a single-gender environment in the subjects of mathematics and science, as measured by the CRCT assessments. The study also compared differences between boys and girls in Grade 7 within a coeducational environment in the subjects of mathematics and science, as measured by the CRCT assessments. Two middle schools were used within the study. One middle school was identified as a single-gender school (Middle School A); the other was identified as a coeducational school (Middle School B). This quantitative study applied the use of a descriptive research design. In addition, CRCT scores for the subjects of mathematics and science were taken during the spring of 2008 from both middle schools. Data were measured using descriptive statistics and independent t test calculations. The frequency statistics proceeded to compare each sample performance levels. The data were described in means, standard deviations, standard error means, frequency, and percentages. This method provided an excellent description of a sample scored on the spring 2008 CRCT mathematics and science assessments.

  6. The contribution of parent-child numeracy activities to young Chinese children's mathematical ability.

    Science.gov (United States)

    Huang, Qi; Zhang, Xiao; Liu, Yingyi; Yang, Wen; Song, Zhanmei

    2017-09-01

    A growing body of recent research has shown that parent-child mathematical activities have a strong effect on children's mathematical learning. However, this research was conducted predominantly in Western societies and focused mainly on mothers' involvement in such activities. This study aimed to examine both mother-child and father-child numeracy activities in Hong Kong Chinese families and both parents' unique roles in predicting young Chinese children's mathematics ability. A sample of 104 Hong Kong Chinese children aged approximately 5 years and their mothers and fathers participated in this study. Mothers and fathers independently reported the frequency of their own numeracy activities with their children. Children were assessed individually using two measures of mathematical ability. Hierarchical regression models were used to investigate the contribution of parent-child numeracy activities to children's mathematical ability. Mothers' participation in number skill activities and fathers' participation in number game and application activities significantly predicted their children's mathematical performance even after controlling for background variables and children's language ability. This study extends previous research with a sample of Chinese kindergarten children and shows that parent-child numeracy activities are related to young children's mathematical ability. The findings highlight the important roles that mothers and fathers play in their young children's mathematical learning. © 2017 The British Psychological Society.

  7. DOE site performance assessment activities

    International Nuclear Information System (INIS)

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  8. Technology-Enhanced Learning in College Mathematics Remediation

    Science.gov (United States)

    Foshee, Cecile M.; Elliott, Stephen N.; Atkinson, Robert K.

    2016-01-01

    US colleges presently face an academic plight; thousands of high school graduates are performing below the expected ability for college-level mathematics. This paper describes an innovative approach intended to improve the mathematics performance of first-year college students, at a large US university. The innovation involved the integration of…

  9. Texas' performance assessment work

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Hertel, N.E.; Pollard, C.G.

    1990-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority is completing two years of detailed on-site suitability studies of a potential low-level radioactive waste disposal site in Hudspeth County, Texas. The data from these studies have been used to estimate site specific parameters needed to do a performance assessment of the site. The radiological impacts of the site have been analyzed as required for a license application. The approach adopted for the performance assessment was to use simplified and yet conservative assumptions with regard to releases, radionuclide transport, and dose calculations. The methodologies employed in the performance assessment are reviewed in the paper. Rather than rely on a single computer code, a modular approach to the performance assessment was selected. The HELP code was used to calculate the infiltration rate through the trench covers and the amount of leachate released from this arid site. Individual pathway analyses used spreadsheet calculations. These calculations were compared with those from other computer models including CRRIS, INGDOS, PATHRAE, and MICROSHIELD copyright, and found to yield conservative estimates of the effective whole body dose. The greatest difficulty in performing the radiological assessment of the site was the selection of reasonable source terms for release into the environment. A surface water pathway is unreasonable for the site. Though also unlikely, the groundwater pathway with exposure through a site boundary well was found to yield the largest calculated dose. The more likely pathway including transport of leachate from the facility through the unsaturated zone and returning to the ground surface yields small doses. All calculated doses associated with normal releases of radioactivity are below the regulatory limits

  10. Using Mathematical Modeling Methods for Estimating Entrance Flow Heterogeneity Impact on Aviation GTE Parameters and Performances

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The paper considers methodological approaches to the mathematical models (MM of various levels, dedicated to estimate an impact of the entrance flow heterogeneity on the main parameters and performances of the aviation GTE and it units. By an example of calculation of a twin-shaft turbofan engine in cruiser mode, demonstrates engineering mathematical model capabilities to define the impact of the total pressure field distortion on engine trust and air flow parameters, and also gas dynamic stability margin of the both compressors.It is shown that the presented first level mathematical model allows us to estimate sufficiently the impact of entrance total pressure heterogeneity on the engine parameters. Here reliability of calculations is proved to be true by their comparison with the results, obtained owing to well fulfilled 2D & 3D mathematical models of the engine, which have been repeatedly identified by the results of experiments.It is shown that received results including those on decreasing values of stability margin of both compressors can be used for tentative estimates when choosing a desirable stability margin, providing steady operation of compressors and engine in an entire range of its operating modes. Carrying out a definitive testing calculation using the specialized engine MM of a higher level will not only confirm the results obtained, but also reduce their expected error with regard to the real values reached as a result of tests.

  11. The discursive production of classroom mathematics

    Science.gov (United States)

    Smith, Kim; Hodson, Elaine; Brown, Tony

    2013-09-01

    School mathematics is a function of its discursive environment where the language being used formats mathematical activity. The paper explores this theme through an extended example in which the conduct of mathematical teaching and learning is restricted by regulative educational policies. It considers how mathematics is discursively produced by student teachers within an employment-based model of teacher education in England where there is a low university input. It is argued that teacher reflections on mathematical learning and teaching within the course are patterned discursively in line with formal curriculum framings, assessment requirements and the local demands of their placement school. Both teachers and students are subject to regulative discourses that shape their actions and as a consequence this regulation influences the forms of mathematical activity that can take place. It is shown how university sessions can provide a limited critical platform from which to interrogate these restrictions and renegotiate them.

  12. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  13. Place value without number sense: Exploring the need for mental mathematical skills assessment within the Annual National Assessments

    Directory of Open Access Journals (Sweden)

    Mellony Graven

    2013-12-01

    Full Text Available In this paper we examine the extent of the focus on number sense, enabled and accompanied by the development of efficient strategies for mental maths, in the foundation and intermediate phase. We do this through documentary analysis of the Curriculum and Assessment Policy Statements (CAPS for these phases and the Annual National Assessments (ANAs. We argue that number sense and mental agility are critical for the development and understanding of algorithms and algebraic thinking introduced in the intermediate phase. However, we note from our work with learners, and broader evidence in the South African landscape, that counting-based strategies in the foundation phase are replaced in the intermediate phase with traditional algorithms. We share experiences in the form of vignettes to illuminate this problem. Whilst literature and the CAPS curriculum emphasise the important role of mental computation within number sense, we note that the ANAs do not include a “mental mathematics” component. This absence in assessment, where assessment often drives teaching, is problematic. We conclude with the suggestion that research be conducted into the viability/appropriateness of an orally administered mental mathematics assessment component in the ANAs as a way to establish a focus on number sense across the foundation and intermediate phases.

  14. Critical Thinking and Problem Solving Skills in Mathematics of Grade-7 Public Secondary Students

    Directory of Open Access Journals (Sweden)

    Emil C. Alcantara

    2017-11-01

    Full Text Available The study aimed to assess the academic performance, critical thinking skills, and problem solving skills in mathematics of Grade-7 students in the five central public secondary schools of Area 2, Division of Batangas, Philippines. This study utilized descriptive method of research. Three hundred forty one (341 students of the public secondary schools out of the total of 2,324 Grade-7 students were selected through systematic random sampling as the subjects of the study. It was found out that the level of performance in Mathematics of the Grade-7 students is proficient. The level of critical thinking skills of students from the different schools is above average as well as their level of problem solving skills. The mathematics performance of the students is positively correlated to their level of critical thinking skills and problem solving skills. Students considered the following learning competencies in the different content areas of Grade-7 Mathematics as difficult to master: solving problems involving sets, describing the development of measurement from the primitive to the present international system of units, finding a solution of an equation or inequality involving one variable, using compass and straightedge to bisect line segments and angles, and analyzing, interpreting accurately and drawing conclusions from graphic and tabular presentations of statistical data.

  15. Number sense how the mind creates mathematics

    CERN Document Server

    Dehaene, Stanislas

    2011-01-01

    Our understanding of how the human brain performs mathematical calculations is far from complete, but in recent years there have been many exciting breakthroughs by scientists all over the world. Now, in The Number Sense, Stanislas Dehaene offers a fascinating look at this recent research, in an enlightening exploration of the mathematical mind. Dehaene begins with the eye-opening discovery that animals--including rats, pigeons, raccoons, and chimpanzees--can perform simple mathematical calculations, and that human infants also have a rudimentary number sense. Dehaene suggests that this rudime

  16. How students learn to coordinate knowledge of physical and mathematical models in cellular physiology

    Science.gov (United States)

    Lira, Matthew

    This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students

  17. Non-intellectual predictors of achievement in mathematics

    Directory of Open Access Journals (Sweden)

    Milošević Nikoleta M.

    2003-01-01

    Full Text Available Findings presented herein are a part of a large international study of primary school final grade student achievement in mathematics and science (TIMSS 2003. Studies were also conducted on the degree of correlation between student family socioeconomic status, mathematical self-concept and achievement in mathematics. Pilot studies, whose findings are discussed comprised 112 seventh-grade students. "Family socioeconomic status" was defined by variables such as the number of family members, economically disadvantaged/affluent home, and parental educational status. "Mathematical self-concept" was defined as one of the more narrow domains of academic self-concept. "Achievement in mathematics" was measured by the test assessing two dimensions of knowledge of mathematics: content and cognitive skills. The analyses of partial correlations indicate that the most significant predictors of achievement in mathematics test are as follows mathematical self-concept, mother’s educational status and some indicators of family socioeconomic status (access to the Internet, number of household members, number of books available at home. Concerning the correlation found between family characteristics and mathematical self-concept and achievement in mathematics, the developers of current changes in mathematics teaching should not disregard the findings of this study.

  18. Designing Second Language Performance Assessments. Technical Report.

    Science.gov (United States)

    Norris, John M.; Brown, James Dean; Hudson, Thom; Yoshioka, Jim

    This technical report focuses on the decision-making potential provided by second language performance assessments. First, performance assessment is situated within the broader discussion of alternatives in language assessment and in educational assessment in general. Next, issues in performance assessment design, implementation, reliability, and…

  19. Tablet-Based Math Assessment: What Can We Learn from Math Apps?

    Science.gov (United States)

    Cayton-Hodges, Gabrielle A.; Feng, Gary; Pan, Xingyu

    2015-01-01

    In this report, we describe a survey of mathematics education apps in the Apple App Store, conducted as part of a research project to develop a tablet-based assessment prototype for elementary mathematics. This survey was performed with the goal of understanding the design principles and techniques used in mathematics apps designed for tablets. We…

  20. Ghana's achievement in mathematics in TIMSS 2007 | Mereku ...

    African Journals Online (AJOL)

    performance on the international benchmarks also improved significantly. The mathematics score, 309, placed Ghana at the 47th position on the overall mathematics achievement results table when the 48 participating countries, which met the TIMSS sampling requirements, were ranked by their mean performances.

  1. PRELIMINARY ASSESSMENT OF FAMILIARITY WITH CONCEPTS MATHEMATICAL GEOGRAPHY OF COURSE UNDERGRADUATE

    Directory of Open Access Journals (Sweden)

    Luis Alberto Martins Palhares de Melo

    2015-12-01

    Full Text Available The objective of the work described in this paper was to conduct a preliminary assessment about the familiarity with basic mathematical concepts by undergraduate students of Geography. This work assumed that the domain of basic concepts of mathematics is important for the students for the real understanding of quantification techniques applied to geography, used for better understanding about geographical space. Therefore, it was applied a questionnaire with six questions related to some basic mathematical concepts. 384 questionnaires were applied in undergraduate courses in geography, in six public institutions of higher education and a private college, located in the Federal District, Goias, Tocantins, Mato Grosso do Sul, Paraná and Rio Grande do Sul in May / 2013 June / 2013 August / 2013 and April / 2014. The results showed that the 384 respondents answered correctly on average 2,3 questions of an amount of six questions. This may mean that a priori there is little familiarity of undergraduate Geography students with basic concepts of mathematics. O objetivo do trabalho descrito neste artigo foi realizar uma avaliação preliminar a respeito da familiaridade com conceitos matemáticos em nível de Educação Básica por parte de graduandos de cursos de Geografia. Essa investigação partiu do princípio de que o domínio de conceitos básicos de Matemática é importante para a capacitação em técnicas de quantificação em Geografia, que por sua vez auxiliam o geógrafo, bacharel ou licenciado, a entender melhor o espaço geográfico. Para tanto foi utilizado o instrumento questionário com seis questões versando sobre alguns conceitos matemáticos básicos em nível de Educação Básica. Foram aplicados 384 questionários em cursos de graduação em Geografia, em seis instituições públicas de ensino superior e uma faculdade particular, localizadas no Distrito Federal, Goiás, Tocantins, Mato Grosso do Sul, Paraná e Rio Grande do

  2. THE INFLUENCE OF THE ASSESSMENT MODEL AND METHOD TOWARD THE SCIENCE LEARNING ACHIEVEMENT BY CONTROLLING THE STUDENTS? PREVIOUS KNOWLEDGE OF MATHEMATICS.

    OpenAIRE

    Adam rumbalifar; I. g. n. Agung; Burhanuddin tola.

    2018-01-01

    This research aims to study the influence of the assessment model and method toward the science learning achievement by controlling the students? previous knowledge of mathematics. This study was conducted at SMP East Seram district with the population of 295 students. This study applied a quasi-experimental method with 2 X 2 factorial design using the ANCOVA model. The findings after controlling the students\\' previous knowledge of mathematics show that the science learning achievement of th...

  3. STATISTICAL EVALUATION OF EXAMINATION TESTS IN MATHEMATICS FOR ECONOMISTS

    Directory of Open Access Journals (Sweden)

    KASPŘÍKOVÁ, Nikola

    2012-12-01

    Full Text Available Examination results are rather important for many students with regard to their future profession development. Results of exams should be carefully inspected by the teachers to help improve design and evaluation of tests and education process in general. Analysis of examination papers in mathematics taken by students of basic mathematics course at University of Economics in Prague is reported. The first issue addressed is identification of significant dependencies between performance in particular problem areas covered in the test and also between particular items and total score in test or ability level as a latent trait. The assessment is first performed with Spearman correlation coefficient, items in the test are then evaluated within Item Response Theory framework. The second analytical task addressed is a search for groups of students who are similar with respect to performance in test. Cluster analysis is performed using partitioning around medoids method and final model selection is made according to average silhouette width. Results of clustering, which may be also considered in connection with setting of the minimum score for passing the exam, show that two groups of students can be identified. The group which may be called "well-performers" is the more clearly defined one.

  4. Performance Assessment in Courts - The Swiss Case

    Directory of Open Access Journals (Sweden)

    Andreas Lienhard

    2014-12-01

    Full Text Available Abstract Performance assessments have become commonplace in management, even in the public sector. With the increasing pressure on courts to perform while making efficient use of resources, performance assessments in the justice system are also gaining in importance. However, the need for judicial independence poses special challenges for performance assessments in courts. Against this background, this article conducts a constitutional appraisal, and contrasts the need for judicial independence with the principles governing effectiveness and efficiency, self-government and supervision, and appointment and re-appointment. A duty to guarantee justice can be derived from this that does not in principle exclude the performance assessment of judges, but even renders it essential, subject to compliance with certain requirements. In these circumstances, it seems hardly surprising that numerous countries conduct performance assessments of judges and also that various international institutions have developed principles for this purpose, a summary of which is presented – in Switzerland’s case based on a recently conducted survey. In the field of conflict between the guaranteeing justice and protecting the judiciary, the following key questions arise in particular: What is the purpose of performance assessments and what are the consequences?What is subjected to a performance assessment and what are the assessment criteria?How is performance recorded as the basis for the performance assessment?Who is subjected to a performance assessment, and must a distinction be made between judges in higher and lower courts?Who carries out the performance assessment and what methods of protecting one’s rights are available?Who should receive the results of the performance assessment?The contribution sketches out possible answers to these key questions and aims to encourage academics and practitioners to give further consideration to this subject.

  5. Basic mathematical cognition.

    Science.gov (United States)

    Gaber, David; Schlimm, Dirk

    2015-01-01

    Mathematics is a powerful tool for describing and developing our knowledge of the physical world. It informs our understanding of subjects as diverse as music, games, science, economics, communications protocols, and visual arts. Mathematical thinking has its roots in the adaptive behavior of living creatures: animals must employ judgments about quantities and magnitudes in the assessment of both threats (how many foes) and opportunities (how much food) in order to make effective decisions, and use geometric information in the environment for recognizing landmarks and navigating environments. Correspondingly, cognitive systems that are dedicated to the processing of distinctly mathematical information have developed. In particular, there is evidence that certain core systems for understanding different aspects of arithmetic as well as geometry are employed by humans and many other animals. They become active early in life and, particularly in the case of humans, develop through maturation. Although these core systems individually appear to be quite limited in application, in combination they allow for the recognition of mathematical properties and the formation of appropriate inferences based upon those properties. In this overview, the core systems, their roles, their limitations, and their interaction with external representations are discussed, as well as possibilities for how they can be employed together to allow us to reason about more complex mathematical domains. © 2015 John Wiley & Sons, Ltd.

  6. Investigating the incremental validity of cognitive variables in early mathematics screening.

    Science.gov (United States)

    Clarke, Ben; Shanley, Lina; Kosty, Derek; Baker, Scott K; Cary, Mari Strand; Fien, Hank; Smolkowski, Keith

    2018-03-26

    The purpose of this study was to investigate the incremental validity of a set of domain general cognitive measures added to a traditional screening battery of early numeracy measures. The sample consisted of 458 kindergarten students of whom 285 were designated as severely at-risk for mathematics difficulty. Hierarchical multiple regression results indicated that Wechsler Abbreviated Scales of Intelligence (WASI) Matrix Reasoning and Vocabulary subtests, and Digit Span Forward and Backward measures explained a small, but unique portion of the variance in kindergarten students' mathematics performance on the Test of Early Mathematics Ability-Third Edition (TEMA-3) when controlling for Early Numeracy Curriculum Based Measurement (EN-CBM) screening measures (R² change = .01). Furthermore, the incremental validity of the domain general cognitive measures was relatively stronger for the severely at-risk sample. We discuss results from the study in light of instructional decision-making and note the findings do not justify adding domain general cognitive assessments to mathematics screening batteries. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Mathematical Literacy in Plant Physiology Undergraduates: Results of Interventions Aimed at Improving Students' Performance

    Science.gov (United States)

    Vila, Francisca; Sanz, Amparo

    2013-01-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant…

  8. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  9. Performance Assessment National Review Group

    International Nuclear Information System (INIS)

    Lieberman, J.A.; Davis, S.N.; Harleman, D.R.F.

    1985-02-01

    Performance assessment involves predicting the potential radiological impact of a nuclear waste disposal system, taking into account all of the natural and engineered components of the system. It includes the analysis and evaluation of predicted system and component performance to determine compliance with regulatory performance criteria. In the context of the nuclear waste management program, performance assessment has five major purposes: to assist in the evaluation and selection of repository sites; to guide the research, development, and testing programs; to assist in the evaluation of repository designs; to assist in the evaluation of the design and performance of engineered barriers; and to show regulatory compliance and support repository licensing. Current performance assessment methodologies are still in the developmental stage. Only the simplest of bounding calculations have produced quantitative predictions of radionuclide releases. The methodologies require considerable extension and validation before they can provide answers suitable for project decisions and licensing. 135 refs., 9 figs., 1 tab

  10. Context for performance assessment

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1997-01-01

    In developing its recommendations on performance assessment for disposal of low-level radioactive waste, Scientific committee 87-3 of the National Council on Radiation Protection and Measurements (NCRP) has considered a number of topics that provide a context for the development of suitable approaches to performance assessment. This paper summarizes the Committee' discussions on these topics, including (1) the definition of low-level waste and its sources and properties, as they affect the variety of wastes that must be considered, (2) fundamental objectives and principles of radioactive waste disposal and their application to low-level waste, (3) current performance objectives for low-level waste disposal in the US, with particular emphasis on such unresolved issues of importance to performance assessment as the time frame for compliance, requirements for protection of groundwater and surface water, inclusion of doses from radon, demonstrating compliance with fixed performance objectives using highly uncertain model projections, and application of the principle that releases to the environment should be maintained as low as reasonably achievable (ALARA), (4) the role of active and passive institutional controls over disposal sites, (5) the role of the inadvertent human intruder in low-level waste disposal, (6) model validation and confidence in model outcomes, and (7) the concept of reasonable assurance of compliance

  11. Understanding Mathematics: Some Key Factors

    Science.gov (United States)

    Ali, Asma Amanat; Reid, Norman

    2012-01-01

    Mathematics is well known as a subject area where there can be problems in terms of understanding as well as retaining positive attitudes. In a large study involving 813 school students (ages approximately 10-12) drawn from two different school systems in Pakistan, the effect of limited working memory capacity on performance in mathematics was…

  12. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  13. Correlation of Admission Metrics with Eventual Success in Mathematics Academic Performance of Freshmen in AMAIUB's Business Curricula

    Science.gov (United States)

    Calucag, Lina S.; Talisic, Geraldo C.; Caday, Aileen B.

    2016-01-01

    This is a correlational study research design, which aimed to determine the correlation of admission metrics with eventual success in mathematics academic performance of the admitted 177 first year students of Bachelor of Science in Business Informatics and 59 first year students of Bachelor of Science in International Studies. Using Pearson's…

  14. Operational human performance reliability assessment (OHPRA)

    International Nuclear Information System (INIS)

    Haas, P.M.; Swanson, P.J.; Connelly, E.M.

    1993-01-01

    Operational Human Performance Reliability Assessment (OHPRA) is an approach for assessing human performance that is being developed in response to demands from modern process industries for practical and effective tools to assess and improve human performance, and therefore overall system performance and safety. The single most distinguishing feature of the approach is that is defines human performance in open-quotes operationalclose quotes terms. OHPRA is focused not on generation of human error probabilities, but on practical analysis of human performance to aid management in (1) identifying open-quotes fixableclose quotes problems and (2) providing input on the importance and nature of potential improvements. Development of the model in progress uses a unique approach for eliciting expert strategies for assessing performance. A PC-based model incorporating this expertise is planned. A preliminary version of the approach has already been used successfully to identify practical human performance problems in reactor and chemical process plant operations

  15. The Turkish Adaptation of the Mathematical Resilience Scale: Validity and Reliability Study

    Science.gov (United States)

    Gürefe, Nejla; Akçakin, Veysel

    2018-01-01

    Persistent in mathematical studies is an important element allowing students to be successful in their STEM careers, and there is a need for affective measurement instruments to assess persistence in mathematics in spite of problems. For this reason, this study aims to adapt the Mathematical Resilience Scale developed to assess resilience, which…

  16. Mathematical Skills and Motor Life Skills in Toddlers: Do Differences in Mathematical Skills Reflect Differences in Motor Skills?

    Science.gov (United States)

    Reikerås, Elin; Moser, Thomas; Tønnessen, Finn Egil

    2017-01-01

    This study examines possible relations between early mathematical skills and motor life skills in 450 toddlers aged two years and nine months. The study employs baseline data from the longitudinal Stavanger Project--The Learning Child. The children's mathematical skills and motor life skills were assessed by structured observation in the natural…

  17. Intra-Mathematical Connections Made by High School Students in Performing Calculus Tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-01-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas,…

  18. Mathematics and Computation in Music

    DEFF Research Database (Denmark)

    The 5th Biennial International Conference for Mathematics and Computation in Music (MCM 2015) took place June 22–25, 2015, at Queen Mary University of London, UK, co-hosted by the School of Electronic Engineering and Computer Science (Centre for Digital Music) and the School of Mathematical...... Sciences. As the flagship conference of the Society for Mathematics and Computation in Music (SMCM), MCM 2015 provided a dedicated platform for the communication and exchange of ideas among researchers in mathematics, informatics, music theory, composition, musicology, and related disciplines. It brought...... together researchers from around the world who combine mathematics or computation with music theory, music analysis, composition, and performance. This year’s program – full details at http://mcm2015.qmul.ac.uk – featured a number of distinguished keynote speakers, including Andrée Ehresmann (who spoke...

  19. Innovative trends in mathematics education: Implications for global ...

    African Journals Online (AJOL)

    Acquisition of Mathematical knowledge and skills requires effective teaching and learning. The traditional method of teaching that is usually adopted by Mathematics Teachers has been identified as one of the causes of students' poor performance Mathematics. However, adoptions of innovative strategies have been ...

  20. Applied Mathematical Problems in Engineering

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2016-10-01

    Full Text Available There is a close relationship between engineering and mathematics, which has led to the development of new techniques in recent years. Likewise the developments in technology and computers have led to new ways of teaching mathematics for engineering students and the use of modern techniques and methods.  This research aims to provide insight on how to deal with mathematical problems for engineering students. This is performed by means of a fuzzy set/Qualitative Comparative Analysis applied to conflict resolution of Public Participation Projects in support to the EU Water Framework Directive.

  1. Performance assessment in algebra learning process

    Science.gov (United States)

    Lestariani, Ida; Sujadi, Imam; Pramudya, Ikrar

    2017-12-01

    The purpose of research to describe the implementation of performance assessment on algebra learning process. The subject in this research is math educator of SMAN 1 Ngawi class X. This research includes descriptive qualitative research type. Techniques of data collecting are done by observation method, interview, and documentation. Data analysis technique is done by data reduction, data presentation, and conclusion. The results showed any indication that the steps taken by the educator in applying the performance assessment are 1) preparing individual worksheets and group worksheets, 2) preparing rubric assessments for independent worksheets and groups and 3) making performance assessments rubric to learners’ performance results with individual or groups task.

  2. The Relationship between Emotional Intelligence and Mathematical Competency among Secondary School Students

    Directory of Open Access Journals (Sweden)

    Nurul Adibah Khairiyah Mohd Nor

    2016-09-01

    Full Text Available Anxiety towards mathematics among secondary school students have been reported. Anxiety creates strong negative emotions and can hinder a person's cognitive, learning and academic performance. Fear of mathematics came early in the educational process and if this is not handled properly, it will negatively affect the students to adulthood. In learning mathematics, emotional intelligence (EI impacts on how a person deals with emotions, mathematics and the general self-regulations strategies that the person adopts. A study was carried out to access secondary students’ EI and their mathematical competency (MC. The EI was tested using an EI questionnaire for adolescents (IKEM-R/MEQI consisting of 7 domains, while the MC was tested using selected questions from PISA (Programme for International Student Assessment 2012 released items. Analysis shows that EI predict significantly students MC, but with low correlational value. Most of the respondents have moderate level of EI in all 7 domains whereby self awareness and self-regulation are the two domains with lowest scores. On the other hand, most of the students’ MC are poor. This particular research shows that EI is not a good predictor of MC which contradicts other reports. However it is suggested that the data collection can be improved by examining students’ EI while they are engaging in activities that call for MCs rather than doing it before or after the tasks. Keywords: Emotional Intelligence (EI, emotion, Mathematical Competency (MC, PISA (Programme for International Student Assessment, anxiety DOI: http://dx.doi.org/10.22342/jme.7.2.3534.91-100

  3. Factors Influencing Early Adolescents' Mathematics Achievement: High-Quality Teaching Rather than Relationships

    Science.gov (United States)

    Winheller, Sandra; Hattie, John A.; Brown, Gavin T. L.

    2013-01-01

    This study used data from the Assessment Tools for Teaching and Learning project, which involved data on the academic performance of more than 90,000 New Zealand students in six subjects (i.e. reading, writing and mathematics in two languages). Two sub-samples of this dataset were included for detailed re-analysis to test the general applicability…

  4. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  5. Effects of reading picture books on kindergartners’ mathematics performance

    NARCIS (Netherlands)

    Van den Heuvel-Panhuizen, M.; Elia, I.; Robitzsch, Alexander

    2016-01-01

    This article describes a field experiment with a pretest–posttest control group design which investigated the potential of reading picture books to children for supporting their mathematical understanding. The study involved 384 children from 18 kindergarten classes in 18 schools in the Netherlands.

  6. Think3d!: Improving mathematics learning through embodied spatial training.

    Science.gov (United States)

    Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.

  7. Investigations in Pure Mathematics: A Constructivist Perspective.

    Science.gov (United States)

    Hirst, Keith; Shiu, Christine

    1995-01-01

    Discusses an investigative, constructivist approach in the context of undergraduate mathematics, with particular reference to pure mathematics, general aims and objectives, assessment strategies, and problems of supervision that affect tutors and lecturers using this approach. Gives students' views on their experiences in this mode of working. (19…

  8. Review of SR 97 performance assessment

    International Nuclear Information System (INIS)

    Glynn, P.D.

    2000-01-01

    This review has identified many technical problems in the SR 97 performance assessment. The general impression of this reviewer is that SKB has been disingenuous in its performance assessment effort. It has not cited important differences of opinion with its own views. Furthermore, there are many inconsistencies in the SR 97 report that all together leave the impression that there are many more uncertainties in the SR 97 performance assessment than SKB would perhaps care to admit. Additionally, despite SKB's statements to the contrary, many of the analyses conducted for the SR 97 performance assessment can be clearly shown not to have been based on 'conservative' assumptions. Finally, SKB has made little effort to consider possible coupling effects between their different scenarios in SR 97. This is a serious flaw in the SR 97 performance assessment. The comments in this review should not be taken to imply that the KBS-3 nuclear waste disposal method will not be able to meet the safety and radiation protection requirements which SKI and SSI have specified in recent years. Instead, my conclusion is simply that the SR 97 performance assessment of the KBS-3 method would have been more believable had it been based on a forthright and comprehensive discussion of facts, uncertainties and opinions, and on a more conservative choice of assumptions. As it stands, the SR 97 performance assessment is not very credible

  9. A complementary measure of heterogeneity on mathematical skills

    Science.gov (United States)

    Fedriani, Eugenio M.; Moyano, Rafael

    2012-06-01

    Finding educational truths is an inherently multivariate problem. There are many factors affecting each student and their performances. Because of this, both measuring of skills and assessing students are always complex processes. This is a well-known problem, and a number of solutions have been proposed by specialists. One of its ramifications is that the variety of progress levels of students in the Mathematics classroom makes teaching more difficult. We think that a measure of the heterogeneity of the different student groups could be interesting in order to prepare some strategies to deal with these kinds of difficulties. The major aim of this study is to develop new tools, complementary to the statistical ones that are commonly used for these purposes, to study situations related to education (mainly to the detection of levels of mathematical education) in which several variables are involved. These tools are thought to simplify these educational analyses and, through a better comprehension of the topic, to improve our teaching. Several authors in our research group have developed some mathematical, theoretical tools, to deal with multidimensional phenomena, and have applied them to measure poverty and also to other business models. These tools are based on multidigraphs. In this article, we implement these tools using symbolic computational software and apply them to study a specific situation related to mathematical education.

  10. Assessing pediatrics residents' mathematical skills for prescribing medication: a need for improved training.

    Science.gov (United States)

    Glover, Mark L; Sussmane, Jeffrey B

    2002-10-01

    To evaluate residents' skills in performing basic mathematical calculations used for prescribing medications to pediatric patients. In 2001, a test of ten questions on basic calculations was given to first-, second-, and third-year residents at Miami Children's Hospital in Florida. Four additional questions were included to obtain the residents' levels of training, specific pediatrics intensive care unit (PICU) experience, and whether or not they routinely double-checked doses and adjusted them for each patient's weight. The test was anonymous and calculators were permitted. The overall score and the score for each resident class were calculated. Twenty-one residents participated. The overall average test score and the mean test score of each resident class was less than 70%. Second-year residents had the highest mean test scores, although there was no significant difference between the classes of residents (p =.745) or relationship between the residents' PICU experiences and their exam scores (p =.766). There was no significant difference between residents' levels of training and whether they double-checked their calculations (p =.633) or considered each patient's weight relative to the dose prescribed (p =.869). Seven residents committed tenfold dosing errors, and one resident committed a 1,000-fold dosing error. Pediatrics residents need to receive additional education in performing the calculations needed to prescribe medications. In addition, residents should be required to demonstrate these necessary mathematical skills before they are allowed to prescribe medications.

  11. Original article Key factors for successful solving of mathematical word problems in fifth-grade learners

    Directory of Open Access Journals (Sweden)

    Marija Kavkler

    2014-05-01

    Full Text Available BACKGROUND Difficulties in solving mathematical word problems (MWP are one of the most common reasons for weak mathematics performance, and poor mathematical literacy has important implications for an individual’s further education, employment opportunities, mental health and quality of life in today’s modern technological society. The purpose of the study was to examine whether Slovenian good and poor MWP solvers differ in arithmetic knowledge and skills, non-verbal reasoning, pupils’ self-evaluations of MWP abilities, teachers’ assessment of their mathematical knowledge and what strategies fifth- grade learners use in solving MWP. PARTICIPANTS AND PROCEDURE The larger sample included 233 pupils from 14 fifth-grade classes (mean age 10 years 3 months and 14 teachers. On the basis of the teachers’ opinions and the results of MWP solving two sub-samples of 24 students were formed, good and poor MWP solvers. Several tests were used to determine MWP solving ability, automation of arithmetic facts and procedures as well as Raven’s SPM. Questionnaires for pupils were used to assess pupils’ estimations of MWP tasks’ difficulty, their own ability to solve them and the strategies used. To assess pupils’ knowledge a questionnaire for teachers was used. RESULTS Slovenian 5 th graders in the larger sample generally used very few empirically proven effective cognitive and metacognitive strategies to solve MWP. Pupils with lower achievement in solving MWP, compared to pupils with higher achievement demonstrated significantly less automated arithmetic facts and procedures of the algorithm, less flexible use of arithmetic skills, as well as qualitatively different MWP solving, which is also related to their lower non-verbal reasoning. Teachers’ assessments and pupils’ self-assessments matched the achieved test results. CONCLUSIONS The results exposed important key factors for successful solving of mathematical word problems with

  12. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  13. Mathematics for the environment

    CERN Document Server

    Walter, Martin

    2011-01-01

    MATHEMATICS IS CONNECTED TO EVERYTHING ELSEEarth's Climate and Some Basic Principles One of the Greatest Crimes of the 20th Century Feedback Edison's Algorithm: Listening to Nature's Feedback Fuzzy Logic, Filters, the Bigger Picture Principle Consequences of the Crime: Suburbia's Topology A Toxic Consequence of the Crime Hubbert's Peak and the End of Cheap Oil Resource Wars: Oil and Water The CO2 Greenhouse Law of Svante ArrheniusEconomic Instability: Ongoing Causes Necessary Conditions for Economic Success The Mathematical Structure of Ponzi Schemes Dishonest Assessment of Risk One Reason Why

  14. Putting Teachers First: Leading Change through Design--Initiating and Sustaining Effective Teaching of Mathematics

    Science.gov (United States)

    Proffitt-White, Rob

    2017-01-01

    The Teachers First initiative is a grass-roots cluster-model approach for bringing together primary and secondary teachers and school principals: to analyse student performance data; design and practice activities and assessment tools; and promote teaching practices that address students' learning difficulties in mathematics. The balance of both…

  15. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  16. Investigating students' perceptions of graduate learning outcomes in mathematics

    Science.gov (United States)

    King, Deborah; Varsavsky, Cristina; Belward, Shaun; Matthews, Kelly

    2017-11-01

    The purpose of this study is to explore the perceptions mathematics students have of the knowledge and skills they develop throughout their programme of study. It addresses current concerns about the employability of mathematics graduates by contributing much needed insight into how degree programmes are developing broader learning outcomes for students majoring in mathematics. Specifically, the study asked students who were close to completing a mathematics major (n = 144) to indicate the extent to which opportunities to develop mathematical knowledge along with more transferable skills (communication to experts and non-experts, writing, working in teams and thinking ethically) were included and assessed in their major. Their perceptions were compared to the importance they assign to each of these outcomes, their own assessment of improvement during the programme and their confidence in applying these outcomes. Overall, the findings reveal a pattern of high levels of students' agreement that these outcomes are important, but evidence a startling gap when compared to students' perceptions of the extent to which many of these - communication, writing, teamwork and ethical thinking - are actually included and assessed in the curriculum, and their confidence in using such learning.

  17. Improvement of Self-regulated Learning in Mathematics through a Hypermedia Application: Differences based on Academic Performance and Previous Knowledge.

    Science.gov (United States)

    Cueli, Marisol; Rodríguez, Celestino; Areces, Débora; García, Trinidad; González-Castro, Paloma

    2017-12-04

    Self-regulation on behalf of the student is crucial in learning Mathematics through hypermedia applications and is an even greater challenge in these IT environments. Two aims are formulated. First, to analyze the effectiveness of a hypermedia tool in improving perceived knowledge of self-regulatory strategies and the perceived usage of the planning, executing and assessment strategy on behalf of students with low, medium and high levels of academic performance. Second, to analyze the effectiveness of the hypermedia tool in improving perceived usage of the strategy for planning, monitoring and evaluating on behalf of students with a perceived knowledge (low, medium and high). Participants were 624 students (aged 10-13), classified into a treatment group (TG; 391) and a comparative group (CG; 233). They completed a questionnaire on perceived knowledge (Perceived Knowledge of Self-Regulatory Strategies) and another one on perceived usage of the strategy for planning, performing and evaluating (Inventory of Self-regulatory Learning Processes). Univariate covariance analyses (ANCOVAs) and Student-t tests were used. ANCOVA results were not statistically significant. However, the linear contrast indicated a significant improvement in perceived knowledge of strategies among the TG with low, medium and high academic performance (p ≤ .001). Results are discussed in the light of past and future research.

  18. Early Executive Function at Age Two Predicts Emergent Mathematics and Literacy at Age Five.

    Science.gov (United States)

    Mulder, Hanna; Verhagen, Josje; Van der Ven, Sanne H G; Slot, Pauline L; Leseman, Paul P M

    2017-01-01

    Previous work has shown that individual differences in executive function (EF) are predictive of academic skills in preschoolers, kindergartners, and older children. Across studies, EF is a stronger predictor of emergent mathematics than literacy. However, research on EF in children below age three is scarce, and it is currently unknown whether EF, as assessed in toddlerhood, predicts emergent academic skills a few years later. This longitudinal study investigates whether early EF, assessed at two years, predicts (emergent) academic skills, at five years. It examines, furthermore, whether early EF is a significantly stronger predictor of emergent mathematics than of emergent literacy, as has been found in previous work on older children. A sample of 552 children was assessed on various EF and EF-precursor tasks at two years. At age five, these children performed several emergent mathematics and literacy tasks. Structural Equation Modeling was used to investigate the relationships between early EF and academic skills, modeled as latent factors. Results showed that early EF at age two was a significant and relatively strong predictor of both emergent mathematics and literacy at age five, after controlling for receptive vocabulary, parental education, and home language. Predictive relations were significantly stronger for mathematics than literacy, but only when a verbal short-term memory measure was left out as an indicator to the latent early EF construct. These findings show that individual differences in emergent academic skills just prior to entry into the formal education system can be traced back to individual differences in early EF in toddlerhood. In addition, these results highlight the importance of task selection when assessing early EF as a predictor of later outcomes, and call for further studies to elucidate the mechanisms through which individual differences in early EF and precursors to EF come about.

  19. Early Executive Function at Age Two Predicts Emergent Mathematics and Literacy at Age Five

    Directory of Open Access Journals (Sweden)

    Hanna Mulder

    2017-10-01

    Full Text Available Previous work has shown that individual differences in executive function (EF are predictive of academic skills in preschoolers, kindergartners, and older children. Across studies, EF is a stronger predictor of emergent mathematics than literacy. However, research on EF in children below age three is scarce, and it is currently unknown whether EF, as assessed in toddlerhood, predicts emergent academic skills a few years later. This longitudinal study investigates whether early EF, assessed at two years, predicts (emergent academic skills, at five years. It examines, furthermore, whether early EF is a significantly stronger predictor of emergent mathematics than of emergent literacy, as has been found in previous work on older children. A sample of 552 children was assessed on various EF and EF-precursor tasks at two years. At age five, these children performed several emergent mathematics and literacy tasks. Structural Equation Modeling was used to investigate the relationships between early EF and academic skills, modeled as latent factors. Results showed that early EF at age two was a significant and relatively strong predictor of both emergent mathematics and literacy at age five, after controlling for receptive vocabulary, parental education, and home language. Predictive relations were significantly stronger for mathematics than literacy, but only when a verbal short-term memory measure was left out as an indicator to the latent early EF construct. These findings show that individual differences in emergent academic skills just prior to entry into the formal education system can be traced back to individual differences in early EF in toddlerhood. In addition, these results highlight the importance of task selection when assessing early EF as a predictor of later outcomes, and call for further studies to elucidate the mechanisms through which individual differences in early EF and precursors to EF come about.

  20. Comparison among cognitive diagnostic models for the TIMSS 2007 fourth grade mathematics assessment.

    Science.gov (United States)

    Yamaguchi, Kazuhiro; Okada, Kensuke

    2018-01-01

    A variety of cognitive diagnostic models (CDMs) have been developed in recent years to help with the diagnostic assessment and evaluation of students. Each model makes different assumptions about the relationship between students' achievement and skills, which makes it important to empirically investigate which CDMs better fit the actual data. In this study, we examined this question by comparatively fitting representative CDMs to the Trends in International Mathematics and Science Study (TIMSS) 2007 assessment data across seven countries. The following two major findings emerged. First, in accordance with former studies, CDMs had a better fit than did the item response theory models. Second, main effects models generally had a better fit than other parsimonious or the saturated models. Related to the second finding, the fit of the traditional parsimonious models such as the DINA and DINO models were not optimal. The empirical educational implications of these findings are discussed.