Herzog, Sereina A; Blaizot, Stéphanie; Hens, Niel
2017-12-18
Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.
Understanding Mathematics-A Review
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Understanding Mathematics – A Review. Shashidhar Jagadeeshan. Book Review Volume 6 Issue 5 May ... Author Affiliations. Shashidhar Jagadeeshan1. Centre for Learning, 469, 9th Cross, 1st Block, Jayanagar, Bangalore 560 011, India.
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Power systems engineering and mathematics
Knight, U G
1972-01-01
Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin
Mathematical methods in systems biology.
Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz
2016-12-01
The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.
Mathematical modelling of scour: A review
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2007-01-01
A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers....../piles and pipelines, respectively, the two benchmark cases, while the third section deals with the mathematical modelling of scour around other structures such as groins, breakwaters and sea walls. A section is also added to discuss potential future research areas. Over one hundred references are included...
General systems theory mathematical foundations
Mesarovic, Mihajlo D
1975-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Mathematical transforms and image compression: A review
Directory of Open Access Journals (Sweden)
Satish K. Singh
2010-07-01
Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.
A Multifaceted Mathematical Approach for Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.
System Design as a Creative Mathematical Activity
Wupper, Hanno; Mader, Angelika H.
1999-01-01
This paper contributes to the understanding of rational systems design and verification. We give evidence that the rôle of mathematics in development and verification is not limited to useful calculations: Ideally, designing is a creative mathematical activity, which comprises finding a theorem, if
Mathematical model comparing of the multi-level economics systems
Brykalov, S. M.; Kryanev, A. V.
2017-12-01
The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.
On the Nature and Role of Peer Review in Mathematics.
Andersen, Line Edslev
2017-01-01
For the past three decades, peer review practices have received much attention in the literature. But although this literature covers many research fields, only one previous systematic study has been devoted to the practice of peer review in mathematics, namely a study by Geist, Löwe, and Van Kerkhove from 2010. This lack of attention may be due to a view that peer review in mathematics is more reliable, and therefore less interesting as an object of study, than peer review in other fields. In fact, Geist, Löwe, and Van Kerkhove argue that peer review in mathematics is relatively reliable. At the same time, peer review in mathematics differs from peer review in most, if not all, other fields in that papers submitted to mathematical journals are usually only reviewed by a single referee. Furthermore, recent empirical studies indicate that the referees do not check the papers line by line. I argue that, in spite of this, mathematical practice in general and refereeing practices in particular are such that the common practice of mathematical journals of using just one referee is justified from the point of view of proof validity assessment. The argument is based on interviews I conducted with seven mathematicians.
Mathematical modeling of physiological systems: an essential tool for discovery.
Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J
2014-08-28
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.
A Review of New Mathematics Curriculum Materials.
Vanderlin, Carl J., Jr.
This manual outlines the nature of some of the major curriculum projects in mathematics and lists materials which are available from these projects. An introductory statement concerning the history and philosophy of each program is indicated. The curriculum projects reported on are: (1) Boston College Mathematics Institute, (2) Cambridge…
Mathematical models of information and stochastic systems
Kornreich, Philipp
2008-01-01
From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t
Review of Mathematics Interventions for Secondary Students with Learning Disabilities
Marita, Samantha; Hord, Casey
2017-01-01
Recent educational policy has raised the standards that all students, including students with disabilities, must meet in mathematics. To examine the strategies currently used to support students with learning disabilities, the authors reviewed literature from 2006 to 2014 on mathematics interventions for students with learning disabilities. The 12…
Eringen, A Cemal
2013-01-01
Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th
Fundamentals of modern mathematics a practical review
MacNeil, David B
2013-01-01
Students and others wishing to know more about the practical side of mathematics will find this volume a highly informative resource. Accessible explanations of important concepts feature worked examples and diagrams. 1963 edition.
Modeling life the mathematics of biological systems
Garfinkel, Alan; Guo, Yina
2017-01-01
From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...
Application of mathematical modeling in sustained release delivery systems.
Grassi, Mario; Grassi, Gabriele
2014-08-01
This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
ECONOMIC AND MATHEMATICAL MODELING INNOVATION SYSTEMS
Directory of Open Access Journals (Sweden)
D.V. Makarov
2014-06-01
Full Text Available The paper presents one of the mathematical tools for modeling innovation processes. With the help of Kondratieff long waves can define innovation cycles. However, complexity of the innovation system implies a qualitative description. The article describes the problems of this area of research.
The Mathematics of the Global Positioning System.
Nord, Gail D.; Jabon, David; Nord, John
1997-01-01
Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)
The Applied Mathematics for Power Systems (AMPS)
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.
A systemic perspective on cognition and mathematics
Forrest, Jeffrey Yi-Lin
2013-01-01
This book is devoted to the study of human thought, its systemic structure, and the historical development of mathematics both as a product of thought and as a fascinating case analysis. After demonstrating that systems research constitutes the second dimension of modern science, the monograph discusses the yoyo model, a recent ground-breaking development of systems research, which has brought forward revolutionary applications of systems research in various areas of the traditional disciplines, the first dimension of science. After the systemic structure of thought is factually revealed, math
Mathematical aspects of reacting and diffusing systems
Fife, Paul C
1979-01-01
Modeling and analyzing the dynamics of chemical mixtures by means of differ- tial equations is one of the prime concerns of chemical engineering theorists. These equations often take the form of systems of nonlinear parabolic partial d- ferential equations, or reaction-diffusion equations, when there is diffusion of chemical substances involved. A good overview of this endeavor can be had by re- ing the two volumes by R. Aris (1975), who himself was one of the main contributors to the theory. Enthusiasm for the models developed has been shared by parts of the mathematical community, and these models have, in fact, provided motivation for some beautiful mathematical results. There are analogies between chemical reactors and certain biological systems. One such analogy is rather obvious: a single living organism is a dynamic structure built of molecules and ions, many of which react and diffuse. Other analogies are less obvious; for example, the electric potential of a membrane can diffuse like a chemical, and ...
Some applications of mathematics in theoretical physics - A review
Energy Technology Data Exchange (ETDEWEB)
Bora, Kalpana [Physics Department, Gauhati University, Guwahati-781014, Assam (India)
2016-06-21
Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
Some applications of mathematics in theoretical physics - A review
Bora, Kalpana
2016-06-01
Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
Some applications of mathematics in theoretical physics - A review
International Nuclear Information System (INIS)
Bora, Kalpana
2016-01-01
Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
Literature Review of Applying Visual Method to Understand Mathematics
Directory of Open Access Journals (Sweden)
Yu Xiaojuan
2015-01-01
Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.
International Summer School on Mathematical Systems Theory and Economics
Szegö, G
1969-01-01
The International Summer School on Mathematical Systems Theory and Economics was held at the Villa Monastero in Varenna, Italy, from June 1 through June 12, 1967. The objective of this Summer School was to review the state of the art and the prospects for the application of the mathematical theory of systems to the study and the solution of economic problems. Particular emphasis was given to the use of the mathematical theory of control for the solution of problems in economics. It was felt that the publication of a volume collecting most of the lectures given at the school would show the current status of the application of these methods. The papers are organized into four sections arranged into two volumes: basic theories and optimal control of economic systems which appear in the first volume, and special mathematical problems and special applications which are contained in the second volume. Within each section the papers follow in alphabetical order by author. The seven papers on basic theories are a rat...
International Nuclear Information System (INIS)
Demazure, M.
1988-01-01
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr
Pedersen, Morten Gram
2018-03-01
Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.
Scaffolding and Dialogic Teaching in Mathematics Education: Introduction and Review
Bakker, Arthur; Smit, Jantien; Wegerif, Rupert
2015-01-01
This article has two purposes: firstly to introduce this special issue on scaffolding and dialogic teaching in mathematics education and secondly to review the recent literature on these topics as well as the articles in this special issue. First we define and characterise scaffolding and dialogic teaching and provide a brief historical overview…
Interactive Whiteboards in Mathematics Teaching: A Literature Review
Directory of Open Access Journals (Sweden)
Mauro De Vita
2014-01-01
Full Text Available An interactive whiteboard (IWB is a relatively new tool that provides interesting affordances in the classroom environment, such as multiple visualization and multimedia presentation and ability for movement and animation. These affordances make IWBs an innovative tool with high potential for mathematics instructional environments. IWBs can be used to focus on the development of specific mathematical concepts and to improve mathematical knowledge and understanding. The aim of this paper is to review the existing literature upon the use of interactive whiteboards (IWBs in mathematics classrooms. The reviewed studies offer a wide view of IWBs’ affordances, of the more interesting didactic practices, and of the difficulties of embedding this new technology in the classroom. The capabilities of IWBs to enhance the quality of interaction, and, consequently, to improve conceptual mathematical understanding are broadly recognized. Despite these capabilities, evidence from the studies points to a certain inertia on the part of many teachers to do anything else than use IWBs as large-scale visual blackboards or presentation tools. The emerging view of how to attempt to overcome these obstacles is that there is need for greater attention to the pedagogy associated with IWB use and, more specifically, to stimulate the design of new kinds of learning environments.
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Сontrol systems using mathematical models of technological objects ...
African Journals Online (AJOL)
Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
Mathematical Structure in Quantum Systems and applications
International Nuclear Information System (INIS)
Cavero-Pelaez, I.; Clemente-Gallardo, J.; Marmo, G.; Muñoz--Castañeda, J.M.
2013-01-01
This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.
Quantum systems, channels, information. A mathematical introduction
Energy Technology Data Exchange (ETDEWEB)
Holevo, Alexander S.
2012-07-01
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Mathematical Models and Methods for Living Systems
Chaplain, Mark; Pugliese, Andrea
2016-01-01
The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods. Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
Mathematics Education Research in South Africa 2007-2015: Review and Reflection
Adler, Jill; Alshwaikh, Jehad; Essack, Regina; Gcsamba, Lizeka
2017-01-01
This article reports a review of research in mathematics education in South Africa published in local and international journals in the period 2007-2015. The purpose of the review was to describe the landscape of mathematics education research in the country over the past (almost) decade. Findings indicate that the mathematics education research…
Sheu, Yun Robert; Feder, Elie; Balsim, Igor; Levin, Victor F; Bleicher, Andrew G; Branstetter, Barton F
2010-06-01
Peer review is an essential process for physicians because it facilitates improved quality of patient care and continuing physician learning and improvement. However, peer review often is not well received by radiologists who note that it is time intensive, is subjective, and lacks a demonstrable impact on patient care. Current advances in peer review include the RADPEER() system, with its standardization of discrepancies and incorporation of the peer-review process into the PACS itself. The purpose of this study was to build on RADPEER and similar systems by using a mathematical model to optimally select the types of cases to be reviewed, for each radiologist undergoing review, on the basis of the past frequency of interpretive error, the likelihood of morbidity from an error, the financial cost of an error, and the time required for the reviewing radiologist to interpret the study. The investigators compiled 612,890 preliminary radiology reports authored by residents and attending radiologists at a large tertiary care medical center from 1999 to 2004. Discrepancies between preliminary and final interpretations were classified by severity and validated by repeat review of major discrepancies. A mathematical model was then used to calculate, for each author of a preliminary report, the combined morbidity and financial costs of expected errors across 3 modalities (MRI, CT, and conventional radiography) and 4 departmental divisions (neuroradiology, abdominal imaging, musculoskeletal imaging, and thoracic imaging). A customized report was generated for each on-call radiologist that determined the category (modality and body part) with the highest total cost function. A universal total cost based on probability data from all radiologists was also compiled. The use of mathematical models to guide case selection could optimize the efficiency and effectiveness of physician time spent on peer review and produce more concrete and meaningful feedback to radiologists
Comparison of Intelligent Systems in Detecting a Child's Mathematical Gift
Pavlekovic, Margita; Zekic-Susac, Marijana; Djurdjevic, Ivana
2009-01-01
This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children's mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child's mathematical gift…
A review of mathematical models in economic environmental problems
DEFF Research Database (Denmark)
Nahorski, Z.; Ravn, H.F.
2000-01-01
The paper presents a review of mathematical models used,in economic analysis of environmental problems. This area of research combines macroeconomic models of growth, as dependent on capital, labour, resources, etc., with environmental models describing such phenomena like natural resources...... exhaustion or pollution accumulation and degradation. In simpler cases the models can be treated analytically and the utility function can be optimized using, e.g., such tools as the maximum principle. In more complicated cases calculation of the optimal environmental policies requires a computer solution....
The semantic system is involved in mathematical problem solving.
Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng
2018-02-01
Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.
Mathematical and information maintenance of biometric systems
Boriev, Z.; Sokolov, S.; Nyrkov, A.; Nekrasova, A.
2016-04-01
This article describes the different mathematical methods for processing biometric data. A brief overview of methods for personality recognition by means of a signature is conducted. Mathematical solutions of a dynamic authentication method are considered. Recommendations on use of certain mathematical methods, depending on specific tasks, are provided. Based on the conducted analysis of software and the choice made in favor of the wavelet analysis, a brief basis for its use in the course of software development for biometric personal identification is given for the purpose of its practical application.
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
A quest towards a mathematical theory of living systems
Bellomo, Nicola; Gibelli, Livio; Outada, Nisrine
2017-01-01
This monograph aims to lay the groundwork for the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. Drawing on twenty years of research in various scientific fields, it explores how mathematical kinetic theory and evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. The authors hope this will contribute to the development of new tools and strategies, if not a new mathematical theory. The first chapter discusses the main features of living systems and outlines a strategy for their modeling. The following chapters then explore some of the methods needed to potentially achieve this in practice. Chapter Two provides a brief introduction to the mathematical kinetic theory of classical particles, with special emphasis on the Boltzmann equation; the Enskog equation, mean field models, and Monte Carlo methods are also briefly covered. Chapter Three...
Engineering Review Information System
Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)
2015-01-01
A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.
A Literature Review: The Effect of Implementing Technology in a High School Mathematics Classroom
Murphy, Daniel
2016-01-01
This study is a literature review to investigate the effects of implementing technology into a high school mathematics classroom. Mathematics has a hierarchical structure in learning and it is essential that students get a firm understanding of mathematics early in education. Some students that miss beginning concepts may continue to struggle with…
A Review of Literature Published in 1973 on Mathematics Education in the Community Junior College.
Gimmestad, Beverly, Swadener, Marc
Twenty-eight reports, articles, and papers published in 1973 which concern mathematics education in the community junior college are reviewed. Much of this literature was found in "The Two-Year College Mathematics Journal,""The American Mathematical Monthly," or among Educational Resources Information Center (ERIC) reports. The references are…
Control and adaptation in telecommunication systems mathematical foundations
Popovskij, Vladimir; Titarenko, Larysa
2011-01-01
This book is devoted to mathematical foundations providing synthesis and analysis of control and adaptation algorithms targeting modern telecommunication systems (TCS). The most popular technologies and network management methods are discussed.
Summer School Mathematical Foundations of Complex Networked Information Systems
Fosson, Sophie; Ravazzi, Chiara
2015-01-01
Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.
A Mathematical Theory of System Information Flow
2016-06-27
i.i.d. is usually quite involved. There are numerous experiments , often using photons, to test Bell’s Inequality recorded in the literature, but the...classical setting. Peter focused on non-locality as an alternative theory and experiments using the CHSH inequality , and devised a statistical procedure...761 (2014). 7. BIERHORST, P., A new loophole in recent Bell test experiments , arXiv:1311.4488, (2014). 8. BIERHORST, P., A Mathematical Foundation
Systems Biology of Metabolism: Annual Review of Biochemistry
DEFF Research Database (Denmark)
Nielsen, Jens
2017-01-01
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are descr...
pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article
Perez Velazquez, Jose Luis
2005-12-01
Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.
Smith, Cathy
2014-01-01
In preparing this report I have considered evidence from over 60 documents that relate to raising girls’ participation in mathematics. These include published research papers and reports compiled by expert bodies that present an evidence base. Although research specifically addressing Further Mathematics A-level is rare, the last ten years have seen considerable efforts to synthesise and update knowledge from different research perspectives about the relationship between gender...
A Mathematical Model, Implementation and Study of a Swarm System
Varghese, Blesson; McKee, Gerard
2013-01-01
The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...
System for Automatic Generation of Examination Papers in Discrete Mathematics
Fridenfalk, Mikael
2013-01-01
A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…
Introduction to Mathematical Systems Theory: A Behavioral Approach
Polderman, Jan W.; Willems, J.C.
1998-01-01
This is a book about modelling, analysis, and control of linear time-invariant systems. The book uses what is called the behavioral approach towards mathematical modelling. Thus a system is viewed as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems
MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Olha Sushchenko
2017-07-01
Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
A review on mathematical methods of conventional and Islamic derivatives
Hisham, Azie Farhani Badrol; Jaffar, Maheran Mohd
2014-12-01
Despite the impressive growth of risk management tools in financial institutions, Islamic finance remains miles away behind the conventional institutions. Islamic finance products need to comply with the syariah law and prohibitions, therefore they can use fewer of the available risk management tools compared to conventional. Derivatives have proven to be the effective hedging technique and instrument that broadly being used in the conventional institutions to manage their risks. However, derivatives are not generally accepted as the legitimate products in Islamic finance and they remain controversial issues among the Islamic scholars. This paper reviews the evolution of derivatives such as forwards, futures and options and then explores the mathematical models that being used to solve derivatives such as random walk model, asset pricing model that follows Brownian motion and Black-Scholes model. Other than that, this paper also critically discuss the perspective of derivatives from Islamic point of view. In conclusion, this paper delivers the traditional Islamic products such as salam, urbun and istijrar that can be used to create building blocks of Islamic derivatives.
Mathematical Modeling of Constrained Hamiltonian Systems
Schaft, A.J. van der; Maschke, B.M.
1995-01-01
Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the
Physical and mathematical models of communication systems
International Nuclear Information System (INIS)
Verkhovskaya, E.P.; Yavorskij, V.V.
2006-01-01
The theoretical parties connecting resources of communication system with characteristics of channels are received. The model of such systems from positions quasi-classical thermodynamics is considered. (author)
Implicit Lagrangian equations and the mathematical modeling of physical systems
Moreau, Luc; van der Schaft, Arjan
2002-01-01
We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical
System for corrosion monitoring in pipeline applying fuzzy logic mathematics
Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.
2018-05-01
A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.
Coursework in Cognition by Mathematics Undergraduates: A Seven Year Review.
Nelson, David
2000-01-01
It has become increasingly possible for mathematics students to include a limited number of approved optional, non-traditional modules in their programs. Surveys coursework in four non-specialist modules over a seven-year period, and examines work in the area of mathematical cognition. (Contains 16 references.) (Author/ASK)
COMPUTER MATHEMATICS SYSTEMS IN STUDENTS’ LEARNING OF "INFORMATIСS"
Directory of Open Access Journals (Sweden)
Taras P. Kobylnyk
2014-04-01
Full Text Available The article describes the general characteristics of the most popular computer mathematics systems such as commercial (Maple, Mathematica, Matlab and open source (Scilab, Maxima, GRAN, Sage, as well as the conditions of use of these systems as means of fundamentalization of the educational process of bachelor of informatics. It is considered the role of CMS in bachelor of informatics training. It is identified the approaches of CMS pedagogical use while learning information and physics and mathematics disciplines. There are presented some tasks, in which we must carefully use the «responses» have been received using CMS. It is identified the promising directions of development of computer mathematics systems in high-tech environment.
Bovier, Anton
2006-06-01
Our mathematical understanding of the statistical mechanics of disordered systems is going through a period of stunning progress. This self-contained book is a graduate-level introduction for mathematicians and for physicists interested in the mathematical foundations of the field, and can be used as a textbook for a two-semester course on mathematical statistical mechanics. It assumes only basic knowledge of classical physics and, on the mathematics side, a good working knowledge of graduate-level probability theory. The book starts with a concise introduction to statistical mechanics, proceeds to disordered lattice spin systems, and concludes with a presentation of the latest developments in the mathematical understanding of mean-field spin glass models. In particular, recent progress towards a rigorous understanding of the replica symmetry-breaking solutions of the Sherrington-Kirkpatrick spin glass models, due to Guerra, Aizenman-Sims-Starr and Talagrand, is reviewed in some detail. Comprehensive introduction to an active and fascinating area of research Clear exposition that builds to the state of the art in the mathematics of spin glasses Written by a well-known and active researcher in the field
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Managing Your Mathematics Program: A Total System. A Guide to the U-SAIL Basic Mathematics System.
Hales, Carma M.; Jones, Maurine E.
The Utah System Approach to Individual Learning (U-SAIL) Mathematics System was developed to make it possible for teachers to provide excellence in arithmetic instruction. It is based on the premise that in order to teach arithmetic well, teachers must accurately assess, teach directly, provide students with focused practice, corrective feedback,…
Review on mathematical basis for thermal conduction equation
Energy Technology Data Exchange (ETDEWEB)
Park, D. G.; Kim, H. M
2007-10-15
In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.
Review on mathematical basis for thermal conduction equation
International Nuclear Information System (INIS)
Park, D. G.; Kim, H. M.
2007-10-01
In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation
Stultz, Sherry L.
2017-01-01
This review was conducted to evaluate the current body of scholarly research regarding the use of computer-assisted instruction (CAI) to teach mathematics to students with specific learning disability (SLD). For many years, computers are utilized for educational purposes. However, the effectiveness of CAI for teaching mathematics to this specific…
Mathematical Modeling Of Life-Support Systems
Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1994-01-01
Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.
Mathematical Systems Theory : from Behaviors to Nonlinear Control
Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien
2015-01-01
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...
Mathematical modeling and simulation of a thermal system
Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.
2016-12-01
The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.
Mathematical modelling of thermal storage systems for the food industry
Energy Technology Data Exchange (ETDEWEB)
Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos
1999-07-01
Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)
Anticipatory systems philosophical, mathematical and methodological foundations
Rosen, Robert
1985-01-01
The first detailed study of this most important class of systems which contain internal predictive models of themselves and/or of their environments and whose predictions are utilized for purposes of present control. This book develops the basic concept of a predictive model, and shows how it can be embedded into a system of feedforward control. Includes many examples and stresses analogies between wired-in anticipatory control and processes of learning and adaption, at both individual and social levels. Shows how the basic theory of such systems throws a new light both on analytic problems (u
Attitude Determination Error Analysis System (ADEAS) mathematical specifications document
Nicholson, Mark; Markley, F.; Seidewitz, E.
1988-01-01
The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.
A review of mathematical models for the formation of vascular networks
Scianna, M.; Bell, C.G.; Preziosi, L.
2013-01-01
process generally called lymphangiogenesis. A number of mathematical approaches have been used to analyze these phenomena. In this paper, we review the different types of models, with special emphasis on their ability to reproduce different biological
Mathematical Model for Direct Evaporative Space Cooling Systems ...
African Journals Online (AJOL)
This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...
Mathematical and computational modeling simulation of solar drying Systems
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
Protective relaying of power systems using mathematical morphology
Wu, QH; Ji, TY
2009-01-01
Discusses the development of novel protective relaying algorithms, using Mathematical Morphology (MM). This book introduces the fundamental principles of MM, and brings together the applications of MM to develop different protective relaying algorithms for the protection of a variety of power system components.
Control Engineering, System Theory and Mathematics: The Teacher's Challenge
Zenger, K.
2007-01-01
The principles, difficulties and challenges in control education are discussed and compared to the similar problems in the teaching of mathematics and systems science in general. The difficulties of today's students to appreciate the classical teaching of engineering disciplines, which are based on rigorous and scientifically sound grounds, are…
International Nuclear Information System (INIS)
Travis, C.C.
1978-10-01
This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil
Knapp, Michael S.
This review assembles what is known from studies and analyses of large-scale systemic reform initiatives aimed at mathematics and science education, especially those undertaken by state governments and the National Science Foundation. The review concentrates on qualitative investigations, which reveal whether and how these initiatives converge on…
Mathematical modeling of earth's dynamical systems a primer
Slingerland, Rudy
2011-01-01
Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...
Mathematical Model of the Jet Engine Fuel System
Directory of Open Access Journals (Sweden)
Klimko Marek
2015-01-01
Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.
Mathematical Model of the Jet Engine Fuel System
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Learning to teach secondary mathematics using an online learning system
Cavanagh, Michael; Mitchelmore, Michael
2011-12-01
We report the results of a classroom study of three secondary mathematics teachers who had no prior experience teaching with technology as they began to use an online mathematics learning system in their lessons. We gave the teachers only basic instruction on how to operate the system and then observed them intensively over four school terms as they taught using it. We documented changes in the teachers' Pedagogical Technology Knowledge and subsequently classified their various roles as technology bystanders, adopters, adaptors and innovators. Results show that all teachers made some progress toward using the system in more sophisticated ways, but the improvements were not uniform across the teachers. We suggest possible reasons to explain the variation and discuss some implications for teacher professional development.
A review of mathematical models for the formation of vascular networks
Scianna, M.
2013-09-01
Two major mechanisms are involved in the formation of blood vasculature: vasculogenesis and angiogenesis. The former term describes the formation of a capillary-like network from either a dispersed or a monolayered population of endothelial cells, reproducible also in vitro by specific experimental assays. The latter term describes the sprouting of new vessels from an existing capillary or post-capillary venule. Similar mechanisms are also involved in the formation of the lymphatic system through a process generally called lymphangiogenesis. A number of mathematical approaches have been used to analyze these phenomena. In this paper, we review the different types of models, with special emphasis on their ability to reproduce different biological systems and to predict measurable quantities which describe the overall processes. Finally, we highlight the advantages specific to each of the different modelling approaches. © 2013 Elsevier Ltd.
Flevares, Lucia M; Schiff, Jamie R
2014-01-01
In the past 25 years an identifiable interest in using children's literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children's mathematics learning and interest have been documented (Hong, 1996; O'Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children's understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children's literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children's books in mathematics activities and for teacher training.
A Mathematical Model of Marine Diesel Engine Speed Control System
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
Mathematical neuroscience: from neurons to circuits to systems.
Gutkin, Boris; Pinto, David; Ermentrout, Bard
2003-01-01
Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages of drug-induced visual hallucinations.
Bouck, Emily C.; Park, Jiyoon
2018-01-01
Manipulatives are considered a common tool for mathematics teaching and learning, for both students with and without disabilities. Yet, a systematic review of the current state of research regarding manipulatives for students with disabilities did not exist prior to this article. This manuscript presents a systematic review of the literature…
D. Shchedrolosev
2010-01-01
Fundamental mathematical background is an important part of training future engineers and programmers. The paper considers existing approaches to teaching the fundamentals of discrete mathematics specialist IT profile, a comparative analysis of modern textbooks on discrete mathematics for IT professionals was conducted
Directory of Open Access Journals (Sweden)
D. Shchedrolosev
2010-04-01
Full Text Available Fundamental mathematical background is an important part of training future engineers and programmers. The paper considers existing approaches to teaching the fundamentals of discrete mathematics specialist IT profile, a comparative analysis of modern textbooks on discrete mathematics for IT professionals was conducted
DEFF Research Database (Denmark)
Juul, Annegrete; Krasnik, Allan; Rudkjøbing, Andreas
The Health Systems in Transition (HiT) series provide detailed descriptions of health systems in the countries of the WHO European Region as well as some additional OECD countries. An individual health system review (HiT) examines the specific approach to the organization, financing and delivery...... of health services in a particular country and the role of the main actors in the health system. It describes the institutional framework, process, content, and implementation of health and health care policies. HiTs also look at reforms in progress or under development and make an assessment of the health...... system based on stated objectives and outcomes with respect to various dimensions (health status, equity, quality, efficiency, accountability)....
Klein, Cornel; Rumpe, Bernhard; Broy, Manfred
2014-01-01
In the SysLab project we develop a software engineering method based on a mathematical foundation. The SysLab system model serves as an abstract mathematical model for information systems and their components. It is used to formalize the semantics of all used description techniques such as object diagrams state automata sequence charts or data-flow diagrams. Based on the requirements for such a reference model, we define the system model including its different views and their relationships.
HOPE information system review
Suzuki, Yoshiaki; Nishiyama, Kenji; Ono, Shuuji; Fukuda, Kouin
1992-08-01
An overview of the review conducted on H-2 Orbiting Plane (HOPE) is presented. A prototype model was constructed by inputting various technical information proposed by related laboratories. Especially operation flow which enables understanding of correlation between various analysis items, judgement criteria, technical data, and interfaces with others was constructed. Technical information data base and retrieval systems were studied. A Macintosh personal computer was selected for information shaping because of its excellent function, performance, operability, and software completeness.
A mathematical model of radiation effect on the immunity system
International Nuclear Information System (INIS)
Smirnova, O.A.
1984-01-01
A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals
Popilski, Hen; Stepensky, David
2015-05-01
Solid tumors are characterized by complex morphology. Numerous factors relating to the composition of the cells and tumor stroma, vascularization and drainage of fluids affect the local microenvironment within a specific location inside the tumor. As a result, the intratumoral drug/drug delivery system (DDS) disposition following systemic or local administration is non-homogeneous and its complexity reflects the differences in the local microenvironment. Mathematical models can be used to analyze the intratumoral drug/DDS disposition and pharmacological effects and to assist in choice of optimal anticancer treatment strategies. The mathematical models that have been applied by different research groups to describe the intratumoral disposition of anticancer drugs/DDSs are summarized in this article. The properties of these models and of their suitability for prediction of the drug/DDS intratumoral disposition and pharmacological effects are reviewed. Currently available mathematical models appear to neglect some of the major factors that govern the drug/DDS intratumoral disposition, and apparently possess limited prediction capabilities. More sophisticated and detailed mathematical models and their extensive validation are needed for reliable prediction of different treatment scenarios and for optimization of drug treatment in the individual cancer patients.
Computational physics and applied mathematics capability review June 8-10, 2010
Energy Technology Data Exchange (ETDEWEB)
Lee, Stephen R [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution
Large quantum systems: a mathematical and numerical perspective
International Nuclear Information System (INIS)
Lewin, M.
2009-06-01
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
Pipeline system operability review
Energy Technology Data Exchange (ETDEWEB)
Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)
2005-07-01
Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)
Pipeline system operability review
Energy Technology Data Exchange (ETDEWEB)
Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)
2005-07-01
Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)
Mathematical Methods of System Analysis in Construction Materials
Garkina, Irina; Danilov, Alexander
2017-10-01
System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate
African Journals Online (AJOL)
MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.
Ukraine: health system review.
Lekhan, Valery; Rudiy, Volodymyr; Shevchenko, Maryna; Nitzan Kaluski, Dorit; Richardson, Erica
2015-03-01
This analysis of the Ukrainian health system reviews recent developments in organization and governance, health financing, health care provision, health reforms and health system performance. Since the country gained independence from the Soviet Union in 1991, successive governments have sought to overcome funding shortfalls and modernize the health care system to meet the needs of the population's health. However, no fundamental reform of the system has yet been implemented and consequently it has preserved the main features characteristic of the Semashko model; there is a particularly high proportion of total health expenditure paid out of pocket (42.3 % in 2012), and incentives within the system do not focus on quality or outcomes. The most recent health reform programme began in 2010 and sought to strengthen primary and emergency care, rationalize hospitals and change the model of health care financing from one based on inputs to one based on outputs. Fundamental issues that hampered reform efforts in the past re-emerged, but conflict and political instability have proved the greatest barriers to reform implementation and the programme was abandoned in 2014. More recently, the focus has been on more pressing humanitarian concerns arising from the conflict in the east of Ukraine. It is hoped that greater political, social and economic stability in the future will provide a better environment for the introduction of deep reforms to address shortcomings in the Ukrainian health system. World Health Organization 2015 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).
Mathematical Modeling and Dimension Reduction in Dynamical Systems
DEFF Research Database (Denmark)
Elmegård, Michael
. These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...... thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise...... the existence of isolas of subharmonic orbits. These were then verified in the practical experiment in the lab. The second problem that is addressed in the current thesis is a problem that has developed as a consequence of the increasing power of computers which has created the demand for analysis of ever more...
Mathematical model of one-man air revitalization system
1976-01-01
A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.
Azzopardi Muscat, Natasha; Calleja, Neville; Calleja, Antoinette; Cylus, Jonathan
2014-01-01
This analysis of the Maltese health system reviews the developments in its organization and governance, health financing, health-care provision, health reforms and health system performance. The health system in Malta consists of a public sector, which is free at the point of service and provides a comprehensive basket of health services for all its citizens, and a private sector, which accounts for a third of total health expenditure and provides the majority of primary care. Maltese citizens enjoy one of the highest life expectancies in Europe. Nevertheless, non-communicable diseases pose a major concern with obesity being increasingly prevalent among both adults and children. The health system faces important challenges including a steadily ageing population, which impacts the sustainability of public finances. Other supply constraints stem from financial and infrastructural limitations. Nonetheless, there exists a strong political commitment to ensure the provision of a healthcare system that is accessible, of high quality, safe and also sustainable. This calls for strategic investments to underpin a revision of existing processes whilst shifting the focus of care away from hospital into the community. World Health Organization 2014 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).
Directory of Open Access Journals (Sweden)
Kansuporn eSriyudthsak
2016-05-01
Full Text Available The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.
Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota
2016-01-01
The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.
The mathematical model of dynamic stabilization system for autonomous car
Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.
2018-02-01
Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.
Fischer, Roland
1992-01-01
Discusses the impact that the relationship between people and mathematics could have on the development of pure and applied mathematics. Argues for (1) a growing interest in philosophy, history and sociology of science; (2) new models in educational and psychological research; and (3) a growing awareness of the human factor in technology,…
BOOK REVIEW: Galileo's Muse: Renaissance Mathematics and the Arts
Peterson, Mark; Sterken, Christiaan
2013-12-01
Galileo's Muse is a book that focuses on the life and thought of Galileo Galilei. The Prologue consists of a first chapter on Galileo the humanist and deals with Galileo's influence on his student Vincenzo Viviani (who wrote a biography of Galileo). This introductory chapter is followed by a very nice chapter that describes the classical legacy: Pythagoreanism and Platonism, Euclid and Archimedes, and Plutarch and Ptolemy. The author explicates the distinction between Greek and Roman contributions to the classical legacy, an explanation that is crucial for understanding Galileo and Renaissance mathematics. The following eleven chapters of this book arranged in a kind of quadrivium, viz., Poetry, Painting, Music, Architecture present arguments to support the author's thesis that the driver for Galileo's genius was not Renaissance science as is generally accepted but Renaissance arts brought forth by poets, painters, musicians, and architects. These four sets of chapters describe the underlying mathematics in poetry, visual arts, music and architecture. Likewise, Peterson stresses the impact of the philosophical overtones present in geometry, but absent in algebra and its equations. Basically, the author writes about Galileo, while trying to ignore the Copernican controversy, which he sees as distracting attention from Galileo's scientific legacy. As such, his story deviates from the standard myth on Galileo. But the book also looks at other eminent characters, such as Galileo's father Vincenzo (who cultivated music and music theory), the painter Piero della Francesca (who featured elaborate perspectives in his work), Dante Alighieri (author of the Divina Commedia), Filippo Brunelleschi (who engineered the dome of the Basilica di Santa Maria del Fiore in Florence, Johannes Kepler (a strong supporter of Galileo's Copernicanism), etc. This book is very well documented: it offers, for each chapter, a wide selection of excellent biographical notes, and includes a fine
Chevreul, Karine; Berg Brigham, Karen; Durand-Zaleski, Isabelle; Hernandez-Quevedo, Cristina
2015-01-01
This analysis of the French health system reviews recent developments in organization and governance, health financing, health care provision, health reforms and health system performance. The French population has a good level of health, with the second highest life expectancy in the world for women. It has a high level of choice of providers, and a high level of satisfaction with the health system. However, unhealthy habits such as smoking and harmful alcohol consumption remain significant causes of avoidable mortality. Combined with the significant burden of chronic diseases, this has underscored the need for prevention and integration of services, although these have not historically been strengths of the French system. Although the French health care system is a social insurance system, it has historically had a stronger role for the state than other Bismarckian social insurance systems. Public financing of health care expenditure is among the highest in Europe and out-of-pocket spending among the lowest. Public insurance is compulsory and covers the resident population; it is financed by employee and employer contributions as well as increasingly through taxation. Complementary insurance plays a significant role in ensuring equity in access. Provision is mixed; providers of outpatient care are largely private, and hospital beds are predominantly public or private non-profit-making. Despite health outcomes being among the best in the European Union, social and geographical health inequities remain. Inequality in the distribution of health care professionals is a considerable barrier to equity. The rising cost of health care and the increasing demand for long-term care are also of concern. Reforms are ongoing to address these issues, while striving for equity in financial access; a long-term care reform including public coverage of long-term care is still pending. World Health Organization 2015 (acting as the host organization for, and secretariat of, the
Slovenia: Health System Review.
Albreht, Tit; Pribakovic Brinovec, Radivoje; Josar, Dusan; Poldrugovac, Mircha; Kostnapfel, Tatja; Zaletel, Metka; Panteli, Dimitra; Maresso, Anna
2016-06-01
This analysis of the Slovene health system reviews recent developments in organization and governance, health financing, health care provision, health reforms and health system performance. The health of the population has improved over the last few decades. While life expectancy for both men and women is similar to EU averages, morbidity and mortality data show persistent disparities between regions, and mortality from external causes is particularly high. Satisfaction with health care delivery is high, but recently waiting times for some outpatient specialist services have increased. Greater focus on preventive measures is also needed as well as better care coordination, particularly for those with chronic conditions. Despite having relatively high levels of co-payments for many services covered by the universal compulsory health insurance system, these expenses are counterbalanced by voluntary health insurance, which covers 95% of the population liable for co-payments. However, Slovenia is somewhat unique among social health insurance countries in that it relies almost exclusively on payroll contributions to fund its compulsory health insurance system. This makes health sector revenues very susceptible to economic and labour market fluctuations. A future challenge will be to diversify the resource base for health system funding and thus bolster sustainability in the longer term, while preserving service delivery and quality of care. Given changing demographics and morbidity patterns, further challenges include restructuring the funding and provision of long-term care and enhancing health system efficiency through reform of purchasing and provider-payment systems. World Health Organization 2016 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Switzerland: Health System Review.
De Pietro, Carlo; Camenzind, Paul; Sturny, Isabelle; Crivelli, Luca; Edwards-Garavoglia, Suzanne; Spranger, Anne; Wittenbecher, Friedrich; Quentin, Wilm
2015-01-01
This analysis of the Swiss health system reviews recent developments in organization and governance, health financing, health care provision, health reforms and health system performance. The Swiss health system is highly complex, combining aspects of managed competition and corporatism (the integration of interest groups in the policy process) in a decentralized regulatory framework shaped by the influences of direct democracy. The health system performs very well with regard to a broad range of indicators. Life expectancy in Switzerland (82.8 years) is the highest in Europe after Iceland, and healthy life expectancy is several years above the European Union (EU) average. Coverage is ensured through mandatory health insurance (MHI), with subsidies for people on low incomes. The system offers a high degree of choice and direct access to all levels of care with virtually no waiting times, though managed care type insurance plans that include gatekeeping restrictions are becoming increasingly important. Public satisfaction with the system is high and quality is generally viewed to be good or very good. Reforms since the year 2000 have improved the MHI system, changed the financing of hospitals, strengthened regulations in the area of pharmaceuticals and the control of epidemics, and harmonized regulation of human resources across the country. In addition, there has been a slow (and not always linear) process towards more centralization of national health policy-making. Nevertheless, a number of challenges remain. The costs of the health care system are well above the EU average, in particular in absolute terms but also as a percentage of gross domestic product (GDP) (11.5%). MHI premiums have increased more quickly than incomes since 2003. By European standards, the share of out-of-pocket payments is exceptionally high at 26% of total health expenditure (compared to the EU average of 16%). Low and middle-income households contribute a greater share of their income to
Women of Color in Mathematics, Science & Engineering: A Review of the Literature.
Clewell, Beatriz Chu; Anderson, Bernice
This review of the literature on women of color in mathematics, science, and engineering helps define the need for a national agenda for equity in these fields sponsored by the Educational Equity Policy Studies Program of the Center for Women Policy Studies, and for a comprehensive research program that examines barriers to the participation of…
Bloomberg, Jerome
Basic Mathematics Review (BMR) is a remedial non-credit course at Essex Community College (Maryland) being taught on an individualized basis. Following diagnostic testing and placement, instruction utilizes programmed materials, tutors, and self-tests. Evaluation of the new individualized BMR and comparison with the traditional remedial course…
Mathematical models for the definition of cell manufacturing layout. Literature review
Directory of Open Access Journals (Sweden)
Gustavo Andrés Romero Duque
2015-11-01
Full Text Available This review article discusses the approach to the layout problem of cell manufacturing (LCM in a descriptive form; considering at first the problem and its variations, then the elements of the mathematical models, subsequently presenting solution methods used; and finally some future perspectives about this topic are considered.
Wingard, Crystal Burroughs
2017-01-01
The present action research study describes an Interactive Mathematics Review Program (IMRP) developed by the participant-researcher to enable remedial algebra students to learn in a cooperative classroom with pedagogy that promoted collaboration and hands-on, active learning. Data are comprised of surveys, field notes, semi-structured interviews,…
Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review
De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol
2009-01-01
Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…
Problem-Based Learning in K-8 Mathematics and Science Education: A Literature Review
Merritt, Joi; Lee, Mi Yeon; Rillero, Peter; Kinach, Barbara M.
2017-01-01
This systematic literature review was conducted to explore the effectiveness of problem-based and project-based learning (PBL) implemented with students in early elementary to grade 8 (ages 3-14) in mathematics and science classrooms. Nine studies met the following inclusion criteria: (a) focus on PBL, (b) experimental study, (c) kindergarten to…
A Review of Mathematical Learning Disabilities in Children with Fragile X Syndrome
Murphy, Melissa M.
2009-01-01
The prevalence rate of mathematical learning disabilities (MLD) among children with fragile X syndrome who do not meet criteria for intellectual and developmental disabilities ([approximately equal to] 50% of female children) exceeds the rate reported in the general population. The purpose of this article is two-fold: (1) to review the findings on…
Modified Mathematical Model For Neutralization System In Stirred Tank Reactor
Directory of Open Access Journals (Sweden)
Ahmmed Saadi Ibrehem
2011-05-01
Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in
Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review
Directory of Open Access Journals (Sweden)
Timothy Myers
2017-10-01
Full Text Available Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.
MATHEMATICAL ANALYSIS OF DENTAL ARCH OF CHILDREN IN NORMAL OCCLUSION: A LITERATURE REVIEW
Directory of Open Access Journals (Sweden)
M. Abu-Hussein DDS, MScD, MSc, DPD
2012-03-01
Full Text Available AIM. This paper is an attempt to compare and analyze the various mathematical models for defining the dental arch curvature of children in normal occlusion based upon a review of available literature. Background. While various studies have touched upon ways to cure or prevent dental diseases and upon surgical ways for teeth reconstitution to correct teeth anomalies during childhood, a substantial literature also exists, attempting to mathematically define the dental arch of children in normal occlusion. This paper reviews these dental studies and compares them analytically. Method. The paper compares the different mathematical approaches, highlights the basic assumptions behind each model, underscores the relevancy and applicability of the same, and also lists applicable mathematical formulae. Results. Each model has been found applicable to specific research conditions, as a universal mathematical model for describing the human dental arch still eludes satisfactory definition. The models necessarily need to include the features of the dental arch, such as shape, spacing between teeth and symmetry or asymmetry, but they also need substantial improvement. Conclusions. While the paper shows that the existing models are inadequate in properly defining the human dental arch, it also acknowledges that future research based on modern imaging techniques and computeraided simulation could well succeed in deriving an allinclusive definition for the human dental curve till now eluding the experts.
Austria: health system review.
Hofmarcher, Maria M; Quentin, Wilm
2013-01-01
This analysis of the Austrian health system reviews recent developments in organization and governance, health financing, health-care provision, health reforms and health-system performance. The Austrian health system provides universal coverage for a wide range of benefits and high-quality care. Free choice of providers and unrestricted access to all care levels (general practitioners, specialist physicians and hospitals) are characteristic features of the system. Unsurprisingly, population satisfaction is well above EU average. Income-related inequality in health has increased since 2005, although it is still relatively low compared to other countries. The health-care system has been shaped by both the federal structure of the state and a tradition of delegating responsibilities to self-governing stakeholders. On the one hand, this enables decentralized planning and governance, adjusted to local norms and preferences. On the other hand, it also leads to fragmentation of responsibilities and frequently results in inadequate coordination. For this reason, efforts have been made for several years to achieve more joint planning, governance and financing of the health-care system at the federal and regional level. As in any health system, a number of challenges remain. The costs of the health-care system are well above the EU15 average, both in absolute terms and as a percentage of GDP. There are important structural imbalances in healthcare provision, with an oversized hospital sector and insufficient resources available for ambulatory care and preventive medicine. This is coupled with stark regional differences in utilization, both in curative services (hospital beds and specialist physicians) and preventative services such as preventive health check-ups, outpatient rehabilitation, psychosocial and psychotherapeutic care and nursing. There are clear social inequalities in the use of medical services, such as preventive health check-ups, immunization or dentistry
Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft
Directory of Open Access Journals (Sweden)
I. S. Shumilov
2016-01-01
Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of
Catastrophes in nature and society mathematical modeling of complex systems
Khlebopros, Rem G; Fet, Abram I
2007-01-01
Many people are concerned about crises leading to disasters in nature, in social and economic life. The book offers a popular account of the causative mechanisms of critical states and breakdown in a broad range of natural and cultural systems - which obey the same laws - and thus makes the reader aware of the origin of catastrophic events and the ways to avoid and mitigate their negative consequences. The authors apply a single mathematical approach to investigate the revolt of cancer cells that destroy living organisms and population outbreaks that upset natural ecosystems, the balance between biosphere and global climate interfered lately by industry, the driving mechanisms of market and related economic and social phenomena, as well as the electoral system the proper use of which is an arduous accomplishment of democracy.
Estonia: health system review.
Lai, Taavi; Habicht, Triin; Kahur, Kristiina; Reinap, Marge; Kiivet, Raul; van Ginneken, Ewout
2013-01-01
This analysis of the Estonian health system reviews recent developments in organization and governance, health financing, health-care provision, health reforms and health system performance. Without doubt, the main issue has been the 2008 financial crisis. Although Estonia has managed the downturn quite successfully and overall satisfaction with the system remains high, it is hard to predict the longer-term effects of the austerity package. The latter included some cuts in benefits and prices, increased cost sharing for certain services, extended waiting times, and a reduction in specialized care. In terms of health outcomes, important progress was made in life expectancy, which is nearing the European Union (EU) average, and infant mortality. Improvements are necessary in smoking and alcohol consumption, which are linked to the majority of avoidable diseases. Although the health behaviour of the population is improving, large disparities between groups exist and obesity rates, particularly among young people, are increasing. In health care, the burden of out-of-pocket payments is still distributed towards vulnerable groups. Furthermore, the number of hospitals, hospital beds and average length of stay has decreased to the EU average level, yet bed occupancy rates are still below EU averages and efficiency advances could be made. Going forwards, a number of pre-crisis challenges remain. These include ensuring sustainability of health care financing, guaranteeing a sufficient level of human resources, prioritizing patient-centred health care, integrating health and social care services, implementing intersectoral action to promote healthy behaviour, safeguarding access to health care for lower socioeconomic groups, and, lastly, improving evaluation and monitoring tools across the health system. World Health Organization 2013 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).
Energy Technology Data Exchange (ETDEWEB)
Rousse, Daniel; Dutil, Yvan; Ben Salah, Nizar; Lassue, Stephane
2010-09-15
Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. Phase change materials are attractive since they provide a high energy storage density at constant temperatures. Nevertheless, the incorporation of such materials in a particular application often calls for numerical analyses due to the non-linear nature of the problem. The review of the mathematical models will include selected results to enable one to start his/her research with an exhaustive overview of the subject. This overview also stresses the need to match experimental investigations with recent numerical analyses.
Improved methods for the mathematically controlled comparison of biochemical systems
Directory of Open Access Journals (Sweden)
Schwacke John H
2004-06-01
Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.
Specific learning disability in mathematics: a comprehensive review.
Soares, Neelkamal; Evans, Teresa; Patel, Dilip R
2018-01-01
Math skills are necessary for success in the childhood educational and future adult work environment. This article reviews the changing terminology for specific learning disabilities (SLD) in math and describes the emerging genetics and neuroimaging studies that relate to individuals with math disability (MD). It is important to maintain a developmental perspective on MD, as presentation changes with age, instruction, and the different models (educational and medical) of identification. Intervention requires a systematic approach to screening and remediation that has evolved with more evidence-based literature. Newer directions in behavioral, educational and novel interventions are described.
Statistical mechanics of lattice systems a concrete mathematical introduction
Friedli, Sacha
2017-01-01
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curie–Weiss and Ising models, the Gaussian free field, O(n) models, and models with Kać interactions. Using classical concepts such as Gibbs measures, pressure, free energy, and entropy, the book exposes the main features of the classical description of large systems in equilibrium, in particular the central problem of phase transitions. It treats such important topics as the Peierls argument, the Dobrushin uniqueness, Mermin–Wagner and Lee–Yang theorems, and develops from scratch such workhorses as correlation inequalities, the cluster expansion, Pirogov–Sinai Theory, and reflection positivity. Written as a self-contained course for advanced undergraduate or beginning graduate students, the detailed explanations, large collection of exercises (with solutions), and appendix of mathematical results and concepts also make i...
Mathematical model of bone drilling for virtual surgery system
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.
A REVIEW AND CONTENT ANALYSIS OF MATHEMATICS TEXTBOOKS IN EDUCATIONAL RESEARCH
Directory of Open Access Journals (Sweden)
Cheng Chieh Chang
2017-06-01
Full Text Available Research collected and reviewed a number of empirical studies in the field of educational research regarding the analysis of mathematics textbooks to provide summary and overview the information there in. The questions were identified via Google Scholar and collected from different data sources. A total of 44 papers published from 1953 to 2015 were selected based specific criteria, with 24 articles include in the SSCI database. Descriptive statistics were used to evaluate and interpret the results. A perspective on the learning analysis methods was used to collect studies and showed the mathematics textbooks analyzed were investigated under four themes: The analysis of standards, distributive property, language in mathematics, and others. School’s level which is investigated textbooks: Kindergarten, elementary, junior school, and senior school. Subjects covered in the mathematics textbooks included algebra and arithmetic, geometry, measurement, data analysis and probability, number and operations, among others. Research found the most frequently discussed in perspective on learning was the analysis of the standards and the distributive property (15 studies, the most common subject was number and operations (16 studies, and the highest number in school’s level was elementary school (18 studies. Nevertheless, fewer studies have been found to analyzing mathematics textbooks. Future research can pay attention for the relevant theoretical issues and collaborate studies in more perspective learning analysis.
Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang
2017-01-01
In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…
The Empathizing-Systemizing Theory, Social Abilities, and Mathematical Achievement in Children.
Escovar, Emily; Rosenberg-Lee, Miriam; Uddin, Lucina Q; Menon, Vinod
2016-03-14
The Empathizing-Systemizing (E-S) theory describes a profile of traits that have been linked to autism spectrum disorders, and are thought to encompass a continuum that includes typically developing (TD) individuals. Although systemizing is hypothesized to be related to mathematical abilities, empirical support for this relationship is lacking. We examine the link between empathizing and systemizing tendencies and mathematical achievement in 112 TD children (57 girls) to elucidate how socio-cognitive constructs influence early development of mathematical skills. Assessment of mathematical achievement included standardized tests designed to examine calculation skills and conceptual mathematical reasoning. Empathizing and systemizing were assessed using the Combined Empathy Quotient-Child (EQ-C) and Systemizing Quotient-Child (SQ-C). Contrary to our hypothesis, we found that mathematical achievement was not related to systemizing or the discrepancy between systemizing and empathizing. Surprisingly, children with higher empathy demonstrated lower calculation skills. Further analysis using the Social Responsiveness Scale (SRS) revealed that the relationship between EQ-C and mathematical achievement was mediated by social ability rather than autistic behaviors. Finally, social awareness was found to play a differential role in mediating the relationship between EQ-C and mathematical achievement in girls. These results identify empathy, and social skills more generally, as previously unknown predictors of mathematical achievement.
Игорь Николаевич Макарьев
2013-01-01
In this article the author dwells on the content and structure of the model of integration of system of distance learning to mathematics of senior pupils and traditional paradigm of education. This kind of integration is based on such principles as independence, individualization, flexibility, nonlinearity, openness. Specifics of the methodological support of distance mathematics learning are also analyzed. Particularly the author asserts that the system of distance mathematics learning can t...
Introduction to mathematical systems theory a behavioral approach
Polderman, Jan Willem
1998-01-01
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modem as well as the classical techniques of applied mathematics. This renewal of interest,both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The developmentof new courses is a natural consequenceof a high level of excite ment on the research frontier as newer techniques, such as numerical and symbolic computersystems,dynamicalsystems,and chaos, mix with and reinforce the tradi tional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbookssuitable for use in advancedundergraduate and begin ning graduate courses, and will complement the Applied Mathematical Seiences (AMS) series, which will focus on advanced tex...
An Evaluation of the Instructional System in Mathematics: 1977-1978.
Frechtling, Joy A.; And Others
The results of an evaluation of various aspects of the Instructional System in Mathematics (ISM) are presented. ISM is an objectives-based, computer-supported, management system which builds upon a previously developed mathematics curriculum. Questionnaires to school-based personnel and students, in-school observations, and interviews, were used…
Feriyanto
2018-01-01
This research aims to describe the ability of students’ mathematical proof in determining the validity of argument reviewed from gender differences. The subjects of this research were one male and one female student of the fifth semester of Mathematic Education study program. The subjects were selected based on the highest mathematics ability which was assesed from their previous assignments and tests. In addition, the communication ability of the subjects was also considered in order to facilitate the researcher in conducting interviews. Based on the result of the test with direct and indirect proof, it could be concluded that the subjects were able to: 1) mention all facts/premises and write about what should be shown (conclusion) in direct proof and write additional premise in indirect proof; 2) connect facts/premises to concepts which must be mastered; 3) use equivalent concept to manipulate and organize the proof; 4) use the concept of syllogism and tollens mode to obtain the desired conclusion; 5) construct mathematical evidence systematically, and logically; 6) complement the reason for each step appropriately. The difference was that the male subject wrote the final conclusion, while the female subject did not write the final conclusion on the proof.
Directory of Open Access Journals (Sweden)
Mehmet Polat Saka
2013-01-01
Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.
System principles, mathematical models and methods to ensure high reliability of safety systems
Zaslavskyi, V.
2017-04-01
Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.
Directory of Open Access Journals (Sweden)
Wenxin Niu
2014-01-01
Full Text Available Objectives. (1 To systematically review peak vertical ground reaction force (PvGRF during two-leg drop landing from specific drop height (DH, (2 to construct a mathematical model describing correlations between PvGRF and DH, and (3 to analyze the effects of some factors on the pooled PvGRF regardless of DH. Methods. A computerized bibliographical search was conducted to extract PvGRF data on a single foot when participants landed with both feet from various DHs. An innovative mathematical model was constructed to analyze effects of gender, landing type, shoes, ankle stabilizers, surface stiffness and sample frequency on PvGRF based on the pooled data. Results. Pooled PvGRF and DH data of 26 articles showed that the square root function fits their relationship well. An experimental validation was also done on the regression equation for the medicum frequency. The PvGRF was not significantly affected by surface stiffness, but was significantly higher in men than women, the platform than suspended landing, the barefoot than shod condition, and ankle stabilizer than control condition, and higher than lower frequencies. Conclusions. The PvGRF and root DH showed a linear relationship. The mathematical modeling method with systematic review is helpful to analyze the influence factors during landing movement without considering DH.
Choi, Kup-Sze; Chan, Tak-Yin
2015-03-01
To investigate the feasibility of using tablet device as user interface for students with upper extremity disabilities to input mathematics efficiently into computer. A touch-input system using tablet device as user interface was proposed to assist these students to write mathematics. User-switchable and context-specific keyboard layouts were designed to streamline the input process. The system could be integrated with conventional computer systems only with minor software setup. A two-week pre-post test study involving five participants was conducted to evaluate the performance of the system and collect user feedback. The mathematics input efficiency of the participants was found to improve during the experiment sessions. In particular, their performance in entering trigonometric expressions by using the touch-input system was significantly better than that by using conventional mathematics editing software with keyboard and mouse. The participants rated the touch-input system positively and were confident that they could operate at ease with more practice. The proposed touch-input system provides a convenient way for the students with hand impairment to write mathematics and has the potential to facilitate their mathematics learning. Implications for Rehabilitation Students with upper extremity disabilities often face barriers to learning mathematics which is largely based on handwriting. Conventional computer user interfaces are inefficient for them to input mathematics into computer. A touch-input system with context-specific and user-switchable keyboard layouts was designed to improve the efficiency of mathematics input. Experimental results and user feedback suggested that the system has the potential to facilitate mathematics learning for the students.
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
Piloting a Web-Based Homework System in Developmental Mathematics Classrooms
Dass, Wendi E.
2012-01-01
This Capstone project studied a pilot of the web-based homework system "Hawkes" in developmental mathematics classes at a mid-sized community college. The purpose of the study was to investigate how three instructors of developmental mathematics courses incorporated "Hawkes" in their classes, what obstacles they encountered,…
Erdemir, Mustafa; Ingeç, Sebnem Kandil
2016-01-01
The purpose of this study is to identify pre-service primary mathematics teachers' views regarding on Web-based Intelligent Tutoring Systems (WBITS) in relation to its usability and influence on teaching. A survey method was used. The study was conducted with 43 students attending the mathematics teaching program under the department of elementary…
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Bogoliubov, N.N. Jr.; Golenia, J.; Taneri, U.
2007-09-01
Introductive backgrounds of a new mathematical physics discipline - Quantum Mathematics - are discussed and analyzed both from historical and analytical points of view. The magic properties of the second quantization method, invented by V. Fock in 1934, are demonstrated, and an impressive application to the nonlinear dynamical systems theory is considered. (author)
A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics
Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.
2005-01-01
This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…
Belgium: Health system review.
Gerkens, Sophie; Merkur, Sherry
2010-01-01
The Health Systems in Transition (HiT) profiles are country-based reports that provide a detailed description of a health system and of policy initiatives in progress or under development. HiTs examine different approaches to the organization, financing and delivery of health services and the role of the main actors in health systems; describe the institutional framework, process, content and implementation of health and health care policies; and highlight challenges and areas that require more in-depth analysis. The Belgian population continues to enjoy good health and long life expectancy. This is partly due to good access to health services of high quality. Financing is based mostly on proportional social security contributions and progressive direct taxation. The compulsory health insurance is combined with a mostly private system of health care delivery, based on independent medical practice, free choice of physician and predominantly fee-for-service payment. This Belgian HiT profile (2010) presents the evolution of the health system since 2007, including detailed information on new policies. While no drastic reforms were undertaken during this period, policy-makers have pursued the goals of improving access to good quality of care while making the system sustainable. Reforms to increase the accessibility of the health system include measures to reduce the out-of-pocket payments of more vulnerable populations (low-income families and individuals as well as the chronically ill). Quality of care related reforms have included incentives to better integrate different levels of care and the establishment of information systems, among others. Additionally, several measures on pharmaceutical products have aimed to reduce costs for both the National Institute for Health and Disability Insurance (NIHDI) and patients, while maintaining the quality of care. World Health Organization 2010, on behalf of the European Observatory on health systems and Policies.
On the interplay between mathematics and biology: hallmarks toward a new systems biology.
Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali
2015-03-01
This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Caviola, Sara; Carey, Emma; Mammarella, Irene C; Szucs, Denes
2017-01-01
We review how stress induction, time pressure manipulations and math anxiety can interfere with or modulate selection of problem-solving strategies (henceforth "strategy selection") in arithmetical tasks. Nineteen relevant articles were identified, which contain references to strategy selection and time limit (or time manipulations), with some also discussing emotional aspects in mathematical outcomes. Few of these take cognitive processes such as working memory or executive functions into consideration. We conclude that due to the sparsity of available literature our questions can only be partially answered and currently there is not much evidence of clear associations. We identify major gaps in knowledge and raise a series of open questions to guide further research.
Sagan, Anna; Panteli, Dimitra; Borkowski, W; Dmowski, M; Domanski, F; Czyzewski, M; Gorynski, Pawel; Karpacka, Dorota; Kiersztyn, E; Kowalska, Iwona; Ksiezak, Malgorzata; Kuszewski, K; Lesniewska, A; Lipska, I; Maciag, R; Madowicz, Jaroslaw; Madra, Anna; Marek, M; Mokrzycka, A; Poznanski, Darius; Sobczak, Alicja; Sowada, Christoph; Swiderek, Maria; Terka, A; Trzeciak, Patrycja; Wiktorzak, Katarzyna; Wlodarczyk, Cezary; Wojtyniak, B; Wrzesniewska-Wal, Iwona; Zelwianska, Dobrawa; Busse, Reinhard
2011-01-01
Since the successful transition to a freely elected parliament and a market economy after 1989, Poland is now a stable democracy and is well represented within political and economic organizations in Europe and worldwide. The strongly centralized health system based on the Semashko model was replaced with a decentralized system of mandatory health insurance, complemented with financing from state and territorial self-government budgets. There is a clear separation of health care financing and provision: the National Health Fund (NFZ) the sole payer in the system is in charge of health care financing and contracts with public and non-public health care providers. The Ministry of Health is the key policy-maker and regulator in the system and is supported by a number of advisory bodies, some of them recently established. Health insurance contributions, borne entirely by employees, are collected by intermediary institutions and are pooled by the NFZ and distributed between the 16 regional NFZ branches. In 2009, Poland spent 7.4% of its gross domestic product (GDP) on health. Around 70% of health expenditure came from public sources and over 83.5% of this expenditure can be attributed to the (near) universal health insurance. The relatively high share of private expenditure is mostly represented by out-of-pocket (OOP) payments, mainly in the form of co-payments and informal payments. Voluntary health insurance (VHI) does not play an important role and is largely limited to medical subscription packages offered by employers. Compulsory health insurance covers 98% of the population and guarantees access to a broad range of health services. However, the limited financial resources of the NFZ mean that broad entitlements guaranteed on paper are not always available. Health care financing is overall at most proportional: while financing from health care contributions is proportional and budgetary subsidies to system funding are progressive, high OOP expenditures
EDUCATION AND NATIONAL SECURITY: SYSTEM DEFICIENCIES OF MATHEMATICAL EDUCATION IN RUSSIA AND THE USA
Directory of Open Access Journals (Sweden)
M. A. Choshanov
2013-01-01
Full Text Available The paper looks at the mathematical education in Russian schools regarded not long ago as fundamental and based on developing students' mental abilities. However, the analysis of the Trends in International Mathematics and Science Study (TIMSS 2011 demonstrates the non-consistent results in mathematical achievements of young Russians over the last fifteen years referring to the decreasing rate of successfully solved high level problems. The author disapproves of mechanical duplication of any foreign experience contradicting the Russian realities. Meanwhile, a lot of people in the USA and elsewhere abroad realize that national security is closely related to the human capital, which directly depends on education. The publication considers the limitations of mathematical education both in Russia and the USA from the national security stand point.The author gives the comparative analysis of the system errors in mathematical education of the USA, and singles out the ones to be avoided: the residual investment into the human capital, rising gap between the school mathematics and mathematical science, degrading fundamentality of mathematical education, test drills instead of in-depth training, non-consistency of school reorganization, reduced academic hours, etc. In the author’s opinion, the negative foreign experience should be considered in order to meet the time requirements and preserve a unique Russian brand of the high quality mathematical education.
Bulgaria health system review.
Dimova, Antoniya; Rohova, Maria; Moutafova, Emanuela; Atanasova, Elka; Koeva, Stefka; Panteli, Dimitra; van Ginneken, Ewout
2012-01-01
In the last 20 years, demographic development in Bulgaria has been characterized by population decline, a low crude birth rate, a low fertility rate, a high mortality rate and an ageing population. A stabilizing political situation since the early 2000s and an economic upsurge since the mid-2000s were important factors in the slight increase of the birth and fertility rates and the slight decrease in standardized death rates. In general, Bulgaria lags behind European Union (EU) averages in most mortality and morbidity indicators. Life expectancy at birth reached 73.3 years in 2008 with the main three causes of death being diseases of the circulatory system, malignant neoplasms and diseases of the respiratory system. One of the most important risk factors overall is smoking, and the average standardized death rate for smoking-related causes in 2008 was twice as high as the EU15 average. The Bulgarian health system is characterized by limited statism. The Ministry of Health is responsible for national health policy and the overall organization and functioning of the health system and coordinates with all ministries with relevance to public health. The key players in the insurance system are the insured individuals, the health care providers and the third party payers, comprising the National Health Insurance Fund, the single payer in the social health insurance (SHI) system, and voluntary health insurance companies (VHICs). Health financing consists of a publicprivate mix. Health care is financed from compulsory health insurance contributions, taxes, outofpocket (OOP) payments, voluntary health insurance (VHI) premiums, corporate payments, donations, and external funding. Total health expenditure (THE) as a share of gross domestic product (GDP) increased from 5.3% in 1995 to 7.3% in 2008. At the latter date it consisted of 36.5% OOP payments, 34.8% SHI, 13.6% Ministry of Health expenditure, 9.4% municipality expenditure and 0.3% VHI. Informal payments in the health
Economou, Charalambos
2010-01-01
The Health Systems in Transition (HiT) profiles are country-based reports that provide a detailed description of a health system and of policy initiatives in progress or under development. HiTs examine different approaches to the organization, financing and delivery of health services and the role of the main actors in health systems; describe the institutional framework, process, content and implementation of health and health care policies; and highlight challenges and areas that require more in-depth analysis. The health status of the Greek population has strongly improved over the last few decades and seems to compare relatively favourably with other OECD and European Union (EU) countries. The health system is a mixture of public integrated, public contract and public reimbursement models, comprising elements from both the public and private sectors and incorporating principles of different organizational patterns. Access to services is based on citizenship as well as on occupational status.The system is financed by the state budget, social insurance contributions and private payments.The largest share of health expenditure constitutes private expenditure, mainly in the form of out of pocket payments which is also the element contributing most to the overall increase in health expenditure. The delivery of health care services is based on both public and private providers. The presence of private providers is more obvious in primary care,especially in diagnostic technologies, private physicians' practices and pharmaceuticals. Despite success in improving the health of the population, the Greek health care system faces serious structural problems concerning the organization, financing and delivery of services. It suffers from the absence of cost-containment measures and defined criteria for funding, resulting in sickness funds experiencing economic constraints and budget deficits. The high percentage of private expenditure goes against the principle of fair
The graphics calculator in mathematics education: A critical review of recent research
Penglase, Marina; Arnold, Stephen
1996-04-01
The graphics calculator, sometimes referred to as the "super calculator," has sparked great interest among mathematics educators. Considered by many to be a tool which has the potential to revolutionise mathematics education, a significant amount of research has been conducted into its effectiveness as a tool for instruction and learning within precalculus and calculus courses, specifically in the study of functions, graphing and modelling. Some results suggest that these devices (a) can facilitate the learning of functions and graphing concepts and the development of spatial visualisation skills; (b) promote mathematical investigation and exploration; and (c) encourage a shift in emphasis from algebraic manipulation and proof to graphical investigation and examination of the relationship between graphical, algebraic and geometric representations. Other studies, however, indicate that there is still a need for manipulative techniques in the learning of function and graphing concepts, that the use of graphics calculators may not facilitate the learning of particular precalculus topics, and that some "de-skilling" may occur, especially among males. It is the contention of this paper, however, that much of the research in this new and important field fails to provide clear guidance or even to inform debate in adequate ways regarding the role of graphics calculators in mathematics teaching and learning. By failing to distinguish the role of the tool from that of the instructional process, many studies reviewed could be more appropriately classified as "program evaluations" rather than as research on the graphics calculator per se. Further, claims regarding the effectiveness of the graphics calculator as a tool for learning frequently fail to recognise that judgments of effectiveness result directly from existing assumptions regarding both assessment practice and student "achievement."
2016-02-09
Impact of Human Systems Community of Interest D O T M L P F $450M COI Budget Has Broad Impact in Several DOTMLPF Areas Decision Making Selection...and fit to a military career. • 26 personality dimensions such as optimism, excitement seeking, and non- delinquency • Applicant chooses from...Adaptive Collaborative Control Technologies ( IMPACT ) architecture designed • IMPACT “DoD Virtual Lab” established (Year 1) • 1 operator x 6 vehicles
Systemic mastocytosis - A systematic review
DEFF Research Database (Denmark)
Andersen, C.L.; Hasselbalch, H.C.; Kristensen, T.K.
2012-01-01
of the cell has been described and its fascinating biology has only recently been depicted. We here give a review of systemic mastocytosis in regards to cell biology, diagnostic approaches and clinical practice. METHODS: A search was made in PubMed in August 2011 entering the keywords: mastocytosis, (systemic...
Marchildon, Gregory
2013-01-01
Canada is a high-income country with a population of 33 million people. Its economic performance has been solid despite the recession that began in 2008. Life expectancy in Canada continues to rise and is high compared with most OECD countries; however, infant and maternal mortality rates tend to be worse than in countries such as Australia, France and Sweden. About 70% of total health expenditure comes from the general tax revenues of the federal, provincial and territorial governments. Most public revenues for health are used to provide universal medicare (medically necessary hospital and physician services that are free at the point of service for residents) and to subsidise the costs of outpatient prescription drugs and long-term care. Health care costs continue to grow at a faster rate than the economy and government revenue, largely driven by spending on prescription drugs. In the last five years, however, growth rates in pharmaceutical spending have been matched by hospital spending and overtaken by physician spending, mainly due to increased provider remuneration. The governance, organization and delivery of health services is highly decentralized, with the provinces and territories responsible for administering medicare and planning health services. In the last ten years there have been no major pan-Canadian health reform initiatives but individual provinces and territories have focused on reorganizing or fine tuning their regional health systems and improving the quality, timeliness and patient experience of primary, acute and chronic care. The medicare system has been effective in providing Canadians with financial protection against hospital and physician costs. However, the narrow scope of services covered under medicare has produced important gaps in coverage and equitable access may be a challenge in these areas. World Health Organization 2013 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and
15 CFR 752.14 - System reviews.
2010-01-01
...) Other reviews. BIS may require an SCL holder or consignee to submit to its office a list of all sales... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false System reviews. 752.14 Section 752.14... LICENSE § 752.14 System reviews. (a) Post-license system reviews. BIS may conduct system reviews of the...
Directory of Open Access Journals (Sweden)
Eroboghene H Otete
Full Text Available INTRODUCTION: Mathematical modelling of Clostridium difficile infection dynamics could contribute to the optimisation of strategies for its prevention and control. The objective of this systematic review was to summarise the available literature specifically identifying the quantitative parameters required for a compartmental mathematical model of Clostridium difficile transmission. METHODS: Six electronic healthcare databases were searched and all screening, data extraction and study quality assessments were undertaken in duplicate. Results were synthesised using a narrative approach. RESULTS: Fifty-four studies met the inclusion criteria. Reproduction numbers for hospital based epidemics were described in two studies with a range from 0.55 to 7. Two studies provided consistent data on incubation periods. For 62% of cases, symptoms occurred in less than 4 weeks (3-28 days after infection. Evidence on contact patterns was identified in four studies but with limited data reported for populating a mathematical model. Two studies, including one without clinically apparent donor-recipient pairs, provided information on serial intervals for household or ward contacts, showing transmission intervals of <1 week in ward based contacts compared to up to 2 months for household contacts. Eight studies reported recovery rates of between 75%-100% for patients who had been treated with either metronidazole or vancomycin. Forty-nine studies gave recurrence rates of between 3% and 49% but were limited by varying definitions of recurrence. No study was found which specifically reported force of infection or net reproduction numbers. CONCLUSIONS: There is currently scant literature overtly citing estimates of the parameters required to inform the quantitative modelling of Clostridium difficile transmission. Further high quality studies to investigate transmission parameters are required, including through review of published epidemiological studies where these
National Research Council Canada - National Science Library
Petkovska, Menka; Antov-Bozalo, Danijela; Nikacevic, Nikola
2006-01-01
The general objective of the project is fundamental mathematical modeling of a complex TSA system with electrothermal desorption step, with absorbers assembled of one or more cartridge-type, radial...
National Research Council Canada - National Science Library
Petkovska, Menka; Antov-Bozalo, Danijela; Markovic, Ana
2005-01-01
The general objective of the project is fundamental mathematical modeling of a complex TSA system with electrothermal desorption step, with adsorbers assembled of one or more activated carbon fiber clot (ACFC...
Setyaningrum, W.; Waryanto, N. H.
2018-03-01
This paper aimed to describe the development of interactive edutainment mathematics media using Construct 2 software for grade 7 Junior High School, and to determine the quality of the interactive edutainment media developed in regards to improve students’ understanding and interest. This research employs Research and Development design, which media was developed using ADDIE model consisting of analysing, designing, developing, implementing and evaluating. This paper focuses on the steps of development and validity of the interactive media from teachers’ point of view. The teachers review focuses on three aspects – instructional, audio-visual and operational design. The review suggested that the media was very good in regard to the three aspects, with the average score was 144.55 from the maximum score of 175. Several contexts used in the game, however, need to be adjusted to students age.
A review of mathematical modeling and simulation of controlled-release fertilizers.
Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N
2018-02-10
Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical implications of in silico mathematical modeling for glioblastoma: a critical review.
Protopapa, Maria; Zygogianni, Anna; Stamatakos, Georgios S; Antypas, Christos; Armpilia, Christina; Uzunoglu, Nikolaos K; Kouloulias, Vassilis
2018-01-01
Glioblastoma remains a clinical challenge in spite of years of extensive research. Novel approaches are needed in order to integrate the existing knowledge. This is the potential role of mathematical oncology. This paper reviews mathematical models on glioblastoma from the clinical doctor's point of view, with focus on 3D modeling approaches of radiation response of in vivo glioblastomas based on contemporary imaging techniques. As these models aim to provide a clinically useful tool in the era of personalized medicine, the integration of the latest advances in molecular and imaging science and in clinical practice by the in silico models is crucial for their clinical relevance. Our aim is to indicate areas of GBM research that have not yet been addressed by in silico models and to point out evidence that has come up from in silico experiments, which may be worth considering in the clinic. This review examines how close these models have come in predicting the outcome of treatment protocols and in shaping the future of radiotherapy treatments.
Progress in Industrial Mathematics at ECMI 96
DEFF Research Database (Denmark)
mathematicians get inspiration from industrial demands. The European Consortium for Mathematics in Industry aims to create contact between industry and academia, and to promote research in industrial mathematics. This book contains a broad spectrum of mathematics applied to industrial problems. Applied...... mathematics, case studies, and review papers in the following fields are included: Environmental modelling, railway systems, industrial processes, electronics, ships, oil industry, optimization, machine dynamics, fluids in industry. Applied mathematicians and other professionals working in academia...
Pepin, B.E.U.; Xu, B.; Trouche, L.; Wang, C.
2017-01-01
In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics “expert” teachers. Exploiting the Western and Eastern literature we examine the notion of
Croatia: health system review.
Džakula, Aleksandar; Sagan, Anna; Pavić, Nika; Lonćčarek, Karmen; Sekelj-Kauzlarić, Katarina
2014-01-01
Croatia is a small central European country on the Balkan peninsula, with a population of approximately 4.3 million and a gross domestic product (GDP) of 62% of the European Union (EU) average (expressed in purchasing power parity; PPP) in 2012. On 1 July 2013, Croatia became the 28th Member State of the EU. Life expectancy at birth has been increasing steadily in Croatia (with a small decline in the years following the 1991 to 1995 War of Independence) but is still lower than the EU average. Prevalence of overweight and obesity in the population has increased during recent years and trends in physical inactivity are alarming. The Croatian Health Insurance Fund (CHIF), established in 1993, is the sole insurer in the mandatory health insurance (MHI) system that provides universal health coverage to the whole population. The ownership of secondary health care facilities is distributed between the State and the counties. The financial position of public hospitals is weak and recent reforms were aimed at improving this. The introduction of concessions in 2009 (public private partnerships whereby county governments organize tenders for the provision of specific primary health care services) allowed the counties to play a more active role in the organization, coordination and management of primary health care; most primary care practices have been privatized. The proportion of GDP spent on health by the Croatian government remains relatively low compared to western Europe, as does the per capita health expenditure. Although the share of public expenditure as a proportion of total health expenditure (THE) has been decreasing, at around 82% it is still relatively high, even by European standards. The main source of the CHIFs revenue is compulsory health insurance contributions, accounting for 76% of the total revenues of the CHIF, although only about a third of the population (active workers) is liable to pay full health care contributions. Although the breadth and scope
MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM
E. V. Biloshytskyi
2018-01-01
Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical...
Mathematical modelling in radionuclide diagnosis of physiologic systems state
International Nuclear Information System (INIS)
Narkevich, B.Ya.
1981-01-01
It is shown that the development of software for radionuclide functional diagnostics should be carried out in two directions: 1) increasing the accuracy of radiographic measurements proper; 2) increasing clinical and diagnostic informativeness in the interpretation of the results of measurements. The realization of the first problem is reduced to a mathematical model of the measurement process and the computerized selection of optimum radiography parameters and regimes. The second problem is not solved in the general form, as the interpretation of measurement results depends on the specific clinical and diagnostic aim of investigation, indicator type and the way of its administration in the organism, etc. The lecture gives the classification of the mathematical models of indicator transport, techniques of identification of model parameters. Methods promoting the increase in the accuracy of model identification are presented [ru
Energy Technology Data Exchange (ETDEWEB)
Lee, Stephen R [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial
Systems pathology: a critical review.
Costa, Jose
2012-02-01
The technological advances of the last twenty years together with the dramatic increase in computational power have injected new life into systems-level thinking in Medicine. This review emphasizes the close relationship of Systems Pathology to Systems Biology and delineates the differences between Systems Pathology and Clinical Systems Pathology. It also suggests an algorithm to support the application of systems-level thinking to clinical research, proposes applying systems-level thinking to the health care systems and forecasts an acceleration of preventive medicine as a result of the coupling of personal genomics with systems pathology. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
E-commerce Review System to Detect False Reviews.
Kolhar, Manjur
2017-08-15
E-commerce sites have been doing profitable business since their induction in high-speed and secured networks. Moreover, they continue to influence consumers through various methods. One of the most effective methods is the e-commerce review rating system, in which consumers provide review ratings for the products used. However, almost all e-commerce review rating systems are unable to provide cumulative review ratings. Furthermore, review ratings are influenced by positive and negative malicious feedback ratings, collectively called false reviews. In this paper, we proposed an e-commerce review system framework developed using the cumulative sum method to detect and remove malicious review ratings.
Saba, M.; Quiñones-Bolaños, E. E.; Barbosa López, Aida Liliana
2018-05-01
Historic buildings and monuments are often composed of carbonate-based stone materials, susceptible to deterioration by the action of acidic substances on its main component, calcite (CaCO3). Today the levels of air pollution that attack heterogeneous structures with a mixture of different materials, usually of complex and articulated geometries, are the main responsible of the damage of calcareous stones. However the mechanisms of degradation of the stone and the factors that affect them cannot be simply specified, due to the sum coupled processes involving physical, chemical and biological changes, associated with capillarity and porosity, on the other hand the management of large number of samples and the cost of characterization analysis, modeling can contemplate a tool for the care and protection of real estate over time. Reason why this work shows a bibliographical review of the mathematical models that aim to describe how the deterioration of the surfaces of these structures varies over time, with particular attention to surface recession of stone, as a function of sets of variables that have been considered determinants in the different cases studied. It has been shown that in the last 30 years the models has had a revealing evolution due to the fact that the phenomenon has been gradually understood, putting in the background variables such as SO2 because of its reduction worldwide, and introducing variables such as HNO3 which has had, on the contrary, increasing values. In addition, it has been shown that linear polynomials, even if they lend themselves well to represent the phenomenon, in the last 10 years have been replaced by equations or systems of differential equations with one or more variables taken into account. Finally, it was revealed the lack of an inclusive model, capable of including all possible deterioration processes, and that time by time can be adapted to different case studies, in different parts of the world and with different
Energy Technology Data Exchange (ETDEWEB)
Shinkai, A [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Chikushi, Y [Nippon Telegraph and Telephone Corp., Tokyo (Japan)
1997-10-01
Mathematical structure of a vessel arrangement program was discussed in order to learn roles of container ships in ocean transport systems among China, NIES/ASEAN countries and Japan. Formulation is possible on a mathematical handling method for sailing route connection diagrams between ports, a transport network to indicate container movements, a service network to indicate sailing routes, and a network generalizing them. This paper describes an analysis made on the container transport system between Japan and China, taken as an example. Four ports were selected each from Japan and China, and the statistical database for fiscals 1996 and 1994 was utilized to set models for: (a) the liner network system with transshipment at the port of Shanghai and (b) the cruising route system going through the ports of Yokohama, Nagoya and Kobe. A hypothesis was set that a consortium (coordinated ship allocation) can be implemented ideally and completely. The transport network (a) is lower by 10% in total cost than the transport network (b), resulting in 1.6 times greater productivity. Actual service network is closer to the network (b), but the system can be utilized for discussing guidelines on vessel arrangement programs with which shipping companies pursue better management efficiency under a condition that the consortium can be formed. 10 refs., 6 figs., 2 tabs.
Chinese Number Words, Culture, and Mathematics Learning
Ng, Sharon Sui Ngan; Rao, Nirmala
2010-01-01
This review evaluates the role of language--specifically, the Chinese-based system of number words and the simplicity of Chinese mathematical terms--in explaining the relatively superior performance of Chinese and other East Asian students in cross-national studies of mathematics achievement. Relevant research is critically reviewed focusing on…
MacLean, Adam L.
2015-12-16
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
Systematising "System": One Reviewer's Analysis of the Review Process
Coniam, David
2011-01-01
This paper describes one reviewer's experience of reviewing for the journal "System" over an eight-year period, 2003-2011. The paper reports on the reviews produced by the single reviewer, which have been compiled into a specific purpose--an "occluded"--corpus (Swales, 1996) of 122 reviews, comprising 93,000 words. The paper first describes the…
Mathematical modeling of climate change and malaria transmission dynamics: a historical review.
Eikenberry, Steffen E; Gumel, Abba B
2018-04-24
Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease's geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the "million-murdering Death" of malaria.
Attitudes towards using mobile applications for teaching mathematics in open learning systems
Directory of Open Access Journals (Sweden)
Bahjat Hamid Altakhyneh
2018-05-01
Full Text Available This study investigated attitudes towards teaching mathematics via mobile learning in open learning systems. The sample of the study consisted of 57 male and female students enrolled in the mathematics course in the department of educational studies at the Arab Open University/ Jordan for the academic year 2016/2017. Results of the study showed that positive student attitudes toward using mobile applications reached 80%. Each of the following scores is ranked as ascending: mathematical thinking (75%, achievement motivation (76%, developing social and emotional skills (77%, and application technology (96%. There was no statistical significance difference (α ≤0.01 between the variable type of general secondary certificate (scientific / arts stream as well as the nature of employment in terms of whether the learner was either an employee or non-employee. In light of results of the study, the researcher recommends using mobile applications in teaching courses of mathematics in open learning systems.
A review of heat transfer in human tooth--experimental characterization and mathematical modeling.
Lin, Min; Xu, Feng; Lu, Tian Jian; Bai, Bo Feng
2010-06-01
With rapid advances in modern dentistry, high-energy output instruments (e.g., dental lasers and light polymerizing units) are increasingly employed in dental surgery for applications such as laser assisted tooth ablation, bleaching, hypersensitivity treatment and polymerization of dental restorative materials. Extreme high temperature occurs within the tooth during these treatments, which may induce tooth thermal pain (TTP) sensation. Despite the wide application of these dental treatments, the underlying mechanisms are far from clear. Therefore, there is an urgent need to better understand heat transfer (HT) process in tooth, thermally induced damage of tooth, and the corresponding TTP. This will enhance the design and optimization of clinical treatment strategies. This paper presents the state-of-the-art of the current understanding on HT in tooth, with both experimental study and mathematical modeling reviewed. Limitations of the current experimental and mathematical methodologies are discussed and potential solutions are suggested. Interpretation of TTP in terms of thermally stimulated dentinal fluid flow is also discussed. Copyright (c) 2010 Academy of Dental Materials. All rights reserved.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Mathematical model development for a new solar desalination system (SDS)
Energy Technology Data Exchange (ETDEWEB)
Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering
2007-07-01
Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.
Flevares, Lucia M.; Schiff, Jamie R.
2014-01-01
In the past 25 years an identifiable interest in using children’s literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children’s mathematics learning and interest have been documented (Hong, 1996; O’Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children’s understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children’s literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children’s books in mathematics activities and for teacher training. PMID:24904475
Directory of Open Access Journals (Sweden)
Lucia M. Flevares
2014-05-01
Full Text Available In the past 25 years an identifiable interest in using children’s literature in mathematics learning emerged (Clyne & Griffiths, 1991; Haury, 2001; Hellwig, Monroe, & Jacobs, 2000; Hong, 1996; Welchman-Tischler, 1992. We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children’s mathematics learning and interest have been documented (Hong, 1996; O’Neill, Pearce & Pick, 2004; Young-Loveridge, 2004. For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children’s understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (Skoumpourdi & Mpakopoulou, 2011; van den Heuvel-Panhuizen & Van den Boogaard, 2008 and shapes as gestalt wholes or prototypes (Clements et al., 1999; Hannibal, 1999; van Hiele, 1986. We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000, Schiro (1997, Hunsader (2004 and Van den Heuvel-Panhuizen and Elia (2012. Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Chard, Baker & Clarke, 2008; Clements & Sarama, 2000 which lead to misconceptions (Inan & Dogan-Temur, 2010; Oberdorf & Taylor-Cox, 1999. Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children’s literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children’s books in mathematics activities and for teacher training.
Directory of Open Access Journals (Sweden)
Sara Caviola
2017-09-01
Full Text Available We review how stress induction, time pressure manipulations and math anxiety can interfere with or modulate selection of problem-solving strategies (henceforth “strategy selection” in arithmetical tasks. Nineteen relevant articles were identified, which contain references to strategy selection and time limit (or time manipulations, with some also discussing emotional aspects in mathematical outcomes. Few of these take cognitive processes such as working memory or executive functions into consideration. We conclude that due to the sparsity of available literature our questions can only be partially answered and currently there is not much evidence of clear associations. We identify major gaps in knowledge and raise a series of open questions to guide further research.
Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems
Directory of Open Access Journals (Sweden)
Maik Streblau
2014-05-01
Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.
Tayurskii, Dmitrii; Abe, Sumiyoshi; Alexandre Wang, Q.
2012-11-01
The 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS2012) was held between 25-30 August at Kazan (Volga Region) Federal University, Kazan, Russian Federation. This workshop was jointly organized by Kazan Federal University and Institut Supérieur des Matériaux et Mécaniques Avancées (ISMANS), France. The series of SPMCS workshops was created in 2008 with the aim to be an interdisciplinary incubator for the worldwide exchange of innovative ideas and information about the latest results. The first workshop was held at ISMANS, Le Mans (France) in 2008, and the third at Huazhong Normal University, Wuhan (China) in 2010. At SPMCS2012, we wished to bring together a broad community of researchers from the different branches of the rapidly developing complexity science to discuss the fundamental theoretical challenges (geometry/topology, number theory, statistical physics, dynamical systems, etc) as well as experimental and applied aspects of many practical problems (condensed matter, disordered systems, financial markets, chemistry, biology, geoscience, etc). The program of SPMCS2012 was prepared based on three categories: (i) physical and mathematical studies (quantum mechanics, generalized nonequilibrium thermodynamics, nonlinear dynamics, condensed matter physics, nanoscience); (ii) natural complex systems (physical, geophysical, chemical and biological); (iii) social, economical, political agent systems and man-made complex systems. The conference attracted 64 participants from 10 countries. There were 10 invited lectures, 12 invited talks and 28 regular oral talks in the morning and afternoon sessions. The book of Abstracts is available from the conference website (http://www.ksu.ru/conf/spmcs2012/?id=3). A round table was also held, the topic of which was 'Recent and Anticipated Future Progress in Science of Complexity', discussing a variety of questions and opinions important for the understanding of the concept of
Directory of Open Access Journals (Sweden)
Zaid García Sánchez
2011-05-01
Full Text Available En Cuba desde la década del 70 se empezaron a desarrollar algoritmos para realizar el estudio de los regímenes estacionarios y transitorios del Sistema Eléctrico Nacional (SEN. Particular énfasis se hizo sobre el desarrollo de algoritmos y programas para computadoras para realizar el estudio de la estabilidad transitoria. Actualmente se utiliza ampliamente el programa Power System Explorer (PSX, el que posee amplias facilidades para realizar estudios sobre regímenes estaciones y transitorios de los sistemas eléctricos de potencia. A través de los estudios realizados para la planificación y la experiencia alcanzada sobre la explotación del SEN, con su estructura actual, se ha revelado la necesidad de estudiar en detalles los problemas relacionados con el voltaje, en particular el problema de la estabilidad del voltaje del SEN. En este artículo se realiza una primera revisión sobre algunos de los métodos matemáticos estáticos y dinámicos que se han desarrollado y que recoge la bibliografía sobre el tema de la Estabilidad del Voltaje en los Sistemas Eléctricos de Potencia. In Cuba, from the seventies of the past century, different algorithms to study stationary and transient regimes of the Cuban Electric System were developed. Those algorithms and computer programs were focused in the study of transient stability. Currently, we use widely the computer program “Power System Explorer” (PSX which have a lot of facilities to make studies about stationary and transient regimes of electric power systems. Due to the studies about planning of electric power systems and the accumulated experience working with Cuban Electric System, the need of study the problems related with voltage stability of Cuban Electric System has arisen. In this paper, we make a first review about some static and dynamic mathematical methods included in bibliography about voltage stability of electric power systems.
The mathematical description of resonances in many-body systems
International Nuclear Information System (INIS)
Orth, A.
1985-01-01
We introduce a characterization for quantum-mechanical resonance and use it in order to detect for certain distinct physical states an especially slow decay behaviour. We apply these results to a model of the quantum-mechanical many-body problem and obtain so a mathematical description of the Auger effect (self-ionization of atoms). The class of the interaction potentials admitted for our theory is compared with other theories on resonances extremely large. We establish differentiability conditions and conditions on the fading behaviour in the infinite. Especially the Coulomb potential and the Yukawa potential belong to our class but also non-spherical-symmetric and non-analytic potentials with a Coulomb-like singularity in the origin, two- to threefold differentiable which tend to zero at the infinite. In the introduction we discuss extensively also by means of some examples the problematics of the quantum-mechanical resonance. (orig.) [de
Bachmat, Eitan
2014-01-01
This monograph describes problems in the field of performance analysis, primarily the study of storage systems and the diverse mathematical techniques that are required for solving such problems. Topics covered include best practices for scheduling I/O requests to a disk drive, how this problem is related to airplane boarding, and how both problems can be modeled using space-time geometry. The author also explains how Riemann's proof of the analytic continuation and functional equation of the Riemann zeta function can be used to analyze express-line queues in a minimarket. Overall, the book reveals the surprising applicability of abstract mathematical ideas that are not usually associated with applied topics. Advanced undergraduate students or graduate students with an interest in the applications of mathematics will find this book a useful resource. It will also be of interest to professional mathematicians who want exposure to the surprising ways that theoretical mathematics may be applied to engineering pr...
Influence of mathematical models in design of PV-Diesel systems
International Nuclear Information System (INIS)
Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.
2008-01-01
This paper presents a study of the influence of mathematical models in the optimal design of PV-Diesel systems. For this purpose, a design tool developed by the authors, which allows obtaining the most cost effective design of a PV-Diesel system through the genetic algorithm technique, has been used. The mathematical models of some elements of the hybrid system have been improved in comparison to those usually employed in hybrid systems design programs. Furthermore, a more complete general control strategy has been developed, one that also takes into account more characteristics than those usually considered in this kind of design. Several designs have been made, evaluating the effect on the results of the different mathematical models and the novel strategy that can be considered
Mathematical finance theory review and exercises from binomial model to risk measures
Gianin, Emanuela Rosazza
2013-01-01
The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.
Energy Technology Data Exchange (ETDEWEB)
Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1999-12-31
In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, a translator has been developed in this work. The combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip) and found to be promising for further research and applications. 7 refs., 10 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, a translator has been developed in this work. The combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip) and found to be promising for further research and applications. 7 refs., 10 figs. (Author)
Jiang, Da-Quan; Qian, Min-Ping
2004-01-01
This volume provides a systematic mathematical exposition of the conceptual problems of nonequilibrium statistical physics, such as entropy production, irreversibility, and ordered phenomena. Markov chains, diffusion processes, and hyperbolic dynamical systems are used as mathematical models of physical systems. A measure-theoretic definition of entropy production rate and its formulae in various cases are given. It vanishes if and only if the stationary system is reversible and in equilibrium. Moreover, in the cases of Markov chains and diffusion processes on manifolds, it can be expressed in terms of circulations on directed cycles. Regarding entropy production fluctuations, the Gallavotti-Cohen fluctuation theorem is rigorously proved.
Taljaard, Johann
2016-01-01
This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Directory of Open Access Journals (Sweden)
Andrea Loddo
2018-02-01
Full Text Available Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Directory of Open Access Journals (Sweden)
I. V. Bykov
2013-01-01
Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology.
Directory of Open Access Journals (Sweden)
Ranbir Singh
2016-04-01
Full Text Available Flexible manufacturing system (FMS promises a wide range of manufacturing benefits in terms of flexibility and productivity. These benefits are targeted by efficient production planning. Part type selection, machine grouping, deciding production ratio, resource allocation and machine loading are five identified production planning problems. Machine loading is the most identified complex problem solved with aid of computers. System up gradation and newer technology adoption are the primary needs of efficient FMS generating new scopes of research in the field. The literature review is carried and the critical analysis is being executed in the present work. This paper presents the outcomes of the mathematical modelling techniques for loading of machines in FMS’s. It was also analysed that the mathematical modelling is necessary for accurate and reliable analysis for practical applications. However, excessive computations need to be avoided and heuristics have to be used for real-world problems. This paper presents the heuristics-mathematical modelling of loading problem with machine processing time as primary input. The aim of the present work is to solve a real-world machine loading problem with an objective of balancing the workload of the FMS with decreased computational time. A Matlab code is developed for the solution and the results are found most accurate and reliable as presented in the paper.
The epidemiological impact of antiretroviral use predicted by mathematical models: a review
Directory of Open Access Journals (Sweden)
Ferguson Neil M
2005-09-01
Full Text Available Abstract This review summarises theoretical studies attempting to assess the population impact of antiretroviral therapy (ART use on mortality and HIV incidence. We describe the key parameters that determine the impact of therapy, and argue that mathematical models of disease transmission are the natural framework within which to explore the interaction between antiviral use and the dynamics of an HIV epidemic. Our review focuses on the potential effects of ART in resource-poor settings. We discuss choice of model type and structure, the potential for risk behaviour change following widespread introduction of ART, the importance of the stage of HIV infection at which treatment is initiated, and the potential for spread of drug resistance. These issues are illustrated with results from models of HIV transmission. We demonstrate that HIV transmission models predicting the impact of ART use should incorporate a realistic progression through stages of HIV infection in order to capture the effect of the timing of treatment initiation on disease spread. The realism of existing models falls short of properly reproducing patterns of diagnosis timing, incorporating heterogeneity in sexual behaviour, and describing the evolution and transmission of drug resistance. The uncertainty surrounding certain effects of ART, such as changes in sexual behaviour and transmission of ART-resistant HIV strains, demands exploration of best and worst case scenarios in modelling, but this must be complemented by surveillance and behavioural surveys to quantify such effects in settings where ART is implemented.
Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System
International Nuclear Information System (INIS)
Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun
2013-01-01
In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena
Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System
Energy Technology Data Exchange (ETDEWEB)
Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)
2013-05-15
In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.
Pepin , Birgit; Xu , Binyan; Trouche , Luc; Wang , Chongyang
2017-01-01
International audience; In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics Bexpert^ teachers. Exploiting theWestern and Eastern literature we examine the notion of Bmathematics teaching expertise^, as it is perceived in the East and the West. The data consist of two rounds of in-depth interviews, observations and teachers’ representations of th...
Directory of Open Access Journals (Sweden)
Esther Zaretsky
2011-12-01
Full Text Available The research is aimed at enabling special education pupils to use computers in everyday life, and improving spatial intelligence and mathematical achievements through computers. The method of training focuses on enabling pupils to create computer simulations, communicate by electronic mail while evaluating each other’s products and navigate Internet sites. The creation of such simulations is based on manipulations of the virtual environment similar to the real world as much as possible in order to utilize the unique characteristics of the computer such as spatial visualization. The researcher taught the teachers the basics of the use of computer and trained them how to use the method in their classroom. Then the teachers used the method with their special education pupils in accordance with their cognitive and motor abilities. The objects were taken from the pupils’ everyday environment. The teachers trained the pupils in pairs. Such procedures were held among different populations. The teachers improved their mastery of computers. In spite of their lack of experience before the experiment, they built high-level PowerPoint presentations and used them with their pupils in the classroom including even virtual simulations. They sent their products by Electronic mail (E-Mail for the peer reviewing process and navigated relevant Internet sites. The teachers reported pupils’ high motivation and their success in the various virtual activities. As a result, the spatial intelligence and mathematical achievements of the pupils were improved. The teacher-pupil interaction and the social relationships between the pupils were also improved.
19 CFR 146.26 - System review.
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false System review. 146.26 Section 146.26 Customs... (CONTINUED) FOREIGN TRADE ZONES Inventory Control and Recordkeeping System § 146.26 System review. The operator shall perform an annual internal review of the inventory control and recordkeeping system and...
International Nuclear Information System (INIS)
Zilio, Claudio; Patricelli, Luca
2014-01-01
The anti-ice systems are critical for airplane safety, but are also strongly affecting the fuel consumption of the aircraft. A complete model of this system allows the designers to investigate all possible combination of external parameters and improve the design of current anti-ice systems. The dynamic model of an anti-ice system is presented and the results of the model are validated thanks to a series of experimental tests. The model has been used to analyze the behavior of an anti-ice system at extreme high bleed air temperature which are typical of new generation aircraft engines. An innovative architecture for anti-ice system is studied and the benefits on aircraft fuel consumption for a standard day mission are shown. -- Highlights: • A detailed mathematical model of an anti-ice valves has been created. • Experimental results confirm the goodness of the developed model. • Instability of the valves has been studied. • A new architecture for the anti-ice systems is proposed and the impacts on the aircraft fuel consumption are analyzed
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Mathematical model for the technological system of working a thin coal bed
Energy Technology Data Exchange (ETDEWEB)
Isayev, V V
1979-01-01
The principle for constructing a mathematical model of working a thin coal bed using the adaptation criterion is examined. Intersecting parameters of the medium and the unit are presented. Based on these parameters, dependences are presented for the adaptation criterion and its maximization. A general mathematical model is presented for the technological system of unmanned extraction of a thin bed D/sub 5/ under conditions of the mine ''Dolinskaya'' of the Karaganda Basin. The work results can be used to plan technological systems for working thin coal beds.
Mathematical modeling of complexing in the scandium-salicylic acid-isoamyl alcohol system
International Nuclear Information System (INIS)
Evseev, A.M.; Smirnova, N.S.; Fadeeva, V.I.; Tikhomirova, T.I.; Kir'yanov, Yu.A.
1984-01-01
Mathematical modeling of an equilibrium multicomponent physicochemical system for extraction of Sc salicylate complexes by isoamyl alcohol was conducted. To calculate the equilibrium concentrations of Sc complexes different with respect to the content and composition, the system of nonlinear algebraic mass balance equations was solved. Experimental data on the extraction of Sc salicylates by isoamyl alcohol versus the pH of the solution at a constant Sc concentration and different concentration of salicylate-ions were used for construction of the mathematical model. The stability constants of ScHSal 2+ , Sc(HSal) 3 , ScOH(HSal) 2 , ScoH(HSal) 2 complexes were calculated
Mathematical models of electrical network systems theory and applications : an introduction
Kłos, Andrzej
2017-01-01
This book is for all those who are looking for a non-conventional mathematical model of electrical network systems. It presents a modern approach using linear algebra and derives various commonly unknown quantities and interrelations of network analysis. It also explores some applications of algebraic network model of and solves some examples of previously unsolved network problems in planning and operation of network systems. Complex mathematical aspects are illustrated and described in a way that is understandable for non-mathematicians. Discussing interesting concepts and practically useful methods of network analysis, it is a valuable resource for lecturers, students, engineers and research workers. .
International Nuclear Information System (INIS)
Severin, V.P.
2007-01-01
The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed
Luitel, Bal Chandra
2013-01-01
The problem of culturally decontextualised mathematics education faced by Nepali students, teachers and teacher educators has often been oriented by the view of the nature of "mathematics as a body of pure knowledge," which gives rise to an exclusive emphasis on an ideology of singularity, epistemology of objectivism, language of…
A review of modeling approaches in activated sludge systems
African Journals Online (AJOL)
use
Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.
Directory of Open Access Journals (Sweden)
Lyudmyla Shishko
2016-01-01
Full Text Available The current state of formation of mathematical knowledge in universities insufficiently focused on their further use in professional activities. Students not formed the ability to apply mathematical knowledge to study general professional and special disciplines. In this article: –\tconsidered features of formation of a professional orientation of teaching mathematics using structured content multimedia information system for educational purposes (MISEP; –\tfound psychologo-pedagogical features of teaching mathematics of students IT specialties; –\tconsidered methodical aspects of MISEP in teaching the course "Discrete Mathematics" for students of IT specialties
Nonlinear optical and atomic systems at the interface of physics and mathematics
Garreau, Jean-Claude
2015-01-01
Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics. Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.
Mathematical Models to Determine Stable Behavior of Complex Systems
Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.
2018-05-01
The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.
Mazzocco, Michèle M M; Feigenson, Lisa; Halberda, Justin
2011-01-01
The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities.
The Principles of Designing an Expert System in Teaching Mathematics
Salekhova, Lailya; Nurgaliev, Albert; Zaripova, Rinata; Khakimullina, Nailya
2013-01-01
This study reveals general didactic concepts of the Expert Systems (ES) development process in the educational area. The proof of concept is based on the example of teaching the 8th grade Algebra subject. The main contribution in this work is the implementation of innovative approaches in analysis and processing of data by expert system as well as…
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
Mathematical Analysis of a PDE System for Biological Network Formation
Haskovec, Jan; Markowich, Peter A.; Perthame, Benoit
2015-01-01
Motivated by recent physics papers describing rules for natural network formation, we study an elliptic-parabolic system of partial differential equations proposed by Hu and Cai [13, 15]. The model describes the pressure field thanks to Darcy's type
MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS
Directory of Open Access Journals (Sweden)
D. N. Mironov
2011-01-01
Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.
International Nuclear Information System (INIS)
Knyigavko, V.G.; Ponomarenko, N.S.; Meshcheryakova, O.P.; Protasenya, S.Yu.
2009-01-01
A mathematical model of the processes determining reproductive death of the exposed cells was built. The model takes into account the phenomenon of saturation of the system of DNA radiation lesion reparation and structural functional peculiarities of chromatin structure in eukaryotes. The problem of assessment of the model parameters using experimental data was discussed.
Directory of Open Access Journals (Sweden)
L. Shishko
2012-03-01
Full Text Available Annotation In this article is described the information an experience of introduction in educational process of pedagogical program systems of support of practical activities for example pedagogical software "Algebra, 8 class" and also aspect of formation of mathematical activity during algebra studying.
Mazzocco, Michele M. M.; Feigenson, Lisa; Halberda, Justin
2011-01-01
Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. The current study hypothesizes that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. In this study of 71 ninth…
Segre, Gavriel
2005-01-01
It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.
Mathematical techniques for analyzing concurrent and probabilistic systems
Rutten, J J M M; Panangaden, Prakash; Panangaden, Prakash; Breugel, Franck van
2004-01-01
The book consists of two sets of lecture notes devoted to slightly different methods of analysis of concurrent and probabilistic computational systems. The first set of lectures develops a calculus of streams (a generalization of the set of natural numbers) based on the coinduction principle coming from the theory of coalgebras. It is now well understood that the interplay between algebra (for describing structure) and coalgebra (for describing dynamics) is crucial for understanding concurrent systems. There is a striking analogy between streams and formula calculus reminiscent to those appearing in quantum calculus. These lecture notes will appeal to anyone working in concurrency theory but also to algebraists and logicians. The other set of lecture notes focuses on methods for automatically verifying probabilistic systems using techniques of model checking. The unique aspect of these lectures is the coverage of both theory and practice. The authors have been responsible for one of the most successful experi...
ASPECTS OF MATHEMATICAL MODELING AND INTERPRETATION OF A MANUFACTURING SYSTEM
Directory of Open Access Journals (Sweden)
Mihaela ALDEA
2013-05-01
Full Text Available In the paper developing we started from a model that allows a detailed decoding of causalrelationships and getting the laws that determine the evolution of the phenomenon.The model chosen for the study is a discrete event system applicable to optimize the transport systemused in pottery. In order to simulate the manufacturing process we chose Matlab package that contains pntoollibrary, by which can be realized modeling of analyzed graphs. Since the timings of manufacture are very highand the process simulation is conducted with difficulty, we divided the graph according to the transport system.
Logan, J David
2013-01-01
Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat
Mathematical modeling of control system for the experimental steam generator
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Mathematical modeling of control system for the experimental steam generator
Directory of Open Access Journals (Sweden)
Podlasek Szymon
2016-01-01
Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Mathematical modeling of the evolution of a simple biological system
Digital Repository Service at National Institute of Oceanography (India)
Gonsalves, M.J.B.D.; Neetu, S.; Krishnan, K.P.; Attri, K.; LokaBharathi, P.A.
be constructed to simulate the observed movement. The comparison between the observed data and the predictions based on the model then tell us how satisfactory the model is. In physical systems the model is usually based on fundamental principles of physics...
Aspects of Poincare's program for dynamical systems and mathematical physics
Verhulst, Ferdinand
2012-01-01
This article is mainly historical, except for the discussion of integrability and characteristic exponents in Sect. 2. After summarising the achievements of Henri Poincaré, we discuss his theory of critical exponents. The theory is applied to the case of three degreesof- freedom Hamiltonian systems
Stochastic Robust Mathematical Programming Model for Power System Optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Apps for Mathematics Learning: A Review of "Educational" Apps from the iTunes App Store
Highfield, Kate; Goodwin, Kristy
2013-01-01
Increasingly iPads™ are being used in schools and prior-to-school settings, with a plethora of Apps available for mathematics learning. Despite the growing number of Apps available in the iTunes App Store, there has been limited systematic analysis of the pedagogic design of Apps designed for mathematics learning. This paper describes a content…
MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM
Directory of Open Access Journals (Sweden)
E. V. Biloshytskyi
2018-02-01
Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate
Optimal Design of Gravity Pipeline Systems Using Genetic Algorithm and Mathematical Optimization
Directory of Open Access Journals (Sweden)
maryam rohani
2015-03-01
Full Text Available In recent years, the optimal design of pipeline systems has become increasingly important in the water industry. In this study, the two methods of genetic algorithm and mathematical optimization were employed for the optimal design of pipeline systems with the objective of avoiding the water hammer effect caused by valve closure. The problem of optimal design of a pipeline system is a constrained one which should be converted to an unconstrained optimization problem using an external penalty function approach in the mathematical programming method. The quality of the optimal solution greatly depends on the value of the penalty factor that is calculated by the iterative method during the optimization procedure such that the computational effort is simultaneously minimized. The results obtained were used to compare the GA and mathematical optimization methods employed to determine their efficiency and capabilities for the problem under consideration. It was found that the mathematical optimization method exhibited a slightly better performance compared to the GA method.
Mathematical Analysis of a PDE System for Biological Network Formation
Haskovec, Jan
2015-02-04
Motivated by recent physics papers describing rules for natural network formation, we study an elliptic-parabolic system of partial differential equations proposed by Hu and Cai [13, 15]. The model describes the pressure field thanks to Darcy\\'s type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate D >= 0 representing randomness in the material structure. We prove the existence of global weak solutions and of local mild solutions and study their long term behavior. It turns out that, by energy dissipation, steady states play a central role to understand the network formation capacity of the system. We show that for a large diffusion coefficient D, the zero steady state is stable, while network formation occurs for small values of D due to the instability of the zero steady state, and the borderline case D = 0 exhibits a large class of dynamically stable (in the linearized sense) steady states.
The Remedial Action Priority System (RAPS): Mathematical formulations
International Nuclear Information System (INIS)
Whelan, G.; Strenge, D.L.; Droppo, J.G. Jr.; Steelman, B.L.; Buck, J.W.
1987-08-01
The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment, and remediation efforts. The RAPS methodology provides the US Department of Energy with a management tool for assistance in prioritizing funding and human resource allocations for further investigations and possible remediations at its inactive waste sites. Use of RAPS will help DOE ensure that those sites posing the highest potential risk are addressed first. Chapters 1 through 10 were processed separately for the Energy Data Base
Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center
Zia, Omar
1989-01-01
The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.
Mathematical modeling of the nickel/metal hydride battery system
Energy Technology Data Exchange (ETDEWEB)
Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering
1995-09-01
A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.
Areepattamannil, Shaljan; Caleon, Imelda S
2013-01-01
The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education systems, memorization strategies were negatively associated with mathematics achievement, whereas control strategies were positively associated with mathematics achievement. However, the association between elaboration strategies and mathematics achievement was a mixed bag. In Shanghai-China and Korea, elaboration strategies were not associated with mathematics achievement. In Hong Kong-China and Singapore, on the other hand, elaboration strategies were negatively associated with mathematics achievement. Implications of these findings are briefly discussed.
Mathematical modelling of a human external respiratory system
1977-01-01
A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.
Advanced nuclear systems. Review study
International Nuclear Information System (INIS)
Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar
1999-04-01
The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons
Optimal Design of Pumped Pipeline Systems Using Genetic Algorithm and Mathematical Optimization
Directory of Open Access Journals (Sweden)
Mohammadhadi Afshar
2007-12-01
Full Text Available In recent years, much attention has been paid to the optimal design of pipeline systems. In this study, the problem of pipeline system optimal design has been solved through genetic algorithm and mathematical optimization. Pipe diameters and their thicknesses are considered as decision variables to be designed in a manner that water column separation and excessive pressures are avoided in the event of pump failure. Capabilities of the genetic algorithm and the mathematical programming method are compared for the problem under consideration. For simulation of transient streams, explicit characteristic method is used in which devices such as pumps are defined as boundary conditions of the equations defining the hydraulic behavior of pipe segments. The problem of optimal design of pipeline systems is a constrained problem which is converted to an unconstrained optimization problem using an external penalty function approach. The efficiency of the proposed approaches is verified in one example and the results are presented.
Schmid, R. M.
1973-01-01
The vestibulo-ocular system is examined from the standpoint of system theory. The evolution of a mathematical model of the vestibulo-ocular system in an attempt to match more and more experimental data is followed step by step. The final model explains many characteristics of the eye movement in vestibularly induced nystagmus. The analysis of the dynamic behavior of the model at the different stages of its development is illustrated in time domain, mainly in a qualitative way.
Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.
2016-10-01
The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.
Refractive Thinking Profile In Solving Mathematical Problem Reviewed from Students Math Capability
Maslukha, M.; Lukito, A.; Ekawati, R.
2018-01-01
Refraction is a mental activity experienced by a person to make a decision through reflective thinking and critical thinking. Differences in mathematical capability have an influence on the difference of student’s refractive thinking processes in solving math problems. This descriptive research aims to generate a picture of refractive thinking of students in solving mathematical problems in terms of students’ math skill. Subjects in this study consisted of three students, namely students with high, medium, and low math skills based on mathematics capability test. Data collection methods used are test-based methods and interviews. After collected data is analyzed through three stages that are, condensing and displaying data, data display, and drawing and verifying conclusion. Results showed refractive thinking profiles of three subjects is different. This difference occurs at the planning and execution stage of the problem. This difference is influenced by mathematical capability and experience of each subject.
Journal of applied mathematics
National Research Council Canada - National Science Library
2001-01-01
"[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...
MODERN TRENDS TO UPGRADE THE PROFESSIONAL TRAINING SYSTEM OF THE FUTURE MATHEMATICS TEACHER
Directory of Open Access Journals (Sweden)
Tatochenko V.
2017-12-01
Full Text Available An article devoted to the actual problem of professional pedagogical education - the modern tendencies of updating the system of professional training of the future teacher of mathematics. The relevance of the study is due to rapid changes in society, which involve making changes to the goal of preparing speech to life, which requires the teacher to transition from the knowledge model to the competent. This necessitates a fundamental need to rethink all the factors on which the quality of the educational process depends. In the article, based on the analysis of social production in societies of different types, the goal of general education at the stage of transition from industrial to postindustrial society is specified. The specified purpose explains the necessity of changes as a mathematical education in general educational institutions, as well as the system of professional training of teachers of mathematics. On the basis of the analysis of the state of the problem, a number of contradictions in the preparation of future mathematics teachers who will work in qualitatively new conditions of postindustrial information societies, which are characterized by rapid development and dynamism, is highlighted, the problem of preparing teachers for professional activity in a new, communicative environment, when the aging of information occurs faster than the educational cycle in an educational institution ends. The term "professional activity of the teacher of mathematics" is defined as a holistic purposeful complex open volatile dynamic pedagogical system, the functioning of which involves resistance to certain subsystems that ensure the readiness of students for effective pedagogical activity. The interconnection of subsystems on the basis of their integration allows achieving the main goal of the system - to prepare a competent teacher of mathematics. The functioning of such a system provides the creation of conditions for the development of the
Program controlled system for mathematical processing the αp-experiment data
International Nuclear Information System (INIS)
Glagolev, V.V.; Govorun, N.N.; Dirner, A.; Ivanov, V.G.; Kretov, A.P.; Mirolyubov, V.P.; Pervushov, V.V.; Shelontsev, I.I.
1982-01-01
ZEUS system which allows one mathematical processing of bubble chamber pictures for αp-experiment with computer control is descibed. The comparison and basic defect of traditional processing of film information is considered. The structure, operation and further development of this system are described. It consists of the monitoring programs, directory file, input request language, data bank and documentation. ZEUS system is developed for processing αp-experiment from JINR one-meter-hydrogen liquid chamber. It makes possible to eliminate big manual work at organization of mass data processing by a computer. The system is realized on the CDC-6500 computer
MATHEMATICAL SUPPORT OF THE INTELLIGENT INFORMATION SYSTEM OF ASSESSING THE OBJECT STATE
Directory of Open Access Journals (Sweden)
Sofiia Yakubovska
2017-11-01
Full Text Available At present, information technologies (IT are intensively used all over the world in various sectors, and today medical institutions cannot do without them when organizing the process of medical diagnostic. The IT efficiency is determined by the degree of their intellectualization that is by including knowledge bases as their component and by the transition from data processing to the processing of knowledge. The efficiency of making decisions in various areas of activity is determined by the quality and quick delivery of information. Medicine constitutes no exception in this sense. The advanced level of computer technology, applied tools, diagnostics on the basis of automated systems of decision support made it possible to solve the tasks of assessing the state of the object at a qualitatively new level. The subject matter of this study is to ensure the mathematical support of the intelligent information system (IS of assessing the state of the object. The object is understood as a patient who came through a myocardial infarction (MI. The goal of the study is to develop mathematical support of the intelligent IS of assessing and predicting a patient’s condition. To achieve the stated goal, the following tasks were solved: statistically valid and uncorrelated signs were specified; these signs enable distinguishing the group of patients who survived from those who died, “decisive rules” were formulated for predicting the MI clinical outcome. In the process of the study, the mathematical IT of assessing the state of the object was developed. The following result was obtained: the suggested mathematical models for predicting the outcome of myocardial infarction that were developed with the use of the method of discriminant function and took into account human blood values can prevent sudden coronary death and improve the diagnostic efficiency. Conclusions. Mathematical models were developed to predict the state of the object in the event of
Bringula, Rex P.; Basa, Roselle S.; Dela Cruz, Cecilio; Rodrigo, Ma. Mercedes T.
2016-01-01
This study attempted to determine the influence of prior knowledge in mathematics of students on learner-interface interactions in a learning-by-teaching intelligent tutoring system. One hundred thirty-nine high school students answered a pretest (i.e., the prior knowledge in mathematics) and a posttest. In between the pretest and posttest, they…
National Research Council Canada - National Science Library
Spooner, Chad M
2005-01-01
.... The approach is to consider systems of targets and sensors in as general a general mathematical formulation as possible, to develop mathematical tools to study such systems, and to apply the tools...
DEFF Research Database (Denmark)
Carugati, Andrea
2002-01-01
has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information......The advancements in complexity and sophistication of mathematical models for manufacturing scheduling and control and the increase of the ratio power/cost of computers are beginning to provide the manufacturing industry with new software tools to improve production. A Danish action research project...... systems development. In a presented case the indications of the model are compared with the decisions taken during the development. The results highlight discrepancies between the structure and predictions of the model and the case observations, especially with regard to the importance given to the users...
Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.
1992-01-01
A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.
Analysis of Mathematics and Sustainability in an Impulsive Eutrophication Controlling System
Directory of Open Access Journals (Sweden)
Hengguo Yu
2013-01-01
quite accurate to describe the interaction effect of some critical factors (fishermen catch and releasing small fry, etc., which enables a systematic and logical procedure for fitting eutrophication mathematical system to real monitoring data and experiment data. Mathematical theoretical works have been pursuing the investigation of two threshold functions of some critical parameters under the condition of all species persistence, which can in turn provide a theoretical basis for the numerical simulation. Using numerical simulation works, we mainly focus on how to choose the best value of some critical parameters to ensure the sustainability of the eutrophication system so that the eutrophication removal process can be well developed with maximizing economic benefit. These results may be further extended to provide a basis for simulating the algal bloom in the laboratory and understanding the application of some impulsive controlling models about eutrophication removal problems.
Disability Case Adjudication and Review System
Social Security Administration — DICARS is the legacy system supporting business processes in the Disability Quality Branches (DQBs). It supports quality reviews of DDS disability determinations....
Mathematical models of incompressible fluids as singular limits of complete fluid systems
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2010-01-01
Roč. 78, č. 2 (2010), s. 523-560 ISSN 1424-9286 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : scale analysis * Navier-Stokes-Fourier system * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2010 http://link.springer.com/article/10.1007%2Fs00032-010-0128-1
International Nuclear Information System (INIS)
Mihai, Maria; Popescu, I.V.
2002-01-01
In this paper we present a mathematical model that would describe the stability and instability conditions, respectively of the organs of human body assumed as a living cybernetic system with feedback. We tested the theoretical model on the following trace elements: Mn, Zn and As. The trace elements were determined from the nose-pharyngeal carcinoma. We utilise the linear approximation to describe the dependencies between the trace elements determined in the hair of the patient. We present the results graphically. (authors)
Research Area 3: Mathematics (3.1 Modeling of Complex Systems)
2017-10-31
Title: RESEARCH AREA 3: MATHEMATICS (3.1 Modeling of Complex Systems). Proposal should be directed to Dr. John Lavery Report Term: 0-Other Email ...Paolo Rosso Email : prosso@dsic.upv.es values of the profile characteristics taken by the users), intersection (they represent the relationship between...accuracy, especially when adding fully connected layers at the end of the network. This work has resulted in the writing of a manuscript for the Journal
Towards intelligent diagnostic system employing integration of mathematical and engineering model
International Nuclear Information System (INIS)
Isa, Nor Ashidi Mat
2015-01-01
The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well
Towards intelligent diagnostic system employing integration of mathematical and engineering model
Isa, Nor Ashidi Mat
2015-05-01
The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well
Towards intelligent diagnostic system employing integration of mathematical and engineering model
Energy Technology Data Exchange (ETDEWEB)
Isa, Nor Ashidi Mat [Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)
2015-05-15
The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well
Directory of Open Access Journals (Sweden)
Blaženka Divjak
2011-06-01
Full Text Available Normal 0 21 false false false SH X-NONE X-NONE Information technologies are an integral part of a contemporary society which bases its progress on knowledge being one goal of education. Beside acquiring knowledge, skills and routines, the goal of education is to create a complete individual who can rationally and timely make decisions, purposefully react in new situations and be trained for life-long learning. In order to accomplish all this, it is necessary to make educational process more creative, contemporary and adjusted to new generations of computer literate pupils who demand quicker and more frequent interactions, a lot of information at the same time, generations who quickly acquire rules of computer games. Computer games meeting pedagogical criteria should become an integral part of learning. Teaching with mathematical computer games, which fulfil pedagogical criteria, influences pupils’ motivation, learning, retention and forgetting. This paper provides a review of literature in this field and determines whether the use of mathematical computer games contributes to more efficient realisation of educational goals at all level of education. Furthermore, considering prior research we have attempted to establish whether the use of mathematical games for teaching has an impact on the formation of a positive attitude of pupils of different ages toward the subject of mathematics, their motivation and knowledge acquisition when compared to learning without computer games. Finally, we have analysed different research methods concerning this issue and assessed the impact of pedagogically designed mathematical computer games on the realisation of educational goals and quality improvement of teaching and learning.
Bates, Jason H T; Sobel, Burton E
2003-05-01
This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to
Designing of Holistic Mathematic Education Model Based-"System Among" at Low Grade Elementary School
Hayati, R.; Fauzan, A.; Iswari, M.; Khaidir, A.
2018-04-01
The purpose of this study was to develop a model of Holistic Mathematics Education (HME) among systems based on low-grade primary school students so that students have a solid foundation when entering a higher behavior. This type of research is desaign research developed by Plomp to have three stages, namely the preliminary research, development or prototyping phase, and assessement Phase. This research resulted in a model Holistic Mathematics Education (HME) -based system is among the primary school students low grade consists of 10 stages, namely 1) Recap through the neighborhood, 2) Discussion groups by exploiting the environment, 3) Demonstration Group, 4) Exercise individuals, 5) mathematical modeling, 6) Demonstration of individuals, 7) Reflections, 8) impressions and messages, and giving meaning, 9) Celebrations and 10) A thorough assessment. Furthermore, this model also produces 7 important components that should be developed teacher, namely 1) constructivism, 2) the nature of nature, 3) independence, 4) parable, 5) inquiry, 6) cooperation, and 7) strengthening. This model will produce a model in the form of books, student books and teacher's guide book as a support system that can help users in its application.
Energy Technology Data Exchange (ETDEWEB)
Kupriyanova, G.N.; Krivenko, S.V.; Martynenko, L.I.; Evseev, A.M.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))
1982-01-01
Multiresponse adequate mathematical model is constructed that describes the composition of phases in the complex ion exchange system r.e.e. (PrCl/sub 3/)-complexon (iminodiacetic acid)-cationite-H/sub 2/O-KOH. The model is constructed on the basis of the law of acting masses in combination with equations of material balance and electroneutrality equations. The considerable effect on the state of the sorption system of metal complexonates is proved. The account of absorption of praseodymium iminodiacetates is necessary for complete description of the system and control of chromatographic process.
Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector
Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.
2017-07-01
The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.
Directory of Open Access Journals (Sweden)
Sead Rešić
2015-09-01
Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.
German Undergraduate Mathematics Enrolment Numbers: Background and Change
Ammann, Claudia; Frauendiener, Jorg; Holton, Derek
2010-01-01
Before we consider the German tertiary system, we review the education system and consider other relevant background details. We then concentrate on the tertiary system and observe that the mathematical enrolments are keeping up with the overall student enrolments. At the same time, the first year mathematics enrolments for women are greater than…
Expert systems for assisting in design reviews
International Nuclear Information System (INIS)
Brtis, J.S.; Johnson, W.J.; Weber, N.; Naser, J.
1990-01-01
This paper discusses Sargent and Lundy's (S and L's) use of expert system technologies to computerize the procedures used for engineering design reviews. This paper discusses expert systems and the advantages that result from using them to computerize the decision-making process. This paper also discusses the design review expert systems that S and L has developed to perform fire protection and ALARA (as low as reasonably achievable) design reviews, and is currently developing for the Electric Power Research Institute (EPRI) to perform 10 CFR 50.59 safety reviews
Directory of Open Access Journals (Sweden)
K. M. Vasyliv
2017-06-01
Full Text Available Purpose. Development of a model-software complex (MSC for computer analysis of modes of the system of induction motors (IM of smoke exhausters of thermal power plant (TPP, the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON and induction motors and interdependence (in all possible combinations between: TON (from which motors powered and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants.
Book Review: Organizations: A Systems Approach
DEFF Research Database (Denmark)
Schoeneborn, Dennis
2016-01-01
Review of: Stefan Kühl: Organizations. A Systems Approach (trans. P. Schmitz). Farnham: Gower Publishing, 2013. 195 pp. £14.99. ISBN 9781472413413.......Review of: Stefan Kühl: Organizations. A Systems Approach (trans. P. Schmitz). Farnham: Gower Publishing, 2013. 195 pp. £14.99. ISBN 9781472413413....
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
International Nuclear Information System (INIS)
Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik
2014-01-01
A novel satellite thermal architecture connecting the east and west radiators of a geostationary telecommunication satellite via loop heat pipes (LHPs) is flight tested on board the satellite Hispasat 1E. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). The flight data demonstrated the successful operation of the proposed concept. A transient numerical model specifically developed for the design of this system satisfactorily simulated the flight data. The validated mathematical model can be used to design and analyze the thermal behavior of more complex architectures. - Highlights: •A novel spacecraft thermal control architecture is presented. •The east–west radiators of a GEO communications satellite are connected using LHPs. •A transient mathematical model is validated with flight data. •The space flight data proved successful in-orbit operation of the novel architecture. •The model can be used to design/analyze LHP based complex thermal architectures
Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity
International Nuclear Information System (INIS)
Kluth, G.
2008-12-01
The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)
BOOK REVIEW: Symmetry and the Monster: One of the Greatest Quests of Mathematics
Szabo, R. J.
2007-04-01
The book Symmetry and the Monster: One of the Greatest Quests of Mathematics describes historical events leading up to the discovery of the Monster sporadic group, the largest simple sporadic group. It also expounds the significance and deep relationships between this group and other areas of mathematics and theoretical physics. It begins, in the prologue, with a nice overview of some of the mathematical drama surrounding the discovery of the Monster and its subsequent relationship to number theory (the so-called Moonshine conjectures). From a historical perspective, the book traces back to the roots of group theory, Galois theory, and steadily runs through time through the many famous mathematicians who contributed to group theory, including Lie, Killing and Cartan. Throughout, the author has provided a very nice and deep insight into the sociological and scientific problems at the time, and gives the reader a very prominent inside view of the real people behind the mathematics. The book should be an enjoyable read to anyone with an interest in the history of mathematics. For the non-mathematician the book makes a good, and mostly successful, attempt at being non-technical. Technical mathematical jargon is replaced with more heuristic, intuitive terminology, making the mathematical descriptions in the book fairly easy going. A glossary\\hspace{0.25pc} of\\hspace{0.25pc} terminology for noindent the more scientifically inclined is included in various footnotes throughout the book and in a comprehensive listing at the end of the book. Some more technical material is also included in the form of appendices at the end of the book. Some aspects of physics are also explained in a simple, intuitive way. The author further attempts at various places to give the non-specialist a glimpse into what mathematical proof is all about, and explains the difficulties and technicalities involved in this very nicely (for instance, he mentions the various 100+ page articles that
Energy Technology Data Exchange (ETDEWEB)
Lacalle, P.
1989-07-01
In order to determine ion-metallic species with xantene derivates as reagents, different mathematical models in some ion-pair spectrophotometric system have been applied haro mathematical models-based in physical-chemical laws-versus soft mathematical models-empirical and ranoom-have been compared explicits mathematical functions for simulation and optimization of the studied system have been obtained. That optimization has been done using some derivaties methods. Stochastics models in time-dependent systems have been applied. (Author)
A review of mathematical functions for the analysis of growth in poultry
Darmani Kuhi, H.; Porter, T.; Lopez, S.; Kebreab, E.; Strathe, A.B.; Dumas, A.; Dijkstra, J.; France, J.
2010-01-01
Poultry industries face various decisions in the production cycle that affect the profitability of an operation. Predictions of growth when the birds are ready for sale are important factors that contribute to the economy of poultry operations. Mathematical functions called ‘growth functions’ have
Korn, Granino A
2000-01-01
A reliable source of definitions, theorems, and formulas, this authoritative handbook provides convenient access to information from every area of mathematics. Coverage includes Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, numerical methods, game theory, and much more.
Santos-Trigo, Manuel; Barrera-Mora, Fernando
2011-01-01
The study documents the extent to which high school teachers reflect on their need to revise and extend their mathematical and practicing knowledge. In this context, teachers worked on a set of tasks as a part of an inquiring community that promoted the use of different computational tools in problem solving approaches. Results indicated that the…
Directory of Open Access Journals (Sweden)
Mikhov M.
2009-12-01
Full Text Available The performance of a two-coordinate drive system with permanent magnet synchronous motors is analyzed and discussed in this paper. Both motors have been controlled in brushless DC motor mode in accordance with the rotor positions. Detailed study has been carried out by means of mathematical modeling and computer simulation for the respective transient and steady-state regimes at various load and work conditions. The research carried out as well as the results obtained can be used in the design, optimization and tuning of such types of drive systems. They could be also applied in the teaching process.
International Nuclear Information System (INIS)
Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S
2013-01-01
A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)
MATHEMATICAL MODELING OF THE UNPUT DEVICES IN AUTOMATIC LOCOMOTIVE SIGNALING SYSTEM
Directory of Open Access Journals (Sweden)
O. O. Gololobova
2014-03-01
Full Text Available Purpose. To examine the operation of the automatic locomotive signaling system (ALS, to find out the influence of external factors on the devices operation and the quality of the code information derived from track circuit information, as well as to enable modeling of failure occurrences that may appear during operation. Methodology. To achieve this purpose, the main obstacles in ALS operation and the reasons for their occurrence were considered and the system structure principle was researched. The mathematical model for input equipment of the continuous automatic locomotive signaling system (ALS with the number coding was developed. It was designed taking into account all the types of code signals “R”, “Y”, “RY” and equivalent scheme of replacing the filter with a frequency of 50 Hz. Findings. The operation of ALSN with a signal current frequency of 50 Hz was examined. The adequate mathematical model of input equipment of ALS with a frequency of 50 Hz was developed. Originality. The computer model of input equipment of ALS system in the environment of MATLAB+Simulink was developed. The results of the computer modeling on the outlet of the filter during delivering every type of code combination were given in the article. Practical value. With the use of developed mathematical model of ALS system operation we have an opportunity to study, research and determine behavior of the circuit during the normal operation mode and failure occurrences. Also there is a possibility to develop and apply different scheme decisions in modeling environment MATLAB+Simulink for reducing the influence of obstacles on the functional capability of ALS and to model the occurrence of possible difficulties.
International Nuclear Information System (INIS)
Bondars, Kh.Ya.; Lapenas, A.A.
1981-01-01
We adapted or used on ES EhVM, operating under the control of OS ES, the currently most common algorithms for calculating neutron spectra from measured reaction rates. These programs, together with the neutron cross-section and spectrum libraries, are part of the computerized information system SAIPS. The present article descibes the basic mathematical concepts used in the algorithms of the SAIPS calculation programs
Ardıç, Mehmet Alper; Işleyen, Tevfik
2018-01-01
In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.
Explicating Mathematical Thinking in Differential Equations Using a Computer Algebra System
Zeynivandnezhad, Fereshteh; Bates, Rachel
2018-01-01
The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance…
Directory of Open Access Journals (Sweden)
Salem M. Osta-Omar
2016-11-01
Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.
Leyva, Luis A.
2017-01-01
Gender research in mathematics education has experienced methodological and theoretical shifts over the past 45 years. Although achievement studies have used assessment tools to explore and subsequently challenge the assumption of male superiority on mathematics assessments, research on participation has unpacked these studies' sex-based…
Aging integumentary system. Podiatric review.
Muehlman, C; Rahimi, F
1990-11-01
The authors present a concise review of age-related changes that occur in the skin and its derivatives, as they pertain to the podiatric practitioner. A brief discussion of wound healing and several common skin disorders that affect the elderly is also included.
A review on phase-change materials: Mathematical modeling and simulations
International Nuclear Information System (INIS)
Dutil, Yvan; Rousse, Daniel R.; Salah, Nizar Ben; Lassue, Stephane; Zalewski, Laurent
2011-01-01
Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. For this purpose, phase-change materials are particularly attractive since they provide a high-energy storage density at a constant temperature which corresponds to the phase transition temperature of the material. Nevertheless, the incorporation of phase-change materials (PCMs) in a particular application calls for an analysis that will enable the researcher to optimize performances of systems. Due to the non-linear nature of the problem, numerical analysis is generally required to obtain appropriate solutions for the thermal behavior of systems. Therefore, a large amount of research has been carried out on PCMs behavior predictions. The review will present models based on the first law and on the second law of thermodynamics. It shows selected results for several configurations, from numerous authors so as to enable one to start his/her research with an exhaustive overview of the subject. This overview stresses the need to match experimental investigations with recent numerical analyses since in recent years, models mostly rely on other models in their validation stages. (author)
Smith, Robert W; van Rosmalen, Rik P; Martins Dos Santos, Vitor A P; Fleck, Christian
2018-06-19
Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example, constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the mathematical complexity, while providing a reasonably good description of the system in steady state. However, without a large number of constraints, many different flux sets can describe the optimal model and we obtain no information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within the cell, finer quality data and more detailed models need to be constructed. In this paper we present a computational framework, DMPy, that uses a network scheme as input to automatically search for kinetic rates and produce a mathematical model that describes temporal changes of metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80% of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model by grouping reactions together based on fluxes alters the resulting system dynamics. The presented pipeline automates the
Directory of Open Access Journals (Sweden)
O. Ye. Prokopchenko
2015-10-01
Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.
Mathematical concepts of optical superresolution
International Nuclear Information System (INIS)
Lindberg, Jari
2012-01-01
Optical imaging beyond the diffraction limit, i.e., optical superresolution, has been studied extensively in various contexts. This paper presents an overview of some mathematical concepts relevant to superresolution in linear optical systems. Properties of bandlimited functions are surveyed and are related to both instrumental and computational aspects of superresolution. The phenomenon of superoscillation and its relation to superresolution are discussed. (review article)
Directory of Open Access Journals (Sweden)
Juan José Raygoza-Panduro
2008-01-01
Full Text Available This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex operations such as mathematical functions including sine and cosine, among others. The proposed unit is used to synthesize a sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level of mathematical calculations in small time periods. The core is designed to calculate trigonometric and arithmetic operations in such a way that each function is performed in a clock cycle. In this paper, the results of the mathematical core are shown in terms of implementation, utilization, and application to control a magnetic levitation system.
International Nuclear Information System (INIS)
Koo, Seo Ryong; Son, Han Seong; Seong, Poong Hyun
1999-01-01
In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsung NPP SDS2 (Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP software verification and validation. (author). 9 refs., 15 figs
Vivaldi, Franco
2014-01-01
This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student. The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition. Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...
A bibliographic review of mathematical models of packed-bed biological reactors (PBR
Directory of Open Access Journals (Sweden)
Deisy Corredor
2005-09-01
Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.
Resource Review: Why So Few? Women in Science, Technology, Engineering, and Mathematics
Patricia A. Dawson
2014-01-01
“Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepr...
Detection of high-impedance fault in low-voltage DC distribution system via mathematical morphology
Directory of Open Access Journals (Sweden)
Yun-Sik Oh
2016-01-01
Full Text Available This study presents a method for high-impedance fault (HIF detection in a low-voltage DC (LVDC distribution system via mathematical morphology (MM, which is composed of two elementary transformations, namely, dilation and erosion. Various MM-based filters are used to detect abnormal signals of current waveform. The LVDC distribution system, including power conversion devices, such as AC/DC and DC/DC converters, is modelled with electromagnetic transient program (EMTP software to verify the proposed method. The HIF arc model in the DC system is also implemented with EMTP/MODELS, which is a symbolic language interpreter for EMTP. Simulation results show that the proposed method can be applied to detect HIF effectively in the LVDC distribution system.
TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW
Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma
2012-01-01
Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...
International Nuclear Information System (INIS)
Pan Yi; Mao Wanchong
2010-01-01
The parameter measurement of nuclear track occupies an important position in the field of nuclear technology. However, traditional artificial counting method has many limitations. In recent years, DSP and digital image processing technology have been applied in nuclear field more and more. For the sake of reducing errors of visual measurement in artificial counting method, an automatic counting system for nuclear track based on DM642 real-time image processing platform is introduced in this article, which is able to effectively remove interferences from the background and noise points, as well as automatically extract nuclear track-points by using mathematical morphology algorithm. (authors)
Mathematical correlation of modal-parameter-identification methods via system-realization theory
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Mathematical correlation of modal parameter identification methods via system realization theory
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
MATHEMATICAL MODEL FOR CALCULATION OF INFORMATION RISKS FOR INFORMATION AND LOGISTICS SYSTEM
Directory of Open Access Journals (Sweden)
A. G. Korobeynikov
2015-05-01
Full Text Available Subject of research. The paper deals with mathematical model for assessment calculation of information risks arising during transporting and distribution of material resources in the conditions of uncertainty. Meanwhile information risks imply the danger of origin of losses or damage as a result of application of information technologies by the company. Method. The solution is based on ideology of the transport task solution in stochastic statement with mobilization of mathematical modeling theory methods, the theory of graphs, probability theory, Markov chains. Creation of mathematical model is performed through the several stages. At the initial stage, capacity on different sites depending on time is calculated, on the basis of information received from information and logistic system, the weight matrix is formed and the digraph is under construction. Then there is a search of the minimum route which covers all specified vertexes by means of Dejkstra algorithm. At the second stage, systems of differential Kolmogorov equations are formed using information about the calculated route. The received decisions show probabilities of resources location in concrete vertex depending on time. At the third stage, general probability of the whole route passing depending on time is calculated on the basis of multiplication theorem of probabilities. Information risk, as time function, is defined by multiplication of the greatest possible damage by the general probability of the whole route passing. In this case information risk is measured in units of damage which corresponds to that monetary unit which the information and logistic system operates with. Main results. Operability of the presented mathematical model is shown on a concrete example of transportation of material resources where places of shipment and delivery, routes and their capacity, the greatest possible damage and admissible risk are specified. The calculations presented on a diagram showed
International Nuclear Information System (INIS)
Droppo, J.G.; Buck, J.W.
1996-03-01
The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a ''multimedia'' model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations
Grey water treatment systems: A review
Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.
2011-01-01
This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a
2013-03-01
The purpose of this study is to investigate the comparative effectiveness of point-based versus incident-based : negligent driver monitoring systems and to explore how certain changes to the existing point-based system used in : New Jersey might impr...
The Netherlands: health system review
Schäfer, W.; Kroneman, M.; Boerma, W.; van den Berg, M.; Westert, G.; Devillé, W.; van Ginneken, E.
2010-01-01
The Health Systems in Transition (HiT) profiles are country-based reports that provide a detailed description of health systems and of policy initiatives in progress or under development. HiTs examine different approaches to the organization, financing and delivery of health services and the role of
Systemic combination treatment for psoriasis: a review
DEFF Research Database (Denmark)
Jensen, Peter; Skov, Lone; Zachariae, Claus
2010-01-01
exist for the use of systemic combination therapy. Therefore, our aim was to review the current literature on systemic anti-psoriatic combination regimens. We searched PubMed and identified 98 papers describing 116 studies (23 randomized) reporting on the effect of various systemic combination...
THE CONCEPT OF THE EDUCATIONAL COMPUTER MATHEMATICS SYSTEM AND EXAMPLES OF ITS IMPLEMENTATION
Directory of Open Access Journals (Sweden)
M. Lvov
2014-11-01
Full Text Available The article deals with the educational computer mathematics system, based in Kherson State University and resulted in more than 8 software tools to orders of the Ministry of Education, Science, Youth and Sports of Ukraine. The exact and natural sciences are notable among all disciplines both in secondary schools and universities. They form the fundamental scientific knowledge, based on precise mathematical models and methods. The educational process for these courses should include not only lectures and seminars, but active forms of studying as well: practical classes, laboratory work, practical training, etc. The enumerated peculiarities determine specific intellectual and architectural properties of information technologies, developed to be used in the educational process of these disciplines. Whereas, in terms of technologies used in the implementation of the functionality of software, they are actually the educational computer algebra system. Thus the algebraic programming system APS developed in the Institute of Cybernetics of the National Academy of Sciences of Ukraine led by Academician O.A. Letychevskyi in the 80 years of the twentieth century is especially important for their development.
Directory of Open Access Journals (Sweden)
Suzhi Xiao
2016-04-01
Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-04-28
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Does the Approximate Number System Serve as a Foundation for Symbolic Mathematics?
Szkudlarek, Emily; Brannon, Elizabeth M.
2017-01-01
In this article we first review evidence for the approximate number system (ANS), an evolutionarily ancient and developmentally conservative cognitive mechanism for representing number without language. We then critically review five different lines of support for the proposal that symbolic representations of number build upon the ANS, and discuss…
Eftimie, Raluca
2015-03-01
One of the main unsolved problems of modern physics is finding a "theory of everything" - a theory that can explain, with the help of mathematics, all physical aspects of the universe. While the laws of physics could explain some aspects of the biology of living systems (e.g., the phenomenological interpretation of movement of cells and animals), there are other aspects specific to biology that cannot be captured by physics models. For example, it is generally accepted that the evolution of a cell-based system is influenced by the activation state of cells (e.g., only activated and functional immune cells can fight diseases); on the other hand, the evolution of an animal-based system can be influenced by the psychological state (e.g., distress) of animals. Therefore, the last 10-20 years have seen also a quest for a "theory of everything"-approach extended to biology, with researchers trying to propose mathematical modelling frameworks that can explain various biological phenomena ranging from ecology to developmental biology and medicine [1,2,6]. The basic idea behind this approach can be found in a few reviews on ecology and cell biology [6,7,9-11], where researchers suggested that due to the parallel between the micro-scale dynamics and the emerging macro-scale phenomena in both cell biology and in ecology, many mathematical methods used for ecological processes could be adapted to cancer modelling [7,9] or to modelling in immunology [11]. However, this approach generally involved the use of different models to describe different biological aspects (e.g., models for cell and animal movement, models for competition between cells or animals, etc.).
Review of Indian education system
DEFF Research Database (Denmark)
Shinde, Dnyandeo Dattatray; Falch, Morten; Tated, Rajendra G
2015-01-01
In today's world of globalization, Indian education system is to be upgraded. The paper focus on the recent literature available related to teaching learning approach. The attempt is to analysis the admission condition in technical institutes due to growth in intake of seats. The fish bone diagram...... technique is suggested to analysis the root cause of failure, considering student as one of the stakeholders related to education system....
Ohya, Masanori
2011-01-01
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
A mathematical technique for hybrid power system design with energy loss considerations
International Nuclear Information System (INIS)
Lee, Jui-Yuan; Chen, Cheng-Liang; Chen, Hui-Chu
2014-01-01
Highlights: • A superstructure-based model is developed for hybrid power system design. • The model considers various power losses occurring in hybrid power systems. • The model locates rigorous outsourced electricity targets. • The model determines the minimum electricity storage capacity required. • Three literature case studies are solved to demonstrate the use of the model. - Abstract: This paper presents a generic mathematical optimisation model for the design of hybrid power systems (HPSs). The model takes into account power losses during the allocation of power generated from renewables to appliance loads, and is formulated as a linear programme (LP) based on a superstructure including all possible power allocation options in a typical HPS. With given power source and demand data for an HPS, the minimum outsourced electricity supply and the minimum electricity storage capacity required can be determined through a two-step optimisation. Three literature case studies are solved to illustrate the proposed approach
DEFF Research Database (Denmark)
Carugati, Andrea
through negotiation and democratic decision making will it be possible for the team members to have their current weltanschauung represented in decision making. Thirdly, geographical distribution and loose coupling foster individualist rather than group behavior. The more the social tissue is disconnected...... to the customers of the system. The use of democratic decision making that brings together the team members on regular basis contributes to both the reconstruction of the social tissue and to the satisfaction of the development team as customer of the project. Fourth, the novelty of the technology created problems......This dissertation presents the results of a three-year long case study of an information systems development project where a scheduling and control system was developed for a manufacturing company. The project goal was to test the feasibility of a new technology called advanced mathematical...
Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology
International Nuclear Information System (INIS)
Bouchet, A; Pastore, J; Colabella, L; Omar, S; Ballarre, J
2016-01-01
The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials. (paper)
Dzierka, M.; Jurczak, P.
2015-12-01
In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.
Review of mathematical and physical basis of two-phase flow modelling
International Nuclear Information System (INIS)
Bottoni, M.; Sengpiel, W.
1992-08-01
Starting from a continuum-mechanical approach, this report gives a detailed overview of the deduction of conservation equations for the analytical description of two-phase flows by means of an adequate averaging process resulting in a two-fluid model and a homogeneous mixture model. The mathematical process of averaging leads to macroscopic formulations of stress terms and interfacial interaction terms. These terms depend on microscopic variables and thus give some helpful insight into the physical processes which have to be described by constitutive relations. (orig.) [de
Rubin, Andrew
2014-01-01
This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Directory of Open Access Journals (Sweden)
V. V. Leonov
2014-01-01
Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.
Directory of Open Access Journals (Sweden)
А. Лопатьєв
2017-09-01
Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes. Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.
Energy Technology Data Exchange (ETDEWEB)
Lewin, M.
2009-06-15
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
The meridian system and mechanism of acupuncture—A comparative review. Part 1: The meridian system
Directory of Open Access Journals (Sweden)
Shyang Chang
2012-12-01
Full Text Available In traditional Chinese medicine (TCM, acupuncture has been used to heal various diseases and physiologic malfunctions in clinical practice for more than 2500 years. Due to its efficacy, acupuncture has been recommended by the World Health Organization in 1980 as an effective alternative therapy for 43 different disorders. Over the past few decades, various theories of the meridian system and mechanisms have been proposed to explain how acupuncture might work. Most of these mechanisms, however, cannot yet explain conclusively why acupuncture is efficacious in treating so many different diseases. A plausible mechanism has been unavailable until recently. This is the first of a three-part series that aims to provide a comparative review of the aforementioned topics. Part 1 reviews the current indications for acupuncture, basic concepts of TCM, and the essence of the meridian system. To establish a mathematically rigorous framework of TCM, the chaotic wave theory of fractal continuum is proposed. This theory is then applied to characterize the essence of the meridian system. Parts 2 and 3 will review the possible mechanisms of acupuncture analgesia and acupuncture therapies, respectively, based on biochemical, bioelectromagnetic, chaotic wave, and neurophysiologic approaches. It is sincerely hoped that this series of review articles can promote an understanding of the meridian system and acupuncture mechanisms to help patients in a logical and passionate way.
Fluctuations in Nonlinear Systems: A Short Review
International Nuclear Information System (INIS)
Rubia, F.J. de la; Buceta, J.; Cabrera, J.L.; Olarrea, J.; Parrondo, J.M.R.
2003-01-01
We review some results that illustrate the constructive role of noise in nonlinear systems. Several phenomena are briefly discussed: optimal localization of orbits in a system with limit cycle behavior and perturbed by colored noise; stochastic branch selection at secondary bifurcations; noise- induced order/disorder transitions and pattern formation in spatially extended systems. In all cases the presence of noise is crucial, and the results reinforce the modern view of the importance of noise in the evolution of nonlinear systems. (author)
Directory of Open Access Journals (Sweden)
Adrian Nocoń
2015-09-01
Full Text Available This paper presents an analysis of the influence of uncertainty of power system mathematical model parameters on optimised parameters of PSS2A system stabilizers. Optimisation of power system stabilizer parameters was based on polyoptimisation (multi-criteria optimisation. Optimisation criteria were determined for disturbances occurring in a multi-machine power system, when taking into account transient waveforms associated with electromechanical swings (instantaneous power, angular speed and terminal voltage waveforms of generators. A genetic algorithm with floating-point encoding, tournament selection, mean crossover and perturbative mutations, modified for the needs of investigations, was used for optimisation. The impact of uncertainties on the quality of operation of power system stabilizers with optimised parameters has been evaluated using various deformation factors.
Mathematics, anxiety, and the brain.
Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer
2017-05-24
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
African financial systems: A review
Directory of Open Access Journals (Sweden)
Franklin Allen
2011-04-01
Full Text Available We start by providing an overview of financial systems in the African continent. We then consider the regions of Arab North Africa, West Africa, East and Central Africa, and Southern Africa in more detail. The paper covers, among other things, central banks, deposit-taking banks, non-bank institutions, such as the stock markets, fixed income markets, insurance markets, and microfinance institutions.
Bachar, Mostafa; Kappel, Franz
2013-01-01
This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.
Directory of Open Access Journals (Sweden)
Kamran Forghani
2012-10-01
Full Text Available In this paper, a new mathematical model in cellular manufacturing systems (CMSs has been presented. In order to increase the performance of manufacturing system, the production quantity of parts has been considered as a decision variable, i.e. each part can be produced and outsourced, simultaneously. This extension would be minimized the unused capacity of machines. The exceptional elements (EEs are taken into account and would be totally outsourced to the external supplier in order to remove intercellular material handling cost. The problem has been formulated as a mixed-integer programming to minimize the sum of manufacturing variable costs under budget, machines capacity and demand constraints. Also, to evaluate advantages of the model, several illustrative numerical examples have been provided to compare the performance of the proposed model with the available classical approaches in the literature.
A mathematical model of the hypothalamo-pituitary-adrenocortical system and its stability analysis
International Nuclear Information System (INIS)
Savic, Danka; Jelic, Smiljana
2005-01-01
It is commonly assumed that the hypothalamo-pituitary-adrenocortical (HPA) axis generates oscillations, because a regular daily rhythm of its component hormones is observed. We offer another plausible explanation of the origin of its circadian oscillations: HPA just responds to an independent external pacemaker (from the suprachiazmatic nucleus, SCN). Five versions (with and without time delay) of a qualitative non-phenomenological mathematical model of the HPA axis as a feedback mechanism are constructed wherein all the terms in the equations are introduced according to the rules of chemical kinetics, i.e. are physicochemically interpretable. The dynamics of the HPA axis model was examined using linear stability analysis. The results show stability of this system, meaning that it does not generate diurnal oscillations. Computer simulation based on this model shows oscillations that are system's response to an external pulsing activator (SCN) implying that the observed time-periodic pattern does not have to be an intrinsic property of the HPA axis
Review and assessment of information kiosk systems
1997-03-01
This report reviews the current state-of-the-art and assesses the progress that is being made, in Kiosk Information Systems. This information will be used in developing a kiosk system for the Metro Dade Transit Agency (MDTA), which has recently been ...
Assemble-to-order systems: a review
Atan, Z.; Ahmadi, T.; Stegehuis, C.; de Kok, A.G.; Adan, I.J.B.F.
2017-01-01
In this paper, we review the recent literature on assemble-to-order systems. Each assemble-to-order system consists of multiple components and end-products. The components are assembled into the end-products after information on customer demand is received but the decision on what components to
Review Existing and Proposed Emissions Trading Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-07-01
This paper reviews key design features of mandatory emissions trading systems that had been established or were under consideration in 2010, with a particular focus on implications for the energy sector. Putting a price on greenhouse gas emissions is a cornerstone policy in climate change mitigation. To this end, many countries have implemented or are developing domestic emissions trading systems.
Directory of Open Access Journals (Sweden)
Vladimir E Bondarenko
Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of
International Nuclear Information System (INIS)
Meltz, Bertrand
2015-01-01
This thesis deals with the mathematical and numerical analysis of the systems of compressible hydrodynamics and radiative transfer. More precisely, we study the derivation of numerical methods with 2D polar coordinates (one for the radius, one for the angle) where equations are discretized on regular polar grids. On one hand, these methods are well-suited for the simulation of flows with polar symmetries since they preserve these symmetries by construction. On the other hand, such coordinates systems introduce geometrical singularities as well as geometrical source terms which must be carefully treated. The first part of this document is devoted to the study of hydrodynamics equations, or Euler equations. We propose a new class of arbitrary high-order numerical schemes in both space and time and rely on directional splitting methods for the resolution of 2D equations. Each sub-system is solved using a Lagrange+Remap solver. We study the influence of the r=0 geometrical singularities of the cylindrical and spherical coordinates systems on the precision of the 2D numerical solutions. The second part of this document is devoted to the study of radiative transfer equations. In these equations, the unknowns depend on a large number of variables and a stiff source term is involved. The main difficulty consists in capturing the correct asymptotic behavior on coarse grids. We first construct a class of models where the radiative intensity is projected on a truncated spherical harmonics basis in order to lower the number of mathematical dimensions. Then we propose an Asymptotic Preserving scheme built in polar coordinates and we show that the scheme capture the correct diffusion limit in the radial direction as well as in the polar direction. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
V.A. Shorokhov; A.P. Smol' nikov; D.A. Kurochkin; N.N. Komarova; A.S. Mar' yasov; A.R. Gudovich; S.N. Bartosh [ZAO SibKOTES, Krasnoyarsk (Russian Federation)
2009-07-01
Matters relating to development and identification of a mathematical model for simulating a power unit and its individual systems are discussed. Results obtained from a large series of the active experiments on an operating power unit are presented.
Energy Technology Data Exchange (ETDEWEB)
Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)
2009-09-15
Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)
Leśniewski's systems of logic and foundations of mathematics
Urbaniak, Rafal
2014-01-01
This meticulous critical assessment of the ground-breaking work of philosopher Stanislaw Leśniewski focuses exclusively on primary texts and explores the full range of output by one of the master logicians of the Lvov-Warsaw school. The author’s nuanced survey eschews secondary commentary, analyzing Leśniewski's core philosophical views and evaluating the formulations that were to have such a profound influence on the evolution of mathematical logic. One of the undisputed leaders of the cohort of brilliant logicians that congregated in Poland in the early twentieth century, Leśniewski was a guide and mentor to a generation of celebrated analytical philosophers (Alfred Tarski was his PhD student). His primary achievement was a system of foundational mathematical logic intended as an alternative to the Principia Mathematica of Alfred North Whitehead and Bertrand Russell. Its three strands—‘protothetic’, ‘ontology’, and ‘mereology’, are detailed in discrete sections of this volume, alongs...
Mathematics without boundaries surveys in pure mathematics
Pardalos, Panos
2014-01-01
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
A review on systematic reviews of health information system studies.
Lau, Francis; Kuziemsky, Craig; Price, Morgan; Gardner, Jesse
2010-01-01
The purpose of this review is to consolidate existing evidence from published systematic reviews on health information system (HIS) evaluation studies to inform HIS practice and research. Fifty reviews published during 1994-2008 were selected for meta-level synthesis. These reviews covered five areas: medication management, preventive care, health conditions, data quality, and care process/outcome. After reconciliation for duplicates, 1276 HIS studies were arrived at as the non-overlapping corpus. On the basis of a subset of 287 controlled HIS studies, there is some evidence for improved quality of care, but in varying degrees across topic areas. For instance, 31/43 (72%) controlled HIS studies had positive results using preventive care reminders, mostly through guideline adherence such as immunization and health screening. Key factors that influence HIS success included having in-house systems, developers as users, integrated decision support and benchmark practices, and addressing such contextual issues as provider knowledge and perception, incentives, and legislation/policy.
Proceedings – Mathematical Sciences | Indian Academy of Sciences
Indian Academy of Sciences (India)
Special issue devoted to advances in specific areas of mathematics and proceedings of selected high quality conferences are also published. ... Editorial Manager is a user-friendly online submission and review management system. Authors ...
The Review-of-Particle-Properties system
International Nuclear Information System (INIS)
Trippe, T.G.
1984-01-01
The Berkeley Particle Data Group is engaged in a major modernization of its primary project, the Review of Particle Properties, a compilation of experimental data on elementary particles. The goal of this modernization is to develop an integrated system for data storage, manipulation, interactive access and publication using modern technqiues for database management, text processing and phototypesetting. The existing system and the plans for modernization are described. The group's other projects and the computer systems used are also discussed. (orig.)
Directory of Open Access Journals (Sweden)
Davood Shishebori
2013-01-01
Full Text Available Nowadays, the efficient design of medical service systems plays a critical role in improving the performance and efficiency of medical services provided by governments. Accordingly, health care planners in countries especially with a system based on a National Health Service (NHS try to make decisions on where to locate and how to organize medical services regarding several conditions in different residence areas, so as to improve the geographic equity of comfortable access in the delivery of medical services while accounting for efficiency and cost issues especially in crucial situations. Therefore, optimally locating of such services and also suitable allocating demands them, can help to enhance the performance and responsiveness of medical services system. In this paper, a multiobjective mixed integer nonlinear programming model is proposed to decide locations of new medical system centers, link roads that should be constructed or improved, and also urban residence centers covered by these medical service centers and link roads under investment budget constraint in order to both minimize the total transportation cost of the overall system and minimize the total failure cost (i.e., maximize the system reliability of medical service centers under unforeseen situations. Then, the proposed model is linearized by suitable techniques. Moreover, a practical case study is presented in detail to illustrate the application of the proposed mathematical model. Finally, a sensitivity analysis is done to provide an insight into the behavior of the proposed model in response to changes of key parameters of the problem.
Modular integrated video system (MIVS) review station
International Nuclear Information System (INIS)
Garcia, M.L.
1988-01-01
An unattended video surveillance unit, the Modular Integrated Video System (MIVS), has been developed by Sandia National Laboratories for International Safeguards use. An important support element of this system is a semi-automatic Review Station. Four component modules, including an 8 mm video tape recorder, a 4-inch video monitor, a power supply and control electronics utilizing a liquid crystal display (LCD) are mounted in a suitcase for probability. The unit communicates through the interactive, menu-driven LCD and may be operated on facility power through the world. During surveillance, the MIVS records video information at specified time intervals, while also inserting consecutive scene numbers and tamper event information. Using either of two available modes of operation, the Review Station reads the inserted information and counts the number of missed scenes and/or tamper events encountered on the tapes, and reports this to the user on the LCD. At the end of a review session, the system will summarize the results of the review, stop the recorder, and advise the user of the completion of the review. In addition, the Review Station will check for any video loss on the tape
Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems
Energy Technology Data Exchange (ETDEWEB)
Ping, Qingyun [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Abu-Reesh, Ibrahim M. [Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); He, Zhen, E-mail: zhenhe@vt.edu [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level < 2 mg L{sup −} {sup 1}. The ratio between the anolyte and the catholyte flow rates should be kept > 22.2 in order to avoid boron accumulation in the anolyte effluent. - Highlights: • Mathematical models are developed to understand boron removal in BES. • Boron removal can be driven by electromigration induced by current generation. • Diffusion induced by a salt concentration gradient also contributes to boron removal. • Osmosis and current driven convection transport play diverse roles in different BES.
Directory of Open Access Journals (Sweden)
О. Ф. Шишков
2003-03-01
Full Text Available The suggested mathematical model sets the quantitative connection between the airfield lighting system reliability and flight safety level during visual piloting stage. The designed model is suggested to be the base for normalizing and assessment of airfield lighting systems reliability measures
Review of relevant studies of isolated systems
DEFF Research Database (Denmark)
Hansen, L.H.; Lundsager, P.
2001-01-01
The report presents the results of a review of studies relating to integration of wind energy in isolated power supply systems, based on a systematic literature survey. The purpose of the study is to develop a methodology consisting of a set of guidelinesfor wind energy projects in isolated energy...... systems and a set of tools and models that are operational on an engineering level. The review is based on a literature search in the ETDE Energy Database with a main search covering the period 7/88 to 6/97 andsupplemented by partial update periods. A few newer references have been included in the review...... have been organised according to the following keywords: methods & guides, economics, concept ofapplication, system solutions, case studies, financial programmes, dedicated software tools. None of the found references presents methods or tools that contradict the philosophy of Risø's methodology...
SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models
International Nuclear Information System (INIS)
Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II.
1992-09-01
Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community
International Nuclear Information System (INIS)
Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.
2002-01-01
Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized
Mathematical simulation for compensation capacities area of pipeline routes in ship systems
Ngo, G. V.; Sakhno, K. N.
2018-05-01
In this paper, the authors considered the problem of manufacturability’s enhancement of ship systems pipeline at the designing stage. The analysis of arrangements and possibilities for compensation of deviations for pipeline routes has been carried out. The task was set to produce the “fit pipe” together with the rest of the pipes in the route. It was proposed to compensate for deviations by movement of the pipeline route during pipe installation and to calculate maximum values of these displacements in the analyzed path. Theoretical bases of deviation compensation for pipeline routes using rotations of parallel section pairs of pipes are assembled. Mathematical and graphical simulations of compensation area capacities of pipeline routes with various configurations are completed. Prerequisites have been created for creating an automated program that will allow one to determine values of the compensatory capacities area for pipeline routes and to assign quantities of necessary allowances.
Aalaei, Amin; Davoudpour, Hamid
2012-11-01
This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.
A review of strategies to address the shortage of science and mathematics educators in grades 10-12
Magano, Florence Lesedi
For an education system to function effectively it is important that its planning functions are executed effectively and efficiently. Among others this implies that the system must know what the teacher supply and demand is and how it will change in time. If the teacher supply and demand is known it could result in sound intervention strategies being developed and implemented. Education planners will be able to plan for the number of bursaries to be awarded and in which subject fields; it will be known how many foreign teachers to employ and for which subjects. This is the basic rationale that underpins this study. This study explored the problem of teacher demand and supply in the Further Education and Training (FET) phase (Grades 10 to 12) in South Africa and offers a critical analysis of strategies adopted by Provincial Education Departments in an endeavour to diminish the demand for teachers, specifically for Mathematics and Science, in rural and poor schools. Initially the study involved a secondary data analysis to extrapolate the demand and supply of teachers in Mathematics and Science over the next ten years. The first key finding of the study was that the data needed for such an analysis does not exist in any reliable form that would facilitate the development of such a projection. What the study had to rely on was anecdotal evidence that suggests that a shortage of Mathematics and Science teachers does exist and that posts are often filled by unqualified and under-qualified staff. In the second phase of the research in which the study explored the effectiveness of strategies developed to address the shortage of Mathematics and Science teachers, a qualitative research approach was adopted within a descriptive interpretive design. The views and opinions of human resource managers responsible for post provisioning in schools were explored through in-depth interviews to understand the types of strategy adopted by the provinces, their potential to alleviate
Wang, Aubrey H.; Firmender, Janine M.; Power, Joshua R.; Byrnes, James P.
2016-01-01
Research Findings: The early childhood years are critical in developing early mathematics skills, but the opportunities one has to learn mathematics tend to be limited, preventing the development of significant mathematics learning. By conducting a meta-analysis of 29 experimental and quasi-experimental studies that have been published since 2000,…
Mathematics Connection: Editorial Policies
African Journals Online (AJOL)
Focus and Scope. MATHEMATICS CONNECTION aims at providing a forum to promote the development of Mathematics Education in Ghana. Articles that seek to enhance the teaching and/or learning of mathematics at all levels of the educational system are welcome ...
Miller, Susan Peterson; Butler, Frances M.; Lee, Kit-hung
1998-01-01
Presents a review of 54 studies on math practices for students with learning disabilities. Validated practices included strategy and self-regulation interventions. Students benefited from step-by-step processes that guided their thinking and performance when solving math problems. The use of manipulative devices and drawings also were effective.…
Directory of Open Access Journals (Sweden)
Sergey Viktorovich Kuznetsov
2017-01-01
Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of
15th International Congress on Mathematical Physics
New Trends in Mathematical Physics
2009-01-01
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad ov...
Park, Sang Chul
1989-09-01
We develop a mathematical analysis model to calculate the probability of intercept (POI) for the ground-based communication intercept (COMINT) system. The POI is a measure of the effectiveness of the intercept system. We define the POI as the product of the probability of detection and the probability of coincidence. The probability of detection is a measure of the receiver's capability to detect a signal in the presence of noise. The probability of coincidence is the probability that an intercept system is available, actively listening in the proper frequency band, in the right direction and at the same time that the signal is received. We investigate the behavior of the POI with respect to the observation time, the separation distance, antenna elevations, the frequency of the signal, and the receiver bandwidths. We observe that the coincidence characteristic between the receiver scanning parameters and the signal parameters is the key factor to determine the time to obtain a given POI. This model can be used to find the optimal parameter combination to maximize the POI in a given scenario. We expand this model to a multiple system. This analysis is conducted on a personal computer to provide the portability. The model is also flexible and can be easily implemented under different situations.
Energy Technology Data Exchange (ETDEWEB)
Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith
2008-09-01
The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
Modern mathematics made simple
Murphy, Patrick
1982-01-01
Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional
Systemic combination treatment for psoriasis: a review
DEFF Research Database (Denmark)
Jensen, Peter; Skov, Lone; Zachariae, Claus
2010-01-01
Psoriasis is a chronic inflammatory skin disease, which affects approximately 2.6% of the population in Northern Europe and Scandinavia. In order to achieve disease control, combinations of systemic treatments are sometimes needed for variable time periods. However, no evidence-based guidelines...... exist for the use of systemic combination therapy. Therefore, our aim was to review the current literature on systemic anti-psoriatic combination regimens. We searched PubMed and identified 98 papers describing 116 studies (23 randomized) reporting on the effect of various systemic combination...
Review of nuclear power plant systems
International Nuclear Information System (INIS)
Doehler
1980-01-01
This presentation starts with a brief description of the Technischer Ueberwachungs-Verein (TUeV) and its main activities in the field of technical assessments. The TUeV-organisation is in general the assessor who performs the review if nuclear power plant systems, structures and equipment. All aspects relating to the safe operation of nuclear power plants are assessed by the TUeV. This paper stresses the review of the design of nuclear power plant systems and structures. It gives an outline on the procedure of an assessment, starting with the regulatory requirements, going into the papers of the applicant and finally ending with the TUeV-appraisal. This procedure is shown using settlement measuring requirements as an example. The review of the design of mechanical structures such as pipes, valves, pump and vessels is shown in detail. (RW)
LIMES Large Infrastructure in Mathematics - Enhanced Services
Fachinformationszentrum Energie, Physik, Mathematik. Karlsruhe
The Large Infrastructure in Mathematics - Enhanced Services (LIMES) Project is a RTD project within the Fifth (EC) Framework Programme - Horizontal Programme "Improving human research potential and the socio-economic knowledge base", Access to Resear The objective of this project is to upgrade the existing database Zentralblatt-MATH into a European based world class database for mathematics (pure and applied) by a process of technical improvement and wide Europeanisation, improving the present distribuited system. The goal is to make Zentralblatt MATH a world reference database, offering full coverage of the mathematics literature worldwide ncluding bibliographic data, peer reviews and/or abstracts, indexing, classification and search,
Review of advanced driver assistance systems (ADAS)
Ziebinski, Adam; Cupek, Rafal; Grzechca, Damian; Chruszczyk, Lukas
2017-11-01
New cars can be equipped with many advanced safety solutions. Airbags, seatbelts and all of the essential passive safety parts are standard equipment. Now cars are often equipped with new advanced active safety systems that can prevent accidents. The functions of the Advanced Driver Assistance Systems are still growing. A review of the most popular available technologies used in ADAS and descriptions of their application areas are discussed in this paper.
Review of Current Nuclear Vacuum System Technologies
International Nuclear Information System (INIS)
Carroll, M.; McCracken, J.; Shope, T.
2003-01-01
Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested
45 CFR 201.11 - Personnel merit system review.
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false Personnel merit system review. 201.11 Section 201... STATES FOR PUBLIC ASSISTANCE PROGRAMS Review and Audits § 201.11 Personnel merit system review. A personnel merit system review is carried out by the Office of State Merit Systems of the Office of the...
Advances in heat pump systems: A review
International Nuclear Information System (INIS)
Chua, K.J.; Chou, S.K.; Yang, W.M.
2010-01-01
Heat pump systems offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. As the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, the heat pump becomes a key component in an energy recovery system with great potential for energy saving. Improving heat pump performance, reliability, and its environmental impact has been an ongoing concern. Recent progresses in heat pump systems have centred upon advanced cycle designs for both heat- and work-actuated systems, improved cycle components (including choice of working fluid), and exploiting utilisation in a wider range of applications. For the heat pump to be an economical proposition, continuous efforts need to be devoted to improving its performance and reliability while discovering novel applications. Some recent research efforts have markedly improved the energy efficiency of heat pump. For example, the incorporation of a heat-driven ejector to the heat pump has improved system efficiency by more than 20%. Additionally, the development of better compressor technology has the potential to reduce energy consumption of heat pump systems by as much as 80%. The evolution of new hybrid systems has also enabled the heat pump to perform efficiently with wider applications. For example, incorporating a desiccant to a heat pump cycle allowed better humidity and temperature controls with achievable COP as high as 6. This review paper provides an update on recent developments in heat pump systems, and is intended to be a 'one-stop' archive of known practical heat pump solutions. The paper, broadly divided into three main sections, begins with a review of the various methods of enhancing the performance of heat pumps. This is followed by a review of the major hybrid heat pump systems suitable for application with various heat sources. Lastly, the paper presents novel
Precast concrete pavement - systems and performance review
Novak, Josef; Kohoutková, Alena; Křístek, Vladimír; Vodička, Jan
2017-09-01
Long-term traffic restrictions belong to the key disadvantages of conventional cast-in-plane concrete pavements which have been used for technical structures such as roads, parking place and airfield pavements. As a consequence, the pressure is put on the development of such systems which have short construction time, low production costs, long-term durability, low maintenance requirements etc.. The paper presents the first step in the development of an entirely new precast concrete pavement (PCP) system applicable to airfield and highway pavements. The main objective of the review of PCP systems is to acquire a better understanding of the current systems and design methods used for transport infrastructure. There is lack of information on using PCP systems for the construction of entirely new pavements. To most extensive experience is dated back to the 20th century when hexagonal slab panels and system PAG were used in the Soviet Union for the military airfields. Since cast-in-situ pavements became more common, the systems based on precast concrete panels have been mainly utilized for the removal of damaged sections of existing structures including roads, highways etc.. Namely, it concerns Fort Miller Super Slab system, Michigan system, Uretek Stitch system and Kwik system. The presented review indicates several issues associated with the listed PCP systems and their applications to the repair and rehabilitation of existing structures. Among others, the type of manufacturing technology, particularly the position of slots for dowel bars, affects the durability and performance of the systems. Gathered information serve for the development of a new system for airfield and highway pavement construction.
International Nuclear Information System (INIS)
Owolabi, Kolade M.
2016-01-01
The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.
Developing the basic building blocks of mathematics to be employed in practical embedded systems
Energy Technology Data Exchange (ETDEWEB)
Tickle, A J; Harvey, P K; Smith, J S [Intelligence Engineering and Industrial Automation Research Group, Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3GJ (United Kingdom); Wu, F, E-mail: a.j.tickle@liverpool.ac.u [RF Engines Ltd, Innovation Centre, St. Cross Business Park, Newport, Isle of Wight, PO30 5WB (United Kingdom)
2009-07-01
Mathematics is vitally important as it is used in many areas of science and engineering, in particular are functions such as sine, cosine and the exponent in addition to being to able to carry out such tasks as decimal division. The sine wave is vitally important in physics and communications due to its ability to retain its waveshape when added to another sine wave of the same frequency and arbitrary phase. It is the only periodic waveform that has this property and leads to techniques such as Fourier analysis. Unfortunately these blocks are not included in the standard DSP Builder blockset in Simulink and so a method of creating these operations must be created if this methodology is to be employed in real world tasks such as power relay protection and stereo vision systems. Shown here is a method of performing these calculations using the limited blocks provided for a 50-bit based embedded system with a discussion about the accuracy when compared to traditional digital system counterparts. The order of the equations used and the scaling factors of the blocks are investigated to provide evidence of why certain values need to be changed depending upon the calculation being performed.
Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.
Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios
2016-09-15
Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.
Developing the basic building blocks of mathematics to be employed in practical embedded systems
International Nuclear Information System (INIS)
Tickle, A J; Harvey, P K; Smith, J S; Wu, F
2009-01-01
Mathematics is vitally important as it is used in many areas of science and engineering, in particular are functions such as sine, cosine and the exponent in addition to being to able to carry out such tasks as decimal division. The sine wave is vitally important in physics and communications due to its ability to retain its waveshape when added to another sine wave of the same frequency and arbitrary phase. It is the only periodic waveform that has this property and leads to techniques such as Fourier analysis. Unfortunately these blocks are not included in the standard DSP Builder blockset in Simulink and so a method of creating these operations must be created if this methodology is to be employed in real world tasks such as power relay protection and stereo vision systems. Shown here is a method of performing these calculations using the limited blocks provided for a 50-bit based embedded system with a discussion about the accuracy when compared to traditional digital system counterparts. The order of the equations used and the scaling factors of the blocks are investigated to provide evidence of why certain values need to be changed depending upon the calculation being performed.
Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems
Energy Technology Data Exchange (ETDEWEB)
Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M
2011-03-10
consumption. In addition the finding was that there are tools and technologies that can be assembled and deployed in the short term - the next 3-5 years - that can be used to significantly reduce the cost and time effective delivery of moderate energy savings in the U.S. building stock. Simulation tools, which are a core strength of current DOE computational research programs, provide only a part of the answer by providing a basis for simulation enabled design. New investments will be required within a broad dynamics and control research agenda which must focus on dynamics, control, optimization and simulation of multi-scale energy systems during design and operation. U.S. investments in high performance and high productivity computing (HP2C) should be leveraged and coupled with advances in dynamics and control to impact both the existing building stock through retrofits and also new construction. The essential R&D areas requiring investment are: (1) Characterizing the Dynamics of Multi-scale Energy Systems; (2) Control and Optimization Methodologies of Multi-scale Energy Systems Under Uncertainty; and (3) Multiscale Modeling and Simulation Enabled Design and Operation. The concept of using design and control specific computational tools is a new idea for the building industry. The potential payoffs in terms of accelerated design cycle times, performance optimization and optimal supervisory control to obtain and maintain energy savings are huge. Recent advances in computational power, computer science, and mathematical algorithms offer the foundations to address the control problems presented by the complex dynamics of whole building systems. The key areas for focus and associated metrics with targets for establishing competitiveness in energy efficient building design and operation are: (1) Scalability - Current methodology and tools can provide design guidance for very low energy buildings in weeks to months; what is needed is hours to days. A 50X improvement is needed. (2
Andersson, Kennet
2011-01-01
Patients with idiopathic normal pressure hydrocephalus (INPH) have a disturbance in the cerebrospinal fluid (CSF) system. The treatment is neurosurgical – a shunt is placed in the CSF system. The infusion test is used to assess CSF system dynamics and to aid in the selection of patients that will benefit from shunt surgery. The infusion test can be divided into three parts: a mathematical model, an infusion protocol and a parameter estimation method. A non-linear differential equation is used...
Literature Review on Dynamic Cellular Manufacturing System
Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.
2014-06-01
In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.
Novaes de Andrade, Thales Haddad; Vilela, Denise Silva
2013-01-01
In Brazil, mathematics education was associated with Jean Piaget's theory. Scholars in the field of education appropriated Piaget's work in different ways, but usually emphasized logical aspects of thought, which probably lead to an expansion of mathematics education influenced by psychology. This study attempts to extend the range of…
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
Sacristán, Ana Isabel; Pretelín-Ricárdez, Angel
2017-01-01
This work is part of a research project that aims to enhance engineering students' learning of how to apply mathematics in modelling activities of real-world situations, through the construction (design and programming) of videogames. We want also for students to relate their mathematical knowledge with other disciplines (e.g., physics, computer…
Desoer, C. A.; Polak, E.; Zadeh, L. A.
1974-01-01
A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.
Harmon, Hobart L.; Smith, Keith
2007-01-01
This report pays tribute to the National Science Foundation's (NSF) Rural Systemic Initiatives (RSIs), an investment of more than $140 million to improve mathematics and science education in some of rural America's most impoverished communities. The report illustrates the impact of NSF's RSI program on a national scale. Each RSI planned a project…
Steenbergen-Hu, Saiying; Cooper, Harris
2013-01-01
In this study, we meta-analyzed empirical research of the effectiveness of intelligent tutoring systems (ITS) on K-12 students' mathematical learning. A total of 26 reports containing 34 independent samples met study inclusion criteria. The reports appeared between 1997 and 2010. The majority of included studies compared the effectiveness of ITS…
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
de Andrade, Thales Haddad Novaes; Vilela, Denise Silva
2013-09-01
In Brazil, mathematics education was associated with Jean Piaget's theory. Scholars in the field of education appropriated Piaget's work in different ways, but usually emphasized logical aspects of thought, which probably lead to an expansion of mathematics education influenced by psychology. This study attempts to extend the range of interlocutions and pose a dialogue between the field of mathematics education in Brazil and the sociology of science proposed by David Bloor. The main point of Bloor's theory is that logical-mathematical knowledge is far from being true and universal and is socially conditioned. In particular we will be discussing the first principle of the strong program, which deals with conditions that generate beliefs promoted by education policies in Brazil, such as the MEC/USAID treaties. In this case the "naturalization of logic" was stimulated by a widespread diffusion of both Piaget studies and the Modern Mathematics Movement.
Directory of Open Access Journals (Sweden)
Kirill A. Kalyashin
2013-01-01
Full Text Available In order to increase the efficiency and safety of rehabilitation of musculoskeletal system, the model and the algorithm for patient interaction with automated rehabilitation system with biological feedback was developed, based on registration and management of the second functional parameter, which prevents risks of overwork while intensive exercises.
The Development Of Mathematical Model For Automated Fingerprint Identification Systems Analysis
International Nuclear Information System (INIS)
Ardisasmita, M. Syamsa
2001-01-01
Fingerprint has a strong oriented and periodic structure composed of dark lines of raised skin (ridges) and clear lines of lowered skin (furrows)that twist to form a distinct pattern. Although the manner in which the ridges flow is distinctive, other characteristics of the fingerprint called m inutiae a re what are most unique to the individual. These features are particular patterns consisting of terminations or bifurcations of the ridges. To assert if two fingerprints are from the same finger or not, experts detect those minutiae. AFIS (Automated Fingerprint Identification Systems) extract and compare these features for determining a match. The classic methods of fingerprints recognition are not suitable for direct implementation in form of computer algorithms. The creation of a finger's model was however the necessity of development of new, better algorithms of analysis. This paper presents a new numerical methods of fingerprints' simulation based on mathematical model of arrangement of dermatoglyphics and creation of minutiae. This paper describes also the design and implementation of an automated fingerprint identification systems which operates in two stages: minutiae extraction and minutiae matching
A mathematical model of the hypothalamo-pituitary-adrenocortical system and its stability analysis
Energy Technology Data Exchange (ETDEWEB)
Savic, Danka [Vinca Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics, P.O. Box 522, Belgrade 11001 (Serbia and Montenegro)] e-mail: dankasav@eunet.yu; Jelic, Smiljana [Vinca Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics, P.O. Box 522, Belgrade 11001 (Serbia and Montenegro)
2005-10-01
It is commonly assumed that the hypothalamo-pituitary-adrenocortical (HPA) axis generates oscillations, because a regular daily rhythm of its component hormones is observed. We offer another plausible explanation of the origin of its circadian oscillations: HPA just responds to an independent external pacemaker (from the suprachiazmatic nucleus, SCN). Five versions (with and without time delay) of a qualitative non-phenomenological mathematical model of the HPA axis as a feedback mechanism are constructed wherein all the terms in the equations are introduced according to the rules of chemical kinetics, i.e. are physicochemically interpretable. The dynamics of the HPA axis model was examined using linear stability analysis. The results show stability of this system, meaning that it does not generate diurnal oscillations. Computer simulation based on this model shows oscillations that are system's response to an external pulsing activator (SCN) implying that the observed time-periodic pattern does not have to be an intrinsic property of the HPA axis.
Mathematical modelling of heat absorption capacity of containment spray system in a 700 MWe PHWR
International Nuclear Information System (INIS)
Kota, Sampath Bharadwaj; Ali, Seik Mansoor; Balasubramaniyan, V.
2015-01-01
This paper presents a mathematical model for estimating the heat removal by containment spray system in the post Loss of Coolant Accident (LOCA) environment. The procedure involves firstly, the calculation of heat removal rates by droplets of spray dispersed in the air-steam mixture by an appropriate direct contact condensation model accounting for the presence of non-condensable gas (air). Parametric influence of droplet size, ambient pressure and temperature on heat flux is brought out. It was found that the heat flux is inversely proportional to the ambient pressure and diameter. A spray module was subsequently developed and incorporated into an in-house containment thermal hydraulics code. The pressure and temperature transients in a 700 MWe PHWR containment building following a Large Break LOCA was obtained using this code. The efficacy of the spray in condensing the steam is shown by comparing the transients with and without the operation of spray system. Parametric studies are also conducted with respect to droplet size and flow rate of water droplet spray. The details of the investigation are presented and discussed in this paper. (author)
Information sharing systems and teamwork between sub-teams: a mathematical modeling perspective
Tohidi, Hamid; Namdari, Alireza; Keyser, Thomas K.; Drzymalski, Julie
2017-12-01
Teamwork contributes to a considerable improvement in quality and quantity of the ultimate outcome. Collaboration and alliance between team members bring a substantial progress for any business. However, it is imperative to acquire an appropriate team since many factors must be considered in this regard. Team size may represent the effectiveness of a team and it is of paramount importance to determine what the ideal team size exactly should be. In addition, information technology increasingly plays a differentiating role in productivity and adopting appropriate information sharing systems may contribute to improvement in efficiency especially in competitive markets when there are numerous producers that compete with each other. The significance of transmitting information to individuals is inevitable to assure an improvement in team performance. In this paper, a model of teamwork and its organizational structure are presented. Furthermore, a mathematical model is proposed in order to characterize a group of sub-teams according to two criteria: team size and information technology. The effect of information technology on performance of team and sub-teams as well as optimum size of those team and sub-teams from a productivity perspective are studied. Moreover, a quantitative sensitivity analysis is presented in order to analyze the interaction between these two factors through a sharing system.
A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System
Institute of Scientific and Technical Information of China (English)
GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong
2009-01-01
Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.
Torres Irribarra, D.; Freund, R.; Fisher, W.; Wilson, M.
2015-02-01
Computer-based, online assessments modelled, designed, and evaluated for adaptively administered invariant measurement are uniquely suited to defining and maintaining traceability to standardized units in education. An assessment of this kind is embedded in the Assessing Data Modeling and Statistical Reasoning (ADM) middle school mathematics curriculum. Diagnostic information about middle school students' learning of statistics and modeling is provided via computer-based formative assessments for seven constructs that comprise a learning progression for statistics and modeling from late elementary through the middle school grades. The seven constructs are: Data Display, Meta-Representational Competence, Conceptions of Statistics, Chance, Modeling Variability, Theory of Measurement, and Informal Inference. The end product is a web-delivered system built with Ruby on Rails for use by curriculum development teams working with classroom teachers in designing, developing, and delivering formative assessments. The online accessible system allows teachers to accurately diagnose students' unique comprehension and learning needs in a common language of real-time assessment, logging, analysis, feedback, and reporting.
International Nuclear Information System (INIS)
Irribarra, D Torres; Freund, R; Fisher, W; Wilson, M
2015-01-01
Computer-based, online assessments modelled, designed, and evaluated for adaptively administered invariant measurement are uniquely suited to defining and maintaining traceability to standardized units in education. An assessment of this kind is embedded in the Assessing Data Modeling and Statistical Reasoning (ADM) middle school mathematics curriculum. Diagnostic information about middle school students' learning of statistics and modeling is provided via computer-based formative assessments for seven constructs that comprise a learning progression for statistics and modeling from late elementary through the middle school grades. The seven constructs are: Data Display, Meta-Representational Competence, Conceptions of Statistics, Chance, Modeling Variability, Theory of Measurement, and Informal Inference. The end product is a web-delivered system built with Ruby on Rails for use by curriculum development teams working with classroom teachers in designing, developing, and delivering formative assessments. The online accessible system allows teachers to accurately diagnose students' unique comprehension and learning needs in a common language of real-time assessment, logging, analysis, feedback, and reporting
Verta, Antonella; Schena, Emiliano; Silvestri, Sergio
2010-06-01
The control of thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation appears to be a particularly difficult task, mainly due to the vast number of parameters to be monitored and the control strategies of heated humidifiers to be adopted. In the present paper, we describe the heat and fluid exchange occurring in a heated humidifier in mathematical terms; we analyze the sensitivity of the relative humidity of outlet gas as a function of thermo-hygrometric and fluid-dynamic parameters of delivered gas; we propose a control strategy that will enable the stability of outlet gas thermo-hygrometric conditions. The mathematical model is represented by a hyper-surface containing the functional relations between the input variables, which must be measured, and the output variables, which have to remain constant. Model sensitivity analysis shows that heated humidifier efficacy and stability of outlet gas thermo-hygrometric conditions are principally influenced by four parameters: liquid surface temperature, gas flow rate, inlet gas temperature and inlet gas relative humidity. The theoretical model has been experimentally validated in typical working conditions of neonatal applications. The control strategy has been implemented by a minimal measurement system composed of three thermometers, a humidity sensor, and a flow rate sensor, and based on the theoretical model. Outlet relative humidity, contained in the range 90+/-4% and 94+/-4%, corresponding with temperature variations in the range 28+/-2 degrees C and 38+/-2 degrees C respectively, has been obtained in the whole flow rate range typical of neonatal ventilation from 1 to 10 L/min. We conclude that in order to obtain the stability of the thermo-hygrometric conditions of the delivered gas mixture: (a) a control strategy with a more complex measurement system must be implemented (i.e. providing more input variables); (b) and the gas may also need to be pre-warmed before entering the humidifying
AMS Mathematical Review of the book "Géométrie discrète et images numériques" (French)
DEFF Research Database (Denmark)
Anton, François
2010-01-01
(through implict surfaces with skeletons, chapter 18), applications of discrete geometry to medical imaging (chapter 19) and generalization of discrete geometry objects and operators to multiresolution grids (chapter 20). This book presents very interesting mathematical methodological tools from discrete......This is the AMS Mathematical Review for the book: Géométrie discrète et images numériques [Discrete geometry and numerical images] Edited by David Coeurjolly, Annick Montanvert and Jean-Marc Chassery. Traité IC2. Série Signal et Image. [IC2 Treatise. Series Signal and Image] Hermes Science......”. The book is structured in five parts. The first part (chapters 2 through 4) presents the general mathematical foundations of discrete geometry and topology: arithmetic (chapter 2, which is later referred to in chapters 6, 7 and 11), topology (chapter 3, which is referred to in chapter 8) and combinatorics...
Thomas J. Pfaff
2015-01-01
Mahajan, Sanjoy. Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving (The MIT Press, Cambridge, Massachusetts, 2010). 152 pp. ISBN 978--0--262--51429--3 Street-Fighting Mathematics is an engaging collection of problem-solving techniques. The book is not for a general audience, as it requires a significant level of mathematical and scientific background knowledge. In particular, most of the book requires knowledge of Calculus I and there are examples ...
Image processing system for videotape review
International Nuclear Information System (INIS)
Bettendroffer, E.
1988-01-01
In a nuclear plant, the areas in which fissile materials are stored or handled, have to be monitored continuously. One method of surveillance is to record pictures of TV cameras with determined time intervals on special video recorders. The 'time lapse' recorded tape is played back at normal speed and an inspector checks visually the pictures. This method requires much manpower and an automated method would be useful. The present report describes an automatic reviewing method based on an image processing system; the system detects scene changes in the picture sequence and stores the reduced data set on a separate video tape. The resulting reduction of reviewing time by inspector is important for surveillance data with few movements
Dantzig, Tobias
2006-01-01
More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led
Systemic mastocytosis--a systematic review
DEFF Research Database (Denmark)
Andersen, Christen Lykkegaard; Kristensen, Thomas Kielsgaard; Severinsen, Marianne Tang
2012-01-01
The mast cell lives a hidden life, but it is implicated in several physiological reactions. Its ability to react to different stimuli impacts a variety of conditions such as asthma, atopic dermatitis, urticaria and anaphylaxis. It is not until recent decades that the evolution of the cell has bee...... described and its fascinating biology has only recently been depicted. We here give a review of systemic mastocytosis in regards to cell biology, diagnostic approaches and clinical practice....
Review and application of group theory to molecular systems biology.
Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A
2011-06-22
In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.
A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects
Directory of Open Access Journals (Sweden)
Shuai Luo
2016-02-01
Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.
Book Review: System Forensics, Investigation, and Response
Directory of Open Access Journals (Sweden)
Nate Keith
2012-06-01
Full Text Available Vacca, J. R. and Rudolph, K. (2011. System Forensics, Investigation, and Response. Sudbury, MA: Jones and Bartlett Learning. 339 + xv pages, ISBN: 978-0-7637-9134-6, US$89.95.Reviewed by Nate Keith, MBA, (natejkeith@gmail.comI recently expressed an interest to a respected colleague in finding a way to â€œgive backâ€ to the forensic community. He suggested writing a review for a text he recently received and provide feedback to the community. It is my intent to present an objective analysis of System Forensics, Investigation, and Response.Written by John R. Vacca and K Rudolph, this book is part of the Jones and Bartlett Learning Information Systems Security & Assurance Series.Â Both Vacca and Rudolph have considerable experience in the information technology field as is demonstrated by the back cover notes:Â â€œJohn R. Vacca is an information technology consultant and internationally known best-selling author based in Pomeroy, Ohio.Â Since 1982, he has written 62 books and more than 600 articles in the areas of advanced storage, computer security, and aerospace technology.(see PDF for full review
Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.
2014-01-01
The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...
Onevsky, P. M.; Onevsky, M. P.; Pogonin, V. A.
2018-03-01
The structure and mathematical models of the main subsystems of the control system of the “Artificial Lungs” are presented. This structure implements the process of imitation of human external respiration in the system “Artificial lungs - self-contained breathing apparatus”. A presented algorithm for parametric identification of the model is based on spectral operators, which allows using it in real time.
A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW
Directory of Open Access Journals (Sweden)
PREDRAG M. ŽIVKOVIĆ
2011-06-01
Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.
Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Casares, F.J.; Lopez-Luque, R.; Posadillo, R.; Varo-Martinez, M.
2014-01-01
Sizing SAPV techniques try to assess the reliability of the system from the stochastic simulation of the energy balance. This stochastic simulation implies the generation, for an extended period of time, of the main state variables of the physical equations describing the energy balance of the system, that is, the energy delivered to the load and the energy stored in the batteries. Most of these methods consider the daily load as a constant over the year and control the variables indicating the reliability associated with the supply of power to the load. Furthermore, these methods rely on previous random models for generating solar radiation data and, since the approximations of the simulation methods are asymptotic, when more precise reliability indicators are required, the simulation period needs to be extended. This paper presents a mathematical methodology to address the daily energy balance without resorting to simulation methods. This method is directly based on daily solar radiation series modelled according to Markov stochastic processes and Aguiar matrices. The characterization presented is the base of a rational method in which reliability does not depend on the number of iterations but on the precision of the conditional probabilities included in Aguiar matrices. - Highlights: • A new SAPV sizing method is presented and validated. • This model relates the PV sizing methods to the autocorrelative Aguiar model. • This statistical approach is only limited by Markov matrixes. • It permits the study of PV systems with variable daily demands or solar tracking. • LLP for a SAPV can be estimated quickly and in an analytic and precise way
International Nuclear Information System (INIS)
Nedelec, J.C.
1988-01-01
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.
Corsini, Chiara; Cervi, Elena; Migliavacca, Francesco; Schievano, Silvia; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
In this study, a mathematical model of the female circulation during pregnancy is presented in order to investigate the hemodynamic response to the cardiovascular changes associated with each trimester of pregnancy. First, a preliminary lumped parameter model of the circulation of a non-pregnant female was developed, including the heart, the systemic circulation with a specific block for the uterine district and the pulmonary circulation. The model was first tested at rest; then heart rate and vascular resistances were individually varied to verify the correct response to parameter alterations characterising pregnancy. In order to simulate hemodynamics during pregnancy at each trimester, the main changes applied to the model consisted in reducing vascular resistances, and simultaneously increasing heart rate and ventricular wall volumes. Overall, reasonable agreement was found between model outputs and in vivo data, with the trends of the cardiac hemodynamic quantities suggesting correct response of the heart model throughout pregnancy. Results were reported for uterine hemodynamics, with flow tracings resembling typical Doppler velocity waveforms at each stage, including pulsatility indexes. Such a model may be used to explore the changes that happen during pregnancy in female with cardiovascular diseases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
The contribution of general cognitive abilities and approximate number system to early mathematics.
Passolunghi, Maria Chiara; Cargnelutti, Elisa; Pastore, Massimiliano
2014-12-01
Math learning is a complex process that entails a wide range of cognitive abilities to be fulfilled. There is sufficient evidence that both general and specific cognitive skills assume a fundamental role, despite the absence of shared consensus about the relative extent of their involvement. Moreover, regarding general abilities, there is no agreement about the recruitment of the different memory components or of intelligence. In relation to specific factors, great debate subsists regarding the role of the approximate number system (ANS). Starting from these considerations, we wanted to conduct a wide assessment of memory components and ANS, by controlling for the effects associated with intelligence and also exploring possible relationships between all precursors. To achieve this purpose, a sample of 157 children was tested at both beginning and end of their Grade 1. Both general (memory and intelligence) and specific (ANS) precursors were evaluated by a wide battery of tests and put in relation to concurrent and subsequent math skills. Memory was explored in passive and active aspects involving both verbal and visuo-spatial components. Path analysis results demonstrated that memory, and especially the more active processes, and intelligence were the strongest precursors in both assessment times. ANS had a milder role which lost significance by the end of the school year. Memory and ANS seemed to influence early mathematics almost independently. Both general and specific precursors seemed to have a crucial role in early math competences, despite the lower involvement of ANS. © 2014 The British Psychological Society.
A Mathematical Modelling Approach for Systems Where the Servers Are Almost Always Busy
Directory of Open Access Journals (Sweden)
Christina Pagel
2012-01-01
Full Text Available The design and implementation of new configurations of mental health services to meet local needs is a challenging problem. In the UK, services for common mental health disorders such as anxiety and depression are an example of a system running near or at capacity, in that it is extremely rare for the queue size for any given mode of treatment to fall to zero. In this paper we describe a mathematical model that can be applied in such circumstances. The model provides a simple way of estimating the mean and variance of the number of patients that would be treated within a given period of time given a particular configuration of services as defined by the number of appointments allocated to different modes of treatment and the referral patterns to and between different modes of treatment. The model has been used by service planners to explore the impact of different options on throughput, clinical outcomes, queue sizes, and waiting times. We also discuss the potential for using the model in conjunction with optimisation techniques to inform service design and its applicability to other contexts.
Directory of Open Access Journals (Sweden)
Tim Dunne
2012-11-01
Full Text Available The challenges inherent in assessing mathematical proficiency depend on a number of factors, amongst which are an explicit view of what constitutes mathematical proficiency, an understanding of how children learn and the purpose and function of teaching. All of these factors impact on the choice of approach to assessment. In this article we distinguish between two broad types of assessment, classroom-based and systemic assessment. We argue that the process of assessment informed by Rasch measurement theory (RMT can potentially support the demands of both classroom-based and systemic assessment, particularly if a developmental approach to learning is adopted, and an underlying model of developing mathematical proficiency is explicit in the assessment instruments and their supporting material. An example of a mathematics instrument and its analysis which illustrates this approach, is presented. We note that the role of assessment in the 21st century is potentially powerful. This influential role can only be justified if the assessments are of high quality and can be selected to match suitable moments in learning progress and the teaching process. Users of assessment data must have sufficient knowledge and insight to interpret the resulting numbers validly, and have sufficient discernment to make considered educational inferences from the data for teaching and learning responses.
MacLean, Adam L.; Harrington, Heather A.; Stumpf, Michael P. H.; Byrne, Helen M.
2015-01-01
mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since
Bliss, Stacy
2006-01-01
The Test of Early Mathematics Ability--Third Edition (TEMA-3) is a norm-referenced parallel forms test intended to identify the level of mathematical ability for children aged 3 years 0 months through 8 years 11 months. According to the authors, the instrument can also be used as a criterion referenced or diagnostic tool for older students who are…
FCC riser quick separation system: a review
Directory of Open Access Journals (Sweden)
Zhi Li
2016-10-01
Full Text Available Abstract The riser reactor is the key unit in the fluid catalytic cracking (FCC process. As the FCC feedstocks become heavier, the product mixture of oil, gas and catalysts must be separated immediately at the outlet of the riser to avoid excessive coking. The quick separation system is the core equipment in the FCC unit. China University of Petroleum (Beijing has developed many kinds of separation system including the fender-stripping cyclone and circulating-stripping cyclone systems, which can increase the separation efficiency and reduce the pressure drop remarkably. For the inner riser system, a vortex quick separation system has been developed. It contains a vortex quick separator and an isolated shell. In order to reduce the separation time, a new type of separator called the short residence time separator system was developed. It can further reduce the separation time to less than 1 s. In this paper, the corresponding design principles, structure and industrial application of these different kinds of separation systems are reviewed. A system that can simultaneously realize quick oil gas separation, quick oil gas extraction and quick pre-stripping of catalysts at the end of the riser is the trend in the future.
Pawar, Sumedh; Sharma, Atul
2018-01-01
This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.
Mathematical Footprints Discovering Mathematics Everywhere
Pappas, Theoni
1999-01-01
MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent
International Nuclear Information System (INIS)
Wolff, Marc
2011-01-01
This work is devoted to the construction of numerical methods that allow the accurate simulation of inertial confinement fusion (ICF) implosion processes by taking self-generated magnetic field terms into account. In the sequel, we first derive a two-temperature resistive magnetohydrodynamics model and describe the considered closure relations. The resulting system of equations is then split in several subsystems according to the nature of the underlying mathematical operator. Adequate numerical methods are then proposed for each of these subsystems. Particular attention is paid to the development of finite volume schemes for the hyperbolic operator which actually is the hydrodynamics or ideal magnetohydrodynamics system depending on whether magnetic fields are considered or not. More precisely, a new class of high-order accurate dimensionally split schemes for structured meshes is proposed using the Lagrange re-map formalism. One of these schemes' most innovative features is that they have been designed in order to take advantage of modern massively parallel computer architectures. This property can for example be illustrated by the dimensionally split approach or the use of artificial viscosity techniques and is practically highlighted by sequential performance and parallel efficiency figures. Hyperbolic schemes are then combined with finite volume methods for dealing with the thermal and resistive conduction operators and taking magnetic field generation into account. In order to study the characteristics and effects of self-generated magnetic field terms, simulation results are finally proposed with the complete two-temperature resistive magnetohydrodynamics model on a test problem that represents the state of an ICF capsule at the beginning of the deceleration phase. (author)
System network planning expansion using mathematical programming, genetic algorithms and tabu search
International Nuclear Information System (INIS)
Sadegheih, A.; Drake, P.R.
2008-01-01
In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used
Wiris Quizzes: a continuous assessment system with automatic feedback for online mathematics
Directory of Open Access Journals (Sweden)
Remei Calm
2013-08-01
Full Text Available 0 0 1 148 815 USAL 6 1 962 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} In online engineering studies, the monitoring of the learning process as well as the assessment system are key aspects of teaching strategy. This paper examines a continuous assessment system with automatic feedback. It is based on Wiris Quizzes taken over the semester in a Mathematical Analysis course at the Open University of Catalonia. These tests, with parameterized statements, are completed in the Moodle environment with the symbolic calculator program Wiris (www.wiris.com. The results of the teaching experience in a virtual classroom with 65 students and the comparison with earlier semesters are clearly positive: (a the number of students who follow continuous assessment remains stable; (b the average of the continuous assessment marks increases considerably; (c the number of students who fail has been reduced significantly, and (d the satisfaction level of students regarding the subject, its contents and resources has improved notably.
A review of genomic data warehousing systems.
Triplet, Thomas; Butler, Gregory
2014-07-01
To facilitate the integration and querying of genomics data, a number of generic data warehousing frameworks have been developed. They differ in their design and capabilities, as well as their intended audience. We provide a comprehensive and quantitative review of those genomic data warehousing frameworks in the context of large-scale systems biology. We reviewed in detail four genomic data warehouses (BioMart, BioXRT, InterMine and PathwayTools) freely available to the academic community. We quantified 20 aspects of the warehouses, covering the accuracy of their responses, their computational requirements and development efforts. Performance of the warehouses was evaluated under various hardware configurations to help laboratories optimize hardware expenses. Each aspect of the benchmark may be dynamically weighted by scientists using our online tool BenchDW (http://warehousebenchmark.fungalgenomics.ca/benchmark/) to build custom warehouse profiles and tailor our results to their specific needs.
Self-contained microfluidic systems: a review.
Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar
2016-08-16
Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.
A strategic review of electricity systems models
International Nuclear Information System (INIS)
Foley, A.M.; O Gallachoir, B.P.; McKeogh, E.J.; Hur, J.; Baldick, R.
2010-01-01
Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system. (author)
Advanced nuclear systems. Review study; Fortgeschrittene Nuklearsysteme. Review Study
Energy Technology Data Exchange (ETDEWEB)
Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph [Interdisziplinaere Arbeitsgruppe Naturwissenschaft, Technik und Sicherheit (IANUS), Darmstadt University of Technology, Hochschulstrasse 10, D-64289 Darmstadt (Germany); Baehr, Roland; Hahn, Lothar [Institute for applied ecology (Oeko-Institut), Elisabethenstrasse 55-57, D-64283 Darmstadt (Germany)
1999-04-01
The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons
Review of SC/RF refrigeration systems
International Nuclear Information System (INIS)
Byrns, R.A.
1990-01-01
A short review is given of historical events in accelerator and cryogenic developments at both Stanford and Berkeley. Methods of refrigeration between 1.85 K and 4.5 K together with modern techniques and improvements are discussed. Where the decade of the 70's was the era of the screw compressor, the 80's can be considered that of the cold vacuum pump for superfluid cooling. Distribution methods are of major importance, and arguments can be made for bath or tube cooling, two-phase, thermo-syphon, supercritical or superfluid. System design affects reliability, safety and operating stability. Distribution costs and heat loads can be a large part of system totals. Some specific system descriptions are included. (author)
Tsuei, Mengping
2017-01-01
This study examined the effects of low-achieving children's use of helping tools in a synchronous mathematics peer-tutoring system on the children's mathematics learning and their learning behaviours. In a remedial class, 16 third-grade students in a remedial class engaged in peer tutoring in a face-to-face synchronous online environment during a…
Directory of Open Access Journals (Sweden)
Florentina A. Cziple
2006-10-01
Full Text Available The paper forwards the conclusions of a survey performed on a mathematical model of the phase equilibrium from the ternary system Al-Cu-Si. The author presents the calculus of the statistic equation of the liquidus surface model from this diagram, the plotting and statistical-mathematical interpretation of the results obtained.
International Nuclear Information System (INIS)
Bogusz-Czerniewicz, M.
2009-01-01
Background: Between 1996 and 1999 project team of ExPeRT, catalogued four external review systems of health care facilities in the European Union and countries associated with EU. Aim: The aim of this paper is a/ to identify and compare currently existing external review systems for radiation oncology facilities and b/ to distinguish main differences between clinical audit and other external evaluation models and c/ to identify where those models are currently used in European Union member states. Materials and Methods: Based on the literature review and the survey conducted between January and April 2007 among representatives of 67 national societies (for diagnostic radiology, radiotherapy and nuclear medicine) in European Union member states, the analysis of existing external review systems in radiation oncology was performed. Relevant information about purpose, scope and methodology of evaluation process for those systems were surveyed. Results: The response to the questionnaire was 72%. Only a few countries did not supply any reply in spite of repeated enquiries to several recipients. Six main categories of systems aiming at measuring the quality of service management and delivery were identified: professional peer review -based schemes, hospital accreditation, accreditation in terms of ISO standards, award seeking, certification by International Standards Organization, and clinical audit. Conclusions: Though the methodology and terminology of the five main external review systems differ, a constant movement towards collaboration and convergence of those models has been observed. Due to the social, political, and economical aspects of each European country, the different audit systems have been implemented either on voluntary or mandatory basis. (author)
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard; Gray, Jeremy
Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....
WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW
Directory of Open Access Journals (Sweden)
N. RAMESH BABU
2013-08-01
Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.
Böhm, Arno; Koizumi, Hiroyasu; Niu, Qian; Zwanziger, Joseph
2003-01-01
Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics) The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them
Mathematics for the liberal arts
Brown, Jason I
2014-01-01
The Math in Your Life Health, Safety, and Mathematics Found in Translation The Essentials of Conversion Making Sense of Your World with Statistics Summarizing Data with a Few Good Numbers Estimating Unknowns Leading You Down the Garden Path with Statistics Visualizing with Mathematics Seeing Data A Graph Is Worth a Thousand Words Money and Risk Money - Now or Later Risk Taking and Probability The Life in Your Math! Deciding to Make the Best Decisions Making the Right Choices for You Game Theory - Coming Out on Top Making Joint Decisions Art Imitating Math The Math that Makes the Art Believing What You See (or Not) The Mathematics of Sound (and the Sound of Mathematics) The Mathematics of Listening The Mathematics of Composing Solving Musical Mysteries with MSI (Math Scene Investigations) Late Night Mathematics - Humor and Philosophy Laughing with Mathematics The Limits of Mathematics Bibliography Index Review questions appear at the end of each chapter.
Karadagli, Fatih; McAvoy, Drew C; Rittmann, Bruce E
2009-05-01
The processes that flushable solid products may undergo after discharge to wastewater systems are (1) physical disintegration of solids resulting from turbulence, (2) direct dissolution of water-soluble components, (3) hydrolysis of solids to form soluble components, and (4) biodegradation of soluble and insoluble components. We develop a mathematical model for physical disintegration of flushable solid consumer products and test it with two different flushable products--product A, which has 40% water soluble-content, and product B, which has no water-soluble components. We present our modeling analysis of experimental results, from which we computed disintegration rate constants and fractional distribution coefficients for the disintegration of larger solids. The rate constants for solids of product A in units of (hour(-1)) are 0.45 for > 8-mm, 2.25 x 10(-2) for 4- to 8-mm, 0.9 x 10(-2) for 2- to 4-mm, and 1.26 x 10(-2) for 1- to 2-mm solids. The rate constants for solids of product B in units of hour(-1) are 1.8 for > 8-mm, 1.8 for 4- to 8-mm, 3.6 x 10(-1) for 2- to 4-mm, and 2.25 x 10(-3) for 1- to 2-mm solids. As indicated by the rate constants, larger solids disintegrate at a faster rate than smaller solids. In addition, product B disintegrated much faster and went mostly to the smallest size range, while product A disintegrated more slowly and was transferred to a range of intermediate solid sizes.
Yuan-Shyi Peter Chiu; Chien-Hua Lee; Nong Pan; Singa Wang Chiu
2013-01-01
This study uses mathematical modeling along with an algebraic technique to resolve the production-distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We assume that a product is manufactured through an imperfect production process where all nonconforming items will be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will be delivered synchronously to m different retailers in ...
Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.
2018-03-01
The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
5 CFR 430.312 - OPM review of agency systems.
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false OPM review of agency systems. 430.312... PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.312 OPM review of agency systems. (a) Agencies must submit proposed SES performance management systems to OPM for approval. (b) OPM will review...
Directory of Open Access Journals (Sweden)
Yu.I. Sinko
2012-03-01
Full Text Available In this article the interconnections of course of mathematical logic with other mathematical courses – geometry, algebra and theory of numbers, mathematical analysis, and also with the courses of mathematics teaching methodology, history of mathematics in the system of preparation of teachers of mathematics in pedagogical Institute of higher education are analyzed. The presence of connections between the elements of the system and their quality is the important description of the pedagogical system.
Manufacturing Bms/Iso System Review
Gomez, Yazmin
2004-01-01
The Quality Management System (QMS) is one that recognizes the need to continuously change and improve an organization s products and services as determined by system feedback, and corresponding management decisions. The purpose of a Quality Management System is to minimize quality variability of an organization's products and services. The optimal Quality Management System balances the need for an organization to maintain flexibility in the products and services it provides with the need for providing the appropriate level of discipline and control over the processes used to provide them. The goal of a Quality Management System is to ensure the quality of the products and services while consistently (through minimizing quality variability) meeting or exceeding customer expectations. The GRC Business Management System (BMS) is the foundation of the Center's ISO 9001:2000 registered quality system. ISO 9001 is a quality system model developed by the International Organization for Standardization. BMS supports and promote the Glenn Research Center Quality Policy and wants to ensure the customer satisfaction while also meeting quality standards. My assignment during this summer is to examine the manufacturing processes used to develop research hardware, which in most cases are one of a kind hardware, made with non conventional equipment and materials. During this process of observation I will make a determination, based on my observations of the hardware development processes the best way to meet customer requirements and at the same time achieve the GRC quality standards. The purpose of my task is to review the manufacturing processes identifying opportunities in which to optimize the efficiency of the processes and establish a plan for implementation and continuous improvement.
Directory of Open Access Journals (Sweden)
Thomas J. Pfaff
2015-07-01
Full Text Available Mahajan, Sanjoy. Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving (The MIT Press, Cambridge, Massachusetts, 2010. 152 pp. ISBN 978--0--262--51429--3 Street-Fighting Mathematics is an engaging collection of problem-solving techniques. The book is not for a general audience, as it requires a significant level of mathematical and scientific background knowledge. In particular, most of the book requires knowledge of Calculus I and there are examples that will require knowledge of Physics. At the same time, there are parts of the book that don't require this much background. While the title of the book may be misleading, as it is really street-fighting mathematics for people with a fair amount of training in the subject, there is a lot to be gained from reading this book, and calculus teachers may find it to be a useful resource.
Directory of Open Access Journals (Sweden)
Kanokwan Singha
2017-01-01
Full Text Available This paper involves developing new mathematical expressions to find reorder point and order quantity for inventory management policies that explicitly consider storage space capacity. Both continuous and periodic reviews, as well as backlogged and lost demand during stockout, are considered. With storage space capacity, when on-hand inventory exceeds the capacity, the over-ordering cost of storage at an external warehouse is charged on a per-unit-period basis. The objective is to minimize the total cost, consisting of ordering, shortage, holding, and over-ordering costs. Demand and lead time are stochastic and discrete in nature. Demand during varying lead time is modeled using an empirical distribution so that the findings are not subject to assumptions of demand and lead time probability distributions. Due to the complexity of the developed mathematical expressions, the problems are solved using an iterative method. The method is tested with problem instances that use real data from industry. Optimal solutions of the problem instance are determined by performing exhaustive search. The proposed method can effectively find optimal solutions for continuous review policies and near optimal solutions for periodic review policies. Fundamental insights about the inventory policies are reported from a comparison between continuous review and periodic review solutions, as well as a comparison between backlog and lost sales cases.
Andreescu, Titu; Tetiva, Marian
2017-01-01
Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...
Interactive Mathematics Textbooks
DEFF Research Database (Denmark)
Sinclair, Robert
1999-01-01
We claim that important considerations have been overlooked in designinginteractive mathematics educational software in the past.In particular,most previous work has concentrated on how to make use ofpre-existing software in mathematics education, rather than firstasking the more...... fundamentalquestion of which requirements mathematics education puts on software, and thendesigning software to fulfil these requirements.We present a working prototype system which takes a script defining an interactivemathematicaldocument and then provides a reader with an interactive realization of thatdocument....
2010-02-10
...' Purchasing Systems Reviews AGENCIES: Department of Defense (DOD), General Services Administration (GSA), and... collection requirement concerning contractors' purchasing systems reviews. A request for public comments was..., Washington, DC 20405. Please cite OMB Control No. 9000-0132, Contractors' Purchasing Systems Review, in all...
Solar-energy drying systems. A review
Energy Technology Data Exchange (ETDEWEB)
Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)
2009-08-15
In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)
Automated packing systems: review of industrial implementations
Whelan, Paul F.; Batchelor, Bruce G.
1993-08-01
A rich theoretical background to the problems that occur in the automation of material handling can be found in operations research, production engineering, systems engineering and automation, more specifically machine vision, literature. This work has contributed towards the design of intelligent handling systems. This paper will review the application of these automated material handling and packing techniques to industrial problems. The discussion will also highlight the systems integration issues involved in these applications. An outline of one such industrial application, the automated placement of shape templates on to leather hides, is also discussed. The purpose of this system is to arrange shape templates on a leather hide in an efficient manner, so as to minimize the leather waste, before they are automatically cut from the hide. These pieces are used in the furniture and car manufacturing industries for the upholstery of high quality leather chairs and car seats. Currently this type of operation is semi-automated. The paper will outline the problems involved in the full automation of such a procedure.
Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics
Rosenzweig, Martin
2007-01-01
This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…
Directory of Open Access Journals (Sweden)
Fedotov A.
2017-02-01
Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.
The role of mathematics and modeling in a competency centered learning system
Langereis, G.R.; Hu, J.; Feijs, L.M.G.
2011-01-01
With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this paper, a model is proposed where conventional education is seen as a process from math to design, while competency driven approaches tend to
Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?
Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...
Prospects and limitations of mathematical methods for decision making in nonlinear complex systems
DEFF Research Database (Denmark)
Starke, Jens; Berkemer, Rainer
2007-01-01
This report discusses the art of scientific modeling in general. Different modeling approaches and their investigation are outlined. The final issue is to elaborate on the preconditions for utilizing mathematical models for decision making. We are very much indebted to the participants of the wor...
Rodríguez, Nancy
2015-03-01
The use of mathematical tools has long proved to be useful in gaining understanding of complex systems in physics [1]. Recently, many researchers have realized that there is an analogy between emerging phenomena in complex social systems and complex physical or biological systems [4,5,12]. This realization has particularly benefited the modeling and understanding of crime, a ubiquitous phenomena that is far from being understood. In fact, when one is interested in the bulk behavior of patterns that emerge from small and seemingly unrelated interactions as well as decisions that occur at the individual level, the mathematical tools that have been developed in statistical physics, game theory, network theory, dynamical systems, and partial differential equations can be useful in shedding light into the dynamics of these patterns [2-4,6,12].
A review on condition-based maintenance optimization models for stochastically deteriorating system
International Nuclear Information System (INIS)
Alaswad, Suzan; Xiang, Yisha
2017-01-01
Condition-based maintenance (CBM) is a maintenance strategy that collects and assesses real-time information, and recommends maintenance decisions based on the current condition of the system. In recent decades, research on CBM has been rapidly growing due to the rapid development of computer-based monitoring technologies. Research studies have proven that CBM, if planned properly, can be effective in improving equipment reliability at reduced costs. This paper presents a review of CBM literature with emphasis on mathematical modeling and optimization approaches. We focus this review on important aspects of the CBM, such as optimization criteria, inspection frequency, maintenance degree, solution methodology, etc. Since the modeling choice for the stochastic deterioration process greatly influences CBM strategy decisions, this review classifies the literature on CBM models based on the underlying deterioration processes, namely discrete- and continuous-state deterioration, and proportional hazard model. CBM models for multi-unit systems are also reviewed in this paper. This paper provides useful references for CBM management professionals and researchers working on CBM modeling and optimization. - Highlights: • A review on Condition-based maintenance (CBM) optimization models is presented. • The CBM models are classified based on the underlying deterioration processes. • Existing CBM models for both single- and multi-unit systems are reviewed. • Future essential research directions on CBM are identified.
Development of web-based safety review advisory system
International Nuclear Information System (INIS)
Kim, M. W.; Lee, H. C.; Park, S. O.; Lee, K. H.; Hur, K. Y.; Lee, S. J.; Choi, S. S.; Kang, C. M.
2002-01-01
For the development of an expert system supporting the safety review of nuclear power plants, the application was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they are investigated by KINS (Korea Institute of Nuclear Safety). The Safety Review Advisory System(SRAS), this application on web-server environment was developed according to the above specifications. Reviews can do their safety reviewing regardless of their speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into four groups, administrator, project manager, project reviewer and general reviewer. Each user group is delegated appropriate access capability. The function and some screen shots of SRAS are described
Development of web-based safety review advisory system
International Nuclear Information System (INIS)
Kim, M. W.; Hur, K. Y.; Lee, S. J.; Choi, S. J.
2002-01-01
For the development of an expert system supporting the safety review of nuclear power plants, the application was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they are investigated by KINS. Safety Review Advisory System (SRAS), this application on web-server environment was developed according to the above specifications. Reviews can do their safety reviewing regardless of their speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into four groups, administrator, project manager, project reviewer and general reviewer. Each user group is delegated appropriate access capability. The function and some screen shots of SRAS are described
Development of safety review advisory system for nuclear power plants
International Nuclear Information System (INIS)
Kim, M. W.; Lee, H. C.; Park, S. O.; Park, W. J.; Lee, J. I.; Hur, K. Y.; Choi, S. S.; Lee, S. J.; Kang, C. M.
2001-01-01
For the development of an expert system supporting the safety review of nuclear power plants, the application program was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they were investigated by the safety review experts at KINS. Safety Review Advisory System (SRAS), the windows application on client-server environment was developed according to the above specifications. Reviewers can do their safety reviewing regardless of speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into three groups, administrator, project manager, and reviewer. Each user group has appropriate access capability. The function and some screen shots of SRAS are described in this paper
Morsanyi, Kinga; Primi, Caterina; Handley, Simon J; Chiesi, Francesca; Galli, Silvia
2012-11-01
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile. ©2011 The British Psychological Society.
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
Nash, Jr, John Forbes
2016-01-01
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...
Review on security issues in RFID systems
Directory of Open Access Journals (Sweden)
Mohamed El Beqqal
2017-12-01
Full Text Available Radio frequency Identification (RFID is currently considered as one of the most used technologies for an automatic identification of objects or people. Based on a combination of tags and readers, RFID technology has widely been applied in various areas including supply chain, production and traffic control systems. However, despite of its numerous advantages, the technology brings out many challenges and concerns still not being attracting more and more researchers especially the security and privacy issues. In this paper, we review some of the recent research works using RFID solutions and dealing with security and privacy issues, we define our specific parameters and requirements allowing us to classify for each work which part of the RFID system is being secured, the solutions and the techniques used besides the conformity to RFID standards. Finally, we present briefly a solution that consists of combining RFID with smartcard based biometric to enhance security especially in access control scenarios. Hence the result of our study aims to give a clear vision of available solutions and techniques used to prevent and secure the RFID system from specific threats and attacks.
United States of America: health system review.
Rice, Thomas; Rosenau, Pauline; Unruh, Lynn Y; Barnes, Andrew J; Saltman, Richard B; van Ginneken, Ewout
2013-01-01
This analysis of the United States health system reviews the developments in organization and governance, health financing, health-care provision, health reforms and health system performance. The US health system has both considerable strengths and notable weaknesses. It has a large and well-trained health workforce, a wide range of high-quality medical specialists as well as secondary and tertiary institutions, a robust health sector research program and, for selected services, among the best medical outcomes in the world. But it also suffers from incomplete coverage of its citizenry, health expenditure levels per person far exceeding all other countries, poor measures on many objective and subjective measures of quality and outcomes, an unequal distribution of resources and outcomes across the country and among different population groups, and lagging efforts to introduce health information technology. It is difficult to determine the extent to which deficiencies are health-system related, though it seems that at least some of the problems are a result of poor access to care. Because of the adoption of the Affordable Care Act in 2010, the United States is facing a period of enormous potential change. Improving coverage is a central aim, envisaged through subsidies for the uninsured to purchase private insurance, expanded eligibility for Medicaid (in some states) and greater protection for insured persons. Furthermore, primary care and public health receive increased funding, and quality and expenditures are addressed through a range of measures. Whether the ACA will indeed be effective in addressing the challenges identified above can only be determined over time. World Health Organization 2013 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).
... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...
Průša, Vít; Řehoř, Martin; Tůma, Karel
2017-02-01
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
Directory of Open Access Journals (Sweden)
Yulia G. Krasnozhon
2018-03-01
Full Text Available Modern information technologies have an increasing importance for development dynamics and management structure of an enterprise. The management efficiency of implementation of modern information technologies directly related to the quality of information security incident management. However, issues of assessment of the impact of information security incidents management on quality and efficiency of the enterprise management system are not sufficiently highlighted neither in Russian nor in foreign literature. The main direction to approach these problems is the optimization of the process automation system of the information security incident management. Today a special attention is paid to IT-technologies while dealing with information security incidents at mission-critical facilities in Russian Federation such as the Federal Tax Service of Russia (FTS. It is proposed to use the mathematical apparatus of queueing theory in order to build a mathematical model of the system optimization. The developed model allows to estimate quality of the management taking into account the rules and restrictions imposed on the system by the effects of information security incidents. Here an example is given in order to demonstrate the system in work. The obtained statistical data are shown. An implementation of the system discussed here will improve the quality of the Russian FTS services and make responses to information security incidents faster.
Endocan and the respiratory system: a review
Directory of Open Access Journals (Sweden)
Kechagia M
2016-12-01
Full Text Available Maria Kechagia,1,2 Ioannis Papassotiriou,2 Konstantinos I Gourgoulianis1 1Respiratory Medicine Department, University of Thessaly Medical School, Larissa, 2Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece Abstract: Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system. Keywords: endocan, endothelial dysfunction, inflammation, respiratory disorders
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram
2017-03-01
The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.
Trinajstić, Nenad; Gutman, Ivan
2002-01-01
A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...
A mathematical model for order splitting in a multiple supplier single-item inventory system
DEFF Research Database (Denmark)
Abginehchi, Soheil; Farahani, Reza Zanjirani; Rezapour, Shabnam
2013-01-01
systems. The item acquisition lead times of suppliers are random variables. Backorder is allowed and shortage cost is charged based on not only per unit in shortage but also per time unit. Continuous review (s,Q) policy has been assumed. When the inventory level depletes to a reorder level, the total...... order is split among n suppliers. Since the suppliers have different characteristics, the quantity ordered to different suppliers may be different. The problem is to determine the reorder level and quantity ordered to each supplier so that the expected total cost per time unit, including ordering cost......, procurement cost, inventory holding cost, and shortage cost, is minimized. We also conduct extensive numerical experiments to show the advantages of our model compared with the models in the literature. According to our extensive experiments, the model developed in this paper is the best model...
Mathematical Modeling: A Bridge to STEM Education
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
Kilpatrick, Jeremy
2014-01-01
This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…
Mathematical modeling of cancer metabolism.
Medina, Miguel Ángel
2018-04-01
Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.
VLSI implementation of RSA encryption system using ancient Indian Vedic mathematics
Thapliyal, Himanshu; Srinivas, M. B.
2005-06-01
This paper proposes the hardware implementation of RSA encryption/decryption algorithm using the algorithms of Ancient Indian Vedic Mathematics that have been modified to improve performance. The recently proposed hierarchical overlay multiplier architecture is used in the RSA circuitry for multiplication operation. The most significant aspect of the paper is the development of a division architecture based on Straight Division algorithm of Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved efficiency. The coding is done in Verilog HDL and the FPGA synthesis is done using Xilinx Spartan library. The results show that RSA circuitry implemented using Vedic division and multiplication is efficient in terms of area/speed compared to its implementation using conventional multiplication and division architectures.
DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS
Directory of Open Access Journals (Sweden)
Volodymyr M. Mykhalevych
2013-11-01
Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.
International Nuclear Information System (INIS)
Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik
2014-01-01
An entirely novel satellite thermal architecture, connecting the east and west radiators of a geostationary telecommunications satellite via loop heat pipes (LHPs), is proposed. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). A transient numerical model is developed to simulate the thermal dynamic behavior of the proposed system. The details of the proposed architecture and mathematical model are presented. The model is used to analyze a set of critical design cases to identify potential failure modes prior to the qualification and in-orbit tests. The mathematical model results for critical cases are presented and discussed. The model results demonstrated the robustness and versatility of the proposed architecture under the predicted worst-case conditions. - Highlights: •We developed a mathematical model of a novel satellite thermal architecture. •We provided the dimensioning cases to design the thermal architecture. •We provided the failure mode cases to verify the thermal architecture. •We provided the results of the corresponding dimensioning and failure cases
Tückmantel, Joachim
2001-01-01
Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.
Tückmantel, Joachim
2001-01-01
Upcoming projects relying on pulsed linear accelerators intend to use superconducting RF systems. Cost reasons suggest driving several cavities by a common transmitter, controlled over a vector sum feedback system, possibly supported by a feed forward system. Numerical simulations hint that such a system may become uncontrollable under certain conditions. In the present paper, for a model very close to reality, we will present a mathematical proof that in fact spontaneous symmetry braking is possible for these configurations, defining also the precise conditions under which it will take place. These can be used as an estimate for the real RF system stability limits. The listing of a small program demonstrating the mechanism numerically for two cavities is attached.
Review of hybrid laminar flow control systems
Krishnan, K. S. G.; Bertram, O.; Seibel, O.
2017-08-01
The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.
Increment 23/24 Critical Readiness Review Health Maintenance System
Nieschwitz, Linda
2010-01-01
This slide presentation reviews the Health Maintenance System. It includes information on the carbon dioxide (CO2) and moisture removal system (CMRS), the variable oxygen system,rendevous station panels, and the crew contamination protection kit (CCPK).
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...
Mathematical Modeling and Pure Mathematics
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…