Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses
Martínez-Sierra, Gustavo; García-González, María del Socorro
2016-01-01
Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…
A Framework for Mathematical Thinking: The Case of Linear Algebra
Stewart, Sepideh; Thomas, Michael O. J.
2009-01-01
Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…
The Growing Importance of Linear Algebra in Undergraduate Mathematics.
Tucker, Alan
1993-01-01
Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Montiel, Mariana; Bhatti, Uzma
2010-01-01
This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Mathematical modelling in engineering: A proposal to introduce linear algebra concepts
Directory of Open Access Journals (Sweden)
Andrea Dorila Cárcamo
2016-03-01
Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-01-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…
Hannah, John; Stewart, Sepideh; Thomas, Michael
2016-01-01
Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…
Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra
Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç
2017-01-01
In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…
Thirty-three miniatures mathematical and algorithmic applications of linear algebra
Matousek, Jiří
2010-01-01
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lov�sz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for s...
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Introduction to computational linear algebra
Nassif, Nabil; Erhel, Jocelyne
2015-01-01
Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s
Risnawati; Khairinnisa, S.; Darwis, A. H.
2018-01-01
The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Shi, Yixun
2009-01-01
Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…
Topics in quaternion linear algebra
Rodman, Leiba
2014-01-01
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
An Inquiry-Based Linear Algebra Class
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Stability of Linear Equations--Algebraic Approach
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Numerical linear algebra with applications using Matlab
Ford, William
2014-01-01
Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for
Modules as Learning Tools in Linear Algebra
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio
2014-01-01
This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Journal Writing: Enlivening Elementary Linear Algebra.
Meel, David E.
1999-01-01
Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Computational linear and commutative algebra
Kreuzer, Martin
2016-01-01
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Linear algebra and group theory for physicists
Rao, K N Srinivasa
2006-01-01
Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...
Teaching Linear Algebra: Must the Fog Always Roll In?
Carlson, David
1993-01-01
Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…
Emphasizing Language and Visualization in Teaching Linear Algebra
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-01-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…
Resources for Teaching Linear Algebra. MAA Notes Volume 42.
Carlson, David, Ed.; And Others
This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…
Variational linear algebraic equations method
International Nuclear Information System (INIS)
Moiseiwitsch, B.L.
1982-01-01
A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)
Data Compression with Linear Algebra
Etler, David
2015-01-01
A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.
Principles of linear algebra with Mathematica
Shiskowski, Kenneth M
2013-01-01
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
Meromorphic functions and linear algebra
Nevanlinna, Olavi
2003-01-01
This volume describes for the first time in monograph form important applications in numerical methods of linear algebra. The author presents new material and extended results from recent papers in a very readable style. The main goal of the book is to study the behavior of the resolvent of a matrix under the perturbation by low rank matrices. Whereas the eigenvalues (the poles of the resolvent) and the pseudospectra (the sets where the resolvent takes large values) can move dramatically under such perturbations, the growth of the resolvent as a matrix-valued meromorphic function remains essen
The linear algebra survival guide illustrated with Mathematica
Szabo, Fred
2015-01-01
The Linear Algebra Survival Guide is a reference book with a free downloadable Mathematica notebook containing all of interactive code to make the content of the book playable in Mathematica and the Mathematica Player. It offers a concise introduction to the core topics of linear algebra which includes numerous exercises that will accompany a first or second course in linear algebra. This book will guide you through the powerful graphic displays and visualization of Mathematica that make the most abstract theories seem simple-- allowing you to tackle realistic problems using simple mathematic
Keller, Edward L.
This unit, which looks at applications of linear algebra to population studies, is designed to help pupils: (1) understand an application of matrix algebra to the study of populations; (2) see how knowledge of eigen values and eigen vectors is useful in studying powers of matrices; and (3) be briefly exposed to some difficult but interesting…
Aydin, Sinan
2014-01-01
Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…
An Application of Linear Algebra over Lattices
Directory of Open Access Journals (Sweden)
M. Hosseinyazdi
2008-03-01
Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
An Application of Linear Algebra over Lattices
M. Hosseinyazdi
2008-01-01
In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Numerical stability in problems of linear algebra.
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Linear algebra applications using Matlab software
Directory of Open Access Journals (Sweden)
Cornelia Victoria Anghel
2005-10-01
Full Text Available The paper presents two ways of special matrix generating using some functions included in the MatLab software package. The MatLab software package contains a set of functions that generate special matrixes used in the linear algebra applications and the signal processing from different activity fields. The paper presents two tipes of special matrixes that can be generated using written sintaxes in the dialog window of the MatLab software and for the command validity we need to press the Enter task. The applications presented in the paper represent eamples of numerical calculus using the MatLab software and belong to the scientific field „Computer Assisted Mathematics” thus creating the symbiosis between mathematics and informatics.
Advanced linear algebra for engineers with Matlab
Dianat, Sohail A
2009-01-01
Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu
Directory of Open Access Journals (Sweden)
Ludwig Kohaupt
2015-12-01
Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations.
Applied linear algebra and matrix analysis
Shores, Thomas S
2018-01-01
In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...
Using Cognitive Tutor Software in Learning Linear Algebra Word Concept
Yang, Kai-Ju
2015-01-01
This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Linearized dynamical approach to current algebra
International Nuclear Information System (INIS)
Scadron, M.D.
1995-07-01
We study the original motivations searching for a nonlinear chiral Lagrangian to replace the linear sigma model while manifesting all the successful properties of current algebra and partial conservation of axial currents (PCAC). (author). 26 refs
Numerical linear algebra theory and applications
Beilina, Larisa; Karchevskii, Mikhail
2017-01-01
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
Modeling digital switching circuits with linear algebra
Thornton, Mitchell A
2014-01-01
Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf
Linear algebra a first course with applications
Knop, Larry E
2008-01-01
Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Google's PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maple™, MATLAB®, and TI-83 Plus for calculating matri
Linear Algebraic Method for Non-Linear Map Analysis
International Nuclear Information System (INIS)
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
The Role of Proof in Comprehending and Teaching Elementary Linear Algebra.
Uhlig, Frank
2002-01-01
Describes how elementary linear algebra can be taught successfully while introducing students to the concept and practice of mathematical proof. Suggests exploring the concept of solvability of linear systems first via the row echelon form (REF). (Author/KHR)
Numerical linear algebra a concise introduction with Matlab and Julia
Bornemann, Folkmar
2018-01-01
This book offers an introduction to the algorithmic-numerical thinking using basic problems of linear algebra. By focusing on linear algebra, it ensures a stronger thematic coherence than is otherwise found in introductory lectures on numerics. The book highlights the usefulness of matrix partitioning compared to a component view, leading not only to a clearer notation and shorter algorithms, but also to significant runtime gains in modern computer architectures. The algorithms and accompanying numerical examples are given in the programming environment MATLAB, and additionally – in an appendix – in the future-oriented, freely accessible programming language Julia. This book is suitable for a two-hour lecture on numerical linear algebra from the second semester of a bachelor's degree in mathematics.
Finite-dimensional linear algebra
Gockenbach, Mark S
2010-01-01
Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq
Computer Algebra Recipes for Mathematical Physics
Enns, Richard H
2005-01-01
Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...
Gauss Elimination: Workhorse of Linear Algebra.
1995-08-05
linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also
Hamiltonian structure of linearly extended Virasoro algebra
International Nuclear Information System (INIS)
Arakelyan, T.A.; Savvidi, G.K.
1991-01-01
The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Linear Algebra and Analysis Masterclasses
Indian Academy of Sciences (India)
ematical physics, computer science, numerical analysis, and statistics. ... search and has been used in mathematical physics, computer science, ... concrete examples of the spaces, enabling application of the theory to a variety of problems.
An introduction to linear algebra
Mirsky, L
2003-01-01
Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.
On Numerical Stability in Large Scale Linear Algebraic Computations
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Liesen, J.
2005-01-01
Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005
University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report
What Works Clearinghouse, 2009
2009-01-01
University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…
Constructive Learning in Undergraduate Linear Algebra
Chandler, Farrah Jackson; Taylor, Dewey T.
2008-01-01
In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
High performance linear algebra algorithms: An introduction
DEFF Research Database (Denmark)
Gustavson, F.G.; Wasniewski, Jerzy
2006-01-01
his Mini-Symposium consisted of two back to back sessions, each consisting of five presentations, held on the afternoon of Monday, June 21, 2004. A major theme of both sessions was novel data structures for the matrices of dense linear algebra, DLA. Talks one to four of session one all centered...
A Linear Algebra Measure of Cluster Quality.
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
Accelerating Dense Linear Algebra on the GPU
DEFF Research Database (Denmark)
Sørensen, Hans Henrik Brandenborg
and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...
More on the linearization of W-algebras
International Nuclear Information System (INIS)
Krivonos, S.; Sorin, A.
1995-01-01
We show that a wide class of W-(super)algebras, including W N (N-1) , U(N)-superconformal as well as W N nonlinear algebras, can be linearized by embedding them as subalgebras into some linear (super)conformal algebras with finite sets of currents. The general construction is illustrated by the example of W 4 algebra. 16 refs
A linear algebraic approach to electron-molecule collisions
International Nuclear Information System (INIS)
Collins, L.A.; Schnieder, B.I.
1982-01-01
The linear algebraic approach to electron-molecule collisions is examined by firstly deriving the general set of coupled integrodifferential equations that describe electron collisional processes and then describing the linear algebraic approach for obtaining a solution to the coupled equations. Application of the linear algebraic method to static-exchange, separable exchange and effective optical potential, is examined. (U.K.)
Reading between the Lines: Teaching Linear Algebra
Lewis, Jennifer M.; Blunk, Merrie L.
2012-01-01
This paper compares lessons on linear equations from the same curriculum materials taught by two teachers of different levels of mathematical knowledge for teaching (MKT). The analysis indicates that the mathematical quality of instruction in these two classrooms appears to be a function of differences in MKT. Although the two teachers were…
Schwarz maps of algebraic linear ordinary differential equations
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
PREFACE: Algebra, Geometry, and Mathematical Physics 2010
Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.
2012-02-01
This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants
Linear algebra and matrices topics for a second course
Shapiro, Helene
2015-01-01
Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first c...
Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.
Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper
2002-08-01
A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.
Linear algebra and analytic geometry for physical sciences
Landi, Giovanni
2018-01-01
A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises. Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers m...
Optical linear algebra processors - Architectures and algorithms
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Parallel algorithms for numerical linear algebra
van der Vorst, H
1990-01-01
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p
Basic linear algebra subprograms for FORTRAN usage
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
Nowicki, A; Tkachuk, V M
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra.
Carlson, David; And Others
1993-01-01
Presents five recommendations of the Linear Algebra Curriculum Study Group: (1) The syllabus must respond to the client disciplines; (2) The first course should be matrix oriented; (3) Faculty should consider the needs and interests of students; (4) Faculty should use technology; and (5) At least one follow-up course should be required. Provides a…
Developing early algebraic reasoning in a mathematical community of inquiry
Hunter, Jodie Margaret Roberta
2013-01-01
This study explores the development of early algebraic reasoning in mathematical communities of inquiry. Under consideration is the different pathways teachers take as they develop their own understanding of early algebra and then enact changes in their classroom to facilitate algebraic reasoning opportunities. Teachers participated in a professional development intervention which focused on understanding of early algebraic concepts, task development, modification, and enactment, and clas...
Algebraic Theory of Linear Viscoelastic Nematodynamics
International Nuclear Information System (INIS)
Leonov, Arkady I.
2008-01-01
This paper consists of two parts. The first one develops algebraic theory of linear anisotropic nematic 'N-operators' build up on the additive group of traceless second rank 3D tensors. These operators have been implicitly used in continual theories of nematic liquid crystals and weakly elastic nematic elastomers. It is shown that there exists a non-commutative, multiplicative group N 6 of N-operators build up on a manifold in 6D space of parameters. Positive N-operators, which in physical applications hold thermodynamic stability constraints, do not generally form a subgroup of group N 6 . A three-parametric, commutative transversal-isotropic subgroup S 3 subset of N 6 of positive symmetric nematic operators is also briefly discussed. The special case of singular, non-negative symmetric N-operators reveals the algebraic structure of nematic soft deformation modes. The second part of the paper develops a theory of linear viscoelastic nematodynamics applicable to liquid crystalline polymer. The viscous and elastic nematic components in theory are described by using the Leslie-Ericksen-Parodi (LEP) approach for viscous nematics and de Gennes free energy for weakly elastic nematic elastomers. The case of applied external magnetic field exemplifies the occurrence of non-symmetric stresses. In spite of multi-(10) parametric character of the theory, the use of nematic operators presents it in a transparent form. When the magnetic field is absent, the theory is simplified for symmetric case with six parameters, and takes an extremely simple, two-parametric form for viscoelastic nematodynamics with possible soft deformation modes. It is shown that the linear nematodynamics is always reducible to the LEP-like equations where the coefficients are changed for linear memory functionals whose parameters are calculated from original viscosities and moduli
INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS
KUIJPER, M; SCHUMACHER, JM
Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
Inhomogeneous linear equation in Rota-Baxter algebra
Pietrzkowski, Gabriel
2014-01-01
We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.
Wawro, Megan Jean
2011-01-01
In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…
PC-BLAS, PC Linear Algebra Subroutines
International Nuclear Information System (INIS)
Hanson, R.J.
1989-01-01
1 - Description of program or function: PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of 38 routines that perform low-level operations on vectors of numbers in single- and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, and find the norm of a vector. 2 - Restrictions on the complexity of the problem: The number of components in any vector and the spacing or stride between their entries must not exceed 32,767 (2 15 -1). PC-BLAS will not work with an 80286 CPU operating in 'protected' mode
Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence
Çelik, Derya
2015-01-01
Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…
Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties
Britton, Sandra; Henderson, Jenny
2009-01-01
This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…
Linking geometry and algebra in the school mathematics curriculum
Jones, Keith
2010-01-01
This chapter focuses on the linking of geometry and algebra in the teaching and learning of mathematics - and how, through such linking, the mathematics curriculum might be strengthened. Through reviewing the case of the school mathematics curriculum in England, together with examples of how the power of geometry can bring contemporary mathematics to life in the classroom, the chapter argues for greater concinnity in the mathematics curriculum, especially in terms of the harmonious/purposeful...
Accuracy Limitations in Optical Linear Algebra Processors
Batsell, Stephen Gordon
1990-01-01
One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.
Current algebra of classical non-linear sigma models
International Nuclear Information System (INIS)
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
On Graph C*-Algebras with a Linear Ideal Lattice
DEFF Research Database (Denmark)
Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
2010-01-01
At the cost of restricting the nature of the involved K-groups, we prove a classication result for a hitherto unexplored class of graph C-algebras, allowing us to classify all graph C-algebras on nitely many vertices with a nite linear ideal lattice if all pair of vertices are connected by innitely...
Ertekin, E.; Solak, S.; Yazici, E.
2010-01-01
The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Linear response theory an analytic-algebraic approach
De Nittis, Giuseppe
2017-01-01
This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about...
Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff
2016-01-01
In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…
A Practical Approach to Inquiry-Based Learning in Linear Algebra
Chang, J.-M.
2011-01-01
Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…
Advanced Linear Algebra: A Call for the Early Introduction of Complex Numbers
Garcia, Stephan Ramon
2017-01-01
A second course in linear algebra that goes beyond the traditional lower-level curriculum is increasingly important for students of the mathematical sciences. Although many applications involve only real numbers, a solid understanding of complex arithmetic often sheds significant light. Many instructors are unaware of the opportunities afforded by…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps
Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.
2010-01-01
This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…
Linear algebraic approach to electron-molecule collisions
International Nuclear Information System (INIS)
Schneider, B.I.; Collins, L.A.
1983-01-01
The various levels of sophistication of the linear algebraic method are discussed and its application to electron-molecule collisions of H 2 , N 2 LiH, LiF and HCl is described. 13 references, 2 tables
Application of laser speckle to randomized numerical linear algebra
Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif
2018-02-01
We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.
Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient
Aryani, F.; Amin, S. M.; Sulaiman, R.
2018-01-01
Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.
IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS
Directory of Open Access Journals (Sweden)
Gaetana Restuccia
2016-01-01
Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.
Formalized Linear Algebra over Elementary Divisor Rings in Coq
Cano , Guillaume; Cohen , Cyril; Dénès , Maxime; Mörtberg , Anders; Siles , Vincent
2016-01-01
International audience; This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely pre-sented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms comput-in...
Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships
Nillas, Leah A.
2010-01-01
Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics
Simzar, Rahila M.; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.
Simzar, Rahila M; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.
Advanced topics in linear algebra weaving matrix problems through the Weyr form
O'Meara, Kevin; Vinsonhaler, Charles
2011-01-01
The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Linear {GLP}-algebras and their elementary theories
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
Gender differences in algebraic thinking ability to solve mathematics problems
Kusumaningsih, W.; Darhim; Herman, T.; Turmudi
2018-05-01
This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.
The Linear Span of Projections in AH Algebras and for Inclusions of C*-Algebras
Directory of Open Access Journals (Sweden)
Dinh Trung Hoa
2013-01-01
Full Text Available In the first part of this paper, we show that an AH algebra A=lim→(Ai,ϕi has the LP property if and only if every element of the centre of Ai belongs to the closure of the linear span of projections in A. As a consequence, a diagonal AH-algebra has the LP property if it has small eigenvalue variation in the sense of Bratteli and Elliott. The second contribution of this paper is that for an inclusion of unital C*-algebras P⊂A with a finite Watatani index, if a faithful conditional expectation E:A→P has the Rokhlin property in the sense of Kodaka et al., then P has the LP property under the condition thatA has the LP property. As an application, let A be a simple unital C*-algebra with the LP property, α an action of a finite group G onto Aut(A. If α has the Rokhlin property in the sense of Izumi, then the fixed point algebra AG and the crossed product algebra A ⋊α G have the LP property. We also point out that there is a symmetry on the CAR algebra such that its fixed point algebra does not have the LP property.
Roots of Linear Algebra: An Historical Exploration of Linear Systems
Andrews-Larson, Christine
2015-01-01
There is a long-standing tradition in mathematics education to look to history to inform instruction. An historical analysis of the genesis of a mathematical idea offers insight into: (i) the contexts that give rise to a need for a mathematical construct; (ii) the ways in which available tools might shape the development of that mathematical idea;…
Embodied, Symbolic and Formal Thinking in Linear Algebra
Stewart, Sepideh; Thomas, Michael O. J.
2007-01-01
Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
An introduction to linear algebra and tensors
Akivis, M A; Silverman, Richard A
1978-01-01
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Open-closed homotopy algebra in mathematical physics
International Nuclear Information System (INIS)
Kajiura, Hiroshige; Stasheff, Jim
2006-01-01
In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed string field theory, but that first paper concentrated on the mathematical aspects. Here we show how an OCHA is obtained by extracting the tree part of Zwiebach's quantum open-closed string field theory. We clarify the explicit relation of an OCHA with Kontsevich's deformation quantization and with the B-models of homological mirror symmetry. An explicit form of the minimal model for an OCHA is given as well as its relation to the perturbative expansion of open-closed string field theory. We show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (A ∞ algebras) by closed strings (L ∞ algebras)
Fundamental structures of algebra and discrete mathematics
Foldes, Stephan
2011-01-01
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
Greek mathematical thought and the origin of algebra
Klein, Jacob
1992-01-01
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. This brought about the crucial change in the concept of number that made possible modern science - in which the symbolic ""form"" of a mathematical statement is completely inseparable from its ""content"" of physical meaning. Includes a translation of Vieta's Introduction to the Analytical Art. 1968 edition. Bibliography.
Quantum algebras and Poisson geometry in mathematical physics
Karasev, M V
2005-01-01
This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.
Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style
Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.
2018-01-01
This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.
Hardware Tailored Linear Algebra for Implicit Integrators in Embedded NMPC
DEFF Research Database (Denmark)
Frison, Gianluca; Quirynen, Rien; Zanelli, Andrea
2017-01-01
. In the case of stiff or implicitly defined dynamics, implicit integration schemes are typically preferred. This paper proposes a tailored implementation of the necessary linear algebra routines (LU factorization and triangular solutions), in order to allow for a considerable computational speedup...... of such integrators. In particular, the open-source BLASFEO framework is presented as a library of efficient linear algebra routines for small to medium-scale embedded optimization applications. Its performance is illustrated on the nonlinear optimal control example of a chain of masses. The proposed library allows...
Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
Non-linear realization of the Virasoro-Kac-Moody algebra and the anomalies
International Nuclear Information System (INIS)
Aoyama, S.
1988-01-01
The non-linear realization of the Virasoro algebra x Kac-Moody algebra will be studied. We will calculate the Ricci tensor of the relevant Kaehler manifold to show a new vacuum structure for this coupled algebra. (orig.)
Linear algebra and linear operators in engineering with applications in Mathematica
Davis, H Ted
2000-01-01
Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical ...
A comparison of equality in computer algebra and correctness in mathematical pedagogy (II)
Bradford, Russell; Davenport, James H; Sangwin, C
2010-01-01
A perennial problem in computer-aided assessment is that “a right answer”, pedagogically speaking, is not the same thing as “a mathematically correct expression”, as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was “the right answer”, typically calculus questions. Here we look at some other cases, notably in linear algebra, where there can be many “right answers”, but still th...
Partially Flipped Linear Algebra: A Team-Based Approach
Carney, Debra; Ormes, Nicholas; Swanson, Rebecca
2015-01-01
In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…
Creating Discussions with Classroom Voting in Linear Algebra
Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie
2013-01-01
We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…
A linear algebra course with PC-MATLAB : some experiences
Smits, J.G.M.M.; Rijpkema, J.J.M.
1992-01-01
The authors present their views on the impact that the use of computers and software packages should have on the contents of a first service course on linear algebra. Furthermore they report on their experiences using the software package PC-MATLAB in such a course.
Linear Algebra and the Experiences of a "Flipper"
Wright, Sarah E.
2015-01-01
This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Definitions Are Important: The Case of Linear Algebra
Berman, Abraham; Shvartsman, Ludmila
2016-01-01
In this paper we describe an experiment in a linear algebra course. The aim of the experiment was to promote the students' understanding of the studied concepts focusing on their definitions. It seems to be a given that students should understand concepts' definitions before working substantially with them. Unfortunately, in many cases they do…
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Directory of Open Access Journals (Sweden)
Nikolay Chernov
2018-01-01
Full Text Available The article considers linear algebra as an alternative mathematical tool of logic synthesis of digital structures to Boolean algebra and synthesis methods of digital electronic component base (ECB on its ground. The methods of solving the applied problems of logic synthesis are shown, including the expansion of an arbitrary logic function by means of monotonic functions. The proposed mathematical apparatus actually provides the creation of digital structures on the principles of analog circuitry. It can find application in the design of multivalued digital ECB, specialized system-on-chip and analog-digital sensors with current output. The examples of synthesis of the combinational and sequential two-valued and multivalued digital devices are given. In conclusion, the advantages of linear algebra in comparison with Boolean algebra are formulated.
GPU Linear algebra extensions for GNU/Octave
International Nuclear Information System (INIS)
Bosi, L B; Mariotti, M; Santocchia, A
2012-01-01
Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.
Exact solution of some linear matrix equations using algebraic methods
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Quasi-Linear Algebras and Integrability (the Heisenberg Picture
Directory of Open Access Journals (Sweden)
Alexei Zhedanov
2008-02-01
Full Text Available We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution interpretation of the corresponding integrable systems.
Topics in algebra and analysis preparing for the mathematical olympiad
Bulajich Manfrino, Radmila; Valdez Delgado, Rogelio
2015-01-01
The techniques presented here are useful for solving mathematical contest problems in algebra and analysis. Most of the examples and exercises that appear in the book originate from mathematical Olympiad competitions around the world. In the first four chapters the authors cover material for competitions at high school level. The level advances with the chapters. The topics explored include polynomials, functional equations, sequences and an elementary treatment of complex numbers. The final chapters provide a comprehensive list of problems posed at national and international contests in recent years, and solutions to all exercises and problems presented in the book. It helps students in preparing for national and international mathematical contests form high school level to more advanced competitions and will also be useful for their first year of mathematical studies at the university. It will be of interest to teachers in college and university level, and trainers of the mathematical Olympiads.
Projection of angular momentum via linear algebra
Johnson, Calvin W.; O'Mara, Kevin D.
2017-12-01
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.
Development of abstract mathematical reasoning: the case of algebra.
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.
A linear process-algebraic format for probabilistic systems with data (extended version)
Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark
2010-01-01
This paper presents a novel linear process-algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar
A linear process-algebraic format for probabilistic systems with data
Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark; Gomes, L.; Khomenko, V.; Fernandes, J.M.
This paper presents a novel linear process algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar
Goodman, Roe W
2016-01-01
This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.
A modified linear algebraic approach to electron scattering using cubic splines
International Nuclear Information System (INIS)
Kinney, R.A.
1986-01-01
A modified linear algebraic approach to the solution of the Schrodiner equation for low-energy electron scattering is presented. The method uses a piecewise cubic-spline approximation of the wavefunction. Results in the static-potential and the static-exchange approximations for e - +H s-wave scattering are compared with unmodified linear algebraic and variational linear algebraic methods. (author)
Communication Avoiding and Overlapping for Numerical Linear Algebra
2012-05-08
future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Energy Technology Data Exchange (ETDEWEB)
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
Grenier-Boley, Nicolas
2014-01-01
Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
Generalization of the linear algebraic method to three dimensions
International Nuclear Information System (INIS)
Lynch, D.L.; Schneider, B.I.
1991-01-01
We present a numerical method for the solution of the Lippmann-Schwinger equation for electron-molecule collisions. By performing a three-dimensional numerical quadrature, this approach avoids both a basis-set representation of the wave function and a partial-wave expansion of the scattering potential. The resulting linear equations, analogous in form to the one-dimensional linear algebraic method, are solved with the direct iteration-variation method. Several numerical examples are presented. The prospect for using this numerical quadrature scheme for electron-polyatomic molecules is discussed
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Special issue on cluster algebras in mathematical physics
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Methods of mathematical modeling using polynomials of algebra of sets
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.
2010-01-01
This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…
Morales-Chicas, Jessica; Agger, Charlotte
2017-01-01
In this article, the authors use the national High School Longitudinal Study of 2009 (HSLS:09) dataset to explore (a) if repeating algebra in the eighth grade was associated with overall mathematics grades and course-taking patterns by twelfth grade, (b) if repeating algebra in the eighth grade was associated with students' final grade in algebra,…
Relating Reasoning Methodologies in Linear Logic and Process Algebra
Directory of Open Access Journals (Sweden)
Yuxin Deng
2012-11-01
Full Text Available We show that the proof-theoretic notion of logical preorder coincides with the process-theoretic notion of contextual preorder for a CCS-like calculus obtained from the formula-as-process interpretation of a fragment of linear logic. The argument makes use of other standard notions in process algebra, namely a labeled transition system and a coinductively defined simulation relation. This result establishes a connection between an approach to reason about process specifications and a method to reason about logic specifications.
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Negative base encoding in optical linear algebra processors
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
First order linear ordinary differential equations in associative algebras
Directory of Open Access Journals (Sweden)
Gordon Erlebacher
2004-01-01
Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
International Nuclear Information System (INIS)
Gonzalez, Juan; Nunez, Rafael C
2009-01-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
Student Learning of Basis, Span and Linear Independence in Linear Algebra
Stewart, Sepideh; Thomas, Michael O. J.
2010-01-01
One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…
MODELING IN MAPLE AS THE RESEARCHING MEANS OF FUNDAMENTAL CONCEPTS AND PROCEDURES IN LINEAR ALGEBRA
Directory of Open Access Journals (Sweden)
Vasil Kushnir
2016-05-01
Full Text Available The article is devoted to binary technology and "fundamental training technology." Binary training refers to the simultaneous teaching of mathematics and computer science, for example differential equations and Maple, linear algebra and Maple. Moreover the system of traditional course of Maple is not performed. The use of the opportunities of Maple-technology in teaching mathematics is based on the following fundamental concepts of computer science as an algorithm, program, a linear program, cycle, branching, relative operators, etc. That’s why only a certain system of command operators in Maple is considered. They are necessary for fundamental concepts of linear algebra and differential equations studying in Maple-environment. Relative name - "the technology of fundamental training" reflects the study of fundamental mathematical concepts and procedures that express the properties of these concepts in Maple-environment. This article deals with the study of complex fundamental concepts of linear algebra (determinant of the matrix and algorithm of its calculation, the characteristic polynomial of the matrix and the eigenvalues of matrix, canonical form of characteristic matrix, eigenvectors of matrix, elementary divisors of the characteristic matrix, etc., which are discussed in the appropriate courses briefly enough, and sometimes are not considered at all, but they are important in linear systems of differential equations, asymptotic methods for solving differential equations, systems of linear equations. Herewith complex and voluminous procedures of finding of these linear algebra concepts embedded in Maple can be performed as a result of a simple command-operator. Especially important issue is building matrix to canonical form. In fact matrix functions are effectively reduced to the functions of the diagonal matrix or matrix in Jordan canonical form. These matrices are used to rise a square matrix to a power, to extract the roots of the n
The conceptual basis of mathematics in cardiology: (I) algebra, functions and graphs.
Bates, Jason H T; Sobel, Burton E
2003-02-01
This is the first in a series of four articles developed for the readers of. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease, abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and
Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program
Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy
2016-01-01
The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…
Usman, Ahmed Ibrahim
2015-01-01
Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…
Directory of Open Access Journals (Sweden)
Евгений Сергеевич Сарыков
2011-09-01
Full Text Available In article possibilities of perfection of the maintenance of subject preparation of the mathematics teacher in teacher training university in the conditions of information of education are considered, receptions of enrichment of an information component of mathematical problems on an example of a course of linear algebra are shown.
Solution of systems of linear algebraic equations by the method of summation of divergent series
International Nuclear Information System (INIS)
Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.
2015-01-01
A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru
Directory of Open Access Journals (Sweden)
Ramin Zahedi
2017-09-01
Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.
The algebra of non-local charges in non-linear sigma models
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.
1994-01-01
It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref
van Herwaarden, Onno A.; Gielen, Joseph L. W.
2002-01-01
Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
Using linear algebra for protein structural comparison and classification.
Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo
2009-07-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
Using linear algebra for protein structural comparison and classification
Directory of Open Access Journals (Sweden)
Janaína Gomide
2009-01-01
Full Text Available In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD and Latent Semantic Indexing (LSI techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
Linear algebra for dense matrices on a hypercube
International Nuclear Information System (INIS)
Sears, M.P.
1990-01-01
A set of routines has been written for dense matrix operations optimized for the NCUBE/6400 parallel processor. This paper was motivated by a Sandia effort to parallelize certain electronic structure calculations. Routines are included for matrix transpose, multiply, Cholesky decomposition, triangular inversion, and Householder tridiagonalization. The library is written in C and is callable from Fortran. Matrices up to order 1600 can be handled on 128 processors. For each operation, the algorithm used is presented along with typical timings and estimates of performance. Performance for order 1600 on 128 processors varies from 42 MFLOPs (House-holder tridiagonalization, triangular inverse) up to 126 MFLOPs (matrix multiply). The authors also present performance results for communications and basic linear algebra operations (saxpy and dot products)
Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.
Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris
2012-06-01
In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.
Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach
International Nuclear Information System (INIS)
Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris
2012-01-01
In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications. (paper)
su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame
International Nuclear Information System (INIS)
Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin
2008-01-01
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics
Moretti, Valter
2017-01-01
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
Linear programming mathematics, theory and algorithms
1996-01-01
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
International Nuclear Information System (INIS)
Feng, H.; Zheng, Y.; Ding, S.
2007-01-01
Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example
Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics
Sangwin, Christopher J.; Naismith, Laura
2008-01-01
We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…
Student performance and attitudes in a collaborative and flipped linear algebra course
Murphy, Julia; Chang, Jen-Mei; Suaray, Kagba
2016-07-01
Flipped learning is gaining traction in K-12 for enhancing students' problem-solving skills at an early age; however, there is relatively little large-scale research showing its effectiveness in promoting better learning outcomes in higher education, especially in mathematics classes. In this study, we examined the data compiled from both quantitative and qualitative measures such as item scores on a common final and attitude survey results between a flipped and a traditional Introductory Linear Algebra class taught by two individual instructors at a state university in California in Fall 2013. Students in the flipped class were asked to watch short video lectures made by the instructor and complete a short online quiz prior to each class attendance. The class time was completely devoted to problem solving in group settings where students were prompted to communicate their reasoning with proper mathematical terms and structured sentences verbally and in writing. Examination of the quality and depth of student responses from the common final exam showed that students in the flipped class produced more comprehensive and well-explained responses to the questions that required reasoning, creating examples, and more complex use of mathematical objects. Furthermore, students in the flipped class performed superiorly in the overall comprehension of the content with a 21% increase in the median final exam score. Overall, students felt more confident about their ability to learn mathematics independently, showed better retention of materials over time, and enjoyed the flipped experience.
Probing the Locality of Excited States with Linear Algebra.
Etienne, Thibaud
2015-04-14
This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
A generalized variational algebra and conserved densities for linear evolution equations
International Nuclear Information System (INIS)
Abellanas, L.; Galindo, A.
1978-01-01
The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)
Decomposition Theory in the Teaching of Elementary Linear Algebra.
London, R. R.; Rogosinski, H. P.
1990-01-01
Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)
Algebra 1r, Mathematics (Experimental): 5215.13.
Strachan, Florence
This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…
Developing ontological model of computational linear algebra - preliminary considerations
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.
2013-10-01
The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.
Minimal deformation of the commutative algebra and the linear group GL(n)
International Nuclear Information System (INIS)
Zupnik, B.M.
1993-01-01
We consider the relations of generalized commutativity in the algebra of formal series M q (x i ), which conserve a tensor I q -graduation and depend on parameters q(i,k). We choose the I q -invariant version of differential calculus on M q . A new construction of the symmetrized tensor product for M q -type algebras and the corresponding definition of minimally deformed linear group QGL(n) and Lie algebra qgl(n) are proposed. We study the connection of QGL(n) and qgl(n) with the special matrix algebra Mat(n, Q) containing matrices with noncommutative elements. A definition of the deformed determinant in the algebra Mat(n, Q) is given. The exponential parametrization in the algebra Mat(n, Q) is considered on the basis of Campbell-Hausdorf formula
Algebraic coarsening methods for linear and nonlinear PDE and systems
International Nuclear Information System (INIS)
McWilliams, J C
2000-01-01
In [l] Brandt describes a general approach for algebraic coarsening. Given fine-grid equations and a prescribed relaxation method, an approach is presented for defining both the coarse-grid variables and the coarse-grid equations corresponding to these variables. Although, these two tasks are not necessarily related (and, indeed, are often performed independently and with distinct techniques) in the approaches of [1] both revolve around the same underlying observation. To determine whether a given set of coarse-grid variables is appropriate it is suggested that one should employ compatible relaxation. This is a generalization of so-called F-relaxation (e.g., [2]). Suppose that the coarse-grid variables are defined as a subset of the fine-grid variables. Then, F-relaxation simply means relaxing only the F-variables (i.e., fine-grid variables that do not correspond to coarse-grid variables), while leaving the remaining fine-grid variables (C-variables) unchanged. The generalization of compatible relaxation is in allowing the coarse-grid variables to be defined differently, say as linear combinations of fine-grid variables, or even nondeterministically (see examples in [1]). For the present summary it suffices to consider the simple case. The central observation regarding the set of coarse-grid variables is the following [1]: Observation 1--A general measure for the quality of the set of coarse-grid variables is the convergence rate of compatible relaxation. The conclusion is that a necessary condition for efficient multigrid solution (e.g., with convergence rates independent of problem size) is that the compatible-relaxation convergence be bounded away from 1, independently of the number of variables. This is often a sufficient condition, provided that the coarse-grid equations are sufficiently accurate. Therefore, it is suggested in [1] that the convergence rate of compatible relaxation should be used as a criterion for choosing and evaluating the set of coarse
The algebra of non-local charges in non-linear sigma models
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.
1993-07-01
We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs
A Simple and Practical Linear Algebra Library Interface with Static Size Checking
Directory of Open Access Journals (Sweden)
Akinori Abe
2015-12-01
Full Text Available Linear algebra is a major field of numerical computation and is widely applied. Most linear algebra libraries (in most programming languages do not statically guarantee consistency of the dimensions of vectors and matrices, causing runtime errors. While advanced type systems—specifically, dependent types on natural numbers—can ensure consistency among the sizes of collections such as lists and arrays, such type systems generally require non-trivial changes to existing languages and application programs, or tricky type-level programming. We have developed a linear algebra library interface that verifies the consistency (with respect to dimensions of matrix operations by means of generative phantom types, implemented via fairly standard ML types and module system. To evaluate its usability, we ported to it a practical machine learning library from a traditional linear algebra library. We found that most of the changes required for the porting could be made mechanically, and changes that needed human thought are minor.
Efficient linear algebra routines for symmetric matrices stored in packed form.
Ahlrichs, Reinhart; Tsereteli, Kakha
2002-01-30
Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Directory of Open Access Journals (Sweden)
Sari Saraswati
2016-01-01
Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.
Moving beyond Solving for "x": Teaching Abstract Algebra in a Liberal Arts Mathematics Course
Cook, John Paul
2015-01-01
This paper details an inquiry-based approach for teaching the basic notions of rings and fields to liberal arts mathematics students. The task sequence seeks to encourage students to identify and comprehend core concepts of introductory abstract algebra by thinking like mathematicians; that is, by investigating an open-ended mathematical context,…
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
Bair, Sherry L.; Rich, Beverly S.
2011-01-01
This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…
A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics
Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.
2005-01-01
This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…
How does Complex Mathematical Theory Arise? Phylogenetic and Cultural Origins of Algebra
Cruz, Helen De
Algebra has emergent properties that are neither found in the cultural context in which mathematicians work, nor in the evolved cognitive abilities for mathematical thought that enable it. In this paper, I argue that an externalization of mathematical operations in a consistent symbolic notation system is a prerequisite for these emergent properties. In particular, externalism allows mathematicians to perform operations that would be impossible in the mind alone. By comparing the development of algebra in three distinct historical cultural settings - China, the medieval Islamic world and early modern Europe - I demonstrate that such an active externalism requires specific cultural conditions, including a metaphysical view of the world compatible with science, a notation system that enables the symbolic notation of operations, and the ontological viewpoint that mathematics is a human endeavour. I discuss how extending mathematical operations from the brain into the world gives algebra a degree of autonomy that is impossible to achieve were it performed in the mind alone.
Answers to selected problems in multivariable calculus with linear algebra and series
Trench, William F
1972-01-01
Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig
Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects
International Nuclear Information System (INIS)
Agullo, Emmanuel; Demmel, Jim; Dongarra, Jack; Hadri, Bilel; Kurzak, Jakub; Langou, Julien; Ltaief, Hatem; Luszczek, Piotr; Tomov, Stanimire
2009-01-01
The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA) are two projects that aims to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively. We present in this document a comparative study of PLASMA's performance against established linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.
Generalized Heisenberg algebra and (non linear) pseudo-bosons
Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.
2018-04-01
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
Finding the radical of an algebra of linear transformations
Cohen, A.M.; Ivanyos, G.; Wales, D.B.
1997-01-01
We present a method that reduces the problem of computing the radical of a matrix algebra over an arbitrary field to solving systems of semilinear equations. The complexity of the algorithm, measured in the number of arithmetic operations and the total number of the coefficients passed to an oracle
Non-linear realizations of superconformal and W-algebras as embeddings of strings
International Nuclear Information System (INIS)
Bellucci, S.
1998-01-01
We propose a simple method for constructing representations of (super)conformal and non-linear W-type algebras in terms of their subalgebras and corresponding Nambu-Goldstone fields. We apply it to N=2 and N=1 superconformal algebras and describe in this way various embeddings of strings and superstrings for which these algebras and their subalgebras define world-sheet symmetries. Besides reproducing the known examples, we present some new ones, in particular an embedding of the bosonic string with additional U(1) affine symmetry into N=2 superstring. We also apply our method to the non-linear W 3 (2) algebra and demonstrate that the linearization procedure worked out for it some time ago gets a natural interpretation as a kind of string embedding. All these embeddings include the critical ones as particular cases. (orig.)
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Algebra 2u, Mathematics (Experimental): 5216.26.
Crawford, Glenda
The sixth in a series of six guidebooks on minimum course content for second-year algebra, this booklet presents an introduction to sequences, series, permutation, combinations, and probability. Included are arithmetic and geometric progressions and problems solved by counting and factorials. Overall course goals are specified, a course outline is…
Groups, matrices, and vector spaces a group theoretic approach to linear algebra
Carrell, James B
2017-01-01
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.
The Hilbert polynomial and linear forms in the logarithms of algebraic numbers
International Nuclear Information System (INIS)
Aleksentsev, Yu M
2008-01-01
We prove a new estimate for homogeneous linear forms with integer coefficients in the logarithms of algebraic numbers. We obtain a qualitative improvement of the estimate depending on the coefficients of the linear form and the best value of the constant in the estimate in the case when the number of logarithms is not too large
International Nuclear Information System (INIS)
Man, Yiu-Kwong
2010-01-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Directory of Open Access Journals (Sweden)
Sari Saraswati
2016-01-01
Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra
Jeffrey, Alan
2010-01-01
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe...
A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)
Bradford, Russell; Davenport, James H.; Sangwin, Chris
2010-01-01
A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…
Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes
Ferguson, Terri Lynn Kurley
2014-01-01
This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…
Upper Primary School Teachers' Mathematical Knowledge for Teaching Functional Thinking in Algebra
Wilkie, Karina J.
2014-01-01
This article is based on a project that investigated teachers' knowledge in teaching an important aspect of algebra in the middle years of schooling--functions, relations and joint variation. As part of the project, 105 upper primary teachers were surveyed during their participation in Contemporary Teaching and Learning of Mathematics, a research…
To Math or Not to Math: The Algebra-Calculus Pipeline and Postsecondary Mathematics Remediation
Showalter, Daniel A.
2017-01-01
This article reports on a study designed to estimate the effect of high school coursetaking in the algebra-calculus pipeline on the likelihood of placing out of postsecondary remedial mathematics. A nonparametric variant of propensity score analysis was used on a nationally representative data set to remove selection bias and test for an effect…
THE METHODICAL ASPECTS OF THE ALGEBRA AND THE MATHEMATICAL ANALYSIS STUDY USING THE SAGEMATH CLOUD
Directory of Open Access Journals (Sweden)
M. Popel
2014-06-01
Full Text Available The quality of mathematics education depends largely on the quality of education in general. The main idea may be summarized as follows: in order to educate the younger generation of people to be able to meet adequately the demands of the time, it is necessary to create conditions for the high-quality mathematics education. Improving the quality of mathematics education of pupils in secondary school is one of the most pressing problems. Contents of the school course of mathematics and its teaching method has always been the subject of undammed and sometimes stormy scientific debates. There are especially true methods of teaching algebra and the analisis in the high secondary school. Still in the study process the algebraic concepts and principles of analysis are given in such an abstract and generalized form that the student may has considerable difficulties to map these general abstract concepts to the certain concrete images, they are generalizations of. Improving education quality indicators can be achieved by using the appropriate computer technology. The article deals with the use of the cloud-oriented systems of computer mathematics (SCM. The prospects of development of the Web-SCM in terms of cloud-based learning environment are considered. The pedagogical features of the SageMath Cloud use as a tool for mathematics learning are revealed. The methodological aspects of algebra and elementary analysis teaching in a high profile school using the cloud-oriented the SCM SageMath Cloud are revealed.
International Nuclear Information System (INIS)
Horodecki, Pawel
2003-01-01
Possibility of some nonlinear-like operations in quantum mechanics are studied. Some general formula for real linear maps are derived. With the results we show how to perform physically separability tests based on any linear contraction (on product states) that either is real or Hermitian. We also show how to estimate either product or linear combinations of quantum states without knowledge about the states themselves. This can be viewed as a sort of quantum computing on quantum states algebra
Student Learning and Perceptions in a Flipped Linear Algebra Course
Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.
2014-01-01
The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or "flips" the usual classroom paradigm, in…
A linear-algebraic tool for conditional independence inference
Czech Academy of Sciences Publication Activity Database
Tanaka, K.; Studený, Milan; Takemura, A.; Sei, T.
2015-01-01
Roč. 6, č. 2 (2015), s. 150-167 ISSN 1309-3452 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Conditional independence inference * Automated theorem proving Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2015/MTR/studeny-0450036.pdf
Soro, S.; Maarif, S.; Kurniawan, Y.; Raditya, A.
2018-01-01
The aim of this study is to find out the effect of Dienes AEM (Algebra Experience Materials) on the ability of understanding concept of algebra on the senior high school student in Indonesia. This research is an experimental research with subject of all high school students in Indonesia. The samples taken were high school students in three provinces namely DKI Jakarta Province, West Java Province and Banten Province. From each province was taken senior high school namely SMA N 9 Bekasi West Java, SMA N 94 Jakarta and SMA N 5 Tangerang, Banten. The number of samples in this study was 114 high school students of tenth grade as experimental class and 115 high school students of tenth grade as control class. Learning algebra concept is needed in learning mathematics, besides it is needed especially to educate students to be able to think logically, systematically, critically, analytically, creatively, and cooperation. Therefore in this research will be developed an effective algebra learning by using Dienes AEM. The result of this research is that there is a significant influence on the students’ concept comprehension ability taught by using Dienes AEM learning as an alternative to instill the concept of algebra compared to the students taught by conventional learning. Besides, the students’ learning motivation increases because students can construct the concept of algebra with props.
Causal structure and algebraic classification of non-dissipative linear optical media
International Nuclear Information System (INIS)
Schuller, Frederic P.; Witte, Christof; Wohlfarth, Mattias N.R.
2010-01-01
In crystal optics and quantum electrodynamics in gravitational vacua, the propagation of light is not described by a metric, but an area metric geometry. In this article, this prompts us to study conditions for linear electrodynamics on area metric manifolds to be well-posed. This includes an identification of the timelike future cones and their duals associated to an area metric geometry, and thus paves the ground for a discussion of the related local and global causal structures in standard fashion. In order to provide simple algebraic criteria for an area metric manifold to present a consistent spacetime structure, we develop a complete algebraic classification of area metric tensors up to general transformations of frame. This classification, valuable in its own right, is then employed to prove a theorem excluding the majority of algebraic classes of area metrics as viable spacetimes. Physically, these results classify and drastically restrict the viable constitutive tensors of non-dissipative linear optical media.
International Nuclear Information System (INIS)
Bina, B.; Guenaydin, M.
1997-01-01
We give a complete classification of the real forms of simple non-linear superconformal algebras (SCA) and quasi-superconformal algebras (QSCA) and present a unified realization of these algebras with simple symmetry groups. This classification is achieved by establishing a correspondence between simple non-linear QSCA's and SCA's and quaternionic and super-quaternionic symmetric spaces of simple Lie groups and Lie supergroups, respectively. The unified realization we present involves a dimension zero scalar field (dilaton), dimension-1 symmetry currents, and dimension-1/2 free bosons for QSCA's and dimension-1/2 free fermions for SCA's. The free bosons and fermions are associated with the quaternionic and super-quaternionic symmetric spaces of corresponding Lie groups and Lie supergroups, respectively. We conclude with a discussion of possible applications of our results. (orig.)
UCSMP Algebra. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
中沢, 喜昌
1989-01-01
We gave linear algebra lessons to the fifth grade students as an elective subject and analyzed that to what extent students understood the linear algebra, judging from the result of questionaires and tests. It showed that they are good at the problems accompanied by calculations such as inverse matrix, simultaneous linear equation, and proper value problem and that, on the contrary, it is difficult to understand the abstract notion like linear space and linear map.
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z
Beaver, Scott
2015-01-01
For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.
Using Technology to Facilitate Reasoning: Lifting the Fog from Linear Algebra
Berry, John S.; Lapp, Douglas A.; Nyman, Melvin A.
2008-01-01
This article discusses student difficulties in grasping concepts from linear algebra. Using an example from an interview with a student, we propose changes that might positively impact student understanding of concepts within a problem-solving context. In particular, we illustrate barriers to student understanding and suggest technological…
An Example of Inquiry in Linear Algebra: The Roles of Symbolizing and Brokering
Zandieh, Michelle; Wawro, Megan; Rasmussen, Chris
2017-01-01
In this paper we address practical questions such as: How do symbols appear and evolve in an inquiry-oriented classroom? How can an instructor connect students with traditional notation and vocabulary without undermining their sense of ownership of the material? We tender an example from linear algebra that highlights the roles of the instructor…
A Modified Approach to Team-Based Learning in Linear Algebra Courses
Nanes, Kalman M.
2014-01-01
This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically…
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables
Alesker, Semyon
2003-01-01
We recall known and establish new properties of the Dieudonn\\'e and Moore determinants of quaternionic matrices.Using these linear algebraic results we develop a basic theory of plurisubharmonic functions of quaternionic variables. Then we introduce and briefly discuss quaternionic Monge-Amp\\'ere equations.
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.
2011-01-01
This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests
Casasent, D.; Jackson, J.
1986-01-01
A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.
Transforming an Introductory Linear Algebra Course with a TI-92 Hand-Held Computer.
Quesada, Antonio R.
2003-01-01
Describes how the introduction of the TI-92 transformed a traditional first semester linear algebra course into a matrix-oriented course that emphasized conceptual understanding, relevant applications, and numerical issues. Indicates an increase in students' overall performance as they found the calculator very useful, believed it helped them…
Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack
2011-01-01
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine
International Nuclear Information System (INIS)
Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.
1984-09-01
The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Insights into the School Mathematics Tradition from Solving Linear Equations
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
Optlang: An algebraic modeling language for mathematical optimization
DEFF Research Database (Denmark)
Jensen, Kristian; Cardoso, Joao; Sonnenschein, Nikolaus
2016-01-01
Optlang is a Python package implementing a modeling language for solving mathematical optimization problems, i.e., maximizing or minimizing an objective function over a set of variables subject to a number of constraints. It provides a common native Python interface to a series of optimization...
Lectures on algebraic system theory: Linear systems over rings
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Průša, Vít; Řehoř, Martin; Tůma, Karel
2017-02-01
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions
International Nuclear Information System (INIS)
Albeverio, S; Khrennikov, A Yu; Shelkovich, V M
2005-01-01
We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed
Jupri, Al
2017-04-01
In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.
The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning
Syarifuddin, H.
2018-04-01
This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.
Exploring linear algebra labs and projects with Mathematica
Arangala, Crista
2014-01-01
Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...
A Type System for the Vectorial Aspect of the Linear-Algebraic Lambda-Calculus
Directory of Open Access Journals (Sweden)
Pablo Arrighi
2012-07-01
Full Text Available We describe a type system for the linear-algebraic lambda-calculus. The type system accounts for the part of the language emulating linear operators and vectors, i.e. it is able to statically describe the linear combinations of terms resulting from the reduction of programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We show that the resulting typed lambda-calculus is strongly normalizing and features a weak subject-reduction.
Tursucu, Süleyman; Spandaw, Jeroen; Flipse, Steven; de Vries, Marc J.
2017-01-01
Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers' beliefs about improving the transfer of algebraic skills from mathematics into physics. We interviewed 10 mathematics and 10 physics teachers using a…
On the economical solution method for a system of linear algebraic equations
Directory of Open Access Journals (Sweden)
Jan Awrejcewicz
2004-01-01
Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.
A Mathematics Software Database Update.
Cunningham, R. S.; Smith, David A.
1987-01-01
Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)
Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom
Caglayan, Günhan
2018-05-01
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.
Ghost field realizations of the spinor $W_{2,s}$ strings based on the linear W(1,2,s) algebras
Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This Provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W(2,s)(s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W(2,s) strings with these new realizations.
Ghost field realizations of the spinor W2,s strings based on the linear W1,2,s algebras
International Nuclear Information System (INIS)
Liu Yuxiao; Ren Jirong; Zhang Lijie
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W 2,s (s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W 2,s strings with these new realizations. (author)
Some Applications of Algebraic System Solving
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
Algebraic Properties of First Integrals for Scalar Linear Third-Order ODEs of Maximal Symmetry
Directory of Open Access Journals (Sweden)
K. S. Mahomed
2013-01-01
Full Text Available By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order ordinary differential equations (ODEs and their point symmetries. It is well known that there are three classes of linear third-order ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y′′′=0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals.
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Ardıç, Mehmet Alper; Işleyen, Tevfik
2018-01-01
In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.
Bates, Jason H T; Sobel, Burton E
2003-05-01
This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to
Directory of Open Access Journals (Sweden)
Neisy Rodríguez Morales
2014-03-01
Full Text Available The article shows the theoretical elements related with the conception of the curricular strategies and its instrumentation in the process of the student's of the Mathematical career formation - Physics. Examples are presented that demonstrate how to deal with the computer science's curricular strategy from the teaching process - learning of the subject Algebra I in the third year of the career. They give the possibility that the formation process be more effective, they facilitate the systematizing knowledge and abilities as well as the development of the integral general culture in the future professors of Mathematics - Physics.
On the linearization of nonlinear supersymmetry based on the commutator algebra
Energy Technology Data Exchange (ETDEWEB)
Tsuda, Motomu, E-mail: tsuda@sit.ac.jp
2017-01-10
We discuss a linearization procedure of nonlinear supersymmetry (NLSUSY) based on the closure of the commutator algebra for variations of functionals of Nambu–Goldstone fermions and their derivative terms under NLSUSY transformations in Volkov–Akulov NLSUSY theory. In the case of a set of bosonic and fermionic functionals, which leads to (massless) vector linear supermultiplets, we explicitly show that general linear SUSY transformations of basic components defined from those functionals are uniquely determined by examining the commutation relation in the NLSUSY theory.
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-02-01
Teacher is one of the key aspects of student's achievement. Teachers should master content material taught, how to teach it, and can interpret the students' thinking so that students easily understand the subject matter. This research was a qualitative research that aimed at describing profile of PCK's teachers in mathematics on limit algebraic functions in terms of the differences of teaching experience. Pedagogical Content Knowledge (PCK) and understanding of teachers is defined as involving the relationship between knowledge of teaching materials, how to transfer the subject matter, and the knowledge of students in mathematics on limit algebraic functions that the subject matter may be understood by students. The PCK components in this research were knowledge of subject matter, knowledge of pedagogy, and knowledge of students. Knowledge of pedagogy defines as knowledge and understanding of teachers about the planning and organization of the learning and teaching strategy of limit algebraic function. The subjects were two mathematics high school teachers who teach in class XI IPS. Data were collected through observation of learning during five meetings and interviews before and after the lesson continued with qualitative data analysis. Focus of this article was to describe novice teacher's knowledge of student in mathematics learning on limit algebraic function. Based on the results of the analysis of qualitative data the data concluded that novice teacher's knowledge of pedagogy in mathematics on limit algebraic function showed: 1) in teaching the definitions tend to identify prior knowledge of the student experience with the material to be studied, but not in the form of a problem, 2) in posing the questions tend to be monotonous non lead and dig, 3) in response to student questions preservice teachers do not take advantage of the characteristics or the potential of other students, 4) in addressing the problem of students, tend to use the drill approach and did
Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs
Charara, Ali; Keyes, David E.; Ltaief, Hatem
2017-01-01
Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.
Near-infrared reflectance analysis by Gauss-Jordan linear algebra
International Nuclear Information System (INIS)
Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.
1983-01-01
Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored
Linear-algebraic approach to electron-molecule collisions: General formulation
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.
1981-01-01
We present a linear-algebraic approach to electron-molecule collisions based on an integral equations form with either logarithmic or asymptotic boundary conditions. The introduction of exchange effects does not alter the basic form or order of the linear-algebraic equations for a local potential. In addition to the standard procedure of directly evaluating the exchange integrals by numerical quadrature, we also incorporate exchange effects through a separable-potential approximation. Efficient schemes are developed for reducing the number of points and channels that must be included. The method is applied at the static-exchange level to a number of molecular systems including H 2 , N 2 , LiH, and CO 2
Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs
Charara, Ali
2017-03-06
Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.
International Nuclear Information System (INIS)
Winicour, Jeffrey
2017-01-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed. (note)
GPU TECHNOLOGIES EMBODIED IN PARALLEL SOLVERS OF LINEAR ALGEBRAIC EQUATION SYSTEMS
Directory of Open Access Journals (Sweden)
Sidorov Alexander Vladimirovich
2012-10-01
Full Text Available The author reviews existing shareware solvers that are operated by graphical computer devices. The purpose of this review is to explore the opportunities and limitations of the above parallel solvers applicable for resolution of linear algebraic problems that arise at Research and Educational Centre of Computer Modeling at MSUCE, and Research and Engineering Centre STADYO. The author has explored new applications of the GPU in the PETSc suite and compared them with the results generated absent of the GPU. The research is performed within the CUSP library developed to resolve the problems of linear algebra through the application of GPU. The author has also reviewed the new MAGMA project which is analogous to LAPACK for the GPU.
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2017-02-01
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Multi-Threaded Dense Linear Algebra Libraries for Low-Power Asymmetric Multicore Processors
Catalán, Sandra; Herrero, José R.; Igual, Francisco D.; Rodríguez-Sánchez, Rafael; Quintana-Ortí, Enrique S.
2015-01-01
Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools for many scientific and engineering applications. While there exist high performance implementations of the BLAS (and LAPACK) functionality for many current multi-threaded architectures,the adaption of these libraries for asymmetric multicore processors (AMPs)is still pending. In this paper we address this challenge by developing an asymmetry-aware implementation of the BLAS, based on the...
Many-core graph analytics using accelerated sparse linear algebra routines
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Computer programs for the solution of systems of linear algebraic equations
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
Research Progress in Mathematical Analysis of Map Projection by Computer Algebra
Directory of Open Access Journals (Sweden)
BIAN Shaofeng
2017-10-01
Full Text Available Map projection is an important component of modern cartography, and involves many fussy mathematical analysis processes, such as the power series expansions of elliptical functions, differential of complex and implicit functions, elliptical integral and the operation of complex numbers. The derivation of these problems by hand not only consumes much time and energy but also makes mistake easily, and sometimes can not be realized at all because of the impossible complexity. The research achievements in mathematical analysis of map projection by computer algebra are systematically reviewed in five aspects, i.e., the symbolic expressions of forward and inverse solution of ellipsoidal latitudes, the direct transformations between map projections with different distortion properties, expressions of Gauss projection by complex function, mathematical analysis of oblique Mercator projection, polar chart projection with its transformation. Main problems that need to be further solved in this research field are analyzed. It will be helpful to promote the development of map projection.
Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan
2015-07-01
Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Hopf-algebraic renormalization of QED in the linear covariant gauge
Energy Technology Data Exchange (ETDEWEB)
Kißler, Henry, E-mail: kissler@physik.hu-berlin.de
2016-09-15
In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
Deshler, Jessica; Fuller, Edgar
2016-01-01
Approximately 30% of students entering West Virginia University (WVU) are not ready for college mathematics. The WVU Department of Mathematics has been tasked with remediating these students and has worked over the last decade to find the most efficient way to teach the Pre-College Algebra Workshop; the prerequisite course students must complete…
Tursucu, S.; Spandaw, J.G.; Flipse, S.M.; de Vries, M.J.
2017-01-01
Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers’ beliefs about improving the transfer of algebraic skills from mathematics into physics. We
Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation
Trujillo Arredondo, Mariana
2014-06-01
We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.
Directory of Open Access Journals (Sweden)
Márcia Cristina de Costa Trindade Cyrino
2011-12-01
Full Text Available We presented in this paper results of a research which aimed to investigate how the community of practice context of pre-service mathematics teacher education collaborates for learning on algebraic thinking by these future teachers. We analyzed, taking into account the Social Theory of Learning developed by Wenger (1998 as a theoretical frame, processes of negotiation of meanings present in participants' algebraic thinking in the development of tasks in one of the actions of the project "Mathematical Education of Teachers of Mathematics" inside the program "Universidade sem Fronteiras". This analysis allowed us to define some forms of member participation and explicit reification of algebraic thinking, due to some interactions in the processes of negotiation of meanings, which revealed changes in the identity of participants in become teachers of mathematics.
A novel algebraic procedure for solving non-linear evolution equations of higher order
International Nuclear Information System (INIS)
Huber, Alfred
2007-01-01
We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Fiber-wise linear Poisson structures related to W∗-algebras
Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta
2018-01-01
In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid.
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
International Nuclear Information System (INIS)
Ehsani, Amir
2015-01-01
Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper)
Algebraic and classical topology the mathematical works of J. H. c. whitehead
James, I M
1962-01-01
Algebraic and Classical Topology contains all the published mathematical work of J. H. C. Whitehead, written between 1952 and 1960.This volume is composed of 21 chapters, which represent two groups of papers. The first group, written between 1952 and 1957, is principally concerned with fiber spaces and the Spanier-Whitehead S-theory. In the second group, written between 1957 and 1960, Whitehead returns to classical topology after a long interval, and participates in the renewed assault on the problems which fascinated him most. This book will prove useful to mathematicians.
Mathematics of the 19th century mathematical logic, algebra, number theory, probability theory
Yushkevich, A
1992-01-01
This multi-authored effort, Mathematics of the nineteenth century (to be fol lowed by Mathematics of the twentieth century), is a sequel to the History of mathematics fram antiquity to the early nineteenth century, published in three 1 volumes from 1970 to 1972. For reasons explained below, our discussion of twentieth-century mathematics ends with the 1930s. Our general objectives are identical with those stated in the preface to the three-volume edition, i. e. , we consider the development of mathematics not simply as the process of perfecting concepts and techniques for studying real-world spatial forms and quantitative relationships but as a social process as weIl. Mathematical structures, once established, are capable of a certain degree of autonomous development. In the final analysis, however, such immanent mathematical evolution is conditioned by practical activity and is either self-directed or, as is most often the case, is determined by the needs of society. Proceeding from this premise, we intend...
Linear-algebraic approach to electronic excitation of atoms and molecules by electron impact
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.
1983-01-01
A linear-algebraic method, based on an integral equations formulation, is applied to the excitation of atoms and molecules by electron impact. Various schemes are devised for treating the one-electron terms that sometimes cause instabilities when directly incorporated into the solution matrix. These include introducing Lagrange undetermined multipliers and correlation terms. Good agreement between the method and other computational techniques is obtained for electron scattering for hydrogenic and Li-like atomic ions and for H 2 + in two- to five-state close-coupling calculations
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.
1984-01-01
The linear algebraic, separable potential approach is applied to the electronic excitation of atoms and molecules by electron impact. By representing the exchange and off-diagonal direct terms on a basis, the standard set of coupled inelastic equations is reduced to a set of elastic inhomogeneous equations. The procedure greatly simplifies the formulation by allowing a large portion of the problem to be handled by standard bound-state techniques and by greatly reducing the order of the scattering equations that must be solved. Application is made to the excitation of atomic hydrogen in the three-state close-coupling (1s, 2s, 2p) approximation. (author)
Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package
Directory of Open Access Journals (Sweden)
Douglas Bates
2013-01-01
Full Text Available The RcppEigen package provides access from R (R Core Team 2012a to the Eigen (Guennebaud, Jacob, and others 2012 C++ template library for numerical linear algebra. Rcpp (Eddelbuettel and François 2011, 2012 classes and specializations of the C++ templated functions as and wrap from Rcpp provide the "glue" for passing objects from R to C++ and back. Several introductory examples are presented. This is followed by an in-depth discussion of various available approaches for solving least-squares problems, including rank-revealing methods, concluding with an empirical run-time comparison. Last but not least, sparse matrix methods are discussed.
JTpack90: A parallel, object-based, Fortran 90 linear algebra package
Energy Technology Data Exchange (ETDEWEB)
Turner, J.A.; Kothe, D.B. [Los Alamos National Lab., NM (United States); Ferrell, R.C. [Cambridge Power Computing Associates, Ltd., Brookline, MA (United States)
1997-03-01
The authors have developed an object-based linear algebra package, currently with emphasis on sparse Krylov methods, driven primarily by needs of the Los Alamos National Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support for a number of sparse storage formats, methods, and preconditioners have been implemented, driven primarily by application needs. They describe the object-based Fortran 90 approach, which enhances maintainability, performance, and extensibility, the parallelization approach using a new portable gather/scatter library (PGSLib), current capabilities and future plans, and present preliminary performance results on a variety of platforms.
An Ada Linear-Algebra Software Package Modeled After HAL/S
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
"Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"
Casasent, David; Jackson, James
1986-03-01
A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
Downie, John D.; Goodman, Joseph W.
1989-10-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
The development of an algebraic multigrid algorithm for symmetric positive definite linear systems
Energy Technology Data Exchange (ETDEWEB)
Vanek, P.; Mandel, J.; Brezina, M. [Univ. of Colorado, Denver, CO (United States)
1996-12-31
An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.
The mathematical structure of the approximate linear response relation
International Nuclear Information System (INIS)
Yasuda, Muneki; Tanaka, Kazuyuki
2007-01-01
In this paper, we study the mathematical structures of the linear response relation based on Plefka's expansion and the cluster variation method in terms of the perturbation expansion, and we show how this linear response relation approximates the correlation functions of the specified system. Moreover, by comparing the perturbation expansions of the correlation functions estimated by the linear response relation based on these approximation methods with exact perturbative forms of the correlation functions, we are able to explain why the approximate techniques using the linear response relation work well
An excursion through elementary mathematics, volume iii discrete mathematics and polynomial algebra
Caminha Muniz Neto, Antonio
2018-01-01
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This third and last volume covers Counting, Generating Functions, Graph Theory, Number Theory, Complex Numbers, Polynomials, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Ol...
Clifford Algebras and Spinorial Representation of Linear Canonical Transformations in Quantum Theory
International Nuclear Information System (INIS)
Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.
2017-11-01
This work is a continuation of previous works that we have done concerning linear canonical transformations and a phase space representation of quantum theory. It is mainly focused on the description of an approach which permits to establish spinorial representation of linear canonical transformations. It begins with an introduction section in which the reason and context of the content are discussed. The introduction section is followed by a brief recall about Clifford algebra and spin group. The description of the approach is started with the presentation of an adequate parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operators space. The establishment of the spinorial representation is deduced using relation between special pseudo-orthogonal groups and spin groups. The cases of one dimension quantum mechanics and general multidimensional theory are both studied. The case of linear canonical transformation related to Minkowski space is particularly studied and it is shown that Lorentz transformation may be considered as particular case of linear canonical transformation. Some results from the spinorial representation are also exploited to define operators which may be used to establish equations for fields if one considers the possibility of envisaging a field theory which admits as main symmetry group the group constituted by linear canonical transformations.
Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs
Directory of Open Access Journals (Sweden)
Gene Frantz
2007-01-01
Full Text Available Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.
Bounds on achievable accuracy in analog optical linear-algebra processors
Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.
1990-07-01
Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the
Linear algebraic analyses of structures with one predominant type of anomalous scatterer
International Nuclear Information System (INIS)
Karle, J.
1989-01-01
Further studies have been made of the information content of the exact linear equations for analyzing anomalous dispersion data in one-wavelength experiments. The case of interest concerns structures containing atoms that essentially do not scatter anomalously and one type of anomalously scattering atoms. For this case, there are three alternative ways of writing the equations. The alternative sets of equations and the transformations for transforming one set into the other are given explicitly. Comparison calculations were made with different sets of equations. Isomorphous replacement information is readily introduced into the calculations and the advantage of doing so is clearly illustrated by the results. Another aspect of the potential of the exact linear algebraic theory is its application to multiple-wavelength experiments. Successful applications of the latter have been made by several collaborative groups of investigators. (orig.)
Study of the 'non-Abelian' current algebra of a non-linear σ-model
International Nuclear Information System (INIS)
Ghosh, Subir
2006-01-01
A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established
International Nuclear Information System (INIS)
Bohr, H.; Roy Chowdhury, A.
1984-10-01
The hidden symmetries in various integrable models are derived by applying a newly developed method that uses the Riemann-Hilbert transform in a Zsub(N)-reduction of the linearization systems. The method is extended to linearization systems with higher algebras and with supersymmetry. (author)
Directory of Open Access Journals (Sweden)
Maria Joita
2007-12-01
Full Text Available In this paper we characterize the order relation on the set of all nondegenerate completely n-positive linear maps between C*-algebras in terms of a self-dual Hilbert module induced by each completely n-positive linear map.
The History of Mathematics and Mathematical Education
Grattan-Guinness, I.
1977-01-01
Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)
International Nuclear Information System (INIS)
Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.
1994-01-01
The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)
Linear-algebraic bath transformation for simulating complex open quantum systems
International Nuclear Information System (INIS)
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Aspuru-Guzik, Alán; Yung, Man-Hong
2014-01-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics. (paper)
Ltaief, Hatem
2011-08-31
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.
An algebraic approach to linear-optical schemes for deterministic quantum computing
International Nuclear Information System (INIS)
Aniello, Paolo; Cagli, Ruben Coen
2005-01-01
Linear-optical passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U (N). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a cNOT gate and a Bell state generator/analyser
A Linear Algebra Framework for Static High Performance Fortran Code Distribution
Directory of Open Access Journals (Sweden)
Corinne Ancourt
1997-01-01
Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.
A comparison of iterative methods to solve complex valued linear algebraic systems
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Neytcheva, M.; Ahmad, B.
2013-01-01
Roč. 66, č. 4 (2013), s. 811-841 ISSN 1017-1398 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : linear systems * complex symmetric * real valued form * preconditioning Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2013 http://www.it.uu.se/research/publications/reports/2013-005/2013-005-nc.pdf
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.
Lie n-derivations on 7 -subspace lattice algebras
Indian Academy of Sciences (India)
all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...
A high-accuracy optical linear algebra processor for finite element applications
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Caglayan, Günhan
2018-01-01
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…
Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra
International Nuclear Information System (INIS)
Aoyama, Shogo
2014-01-01
The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra
High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices
Dunham, Benjamin Z.
This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable of propagating any order of mixed or univariate derivative through common linear algebra functions--most notably third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power series--without changing data-type or modifying code line by line; this allows differentiation across sequences of arbitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks are constructed with special sparsity structures, termed "stencils," each designed to be isomorphic to a particular multidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex function evaluations are finite in length and thus exactly track derivatives without approximation error. Although this use of the method in the "forward mode" is unique in its own right, it is also possible to apply it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N--i.e., O(1)--the N x N Hessian can be found in O(N) time, which is comparable to existing second-order adjoint methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive--e.g., a N x N x N rank-three tensor can be found in O(N2). Alternatively, a Hessian-vector product can be found in O(1) time, which may open up many matrix-based simulations to a range of existing optimization or surrogate modeling approaches. As a final corollary in parallel to the NMD-adjoint hybrid method, the existing complex-step differentiation (CD) technique is also shown to be capable of
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.
2012-01-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Dongarra, Jack
2012-11-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Investigating Integer Restrictions in Linear Programming
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Yuan-Shyi Peter Chiu; Chien-Hua Lee; Nong Pan; Singa Wang Chiu
2013-01-01
This study uses mathematical modeling along with an algebraic technique to resolve the production-distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We assume that a product is manufactured through an imperfect production process where all nonconforming items will be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will be delivered synchronously to m different retailers in ...
Saldarriaga Vargas, Clarita
When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.
Non-linear wave equations:Mathematical techniques
International Nuclear Information System (INIS)
1978-01-01
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es
High Productivity Programming of Dense Linear Algebra on Heterogeneous NUMA Architectures
Alomairy, Rabab M.
2013-07-01
High-end multicore systems with GPU-based accelerators are now ubiquitous in the hardware landscape. Besides dealing with the nontrivial heterogeneous environ- ment, end users should often take into consideration the underlying memory architec- ture to decrease the overhead of data motion, especially when running on non-uniform memory access (NUMA) platforms. We propose the OmpSs parallel programming model approach using its Nanos++ dynamic runtime system to solve the two challeng- ing problems aforementioned, through 1) an innovative NUMA node-aware scheduling policy to reduce data movement between NUMA nodes and 2) a nested parallelism feature to concurrently exploit the resources available from the GPU devices as well as the CPU host, without compromising the overall performance. Our approach fea- tures separation of concerns by abstracting the complexity of the hardware from the end users so that high productivity can be achieved. The Cholesky factorization is used as a benchmark representative of dense numerical linear algebra algorithms. Superior performance is also demonstrated on the symmetric matrix inversion based on Cholesky factorization, commonly used in co-variance computations in statistics. Performance on a NUMA system with Kepler-based GPUs exceeds that of existing implementations, while the OmpSs-enabled code remains very similar to its original sequential version.
The use of e-portfolio in a linear algebra course
Directory of Open Access Journals (Sweden)
María Isabel García-Planas
2016-03-01
Full Text Available The use of e-portfolio becomes more common learning and student assessment; and this is due to the need for teachers to enhance students’ autonomy. The use of e-portfolio helps students to reflect on their own learning process. Lectures to large groups should not be limited only to classes, but must foster active learning, and in this regard, the introduction of the e-portfolio is a good tool because it stimulates collaborative and cooperative work among students and in turn encourages feedback with the teacher. To apply active methodologies during 2014-15 has been introduced in the course of the preparation of Linear Algebra comprehensive e-portfolio. To prepare the work of the e-portfolio the teacher had to clearly define the objectives that must be achieved by the students, and has had to plan in an understandable manner the tasks that the students can work independently outside the classroom. For the realization of the e-portfolio have been used different platforms. Each third of the students worked with a different platform, through AteneaLabs that it has provided templates in order that each student make their own e-portfolio, as well as it provide all necessary manuals. The platforms used were: Mahara, Exabis, WordPress and Google Sites. Formative assessment of the e-portfolio has been made from different rubrics defined in in the course syllabus and known by students since the beginning of the course.
International Nuclear Information System (INIS)
Littlefield, R.J.; Maschhoff, K.J.
1991-04-01
Many linear algebra algorithms utilize an array of processors across which matrices are distributed. Given a particular matrix size and a maximum number of processors, what configuration of processors, i.e., what size and shape array, will execute the fastest? The answer to this question depends on tradeoffs between load balancing, communication startup and transfer costs, and computational overhead. In this paper we analyze in detail one algorithm: the blocked factored Jacobi method for solving dense eigensystems. A performance model is developed to predict execution time as a function of the processor array and matrix sizes, plus the basic computation and communication speeds of the underlying computer system. In experiments on a large hypercube (up to 512 processors), this model has been found to be highly accurate (mean error ∼ 2%) over a wide range of matrix sizes (10 x 10 through 200 x 200) and processor counts (1 to 512). The model reveals, and direct experiment confirms, that the tradeoffs mentioned above can be surprisingly complex and counterintuitive. We propose decision procedures based directly on the performance model to choose configurations for fastest execution. The model-based decision procedures are compared to a heuristic strategy and shown to be significantly better. 7 refs., 8 figs., 1 tab
A natural history of mathematics: George Peacock and the making of English algebra.
Lambert, Kevin
2013-06-01
In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.
Rancic, Milica
2016-01-01
This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused interna...
Adjamagbo Determinant and Serre conjecture for linear groups over Weyl algebras
Adjamagbo, Kossivi
2008-01-01
Thanks to the theory of determinants over an Ore domain, also called Adjamagbo determinant by the Russian school of non commutative algebra, we extend to any Weyl algebra over a field of characteristic zero Suslin theorem solving what Suslin himself called the $K_1$-analogue of the well-known Serre Conjecture and asserting that for any integer $n$ greater than 2, any $n$ by $n$ matrix with coefficients in any algebra of polynomials over a field and with determinant one is the product of eleme...
Troelstra, AS
1988-01-01
Studies in Logic and the Foundations of Mathematics, Volume 123: Constructivism in Mathematics: An Introduction, Vol. II focuses on various studies in mathematics and logic, including metric spaces, polynomial rings, and Heyting algebras.The publication first takes a look at the topology of metric spaces, algebra, and finite-type arithmetic and theories of operators. Discussions focus on intuitionistic finite-type arithmetic, theories of operators and classes, rings and modules, linear algebra, polynomial rings, fields and local rings, complete separable metric spaces, and located sets. The te
Yuliani, R. E.; Suryadi, D.; Dahlan, J. A.
2018-05-01
The objective of this research is to design an alleged teacher learning path or Hypotetical Learning Trajectory (HLT) to anticipate mathematics anxiety of students in learning algebra. HLT loads expected mathematics learning objectives, estimates the level of knowledge and understanding of the students, as well as the selection of mathematical activity in accordance with the learning competencies. This research uses educational design research method. The research steps consist of a preliminary design, experimental and retrospective analysis. Data were gathered from various sources, such as data is written during the research process of test results, documentation, sheet results of students' work, results of interviews, questionnaires, and video recordings. The subjects of the study were 10 junior high school students. Based on the research identified 2 students at the level of high anxiety, 7 people at medium anxiety level and 1 student at low anxiety level. High anxiety levels about 20%, was approximately 70% and approximately 10% lower. These results can be used as an evaluation and reflection for designing materials that can anticipate mathematics anxiety of students learning algebra concepts.
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
Measuring the Readability of Elementary Algebra Using the Cloze Technique.
Kulm, Gerald
The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…
Introduction to Matrix Algebra, Student's Text, Unit 23.
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers
Alajmi, Amal Hussain
2016-01-01
This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
An Introduction to Business Mathematics
Henk van Elst
2015-01-01
These lecture notes provide a self-contained introduction to the mathematical methods required in a Bachelor degree programme in Business, Economics, or Management. In particular, the topics covered comprise real-valued vector and matrix algebra, systems of linear algebraic equations, Leontief's stationary input-output matrix model, linear programming, elementary financial mathematics, as well as differential and integral calculus of real-valued functions of one real variable. A special focus...
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Abdelfattah, Ahmad
2015-01-15
High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The
Parker, Catherine Frieda
2010-01-01
A possible contributing factor to students' difficulty in learning advanced mathematics is the conflict between students' "natural" learning styles and the formal structure of mathematics, which is based on definitions, theorems, and proofs. Students' natural learning styles may be a function of their intuition and language skills. The purpose of…
Explicating Mathematical Thinking in Differential Equations Using a Computer Algebra System
Zeynivandnezhad, Fereshteh; Bates, Rachel
2018-01-01
The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance…
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
On the paper: Numerical radius preserving linear maps on Banach algebras
El Azhari , Mohammed
2017-01-01
International audience; We give an example of a unital commutative complex Banach algebra having a normalized state which is not a spectral state and admitting an extreme normalized state which is not multiplicative. This disproves two results by Golfarshchi and Khalilzadeh.
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Mathematical and Numerical Methods for Non-linear Beam Dynamics
International Nuclear Information System (INIS)
Herr, W
2014-01-01
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings
Castillo, Enrique; Jubete, Francisco 0
2011-01-01
ENRIQUE CASTILLO is a professor in the Department of Applied Mathematics and Computational Science at the University of Cantabria, Spain. During 25 years of research and teaching, he has published hundreds of papers as well as 18 books. ANGEL COBO is an associate professor in the Department of Applied Mathematics and Computational Science in the University of Cantabria. FRANCISCO JUBETE is a civil engineer and research assistant in the Department of Applied Mathematics and Computational Science at the University of Cantabria. ROSA EVA PRUNEDA is a research assistant in the Department of Appl
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
DuPree, Jared Bernard
2013-01-01
This study applies the constructs from effective instruction from the literature on teacher education to understand the impact of school district strategies on algebra outcomes for minority students. The purpose of this study was to examine the strategies utilized by superintendents and district personnel and the impact of these identified…
Directory of Open Access Journals (Sweden)
Kody M. Powell
2016-03-01
Full Text Available This work presents a methodology to represent logical decisions in differential algebraic equation simulation and constrained optimization problems using a set of continuous algebraic equations. The formulations may be used when state variables trigger a change in process dynamics, and introduces a pseudo-binary decision variable, which is continuous, but should only have valid solutions at values of either zero or one within a finite time horizon. This formulation enables dynamic optimization problems with logical disjunctions to be solved by simultaneous solution methods without using methods such as mixed integer programming. Several case studies are given to illustrate the value of this methodology including nonlinear model predictive control of a chemical reactor using a surge tank with overflow to buffer disturbances in feed flow rate. Although this work contains novel methodologies for solving dynamic algebraic equation (DAE constrained problems where the system may experience an abrupt change in dynamics that may otherwise require a conditional statement, there remain substantial limitations to this methodology, including a limited domain where problems may converge and the possibility for ill-conditioning. Although the problems presented use only continuous algebraic equations, the formulation has inherent non-smoothness. Hence, these problems must be solved with care and only in select circumstances, such as in simulation or situations when the solution is expected to be near the solver’s initial point.
Matrix algebra theory, computations and applications in statistics
Gentle, James E
2017-01-01
This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II
Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael
2008-01-01
Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Total Quality Management in the Classroom: Applications to University-Level Mathematics.
Williams, Frank
1995-01-01
Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
Student Performance and Attitudes in a Collaborative and Flipped Linear Algebra Course
Murphy, Julia; Chang, Jen-Mei; Suaray, Kagba
2016-01-01
Flipped learning is gaining traction in K-12 for enhancing students' problem-solving skills at an early age; however, there is relatively little large-scale research showing its effectiveness in promoting better learning outcomes in higher education, especially in mathematics classes. In this study, we examined the data compiled from both…
Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana
2015-01-01
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...
Directory of Open Access Journals (Sweden)
Salvador Lucas
2015-12-01
Full Text Available Recent developments in termination analysis for declarative programs emphasize the use of appropriate models for the logical theory representing the program at stake as a generic approach to prove termination of declarative programs. In this setting, Order-Sorted First-Order Logic provides a powerful framework to represent declarative programs. It also provides a target logic to obtain models for other logics via transformations. We investigate the automatic generation of numerical models for order-sorted first-order logics and its use in program analysis, in particular in termination analysis of declarative programs. We use convex domains to give domains to the different sorts of an order-sorted signature; we interpret the ranked symbols of sorted signatures by means of appropriately adapted convex matrix interpretations. Such numerical interpretations permit the use of existing algorithms and tools from linear algebra and arithmetic constraint solving to synthesize the models.
International Nuclear Information System (INIS)
Rahmouni, Adib N.
2004-01-01
In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
Directory of Open Access Journals (Sweden)
Ирина Викторовна Кузнецова
2012-12-01
Full Text Available The paper proposes the concept of learning activities in online communities for teaching algebraic structures of the future teachers of mathematics, including a set of theoretical and methodological positions, laws, principles, factors, and pedagogical conditions of its implementation. Work is executed with support of the Russian fund of basic researches under the initiative project № 11-07-00733 «The Hypertext information retrieval thesaurus» a science Meta language» (structure; mathematical, linguistic and program maintenance; sections linguistics, mathematics, economy».
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Solving applied mathematical problems with Matlab
Xue, Dingyu
2008-01-01
Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.
An introduction to the mathematics of biology with computer algebra models
Yeargers, Edward K; Herod, James V
1996-01-01
Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy...
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs, Phase I
National Aeronautics and Space Administration — We propose to develop novel FPGA-based algorithmic technology that will enable unprecedented computational power for the solution of large sparse linear equation...
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
Cahill, Kevin
2013-01-01
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.
Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics
Rosenzweig, Martin
2007-01-01
This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…
Cooperative Learning in the Advanced Algebra and Trigonometry Mathematics High School Classroom
Jozsa, Alison
2017-01-01
Over the past three decades, researchers have found cooperative learning to have positive effects on student achievement in various subject areas and levels in education. However, there are limited studies on the impact of cooperative learning on student achievement in the area of high school mathematics. This study examined the impact of…
Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle
2014-01-01
The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…
Directory of Open Access Journals (Sweden)
M. A.P. PURCARU
2017-12-01
Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.
The nature of the S-linear algebra: For an S-propagator
Strati, Francesco
2012-01-01
This paper is intended to analyse an S-linear algebra’s application so as to build an S-propagator's concept. In particular we shall study a semi -deterministic propagator via superposition (it is intended the Carfì ́s notion of superposition).
Mathematical modelling and linear stability analysis of laser fusion cutting
International Nuclear Information System (INIS)
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-01-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Mathematical modelling and linear stability analysis of laser fusion cutting
Energy Technology Data Exchange (ETDEWEB)
Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Catapano, Michael
2013-01-01
Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
Asymptotic aspect of derivations in Banach algebras
Directory of Open Access Journals (Sweden)
Jaiok Roh
2017-02-01
Full Text Available Abstract We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
The application of a linear algebra to the analysis of mutation rates.
Jones, M E; Thomas, S M; Clarke, K
1999-07-07
Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.
Directory of Open Access Journals (Sweden)
Teresa K. Dunleavy
2018-04-01
Full Text Available This article continues to challenge the robust myth that mathematical smartness is exemplified in individuals who consistently complete mathematics problems quickly and accurately. In so doing, I present a set of counterstories from three students in one ninth-grade Algebra 1 classroom. These students described transformative experiences in their perceptions of mathematical smartness. Analysis of interviews revealed four themes about their perceptions of mathematical smartness, including: (1 consistently and unapologetically affording time and space to value multiple solution strategies, (2 belief in mathematical justification and explanation as the goal for demonstrating mastery of mathematical content, (3 valuing mathematically valid ideas from all class members, and (4 valuing collaborative problem solving as a way to help group members, distribute mathematical knowledge and orient students toward learning with one another. I found that their interpretations of mathematical smartness are counter to the still-dominant myths around speed and accuracy. While the four themes that emerged have been previously studied in the frame of teacher practices, this research provides needed additional empirical evidence of students’ voices describing what mathematical smartness can and should look like.
Non-linear partial differential equations an algebraic view of generalized solutions
Rosinger, Elemer E
1990-01-01
A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen
International Nuclear Information System (INIS)
Ketov, S.V.
1996-01-01
The simplest free-field realizations of the exceptional non-linear (quadratically generated, or W-type) N=8 and N=7 superconformal algebras with Spin(7) and G 2 affine currents, respectively, are investigated. Both the N=8 and N=7 algebras are found to admit unitary and highest-weight irreducible representations in terms of a single free boson and free fermions in 8 of Spin(7) or 7 of G 2 , respectively, at level k=1 and the corresponding central charges c 8 =26/5 and c 7 =5. (orig.)
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Some mathematical problems in non-linear Physics
International Nuclear Information System (INIS)
1983-01-01
The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs
Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model
Directory of Open Access Journals (Sweden)
P. Rubino
2008-09-01
Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring
Current algebras and many-body physics
International Nuclear Information System (INIS)
Albertin, U.K.
1989-01-01
Several applications of current algebras in many body physics are examined. The first is the interacting Bose gas in three dimensions. Theories for phonons, vortices and rotons are all described within the current algebra formalism. Next the one dimensional electron gas is examined within the approximation of linear dispersion so that relativistic current algebra techniques may be used. The relation with Thirring strings and compactified boson models is examined, and points of enhanced symmetry in the compactified boson models are shown to lie on phase transition lines for the electron gas. Finally, mathematical aspects of the current algebra are studied. The theory of induced representations of the diffeomorphism group are used to describe the Aharanov-Bohm effect, the thermodynamics of the Bose gas, and the Bose gas in the presence of vortex filaments
Fuzzy commutative algebra and its application in mechanical engineering
International Nuclear Information System (INIS)
Han, J.; Song, H.
1996-01-01
Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering
Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.
Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S
2014-10-01
A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Payton, Spencer D.
2017-01-01
This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
6th World Conference on 21st Century Mathematics
Choudary, ADR; Waldschmidt, Michel
2015-01-01
Numerous well-presented and important papers from the conference are gathered in the proceedings for the purpose of pointing directions for useful future research in diverse areas of mathematics including algebraic geometry, analysis, commutative algebra, complex analysis, discrete mathematics, dynamical systems, number theory and topology. Several papers on computational and applied mathematics such as wavelet analysis, quantum mechanics, piecewise linear modeling, cosmological models of super symmetry, fluid dynamics, interpolation theory, optimization, ergodic theory and games theory are also presented.
International Nuclear Information System (INIS)
Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.
2003-01-01
The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Quandles an introduction to the algebra of knots
Elhamdadi, Mohamed
2015-01-01
From prehistory to the present, knots have been used for purposes both artistic and practical. The modern science of Knot Theory has ramifications for biochemistry and mathematical physics and is a rich source of research projects for undergraduate and graduate students and professionals alike. Quandles are essentially knots translated into algebra. This book provides an accessible introduction to quandle theory for readers with a background in linear algebra. Important concepts from topology and abstract algebra motivated by quandle theory are introduced along the way. With elementary self-co
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Algebras of holomorphic functions and control theory
Sasane, Amol
2009-01-01
This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Thompson, Russel L.
Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS
Directory of Open Access Journals (Sweden)
Volodymyr M. Mykhalevych
2013-11-01
Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Eck, Christof; Knabner, Peter
2017-01-01
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Directory of Open Access Journals (Sweden)
Tan Chan Sin
2015-01-01
Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
An introduction to mathematical cryptography
Hoffstein, Jeffrey; Silverman, Joseph H
2014-01-01
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cr...
Difficulties in Initial Algebra Learning in Indonesia
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-01-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
International Nuclear Information System (INIS)
Mihai, Maria; Popescu, I.V.
2002-01-01
In this paper we present a mathematical model that would describe the stability and instability conditions, respectively of the organs of human body assumed as a living cybernetic system with feedback. We tested the theoretical model on the following trace elements: Mn, Zn and As. The trace elements were determined from the nose-pharyngeal carcinoma. We utilise the linear approximation to describe the dependencies between the trace elements determined in the hair of the patient. We present the results graphically. (authors)
Mathematical models of flat linear induction motors used in mining drives
Energy Technology Data Exchange (ETDEWEB)
Tall, M
1984-01-01
Design parameters are calculated for electric flat linear induction motors, widely employed in the coal and ore mining industries in Poland. A mathematical model of this motor with a single-layer ferromagnetic secondary part is presented. A three-dimensional electromagnetic field analysis is carried out, taking relative magnetic permeability variation, discrete winding distribution, influence of armature grooving and pulsating field influence into account. A computer calculation algorithm is proposed for determining motor characteristics. 17 refs.
The naked spinor a rewrite of Clifford algebra
Morris, Dennis
2015-01-01
This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
Olver, Peter J; the American Mathematical Society on Lie Algebras, Cohomology and New Applications to Quantum Mechanics
1994-01-01
This volume is devoted to a range of important new ideas arising in the applications of Lie groups and Lie algebras to Schrödinger operators and associated quantum mechanical systems. In these applications, the group does not appear as a standard symmetry group, but rather as a "hidden" symmetry group whose representation theory can still be employed to analyze at least part of the spectrum of the operator. In light of the rapid developments in this subject, a Special Session was organized at the AMS meeting at Southwest Missouri State University in March 1992 in order to bring together, perhaps for the first time, mathematicians and physicists working in closely related areas. The contributions to this volume cover Lie group methods, Lie algebras and Lie algebra cohomology, representation theory, orthogonal polynomials, q-series, conformal field theory, quantum groups, scattering theory, classical invariant theory, and other topics. This volume, which contains a good balance of research and survey papers, p...
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
House, J. Daniel; Telese, James A.
2014-01-01
There is continuing interest in the identification of student and instructional factors associated with the mathematics achievement of students in Japan. The Trends in International Mathematics and Science Study (TIMSS) assessments have provided opportunities to examine factors associated with mathematics achievement. The purpose of this study was…
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
Representations of fundamental groups of algebraic varieties
Zuo, Kang
1999-01-01
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Mathematical methods for physical and analytical chemistry
Goodson, David Z
2011-01-01
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-03-14
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.
Haigh, John
2016-01-01
How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und...
Mathematical methods for physicists and engineers
Collins, Royal Eugene
2011-01-01
This practical, highly readable text provides physics and engineering students with the essential mathematical tools for thorough comprehension of their disciplines. Featuring all the necessary topics in applied mathematics in the form of programmed instruction, the text can be understood by advanced undergraduates and beginning graduate students without any assistance from the instructor. Topics include elementary vector calculus, matrix algebra, and linear vector operations; the many and varied methods of solving linear boundary value problems, including the more common special functions o