Description of mathematical models and computer programs
International Nuclear Information System (INIS)
1977-01-01
The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives
Mathematical models and algorithms for the computer program 'WOLF'
International Nuclear Information System (INIS)
Halbach, K.
1975-12-01
The computer program FLOW finds the nonrelativistic self- consistent set of two-dimensional ion trajectories and electric fields (including space charges from ions and electrons) for a given set of initial and boundary conditions for the particles and fields. The combination of FLOW with the optimization code PISA gives the program WOLF, which finds the shape of the emitter which is consistent with the plasma forming it, and in addition varies physical characteristics such as electrode position, shapes, and potentials so that some performance characteristics are optimized. The motivation for developing these programs was the desire to design optimum ion source extractor/accelerator systems in a systematic fashion. The purpose of this report is to explain and derive the mathematical models and algorithms which approximate the real physical processes. It serves primarily to document the computer programs. 10 figures
Mathematical model for HIV spreads control program with ART treatment
Maimunah; Aldila, Dipo
2018-03-01
In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.
Learning Mathematics through Programming
DEFF Research Database (Denmark)
Misfeldt, Morten; Ejsing-Duun, Stine
2015-01-01
In this paper we explore the potentials for learning mathematics through programming by a combination of theoretically derived potentials and cases of practical pedagogical work. We propose a model with three interdependent learning potentials as programming which can: (1) help reframe the students...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...
Modeling Clinic for Industrial Mathematics: A Collaborative Project Under Erasmus+ Program
DEFF Research Database (Denmark)
Jurlewicz, Agnieszka; Nunes, Claudia; Russo, Giovanni
2018-01-01
Modeling Clinic for Industrial Mathematics (MODCLIM) is a Strategic Partnership for the Development of Training Workshops and Modeling Clinic for Industrial Mathematics, funded through the European Commission under the Erasmus Plus Program, Key Action 2: Cooperation for innovation and the exchang...
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Eck, Christof; Knabner, Peter
2017-01-01
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Keren, Baruch; Pliskin, Joseph S
2011-12-01
The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when.
Mathematical Modeling and Pure Mathematics
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
MATHEMATICAL MODEL MANIPULATOR ROBOTS
Directory of Open Access Journals (Sweden)
O. N. Krakhmalev
2015-12-01
Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.
Modeling Mathematical Programs with Equilibrium Constraints in Pyomo
Energy Technology Data Exchange (ETDEWEB)
Hart, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Siirola, John Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-07-01
We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.
A review of mathematical programming models of irrigation water ...
African Journals Online (AJOL)
Crops modelled influence water values, but there is no apparent relationship between objective function specification and average value. Nor does the number of irrigation options seem to influence water value either. The policy implication is that while similar models for the same region produce consistent estimates, each ...
Stochastic Robust Mathematical Programming Model for Power System Optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Mathematical programming model for the optimization of nutritional ...
African Journals Online (AJOL)
optimum level of production and the corresponding feed that should be offered to the cow, under a particular production system. The model showed that the nutritional strategy applied is dependent upon the ..... Effects of business and dairy.
Finite mathematics models and applications
Morris, Carla C
2015-01-01
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.
Warehouse design and product assignment and allocation: A mathematical programming model
Geraldes, Carla A. S.; Carvalho, Maria Sameiro; Pereira, Guilherme
2012-01-01
Warehouses can be considered one of the most important nodes in supply chains. The dynamic nature of today's markets compels organizations to an incessant reassessment in an effort to respond to continuous challenges. Therefore warehouses must be continually re-evaluated to ensure that they are consistent with both market's demands and management's strategies. In this paper we discuss a mathematical programming model aiming to support product assignment and allocation to the functional areas ...
Gholamnejad, J.; Moosavi, E.
2012-01-01
Determination of the optimum production schedules over the life of a mine is a critical mechanism in open pit mine planning procedures. Long-term production scheduling is used to maximize the net present value of the project under technical, financial, and environmental constraints. Mathematical programming models are well suited for optimizing long-term production schedules of open pit mines. There are two approaches to solving long-term production problems: deterministic- and uncertainty- b...
Hızır, Ahmet Esat; Hizir, Ahmet Esat
2006-01-01
Sustainability is an emerging issue as a direct consequence of the population increase in the world. Urban transport systems play a crucial role in maintaining sustainability. Recently, sustainable urban transportation has become a major research area. Most of these studies propose evaluation methods that use simulation tools to assess the sustainability of different transportation policies. Despite all studies, there seems to be lack of mathematical programming models to determine the optima...
Solving a bi-objective mathematical programming model for bloodmobiles location routing problem
Directory of Open Access Journals (Sweden)
Masoud Rabbani
2017-01-01
Full Text Available Perishability of platelets, uncertainty of donors’ arrival and conflicting views in platelet supply chain have made platelet supply chain planning a problematic issue. In this paper, mobile blood collection system for platelet production is investigated. Two mathematical models are presented to cover the bloodmobile collection planning problem. The first model is a multi-objective fuzzy mathematical programming in which the bloodmobiles locations are considered with the aim of maximizing potential amount of blood collection and minimizing the operational cost. The second model is a vehicle routing problem with time windows which studies the shuttles routing problem. To tackle the first model, it is reformulated as a crisp multi objective linear programming model and then solved through a fuzzy multi objective programming approach. Several sensitivity analysis are conducted on important parameters to demonstrate the applicability of the proposed model. The proposed model is then solved by using a tailored Simulated Annealing (SA algorithm. The numerical results demonstrate promising efficiency of the proposed solution method.
Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers
Directory of Open Access Journals (Sweden)
Victor-Eduard Cenușă
2017-08-01
Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.
International Nuclear Information System (INIS)
Nikolaev, V.I.; Yatsko, S.N.
1995-01-01
A mathematical model and a package of programs are presented for simulating the atmospheric turbulent diffusion of contaminating impurities from land based and other sources. Test calculations and investigations of the effect of various factors are carried out
Directory of Open Access Journals (Sweden)
Thomas Heckelei
2012-05-01
Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.
Mathematical Modeling Using MATLAB
National Research Council Canada - National Science Library
Phillips, Donovan
1998-01-01
.... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...
Algorithmic Principles of Mathematical Programming
Faigle, Ulrich; Kern, Walter; Still, Georg
2002-01-01
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear
Energy Technology Data Exchange (ETDEWEB)
Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)
2009-09-15
Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
Program realization of mathematical model of kinetostatical calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
M. A. Vasechkin
2016-01-01
Full Text Available Global computerization determined the dominant position of the analytical methods for the study of mechanisms. As a result, kinetostatics analysis of mechanisms using software packages is an important part of scientific and practical activities of engineers and designers. Therefore, software implementation of mathematical models kinetostatical calculating mechanisms is of practical interest. The mathematical model obtained in [1]. In the language of Turbo Pascal developed a computer procedure that calculates the forces in kinematic pairs in groups Assur (GA and a balancing force at the primary level. Before use appropriate computational procedures it is necessary to know all external forces and moments acting on the GA and to determine the inertial forces and moments of inertia forces. The process of calculations and constructions of the provisions of the mechanism can be summarized as follows. Organized cycle in which to calculate the position of an initial link of the mechanism. Calculate the position of the remaining links of the mechanism by referring to relevant procedures module DIADA in GA [2,3]. Using the graphics mode of the computer displaying on the display the position of the mechanism. The computed inertial forces and moments of inertia forces. Turning to the corresponding procedures of the module, calculated all the forces in kinematic pairs and the balancing force at the primary level. In each kinematic pair build forces and their direction with the help of simple graphical procedures. The magnitude of these forces and their direction are displayed in a special window with text mode. This work contains listings of the test programs MyTеst, is an example of using computing capabilities of the developed module. As a check on the calculation procedures of module in the program is reproduced an example of calculating the balancing forces according to the method of Zhukovsky (Zhukovsky lever.
Directory of Open Access Journals (Sweden)
Михаил Юрьевич Чернышов
2013-12-01
Full Text Available A software complex (SC elaborated by the authors on the basis of the language LMPL and representing a software tool intended for synthesis of applied software models and meta-models constructed on the basis of mathematical programming (MP principles is described. LMPL provides for an explicit form of declarative representation of MP-models, presumes automatic constructing and transformation of models and the capability of adding external software packages. The following software versions of the SC have been implemented: 1 a SC intended for representing the process of choosing an optimal hydroelectric power plant model (on the principles of meta-modeling and 2 a SC intended for representing the logic-sense relations between the models of a set of discourse formations in the discourse meta-model.
Mathematical Modelling Approach in Mathematics Education
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
Teaching Mathematical Modeling in Mathematics Education
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Gerber, Lindsey N.
2012-01-01
Teacher quality is instrumental in improving student performance. Unfortunately, discrepancies between teacher preparation programs and national and state K-12 student standards have contributed to the difficult task of producing quality teachers. The contemporary mathematics education paradigm used at most colleges and universities relies on…
Mathematical programming model for heat exchanger design through optimization of partial objectives
International Nuclear Information System (INIS)
Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.
2013-01-01
Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature
PROGRAMS FOR MODELLING RANDOM EVENTS FOR THE SAKE OF LEARNING BOTH PROGRAMMING AND MATHEMATICS
Directory of Open Access Journals (Sweden)
Y. Gayev
2015-04-01
Full Text Available MATLAB-programs of some discrete random event has been developed and intended (1 as an exercise at the study of Algorithmization and Programming Course, and (2 for carrying out some "experiments" by lecturing the Course of Probability and Statistics Theory, or at its self-study by students. The programs allows to do several probabilistic experiments in a necessary amount M, using the random number generator, to count up frequency of "favorable events" appearance and compare it to theoretical probability. This displays the Law of large numbers, i.e. approaching experimental results to theory with unlimited increase of М. The work, however, lies not only in this pragmatic result. It should encourage students to study problems of Probability Theory by means of creation appropriate computer codes. The most easy and quick way to this leads to MATLAB-environment. That is why the paper suggests principles of programming in it along with creation of graphical user interface (GUI.
Developing mathematical modelling competence
DEFF Research Database (Denmark)
Blomhøj, Morten; Jensen, Tomas Højgaard
2003-01-01
In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....
Fathelrahman, Eihab; Davies, Amalia; Davies, Stephen; Pritchett, James
2014-01-01
This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that c...
Machine Learning via Mathematical Programming
National Research Council Canada - National Science Library
Mamgasarian, Olivi
1999-01-01
Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...
Mathematical modelling techniques
Aris, Rutherford
1995-01-01
""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode
Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi
2017-11-04
This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Constraint Programming versus Mathematical Programming
DEFF Research Database (Denmark)
Hansen, Jesper
2003-01-01
Constraint Logic Programming (CLP) is a relatively new technique from the 80's with origins in Computer Science and Artificial Intelligence. Lately, much research have been focused on ways of using CLP within the paradigm of Operations Research (OR) and vice versa. The purpose of this paper...
Mathematical programming in multiperson cooperative games
Energy Technology Data Exchange (ETDEWEB)
Lucas, W.
1994-12-31
Many fundamental solution notions in mathematical economics relate to mathematical programming. This includes various types of equilibrium points for the noncooperative (strategic) competitions, as well as the core for the cooperative (coalitional) models. This talk concerns alternate cooperative solution concepts such as various nucleoli points and other proposed fairness outcomes. These concepts become of particular interest for those cases when the core is an empty set. Recent results on these alternate solutions for classes of assignment games will be presented.
The effect of workload constraints in mathematical programming models for production planning
Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.
2010-01-01
Linear and mixed integer programming models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these eterministic models are the current-state-of-art, it should be recognized that they are used in an environment that is inherently
Directory of Open Access Journals (Sweden)
Mahmoudi Hoda
2014-09-01
Full Text Available These instructions give you guidelines for preparing papers for IFAC conferences. A reverse supply chain is configured by a sequence of elements forming a continuous process to treat return-products until they are properly recovered or disposed. The activities in a reverse supply chain include collection, cleaning, disassembly, test and sorting, storage, transport, and recovery operations. This paper presents a mathematical programming model with the objective of minimizing the total costs of reverse supply chain including transportation, fixed opening, operation, maintenance and remanufacturing costs of centers. The proposed model considers the design of a multi-layer, multi-product reverse supply chain that consists of returning, disassembly, processing, recycling, remanufacturing, materials and distribution centers. This integer linear programming model is solved by using Lingo 9 software and the results are reported. Finally, a sensitivity analysis of the proposed model is also presented.
Mathematical modelling of metabolism
DEFF Research Database (Denmark)
Gombert, Andreas Karoly; Nielsen, Jens
2000-01-01
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...
Mathematical modeling of biological processes
Friedman, Avner
2014-01-01
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
Principles of mathematical modeling
Dym, Clive
2004-01-01
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...
Directory of Open Access Journals (Sweden)
Aleksander Mendyk
2015-01-01
Full Text Available The purpose of this work was to develop a mathematical model of the drug dissolution (Q from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs and genetic programming (GP tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1 direct modeling of Q versus extrudate diameter (d and the time variable (t and (2 indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations’ parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE from 2.19 to 2.33. The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs’ black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Mathematical models in radiogeochronology
International Nuclear Information System (INIS)
Abril, J.M.; Garcia Leon, M.
1991-01-01
The study of activity vs. depth profiles in sediment cores of some man-made and natural ocurring radionuclides have shown to be a poweful tool for dating purposes. Nevertheless, in most cases, an adecuate interpretation of such profiles requires mathematical models. In this paper, by considering the sediment as a continuum, a general equation for diffusion of radionuclides through it is obtained. Consequentely, some previously published dating models are found to be particular solutions of such general advenction-diffusion problem. Special emphasis is given to the mathematical treatment of compactation effect and time dependent problems. (author)
Concepts of mathematical modeling
Meyer, Walter J
2004-01-01
Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec
Energy Technology Data Exchange (ETDEWEB)
1993-12-01
This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.
Mathematical Modeling: A Structured Process
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical models of hysteresis
International Nuclear Information System (INIS)
1998-01-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above
Mathematical models of hysteresis
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
International Nuclear Information System (INIS)
Chen, B.C.J.; Hull, J.R.; Seitz, M.G.; Sha, W.T.; Shah, V.L.; Soo, S.L.
1984-07-01
Computer model simulation is required to evaluate the performance of proposed or future high-level radioactive waste geological repositories. However, the accuracy of a model in predicting the real situation depends on how well the values of the transport properties are prescribed as input parameters. Knowledge of transport parameters is therefore essential. We have modeled ANL's Experiment Analog Program which was designed to simulate long-term radwaste migration process by groundwater flowing through a high-level radioactive waste repository. Using this model and experimental measurements, we have evaluated neptunium (actinide) deposition velocity and analyzed the complex phenomena of simultaneous deposition, erosion, and reentrainment of bentonite when groundwater is flowing through a narrow crack in a basalt rock. The present modeling demonstrates that we can obtain the values of transport parameters, as added information without any additional cost, from the available measurements of laboratory analog experiments. 8 figures, 3 tables
Reinert, K. A.
The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.
Authenticity of Mathematical Modeling
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Program realization of mathematical model of kinematic calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
M. A. Vasechkin
2016-01-01
Full Text Available Calculation of kinematic mechanisms is very time-consuming work. Due to the content of a large number of similar operations can be automated using computers. Forthis purpose, it is necessary to implement a software implementation ofthe mathematical model of calculation of kinematic mechanisms of the second class. In the article on Turbo Pascal presents the text module to library procedures all kinematic studies of planar lever mechanisms of the second class. The determination of the kinematic characteristics of the mechanism and the construction of its provisions, plans, plans, speeds and accelerations carried out on the example of the six-link mechanism. The beginning of the motionless coordinate system coincides with the axis of rotation of the crank AB. It is assumed that the known length of all links, the positions of all additional points of links and the coordinates of all kinematic pairs rack mechanism, i.e. this stage of work to determine the kinematics of the mechanism must be preceded by a stage of synthesis of mechanism (determining missing dimensions of links. Denote the coordinates of point C and considering that the analogues of velocities and accelerations of this point is 0 (stationary point, appeal to the procedure that computes the kinematics group the Assyrians (GA third. Specify kinematic parameters of point D, taking the beginning of the guide slide E at point C, the angle, the analogue of the angular velocity and the analogue of the angular acceleration of the guide is zero, knowing the length of the connecting rod DE and the length of link 5, refer to the procedure for the GA of the second kind. The use of library routines module of the kinematic calculation, makes it relatively simple to organize a simulation of the mechanism motion, to calculate the projection analogues of velocities and accelerations of all links of the mechanism, to build plans of the velocities and accelerations at each position of the mechanism.
International Nuclear Information System (INIS)
Tavakkoli-Moghaddam, R.
1999-01-01
This paper present unequal-sized facilities layout solutions generated by a genetic search program. named Layout Design using a Genetic Algorithm) 9. The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computational results on test problems are reported as compared with layout solutions generated by the branch - and bound algorithm a hybrid method merging simulated annealing and local search techniques, and an optimization process of an enveloped block
Energy Technology Data Exchange (ETDEWEB)
Morales Fusco, P.; Pedrielli, G.; Zhou, C.; Hay Lee, L.; Peng Chew, E.
2016-07-01
In most large port cities, the challenge of inter-terminal transfers (ITT) prevails due to the long distance between multiple terminals. The quantity of containers requiring movement between terminals as they connect from pre-carrier to on-carrier is increasing with the formation of the mega-alliances. The paper proposes a continuous time mathematical programming model to optimize the deployment and schedule of trucks and barges to minimize the number of operating transporters, their makespan, costs and the distance travelled by the containers by choosing the right combination of transporters and container movements while fulfilling time window restrictions imposed on reception of the containers. A multi-step routing problem is developed where transporters can travel from one terminal to another and/or load or unload containers from a specific batch at each step. The model proves successful in identifying the costless schedule and means of transportation. And a sensibility analysis over the parameters used is provided. (Author)
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
A Primer for Mathematical Modeling
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
International Nuclear Information System (INIS)
Castillo M, J.A.; Pimentel P, A.E.
2000-01-01
This work presents the results to define the adult egg viability behavior (VHA) of two species, Drosophila melanogaster and D. simulans obtained with the mathematical model proposed, as well as the respective curves. The data are the VHA result of both species coming from the vicinity of the Laguna Verde Nuclear Power plant (CNLV) comprise a 10 years collect period starting from 1987 until 1997. Each collect includes four series of data which are the VHA result obtained after treatment with 0, 4, 6 and 8 Gy of gamma rays. (Author)
Rehmer, Donald E.
Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic
Mathematical modeling with multidisciplinary applications
Yang, Xin-She
2013-01-01
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
Mathematical Modelling of Predatory Prokaryotes
Wilkinson, Michael H.F.
2006-01-01
Predator–prey models have a long history in mathematical modelling of ecosystem dynamics and evolution. In this chapter an introduction to the methodology of mathematical modelling is given, with emphasis on microbial predator–prey systems, followed by a description of variants of the basic
Duncan, Hollis; Dick, Thomas
2000-01-01
Describes the Treisman model which involves supplemental workshops in which college students solve problems in collaborative learning groups. Reports on the effectiveness of Math Excel, an implementation of the Treisman model for introductory mathematics courses at Oregon State University over five academic terms. Reveals a significant effect on…
Mathematical problems in meteorological modelling
Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella
2016-01-01
This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...
Quality of secondary preservice mathematics teacher education programs
Gómez, Pedro
2005-01-01
Characterizing the quality of teacher education programs and courses Supported by the Ministry of Science and Technology Working for three years Three universities working on secondary mathematics pre- service teacher education Almeria, Cantabria and Granada With a common model
Mathematical Modeling and Computational Thinking
Sanford, John F.; Naidu, Jaideep T.
2017-01-01
The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…
Explorations in Elementary Mathematical Modeling
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
The many faces of the mathematical modeling cycle
Perrenet, J.C.; Zwaneveld, B.
2012-01-01
In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven University of Technology, after having completed a series of mathematical modeling projects, have been
Directory of Open Access Journals (Sweden)
Emma L Davis
2018-01-01
Full Text Available There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall and temperature, is used to describe the level of infection in the human population alongside the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude that settings with extreme fluctuations in rainfall or temperature could exhibit strong seasonal transmission patterns that may be partially masked by the longevity of A. lumbricoides infections in hosts; we go on to demonstrate how seasonally timed mass drug administration (MDA could impact the outcomes of control strategies. For the South Korean setting the results predict a comparative decrease of 74.5% in mean worm days (the number of days the average individual spend infected with worms across a 12 month period between the best and worst MDA timings after four years of annual treatment. The model found no significant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature range and no rainfall dependence. Our results suggest that seasonal variation in egg survival and maturation could be exploited to maximise the impact of MDA in certain settings.
Mathematical Modelling Plant Signalling Networks
Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.
2013-01-01
methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more
ICT- The Educational Programs in Teaching Mathematics
Directory of Open Access Journals (Sweden)
Dance Sivakova
2017-08-01
Full Text Available The range of information and communication technology in teaching mathematics is unlimited. Despite numerous researches about the opportunities and application of the ICT in teaching mathematics and in the world, however, many aspects remain unexplored. This research comes to knowledge that will be applicable to the educational practice. The findings will serve as motivation for more frequent use of the ICT in teaching mathematics from first to fifth grade as a mean for improving of the educational process. Through application of the ICT in the educational programs in teaching mathematics the technological improved practice is investigated and discussed and it helps overcoming of the challenges that arise when trying to integrate the ICT in the educational curricula in mathematics. The biggest challenge are the findings about the possibilities of the application of the ICT in the educational programs in math from first to fifth grade as well as their dissemination, all aimed to improving of teaching mathematics from the first to the fifth grade. The application of the most ICT in the educational programs of mathematics affects the training of the students for easier adoption of the mathematical concepts and the mathematical procedures and in the easier identification and resolving problem situations.
An introduction to mathematical modeling
Bender, Edward A
2000-01-01
Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The
Mathematical Modeling of Diverse Phenomena
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Mathematical modelling of membrane separation
DEFF Research Database (Denmark)
Vinther, Frank
This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
The Spectrum of Mathematical Models.
Karplus, Walter J.
1983-01-01
Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.
1985-06-01
This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics
Wickstrom, Megan H.
2017-01-01
This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
Using Covariation Reasoning to Support Mathematical Modeling
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
The 24-Hour Mathematical Modeling Challenge
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Mathematical Modeling: A Bridge to STEM Education
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
International Nuclear Information System (INIS)
Dunn, W.E.; Policastro, A.J.; Paddock, R.A.
1975-08-01
This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. Part Two compares predictions from the models to prototype data, laboratory data, or both. Part Two also provides a generic discussion of the issues surrounding near- and complete-field modeling. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques
A Developmental Mapping Program Integrating Geography and Mathematics.
Muir, Sharon Pray; Cheek, Helen Neely
Presented and discussed is a model which can be used by educators who want to develop an interdisciplinary map skills program in geography and mathematics. The model assumes that most children in elementary schools perform cognitively at Piaget's concrete operational stage, that readiness for map skills can be assessed with Piagetian or…
Optimization and mathematical modeling in computer architecture
Sankaralingam, Karu; Nowatzki, Tony
2013-01-01
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t
Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2016-01-01
This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.
1985-01-01
This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments
International Nuclear Information System (INIS)
Dunn, W.E.; Policastro, A.J.; Paddock, R.A.
1975-05-01
This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques
S.M.P. SEQUENTIAL MATHEMATICS PROGRAM.
CICIARELLI, V; LEONARD, JOSEPH
A SEQUENTIAL MATHEMATICS PROGRAM BEGINNING WITH THE BASIC FUNDAMENTALS ON THE FOURTH GRADE LEVEL IS PRESENTED. INCLUDED ARE AN UNDERSTANDING OF OUR NUMBER SYSTEM, AND THE BASIC OPERATIONS OF WORKING WITH WHOLE NUMBERS--ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. COMMON FRACTIONS ARE TAUGHT IN THE FIFTH, SIXTH, AND SEVENTH GRADES. A…
Micronesian Mathematics Program, Level 1, Children's Workbook.
Gring, Carolyn
This workbook for children was prepared especially to accompany the level 1 Micronesian Mathematics Program Teacher's Guide. It is to be used to check whether children have learned concepts taught by activities and activity cards. Work is provided for such concepts as color recognition, categorizing, counting, ordering, numeration, contrasting,…
Mathematical Modeling in the Undergraduate Curriculum
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
Teachers' Conceptions of Mathematical Modeling
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Mathematical modelling in economic processes.
Directory of Open Access Journals (Sweden)
L.V. Kravtsova
2008-06-01
Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.
Modeling interdisciplinary activities involving Mathematics
DEFF Research Database (Denmark)
Iversen, Steffen Møllegaard
2006-01-01
In this paper a didactical model is presented. The goal of the model is to work as a didactical tool, or conceptual frame, for developing, carrying through and evaluating interdisciplinary activities involving the subject of mathematics and philosophy in the high schools. Through the terms...... of Horizontal Intertwining, Vertical Structuring and Horizontal Propagation the model consists of three phases, each considering different aspects of the nature of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the students abilities to concept formation in expanded...... domains (Michelsen, 2001, 2005a, 2005b). Furthermore the theoretical description rest on a series of qualitative interviews with teachers from the Danish high school (grades 9-11) conducted recently. The special case of concrete interdisciplinary activities between mathematics and philosophy is also...
Linear programming mathematics, theory and algorithms
1996-01-01
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
Mathematical modelling in solid mechanics
Sofonea, Mircea; Steigmann, David
2017-01-01
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...
Directory of Open Access Journals (Sweden)
Djoko Purnomo
2017-02-01
Full Text Available The specific purpose of this research is: The implementation of the application of the learning tool with a form cognitive learning evaluation model based macros program via E-learning at High School grade X at july-december based on 2013 curriculum. The method used in this research followed the procedures is research and development by Borg and Gall [2]. In second year, population analysis has conducted at several universities in Semarang. The results of the research and application development of macro program-based cognitive evaluation model is effective which can be seen from (1 the student learning result is over KKM, (2 The student independency affects learning result positively, (3 the student learning a result by using macros program-based cognitive evaluation model is better than students class control. Based on the results above, the development of macros program-based cognitive evaluation model that have been tested have met quality standards according to Akker (1999. Large-scale testing includes operational phase of field testing and final product revision, i.e trials in the wider class that includes students in mathematics education major in several universities, they are the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang. The positive responses is given by students at the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang.
Exploring Yellowstone National Park with Mathematical Modeling
Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia
2017-01-01
Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…
Strategies to Support Students' Mathematical Modeling
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Mathematical Modeling in the High School Curriculum
Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary
2016-01-01
In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
XIV International Conference on Mathematical Programming
Pardalos, Panos; Rapcsák, Tamás
2001-01-01
This volume contains refereed papers based on the lectures presented at the XIV International Conference on Mathematical Programming held at Matrahaza, Hungary, between 27-31 March 1999. This conference was organized by the Laboratory of Operations Research and Deci sion Systems at the Computer and Automation Institute, Hungarian Academy of Sciences. The editors hope this volume will contribute to the theory and applications of mathematical programming. As a tradition of these events, the main purpose of the confer ence was to review and discuss recent advances and promising research trends concerning theory, algorithms and applications in different fields of Optimization Theory and related areas such as Convex Analysis, Complementarity Systems and Variational Inequalities. The conference is traditionally held in the Matra Mountains, and housed by the resort house of the Hungarian Academy of Sciences. This was the 14th event of the long lasting series of conferences started in 1973. The organizers wish to...
Mathematical Model of Age Aggression
Golovinski, P. A.
2013-01-01
We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...
Mathematical modeling of cancer metabolism.
Medina, Miguel Ángel
2018-04-01
Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.
Mathematical models of granular matter
Mariano, Paolo; Giovine, Pasquale
2008-01-01
Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.
Summer Camp of Mathematical Modeling in China
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Mathematics Teacher Education: A Model from Crimea.
Ferrucci, Beverly J.; Evans, Richard C.
1993-01-01
Reports on the mathematics teacher preparation program at Simferopol State University, the largest institution of higher education in the Crimea. The article notes the value of investigating what other countries consider essential in mathematics teacher education to improve the mathematical competence of students in the United States. (SM)
Directory of Open Access Journals (Sweden)
Faramarz Ashenai Ghasemi
Full Text Available This paper presents analytical and mathematical modeling and optimization of the dynamic behavior of the fiber metal laminates (FMLs subjected to low-velocity impact. The deflection to thickness (w/h ratio has been identified through the governing equations of the plate that are solved using the first-order shear deformation theory as well as the Fourier series method. With the help of a two degrees-of-freedom system, consisting of springs-masses, and the Choi's linearized Hertzian contact model the interaction between the impactor and the plate is modeled. Thirty-one experiments are conducted on samples of different layer sequences and volume fractions of Al plies in the composite Structures. A reliable fitness function in the form of a strict linear mathematical function constructed. Using an ordinary least square method, response regression coefficients estimated and a zero-one programming technique proposed to optimize the FML plate behavior subjected to any technological or cost restrictions. The results indicated that FML plate behavior is highly affected by layer sequences and volume fractions of Al plies. The results also showed that, embedding Al plies at outer layers of the structure significantly results in a better response of the structure under low-velocity impact, instead of embedding them in the middle or middle and outer layers of the structure.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Mathematical modeling of laser lipolysis
Directory of Open Access Journals (Sweden)
Reynaud Jean
2008-02-01
Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction
Mathematical Modeling in Combustion Science
Takeno, Tadao
1988-01-01
An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.
Mathematical models of bipolar disorder
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
mathematical models for estimating radio channels utilization
African Journals Online (AJOL)
2017-08-08
Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.
Mathematical models in medicine: Diseases and epidemics
International Nuclear Information System (INIS)
Witten, M.
1987-01-01
This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Mathematical modeling of reciprocating pump
International Nuclear Information System (INIS)
Lee, Jong Kyeom; Jung, Jun Ki; Chai, Jang Bom; Lee, Jin Woo
2015-01-01
A new mathematical model is presented for the analysis and diagnosis of a high-pressure reciprocating pump system with three cylinders. The kinematic and hydrodynamic behaviors of the pump system are represented by the piston displacements, volume flow rates and pressures in its components, which are expressed as functions of the crankshaft angle. The flow interaction among the three cylinders, which was overlooked in the previous models, is considered in this model and its effect on the cylinder pressure profiles is investigated. The tuning parameters in the mathematical model are selected, and their values are adjusted to match the simulated and measured cylinder pressure profiles in each cylinder in a normal state. The damage parameter is selected in an abnormal state, and its value is adjusted to match the simulated and ensured pressure profiles under the condition of leakage in a valve. The value of the damage parameter over 300 cycles is calculated, and its probability density function is obtained for diagnosis and prognosis on the basis of the probabilistic feature of valve leakage.
Explorations in Elementary Mathematical Modeling
Directory of Open Access Journals (Sweden)
Mazen Shahin
2010-06-01
Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.
Stein, David; Ostrander, Peter; Lee, G. Maie
2016-01-01
The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…
Reflexion and control mathematical models
Novikov, Dmitry A
2014-01-01
This book is dedicated to modern approaches to mathematical modeling of reflexive processes in control. The authors consider reflexive games that describe the gametheoretical interaction of agents making decisions based on a hierarchy of beliefs regarding (1) essential parameters (informational reflexion), (2) decision principles used by opponents (strategic reflexion), (3) beliefs about beliefs, and so on. Informational and reflexive equilibria in reflexive games generalize a series of well-known equilibrium concepts in noncooperative games and models of collective behavior. These models allow posing and solving the problems of informational and reflexive control in organizational, economic, social and other systems, in military applications, etc. (the interested reader will find in the book over 30 examples of possible applications in these fields) and describing uniformly many psychological/sociological phenomena connected with reflexion, viz., implicit control, informational control via the mass media, re...
Mathematical models in biological discovery
Walter, Charles
1977-01-01
When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Mathematical study of mixing models
International Nuclear Information System (INIS)
Lagoutiere, F.; Despres, B.
1999-01-01
This report presents the construction and the study of a class of models that describe the behavior of compressible and non-reactive Eulerian fluid mixtures. Mixture models can have two different applications. Either they are used to describe physical mixtures, in the case of a true zone of extensive mixing (but then this modelization is incomplete and must be considered only as a point of departure for the elaboration of models of mixtures actually relevant). Either they are used to solve the problem of the numerical mixture. This problem appears during the discretization of an interface which separates fluids having laws of different state: the zone of numerical mixing is the set of meshes which cover the interface. The attention is focused on numerical mixtures, for which the hypothesis of non-miscibility (physics) will bring two equations (the sixth and the eighth of the system). It is important to emphasize that even in the case of the only numerical mixture, the presence in one and same place (same mesh) of several fluids have to be taken into account. This will be formalized by the possibility for mass fractions to take all values between 0 and 1. This is not at odds with the equations that derive from the hypothesis of non-miscibility. One way of looking at things is to consider that there are two scales of observation: the physical scale at which one observes the separation of fluids, and the numerical scale, given by the fineness of the mesh, to which a mixture appears. In this work, mixtures are considered from the mathematical angle (both in the elaboration phase and during their study). In particular, Chapter 5 shows a result of model degeneration for a non-extended mixing zone (case of an interface): this justifies the use of models in the case of numerical mixing. All these models are based on the classical model of non-viscous compressible fluids recalled in Chapter 2. In Chapter 3, the central point of the elaboration of the class of models is
Mathematical modeling courses for Media technology students
DEFF Research Database (Denmark)
Timcenko, Olga
2009-01-01
This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...
Specific Type of Knowledge Map: Mathematical Model
Milan, Houška; Martina, Beránková
2005-01-01
The article deals with relationships between mathematical models and knowledge maps. The goal of the article is to suggest how to use the mathematical model as a knowledge map and/or as a part (esp. the inference mechanism) of the knowledge system. The results are demonstrated on the case study, when the knowledge from a story is expressed by mathematical model. The model is used for both knowledge warehousing and inferencing new artificially derived knowledge.
Mathematical Model for Prediction of Flexural Strength of Mound ...
African Journals Online (AJOL)
The mound soil-cement blended proportions were mathematically optimized by using scheffe's approach and the optimization model developed. A computer program predicting the mix proportion for the model was written. The optimal proportion by the program was used prepare beam samples measuring 150mm x 150mm ...
Mathematical modeling of drug dissolution.
Siepmann, J; Siepmann, F
2013-08-30
The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohammed Yunus
2018-01-01
Full Text Available Friction stir welding (FSW is the most popular and efficient method of solid-state joining for similar as well as dissimilar metals and alloys. It is mostly used in applications for aerospace, rail, automotive, and marine industries. Many researchers are currently working with different perspectives on this FSW process for various combinations of materials. The general input process parameters are the thickness of the plate, axial load, rotational speed, welding speed, and tilt angle. The output parameters are joint hardness, % of elongation, and impact and yield strengths. Genetic programming (GP is a relatively new method of evolutionary computing with the principal advantage of this approach being to evaluate efficacious predictive mathematical models or equations without any prior assumption regarding the possible form of the functional relationship. This paper both defines and illustrates how GP can be applied to the FSW process to derive precise relationships between the output and input parameters in order to obtain a generalized prediction model. A GP model will assist engineers in quantifying the performance of FSW, and the results from this study can then be utilized to estimate future requirements based on the historical data to provide a robust solution. The obtained results from the GP models showed good agreement with experimental and target data at an average prediction error of 0.72%.
Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.
2016-01-01
In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…
Mathematical models for plant-herbivore interactions
Feng, Zhilan; DeAngelis, Donald L.
2017-01-01
Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Surface EXAFS - A mathematical model
International Nuclear Information System (INIS)
Bateman, J.E.
2002-01-01
Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study
Mathematical models of human behavior
DEFF Research Database (Denmark)
Møllgaard, Anders Edsberg
at the Technical University of Denmark. The data set includes face-to-face interaction (Bluetooth), communication (calls and texts), mobility (GPS), social network (Facebook), and general background information including a psychological profile (questionnaire). This thesis presents my work on the Social Fabric...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived....... Evidence is provided, which implies that the asymmetry is caused by a self-enhancement in the initiation dynamics. These results have implications for the formation of social networks and the dynamics of the links. It is shown that the Big Five Inventory (BFI) representing a psychological profile only...
The Impact of an Online Tutoring Program on Mathematics Achievement
Clark, Amy K.; Whetstone, Patti
2014-01-01
The authors explored the impact of an online tutoring program, Math Whizz (Whizz Education, 2014), on student mathematics achievement at 15 elementary schools. Students participated in the use of the Math Whizz program for the duration of the school year as a supplement to mathematics instruction. The Math Whizz program recorded such information…
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.
1984-04-01
This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)
Mathematical model on Alzheimer's disease.
Hao, Wenrui; Friedman, Avner
2016-11-18
Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.
Mathematical programming solver based on local search
Gardi, Frédéric; Darlay, Julien; Estellon, Bertrand; Megel, Romain
2014-01-01
This book covers local search for combinatorial optimization and its extension to mixed-variable optimization. Although not yet understood from the theoretical point of view, local search is the paradigm of choice for tackling large-scale real-life optimization problems. Today's end-users demand interactivity with decision support systems. For optimization software, this means obtaining good-quality solutions quickly. Fast iterative improvement methods, like local search, are suited to satisfying such needs. Here the authors show local search in a new light, in particular presenting a new kind of mathematical programming solver, namely LocalSolver, based on neighborhood search. First, an iconoclast methodology is presented to design and engineer local search algorithms. The authors' concern about industrializing local search approaches is of particular interest for practitioners. This methodology is applied to solve two industrial problems with high economic stakes. Software based on local search induces ex...
Josai Mathematical Monographs Vol.7 Program
城西大学大学院理学研究科
2014-01-01
Mathematics and Computer Science : Proceedings of Annual Workshop on Mathematics and Computer Science, held at Josai University on March 25 in 2014 / edited by Masatoshi IIDA, Manabu INUMA, Kiyoko NISHIZAWA
Leading Undergraduate Research Projects in Mathematical Modeling
Seshaiyer, Padmanabhan
2017-01-01
In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…
Scaffolding Mathematical Modelling with a Solution Plan
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Modelling and Optimizing Mathematics Learning in Children
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Mathematical Modelling as a Professional Task
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Mathematical Model of Lifetime Duration at Insulation of Electrical Machines
Directory of Open Access Journals (Sweden)
Mihaela Răduca
2009-10-01
Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.
Students’ mathematical learning in modelling activities
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....
Rival approaches to mathematical modelling in immunology
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
Exact penalty results for mathematical programs with vanishing constraints
Czech Academy of Sciences Publication Activity Database
Hoheisel, T.; Kanzow, Ch.; Outrata, Jiří
2010-01-01
Roč. 72, č. 5 (2010), s. 2514-2526 ISSN 0362-546X R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mathematical programs with vanishing constraints * Mathematical programs with equilibrium constraints * Exact penalization * Calmness * Subdifferential calculus * Limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-exact penalty results for mathematical programs with vanishing constraints.pdf
Solutions manual to accompany finite mathematics models and applications
Morris, Carla C
2015-01-01
A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr
MATHEMATICAL MODEL OF GRAIN MICRONIZATION
Directory of Open Access Journals (Sweden)
V. A. Afanas’ev
2014-01-01
Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
The prediction of epidemics through mathematical modeling.
Schaus, Catherine
2014-01-01
Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.
A mathematical model for iodine kinetics
International Nuclear Information System (INIS)
Silva, E.A.T. da.
1976-01-01
A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt
Mathematical Modeling Applied to Maritime Security
Center for Homeland Defense and Security
2010-01-01
Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Layered Defense: Modeling Terrorist Transfer Threat Networks and Optimizing Network Risk Reduction” Students in Ted Lewis’ Critical Infrastructure Protection course are taught how mathematic modeling can provide...
Lowe, James; Carter, Merilyn; Cooper, Tom
2018-01-01
Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…
Mathematical modeling of wiped-film evaporators
International Nuclear Information System (INIS)
Sommerfeld, J.T.
1976-05-01
A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes
Improving the Graduate School Experience for Women in Mathematics: the Edge Program
Bozeman, Sylvia T.; Hughes, Rhonda J.
For over a decade, Spelman College and Bryn Mawr College have collaborated on initiatives designed to increase the presence of women, with a special focus on women of color, in the upper ranks of mathematical science. The most recent initiative is the EDGE Program (Enhancing Diversity in Graduate Education), which addresses this challenge by attempting to decrease the loss of talent from U.S. graduate programs. To this end, the program provides structures that help women make successful transitions from undergraduate into graduate mathematics programs, redirect or refocus their ambitions when programs are inappropriate or unsuitable, and, ultimately, enable them to "accumulate advantages" that will empower them and foster success in their careers. A broader goal of this program is to diversify the mathematics community by creating models for mathematics programs that allow people from all backgrounds and cultures to thrive, advance, and contribute to the profession.
Mathematical models in biology bringing mathematics to life
Ferraro, Maria; Guarracino, Mario
2015-01-01
This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...
Mathematical model for dissolved oxygen prediction in Cirata ...
African Journals Online (AJOL)
This paper presents the implementation and performance of mathematical model to predict theconcentration of dissolved oxygen in Cirata Reservoir, West Java by using Artificial Neural Network (ANN). The simulation program was created using Visual Studio 2012 C# software with ANN model implemented in it. Prediction ...
APL programs for the mathematics classroom
Thomson, Norman D
1989-01-01
The idea for this book grew out of proposals at the APL86 con ference in Manchester which led to the initiation of the I-APL (International APL) project, and through it to the availability of an interpreter which would bring the advantages of APL within the means of vast numbers of school children and their teachers. The motivation is that once school teachers have glimpsed the possibilities, there will be a place for an "ideas" book of short programs which will enable useful algorithms to be brought rapidly into classroom use, and perhaps even to be written and developed in front of the class. A scan of the contents will show how the conciseness of APL makes it possible to address a huge range of topics in a small number of pages. There is naturally a degree of idiosyncrasy in the choice of topics - the selection I have made reflects algo rithms which have either proved useful in real work, or which have caught my imagination as candidates for demonstrating the value of APL as a mathematical notation. Wh...
Mathematical modelling of scour: A review
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2007-01-01
A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers....../piles and pipelines, respectively, the two benchmark cases, while the third section deals with the mathematical modelling of scour around other structures such as groins, breakwaters and sea walls. A section is also added to discuss potential future research areas. Over one hundred references are included...
Mathematical modeling a chemical engineer's perspective
Rutherford, Aris
1999-01-01
Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus
Mathematical programs with complementarity constraints in traffic and telecommunications networks.
Ralph, Daniel
2008-06-13
Given a suitably parametrized family of equilibrium models and a higher level criterion by which to measure an equilibrium state, mathematical programs with equilibrium constraints (MPECs) provide a framework for improving or optimizing the equilibrium state. An example is toll design in traffic networks, which attempts to reduce total travel time by choosing which arcs to toll and what toll levels to impose. Here, a Wardrop equilibrium describes the traffic response to each toll design. Communication networks also have a deep literature on equilibrium flows that suggest some MPECs. We focus on mathematical programs with complementarity constraints (MPCCs), a subclass of MPECs for which the lower level equilibrium system can be formulated as a complementarity problem and therefore, importantly, as a nonlinear program (NLP). Although MPECs and MPCCs are typically non-convex, which is a consequence of the upper level objective clashing with the users' objectives in the lower level equilibrium program, the last decade of research has paved the way for finding local solutions of MPCCs via standard NLP techniques.
Computer programming in the UK undergraduate mathematics curriculum
Sangwin, Christopher J.; O'Toole, Claire
2017-11-01
This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016, programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first-year courses than a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination).
Teaching mathematical modelling through project work
DEFF Research Database (Denmark)
Blomhøj, Morten; Kjeldsen, Tinne Hoff
2006-01-01
are reported in manners suitable for internet publication for colleagues. The reports and the related discussions reveal interesting dilemmas concerning the teaching of mathematical modelling and how to cope with these through “setting the scene” for the students modelling projects and through dialogues......The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...
Mathematical Modelling of Intraretinal Oxygen Partial Pressure
African Journals Online (AJOL)
Erah
The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.
Cooking Potatoes: Experimentation and Mathematical Modeling.
Chen, Xiao Dong
2002-01-01
Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)
А mathematical model study of suspended monorail
Viktor GUTAREVYCH
2012-01-01
The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.
А mathematical model study of suspended monorail
Directory of Open Access Journals (Sweden)
Viktor GUTAREVYCH
2012-01-01
Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.
Mathematical Modeling of Circadian/Performance Countermeasures
National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...
short communication mathematical modelling for magnetite
African Journals Online (AJOL)
Preferred Customer
The present research focuses to develop mathematical model for the ..... Staler, M.J. The Principle of Ion Exchange Technology, Butterworth-Heinemann: Boston; ... Don, W.G. Perry's Chemical Engineering Hand Book, 7th ed., McGraw-Hill:.
Mathematical Modeling Approaches in Plant Metabolomics.
Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas
2018-01-01
The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
Modelling Mathematical Reasoning in Physics Education
Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche
2012-04-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Mathematics Programming on the Apple II and IBM PC.
Myers, Roy E.; Schneider, David I.
1987-01-01
Details the features of BASIC used in mathematics programming and provides the information needed to translate between the Apple II and IBM PC computers. Discusses inputing a user-defined function, setting scroll windows, displaying subscripts and exponents, variable names, mathematical characters and special symbols. (TW)
Muijs, Daniel; Reynolds, David
2000-01-01
Examines effects of teacher behaviors and classroom organization on 2,128 pupils' progress in mathematics in UK primary schools participating in a math intervention program. Using multilevel modeling techniques, finds that teacher behaviors could explain between 60 and 70 percent of pupils' progress on numeracy tests. (Contains 35 references.)…
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
A Mathematical Sciences Program at an Upper-Division Campus.
Swetz, Frank J.
1978-01-01
The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)
An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers
Thrasher, Emily Plunkett
2016-01-01
The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
A mathematical model for postirradiation immunity
International Nuclear Information System (INIS)
Smirnova, O.A.
1988-01-01
A mathematical model of autoimmune processes in exposed mammals was developed. In terms of this model a study was made of the dependence of the autoimmunity kinetics on radiation dose and radiosensitivity of autologous tissues. The model simulates the experimentally observed dynamics of autoimmune diseases
Mathematical model of three winding auto transformer
International Nuclear Information System (INIS)
Volcko, V.; Eleschova, Z.; Belan, A.; Janiga, P.
2012-01-01
This article deals with the design of mathematical model of three-winding auto transformer for steady state analyses. The article is focused on model simplicity for the purposes of the use in complex transmission systems and authenticity of the model taking into account different types of step-voltage regulator. (Authors)
Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...
African Journals Online (AJOL)
Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...
Potential of mathematical modeling in fruit quality
African Journals Online (AJOL)
ONOS
2010-01-18
Jan 18, 2010 ... successful mathematical model, the modeler needs to chose what .... equations. In the SUCROS models, the rate of CO2 assimilation is .... insect ecology. ... García y García A, Ingram KT, Hatch U, Hoogenboom G, Jones JW,.
Mathematical models and accuracy of radioisotope gauges
International Nuclear Information System (INIS)
Urbanski, P.
1989-01-01
Mathematical expressions relating the variance and mean value of the intrinsic error with the parameters of one and multi-dimensional mathematical models of radioisotope gauges are given. Variance of the intrinsic error at the model's output is considered as a sum of the variances of the random error which is created in the first stages of the measuring chain and the random error of calibration procedure. The mean value of the intrinsic error (systematic error) appears always for nonlinear models. It was found that the optimal model of calibration procedure not always corresponds to the minimal value of the intrinsic error. The derived expressions are applied for the assessment of the mathematical models of some of the existing gauges (radioisotope belt weigher, XRF analyzer and coating thickness gauge). 7 refs., 5 figs., 1 tab. (author)
Numerical methods of mathematical optimization with Algol and Fortran programs
Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner
1971-01-01
Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition
International Nuclear Information System (INIS)
Potter, J.M.
1985-01-01
The mathematical background for a multiport-network-solving program is described. A method for accurately numerically modeling an arbitrary, continuous, multiport transmission line is discussed. A modification to the transmission-line equations to accommodate multiple rf drives is presented. An improved model for the radio-frequency quadrupole (RFQ) accelerator that corrects previous errors is given. This model permits treating the RFQ as a true eight-port network for simplicity in interpreting the field distribution and ensures that all modes propagate at the same velocity in the high-frequency limit. The flexibility of the multiport model is illustrated by simple modifications to otherwise two-dimensional systems that permit modeling them as linear chains of multiport networks
Mathematical Models of Issue Voting
小林, 良彰
2009-01-01
1. Introduction2. An Examination of the Expected Utility Model3. An Examination of the Minimax Regret Model4. An Examination of the Diametros Model5. An Examination of the Revised Diametros Model6. An Examination of the Party Coalition Model7. The Construction and Examination of the Diametros ll Model8. Conclusion
Mathematical modeling and optimization of complex structures
Repin, Sergey; Tuovinen, Tero
2016-01-01
This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimiz...
Mathematical Models of Tuberculosis Reactivation and Relapse
Directory of Open Access Journals (Sweden)
Robert Steven Wallis
2016-05-01
Full Text Available The natural history of human infection with Mycobacterium tuberculosis (Mtb is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiology of tuberculosis in patients treated with tumor necrosis factor antagonists, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Interfacial Fluid Mechanics A Mathematical Modeling Approach
Ajaev, Vladimir S
2012-01-01
Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also: Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...
Mathematical models and methods for planet Earth
Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta
2014-01-01
In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
Mathematical modelling of two-phase flows
International Nuclear Information System (INIS)
Komen, E.M.J.; Stoop, P.M.
1992-11-01
A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs
Mathematical model in economic environmental problems
Energy Technology Data Exchange (ETDEWEB)
Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)
1996-12-31
The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.
Mathematical Modeling of Biofilm Structures Using COMSTAT Data
Directory of Open Access Journals (Sweden)
Davide Verotta
2017-01-01
Full Text Available Mathematical modeling holds great potential for quantitatively describing biofilm growth in presence or absence of chemical agents used to limit or promote biofilm growth. In this paper, we describe a general mathematical/statistical framework that allows for the characterization of complex data in terms of few parameters and the capability to (i compare different experiments and exposures to different agents, (ii test different hypotheses regarding biofilm growth and interaction with different agents, and (iii simulate arbitrary administrations of agents. The mathematical framework is divided to submodels characterizing biofilm, including new models characterizing live biofilm growth and dead cell accumulation; the interaction with agents inhibiting or stimulating growth; the kinetics of the agents. The statistical framework can take into account measurement and interexperiment variation. We demonstrate the application of (some of the models using confocal microscopy data obtained using the computer program COMSTAT.
Mathematical Modeling: Are Prior Experiences Important?
Czocher, Jennifer A.; Moss, Diana L.
2017-01-01
Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…
Uncertainty and Complexity in Mathematical Modeling
Cannon, Susan O.; Sanders, Mark
2017-01-01
Modeling is an effective tool to help students access mathematical concepts. Finding a math teacher who has not drawn a fraction bar or pie chart on the board would be difficult, as would finding students who have not been asked to draw models and represent numbers in different ways. In this article, the authors will discuss: (1) the properties of…
Parallel Boltzmann machines : a mathematical model
Zwietering, P.J.; Aarts, E.H.L.
1991-01-01
A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a
A mathematical model of embodied consciousness
Rudrauf, D.; Bennequin, D.; Granic, I.; Landini, G.; Friston, K.; Williford, K.
2017-01-01
We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM
Mathematical model of the reactor coolant pump
International Nuclear Information System (INIS)
Kozuh, M.
1989-01-01
The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)
A mathematical model of forgetting and amnesia
Murre, J.M.J.; Chessa, A.G.; Meeter, M.
2013-01-01
We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in
Mathematical human body modelling for impact loading
Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.
1999-01-01
Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2010-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2014-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical finance theory review and exercises from binomial model to risk measures
Gianin, Emanuela Rosazza
2013-01-01
The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.
Mathematical models of information and stochastic systems
Kornreich, Philipp
2008-01-01
From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t
On the mathematical modeling of memristors
Radwan, Ahmed G.
2012-10-06
Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.
Dynamics of mathematical models in biology bringing mathematics to life
Zazzu, Valeria; Guarracino, Mario
2016-01-01
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters i...
FEMME, a flexible environment for mathematically modelling the environment
Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.
2002-01-01
A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model
Mathematical Modelling of Unmanned Aerial Vehicles
Directory of Open Access Journals (Sweden)
Saeed Sarwar
2013-04-01
Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV
Mathematical modelling of unmanned aerial vehicles
International Nuclear Information System (INIS)
Sarwar, S.; Rehman, S.U.
2013-01-01
UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)
Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design
DEFF Research Database (Denmark)
Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul
2015-01-01
This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....
AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK
Directory of Open Access Journals (Sweden)
Denis N. Butorin
2014-01-01
Full Text Available In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.
AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK
Denis N. Butorin
2014-01-01
In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.
Teacher Perceptions of an Online Tutoring Program for Elementary Mathematics
Whetstone, Patti; Clark, Amy; Flake, Mari Wheeler
2014-01-01
This study explores elementary teacher perceptions related to the implementation of an online tutoring program. Teachers were surveyed regarding factors that affected use of the online tutoring program as a supplement to mathematics instruction. Results indicated that teachers overwhelmingly reported positive views of the training and support…
A cutting- plane approach for semi- infinite mathematical programming
African Journals Online (AJOL)
Many situations ranging from industrial to social via economic and environmental problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane approach which lends itself better for standard non-linear programs is exploited with good reasons for grappling with linear, convex and ...
Mathematics Learning by Programming in a Game Engine
DEFF Research Database (Denmark)
Triantafyllou, Evangelia; Timcenko, Olga; Misfeldt, Morten
2017-01-01
This paper emerges from our research focusing on mathematics education in trans-disciplinary engineering programs and presents a case study in such an engineering discipline, namely the Media Technology program at Aalborg University Copenhagen, Denmark. In this case study, we substituted traditio...
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Mathematical modeling of biomass fuels formation process
International Nuclear Information System (INIS)
Gaska, Krzysztof; Wandrasz, Andrzej J.
2008-01-01
The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Mathematical modelling a case studies approach
Illner, Reinhard; McCollum, Samantha; Roode, Thea van
2004-01-01
Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...
Mathematical model of compact type evaporator
Borovička, Martin; Hyhlík, Tomáš
2018-06-01
In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.
The (Mathematical) Modeling Process in Biosciences.
Torres, Nestor V; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.
On the mathematical modeling of aeolian saltation
DEFF Research Database (Denmark)
Jensen, Jens Ledet; Sørensen, Michael
1983-01-01
The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...... on aeolian saltation. This comparison points out the necessity of discriminating between pure and real saltation. -Authors...
Development of a revised mathematical model of the gastrointestinal tract
International Nuclear Information System (INIS)
Barker, A.
1991-01-01
The objectives of this research are as follows. First, to incorporate new biological data into a revised mathematical adult gastrointestinal tract model that includes: ingestion in both liquid and solid forms; consideration of absorption in the stomach, small intestine, ascending colon, transverse colon or not at all; gender and age of the adult; and whether the adult is a smoker or not. Next, to create a computer program in basic language for calculating residence times in each anatomical section of the GI tract for commonly used radionuclides. Also, to compare and contrast the new model with the ICRP 30 GI tract model in terms of physiological concepts, mathematical concepts, and revised residence times for several commonly used radionuclides. Finally, to determine whether the new model is sufficiently better than the current model to warrant its use as a replacement for the Eve model
Mathematical and physical models and radiobiology
International Nuclear Information System (INIS)
Lokajicek, M.
1980-01-01
The hit theory of the mechanism of biological radiation effects in the cell is discussed with respect to radiotherapy. The mechanisms of biological effects and of intracellular recovery, the cumulative radiation effect and the cumulative biological effect in fractionated irradiation are described. The benefit is shown of consistent application of mathematical and physical models in radiobiology and radiotherapy. (J.P.)
Mathematical Modeling Projects: Success for All Students
Shelton, Therese
2018-01-01
Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…
ECONOMIC AND MATHEMATICAL MODELING INNOVATION SYSTEMS
Directory of Open Access Journals (Sweden)
D.V. Makarov
2014-06-01
Full Text Available The paper presents one of the mathematical tools for modeling innovation processes. With the help of Kondratieff long waves can define innovation cycles. However, complexity of the innovation system implies a qualitative description. The article describes the problems of this area of research.
Mathematical modeling of optical glazing performance
Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.
1994-01-01
Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like
Description of a comprehensive mathematical model
DEFF Research Database (Denmark)
Li, Xiyan; Yin, Chungen
2017-01-01
Biomass gasification is still a promising technology after over 30 years’ research and development and has success only in a few niche markets. In this paper, a comprehensive mathematical model for biomass particle gasification is developed within a generic particle framework, assuming the feed...
Introduction to mathematical models and methods
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A. H.; Manchanda, P. [Gautam Budha University, Gautam Budh Nagar-201310 (India); Department of Mathematics, Guru Nanak Dev University, Amritsar (India)
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
Mathematical modeling models, analysis and applications
Banerjee, Sandip
2014-01-01
""…the reader may find quite a few interesting examples illustrating several important methods used in applied mathematics. … it may be well used as a valuable source of interesting examples as well as complementary reading in a number of courses.""-Svitlana P. Rogovchenko, Zentralblatt MATH 1298
Mathematical Modeling of Loop Heat Pipes
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
Modeling life the mathematics of biological systems
Garfinkel, Alan; Guo, Yina
2017-01-01
From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...
Mathematical modeling of the flash converting process
Energy Technology Data Exchange (ETDEWEB)
Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)
1996-12-31
An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)
Mathematical modeling of the flash converting process
Energy Technology Data Exchange (ETDEWEB)
Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)
1997-12-31
An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)
Mathematical Models of Breast and Ovarian Cancers
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-01-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061
MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS
Directory of Open Access Journals (Sweden)
Aleksander Grm
2017-01-01
Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.
Constraint theory multidimensional mathematical model management
Friedman, George J
2017-01-01
Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...
Mathematical modelling of flooding at Magela Creek
International Nuclear Information System (INIS)
Vardavas, I.
1989-01-01
The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills
Structured Mathematical Modeling of Industrial Boiler
Directory of Open Access Journals (Sweden)
Abdullah Nur Aziz
2014-04-01
Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.
ACCULIB, Program Library of Mathematical Routines
International Nuclear Information System (INIS)
Van Kats, J.M.; Rusman, C.J.; Van der Vorst, H.A.
1987-01-01
Description of program or function - ACCULIB is a collection of programs and subprograms for: - approximation and interpolation problems; - the evaluation of series of orthogonal polynomials; - evaluation of the complementary error function; - sorting problems and permutations; - differential equation problems; - linear algebra eigenvalue problems; - optimization problems; - fast Fourier transformations and Fourier series; - numerical quadrature of continuous functions; - linear systems and other linear algebra problems; - bit manipulation and character handling/transmission; - systems of nonlinear equations, in particular the determination of zeros of polynomials; - solution of over-complete systems; - plotting routines for contouring and surface representation; - statistical investigation of data. In addition, many utilities such as code conversion, microfiche production, disk file surveys, layout improvements for ALGOL60 and FORTRAN programs, and the conversion of IBM FORTRAN programs to CDC FORTRAN are included in the collection
Causal Bayes Model of Mathematical Competence in Kindergarten
Directory of Open Access Journals (Sweden)
Božidar Tepeš
2016-06-01
Full Text Available In this paper authors define mathematical competences in the kindergarten. The basic objective was to measure the mathematical competences or mathematical knowledge, skills and abilities in mathematical education. Mathematical competences were grouped in the following areas: Arithmetic and Geometry. Statistical set consisted of 59 children, 65 to 85 months of age, from the Kindergarten Milan Sachs from Zagreb. The authors describe 13 variables for measuring mathematical competences. Five measuring variables were described for the geometry, and eight measuring variables for the arithmetic. Measuring variables are tasks which children solved with the evaluated results. By measuring mathematical competences the authors make causal Bayes model using free software Tetrad 5.2.1-3. Software makes many causal Bayes models and authors as experts chose the model of the mathematical competences in the kindergarten. Causal Bayes model describes five levels for mathematical competences. At the end of the modeling authors use Bayes estimator. In the results, authors describe by causal Bayes model of mathematical competences, causal effect mathematical competences or how intervention on some competences cause other competences. Authors measure mathematical competences with their expectation as random variables. When expectation of competences was greater, competences improved. Mathematical competences can be improved with intervention on causal competences. Levels of mathematical competences and the result of intervention on mathematical competences can help mathematical teachers.
Mathematical programming and game theory for decision making
Bapat, R B; Das, A K; Parthasarathy, T
2008-01-01
This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel pro
Structured Mathematical Modeling of Industrial Boiler
Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid
2014-01-01
As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...
Mathematical modelling of the decomposition of explosives
International Nuclear Information System (INIS)
Smirnov, Lev P
2010-01-01
Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.
Models and structures: mathematical physics
International Nuclear Information System (INIS)
2003-01-01
This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems
Wind tunnel modeling of roadways: Comparison with mathematical models
International Nuclear Information System (INIS)
Heidorn, K.; Davies, A.E.; Murphy, M.C.
1991-01-01
The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted
Mathematical modeling and simulation of a thermal system
Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.
2016-12-01
The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.
mathematical modelling of atmospheric dispersion of pollutants
International Nuclear Information System (INIS)
Mohamed, M.E.
2002-01-01
the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established
Mathematical modelling of the process of quality control of construction products
Directory of Open Access Journals (Sweden)
Pogorelov Vadim
2017-01-01
Full Text Available The study presents the results of years of research in the field of quality management of industrial production construction production, based on mathematical modelling techniques, process and results of implementing the developed programme of monitoring and quality control in the production process of the enterprise. The aim of this work is the presentation of scientific community of the practical results of mathematical modelling in application programs. In the course of the research addressed the description of the applied mathematical models, views, practical results of its application in the applied field to assess quality control. The authors used this mathematical model in practice. The article presents the results of applying this model. The authors developed the experimental software management and quality assessment by using mathematical modeling methods. The authors continue research in this direction to improve the diagnostic systems and quality management systems based on mathematical modeling methods prognostic and diagnostic processes.
Mathematical models of natural gas consumption
International Nuclear Information System (INIS)
Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana
2011-01-01
In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.
Electrorheological fluids modeling and mathematical theory
Růžička, Michael
2000-01-01
This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.
Mathematical modeling of microbial growth in milk
Directory of Open Access Journals (Sweden)
Jhony Tiago Teleken
2011-12-01
Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Interactive differential equations modeling program
International Nuclear Information System (INIS)
Rust, B.W.; Mankin, J.B.
1976-01-01
Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail
PROGRAMMING FUNDAMENTALS TEACHING TO THE STUDENTS OF PHYSICO-MATHEMATICAL PROFILE
Directory of Open Access Journals (Sweden)
Vdovychyn Tatiana
2017-05-01
Full Text Available The article provides methodical recommendations on studying of the discipline "Informatics" for the specialists preparation of the first (Bachelor level of higher education of the field of knowledge 01 "Education" of the specialty 014.04 "Secondary education (mathematics", 014.08 "Secondary education (physics". This discipline plays a particularly important role in the higher education establishments physical and mathematical field specialists training, since it combines both the fundamental concepts and principles of various mathematical and informatics disciplines, as well as applied models and algorithms for their application. The methodological aspects of the discipline "Informatics" study include the pedagogical feasibility of the forms, methods and means of training for students who are qualified as a teacher of mathematics and a physics teacher respectively. The discipline program includes issues on informatics theoretical foundations, applied software, and the basics of programming. Students are encouraged to consider the basics of programming in the C ++ environment. Basic C ++ language designs have a convenient, professional programming toolkit. Integrated C ++ environment is characterized by speed, convenience in debugging and compiling of the program. Therefore, the article focuses on the practical skills formation in the C ++ environment for the students of the physical and mathematical profile and highlights the methodological aspects of the C ++ programming language use in the course of the discipline "Informatics" teaching. The formation of practical skills takes place during the performance of laboratory works, namely: the original problem setting, the construction of an algorithm for its solution, analysis of the received results.
Сontrol systems using mathematical models of technological objects ...
African Journals Online (AJOL)
Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...
Building Mathematical Models of Simple Harmonic and Damped Motion.
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
Vibratory gyroscopes : identification of mathematical model from test data
CSIR Research Space (South Africa)
Shatalov, MY
2007-05-01
Full Text Available Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model...
Mathematical Modelling of Surfactant Self-assembly at Interfaces
Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary
Mathematical-programming approaches to test item pool design
Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.
2002-01-01
This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming
Programming-Languages as a Conceptual Framework for Teaching Mathematics
Feurzeig, Wallace; Papert, Seymour A.
2011-01-01
Formal mathematical methods remain, for most high school students, mysterious, artificial and not a part of their regular intuitive thinking. The authors develop some themes that could lead to a radically new approach. According to this thesis, the teaching of programming languages as a regular part of academic progress can contribute effectively…
SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY
Directory of Open Access Journals (Sweden)
O. M. Klyuchko
2018-02-01
Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Mathematical models for photovoltaic solar panel simulation
Energy Technology Data Exchange (ETDEWEB)
Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br
2008-07-01
A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)
Nonconvex Model of Material Growth: Mathematical Theory
Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J.
2018-06-01
The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Simple mathematical models of symmetry breaking. Application to particle physics
International Nuclear Information System (INIS)
Michel, L.
1976-01-01
Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Červinka, Michal
2009-01-01
Roč. 38, 4B (2009), s. 1557-1574 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical problem with equilibrium constraint * state constraints * implicit programming * calmness * exact penalization Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009 http://library.utia.cas.cz/separaty/2010/MTR/outrata-on the implicit programming approach in a class of mathematical programs with equilibrium constraints.pdf
A mathematical model of radiation effect on the immunity system
International Nuclear Information System (INIS)
Smirnova, O.A.
1984-01-01
A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Energy Technology Data Exchange (ETDEWEB)
J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin
1999-07-31
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.
Laser filamentation mathematical methods and models
Lorin, Emmanuel; Moloney, Jerome
2016-01-01
This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...
Thermoregulation in premature infants: A mathematical model.
Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen
2016-12-01
In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Mathematical models for atmospheric pollutants. Final report
International Nuclear Information System (INIS)
Drake, R.L.; Barrager, S.M.
1979-08-01
The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes
Mathematical modeling of CANDU-PHWR
Energy Technology Data Exchange (ETDEWEB)
Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)
2003-07-01
The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Mathematical methods and models in composites
Mantic, Vladislav
2014-01-01
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover
A mathematical model of aerosol holding chambers
DEFF Research Database (Denmark)
Zak, M; Madsen, J; Berg, E
1999-01-01
A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.
Chancroid transmission dynamics: a mathematical modeling approach.
Bhunu, C P; Mushayabasa, S
2011-12-01
Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.
National Research Council Canada - National Science Library
Stuhmiller, James H; Bykanova, Lucy; Chan, Philemon; Dang, Xinglai; Fournier, Adam; Long, Diane W; Lu, Zi; Masiello, Paul; Ng, Laurel; Niu, Eugene
2006-01-01
This report summarizes the first year of a 5-year program to develop physiologically and biomechanically based mathematical models that will allow the estimation of physical and cognitive performance...
The Teachers Academy for Mathematics and Science. Executive summary and program activities update
Energy Technology Data Exchange (ETDEWEB)
1992-09-01
In his State of the Union address on January 31, 1990, President Bush set a goal for US students to be number one in the world in mathematics and science achievement by the year 2000. The Teachers Academy for Mathematics and Science in Chicago is an experiment of unprecedented boldness and scale that can provide a means to the President`s goal, both for the Chicago area and as a national model. This document covers organization and governance, program activities, future training goals, and evaluation programs.
An introduction to mathematical modeling of infectious diseases
Li, Michael Y
2018-01-01
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
A mathematical method for boiling water reactor control rod programming
International Nuclear Information System (INIS)
Tokumasu, S.; Hiranuma, H.; Ozawa, M.; Yokomi, M.
1985-01-01
A new mathematical programming method has been developed and utilized in OPROD, an existing computer code for automatic generation of control rod programs as an alternative inner-loop routine for the method of approximate programming. The new routine is constructed of a dual feasible direction algorithm, and consists essentially of two stages of iterative optimization procedures Optimization Procedures I and II. Both follow almost the same algorithm; Optimization Procedure I searches for feasible solutions and Optimization Procedure II optimizes the objective function. Optimization theory and computer simulations have demonstrated that the new routine could find optimum solutions, even if deteriorated initial control rod patterns were given
A Mathematical Model to Improve the Performance of Logistics Network
Directory of Open Access Journals (Sweden)
Muhammad Izman Herdiansyah
2012-01-01
Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization
Sacristán, Ana Isabel; Pretelín-Ricárdez, Angel
2017-01-01
This work is part of a research project that aims to enhance engineering students' learning of how to apply mathematics in modelling activities of real-world situations, through the construction (design and programming) of videogames. We want also for students to relate their mathematical knowledge with other disciplines (e.g., physics, computer…
Large-scale budget applications of mathematical programming in the Forest Service
Malcolm Kirby
1978-01-01
Mathematical programming applications in the Forest Service, U.S. Department of Agriculture, are growing. They are being used for widely varying problems: budgeting, lane use planning, timber transport, road maintenance and timber harvest planning. Large-scale applications are being mace in budgeting. The model that is described can be used by developing economies....
Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard
2011-01-01
A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…
Fermentation process diagnosis using a mathematical model
Energy Technology Data Exchange (ETDEWEB)
Yerushalmi, L; Volesky, B; Votruba, J
1988-09-01
Intriguing physiology of a solvent-producing strain of Clostridium acetobutylicum led to the synthesis of a mathematical model of the acetone-butanol fermentation process. The model presented is capable of describing the process dynamics and the culture behavior during a standard and a substandard acetone-butanol fermentation. In addition to the process kinetic parameters, the model includes the culture physiological parameters, such as the cellular membrane permeability and the number of membrane sites for active transport of sugar. Computer process simulation studies for different culture conditions used the model, and quantitatively pointed out the importance of selected culture parameters that characterize the cell membrane behaviour and play an important role in the control of solvent synthesis by the cell. The theoretical predictions by the new model were confirmed by experimental determination of the cellular membrane permeability.
A mathematical model on Acquired Immunodeficiency Syndrome
Directory of Open Access Journals (Sweden)
Buddhadeo Mahato
2014-10-01
Full Text Available A mathematical model SEIA (susceptible-exposed-infectious-AIDS infected with vertical transmission of AIDS epidemic is formulated. AIDS is one of the largest health problems, the world is currently facing. Even with anti-retroviral therapies (ART, many resource-constrained countries are unable to meet the treatment needs of their infected populations. We consider a function of number of AIDS cases in a community with an inverse relation. A stated theorem with proof and an example to illustrate it, is given to find the equilibrium points of the model. The disease-free equilibrium of the model is investigated by finding next generation matrix and basic reproduction number R0 of the model. The disease-free equilibrium of the AIDS model system is locally asymptotically stable if R0⩽1 and unstable if R0>1. Finally, numerical simulations are presented to illustrate the results.
Assessment of Primary 5 Students' Mathematical Modelling Competencies
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Development of a Multidisciplinary Middle School Mathematics Infusion Model
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Mathematical Model for the Control of measles 1*PETER, OJ ...
African Journals Online (AJOL)
PROF HORSFALL
2018-04-16
Apr 16, 2018 ... 5Department of Mathematics/Statistics, Federal University of Technology, Minna, Nigeria ... ABSTRACT: We proposed a mathematical model of measles disease dynamics with vaccination by ...... Equation with application.
Mathematical Modeling in Population Dynamics: The Case of Single ...
African Journals Online (AJOL)
kofimereku
Department of Mathematics, Kwame Nkrumah University of Science and Technology,. Kumasi, Ghana ... The trust of this paper is the application of mathematical models in helping to ..... Statistics and Computing, New York: Wiley. Cox, C.B and ...
Mathematical Modelling of Involute Spur Gears Manufactured by Rack Cutter
Directory of Open Access Journals (Sweden)
Tufan Gürkan YILMAZ
2016-05-01
Full Text Available In this study, mathematical modelling of asymmetric involute spur gears was situated in by Litvin approach. In this context, firstly, mathematical expressions of rack cutter which manufacture asymmetric involute spur gear, then mathematical expression of asymmetric involute spur gear were obtained by using differential geometry, coordinate transformation and gear theory. Mathematical expressions were modelled in MATLAB and output files including points of involute spur gear’s teeth were designed automatically thanks to macros.
Methods of mathematical modeling using polynomials of algebra of sets
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS
Directory of Open Access Journals (Sweden)
A. B. Lisitsyn
2016-01-01
Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.
A Mathematical Model of Cardiovascular Response to Dynamic Exercise
National Research Council Canada - National Science Library
Magosso, E
2001-01-01
A mathematical model of cardiovascular response to dynamic exercise is presented, The model includes the pulsating heart, the systemic and pulmonary, circulation, a functional description of muscle...
Mathematical model of the Amazon Stirling engine
Energy Technology Data Exchange (ETDEWEB)
Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br
2010-07-01
The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)
Biological-Mathematical Modeling of Chronic Toxicity.
1981-07-22
34Mathematical Model of Uptake and Distribution," Uptake and Distribution of Anesthetic Agents, E. M. Papper and R. J. Kitz (Editors, McGraw-Hill Book Co., Inc...distribution, In: Papper , E.M. and Kltz, R.J.(eds.) Uptake and distribution of anesthetic agents, McGraw- Hill, New York, p. 72 3. Plpleson, W.W...1963) Quantitative prediction of anesthetic concentrations. In: Papper , E.M. and Kitz, R.J. (eds.) Uptake and distribution of anesthetic agents, McGraw
Mathematical Modeling of Diaphragm Pneumatic Motors
Directory of Open Access Journals (Sweden)
Fojtášek Kamil
2014-03-01
Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.
A mathematical model of Chagas disease transmission
Hidayat, Dayat; Nugraha, Edwin Setiawan; Nuraini, Nuning
2018-03-01
Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America. A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.
Modellus: Learning Physics with Mathematical Modelling
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations
Application of a Mathematical Model to an Advertisement Reservation Problem
Directory of Open Access Journals (Sweden)
Ozlem COSGUN
2013-01-01
Full Text Available Television networks provide TV programs free of charge to the public. However, they acquire their revenue by telecasting advertisements in the midst of continuing programs or shows. A key problem faced by the TV networks in Turkey is how to accept and televise the advertisements reserved by a client on a specified advertisement break which we called “Advertisement Reservation Problem” (ARP. The problem is complicated by limited time inventory, by different rating points for different target groups, competition avoidance and the relationship between TV networks and clients. In this study we have developed a mathematical model for advertisement reservation problem and extended this model for some cases encountered in real business life. We have also discussed how these cases affect the decisions of a TV network. Mixed integer linear programming approach is proposed to solve these problems. This approach has been implemented to a case taken from one of the biggest TV networks of Turkey.
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
Mathematical modeling of tornadoes and squall storms
Directory of Open Access Journals (Sweden)
Sergey A. Arsen’yev
2011-04-01
Full Text Available Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running perturbation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton; which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.
Mathematical modeling tendencies in plant pathology
African Journals Online (AJOL)
STORAGESEVER
2009-12-29
Dec 29, 2009 ... inclusion of new terms into the model as needed. (Madden, 2006). ... the first programs was the EPIDEM written by Wagonner and Horsfall (1969) and it ..... Oyama K (1998). Los parientes silvestres del chile (Capsicum spp.).
Comparison of Different Mathematical Models of Cavitation
Directory of Open Access Journals (Sweden)
Dorota HOMA
2014-12-01
Full Text Available Cavitation occurs during the flow when local pressure drops to the saturation pressure according to the temperature of the flow. It includes both evaporation and condensation of the vapor bubbles, which occur alternately with high frequency. Cavitation can be very dangerous, especially for pumps, because it leads to break of flow continuity, noise, vibration, erosion of blades and change in pump’s characteristics. Therefore it is very important for pump designers and users to avoid working in cavitation conditions. Simulation of flow can be very useful in that and can indicate if there is risk of cavitating flow occurrence. As this is a multiphase flow and quite complicated phenomena, there are a few mathematical models describing it. The aim of this paper is to make a short review of them and describe their approach to model cavitation. It is desirable to know differences between them to model this phenomenon properly.
Mathematical Models of the Sinusoidal Screen Family
Directory of Open Access Journals (Sweden)
Tajana Koren
2011-06-01
Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.
Mathematical modeling of the Phoenix Rising pathway.
Directory of Open Access Journals (Sweden)
Chad Liu
2014-02-01
Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.
Mathematical modeling of CANDU-PHWR
Energy Technology Data Exchange (ETDEWEB)
Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)
2001-07-01
The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)
Directory of Open Access Journals (Sweden)
Y. A. Perminov
2014-01-01
Full Text Available The paper substantiates the need for profile training in mathematical modeling for pedagogical students, caused by the total penetration of mathematics into different sciences, including the humanities; fast development of the information communications technologies; and growing importance of mathematical modeling, combining the informal scientific and formal mathematical languages with the unique opportunities of computer programming. The author singles out the reasons for mastering and using the mathematical apparatus by teaches in every discipline. Indeed, among all the modern mathematical methods and ideas, mathematical modeling retains its priority in all professional spheres. Therefore, the discipline of “Mathematical Modeling” can play an important role in integrating different components of specialists training in various profiles. By mastering the basics of mathematical modeling, students acquire skills of methodological thinking; learn the principles of analysis, synthesis, generalization of ideas and methods in different disciplines and scientific spheres; and achieve general culture competences. In conclusion, the author recommends incorporating the “Methods of Profile Training in Mathematical Modeling” into the pedagogical magistracy curricula.
Dalla Vecchia, Rodrigo
2015-01-01
This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR
Directory of Open Access Journals (Sweden)
I. Yu. Khomenko
2013-07-01
Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different
Modelling as a foundation for academic forming in mathematics education
Perrenet, J.C.; Morsche, ter H.G.
2004-01-01
The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students
Mathematical models for therapeutic approaches to control HIV disease transmission
Roy, Priti Kumar
2015-01-01
The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...
Mathematical modeling of a thermovoltaic cell
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
Mathematical Model of Cytomegalovirus (CMV) Disease
Sriningsih, R.; Subhan, M.; Nasution, M. L.
2018-04-01
The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.
Laser interaction with biological material mathematical modeling
Kulikov, Kirill
2014-01-01
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
Mathematical Models and Methods for Living Systems
Chaplain, Mark; Pugliese, Andrea
2016-01-01
The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods. Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.
Missing the Promise of Mathematical Modeling
Meyer, Dan
2015-01-01
The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…
Bird, Katherine; Oppland-Cordell, Sarah; Hibdon, Joseph
2016-01-01
This paper describes the development, results, and future directions of the mathematics component of the EMERGE Summer Program at Northeastern Illinois University. Initiated summer 2014, EMERGE offered English and mathematics sessions for incoming freshmen. The mathematics session aimed to strengthen participants' mathematical foundations,…
Common Mathematical Model of Fatigue Characteristics
Directory of Open Access Journals (Sweden)
Z. Maléř
2004-01-01
Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.
A Mathematical Model for Cisplatin Cellular Pharmacodynamics
Directory of Open Access Journals (Sweden)
Ardith W. El-Kareh
2003-03-01
Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.
Rudolph, Lee
2012-01-01
In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in
Mathematical modeling of acid-base physiology.
Occhipinti, Rossana; Boron, Walter F
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
MATHEMATICAL MODEL OF CATALYTIC PROCESSES AT MODIFIED ELECTRODES
Directory of Open Access Journals (Sweden)
Femila Mercy Rani Joseph
Full Text Available A mathematical modeling of electrocatalytic processes taking place at modified electrodes is discussed. In this paper we obtained the approximate analytical solutions for the nonlinear equations under non steady state conditions using homotopy perturbation method. Simple and approximate polynomial expressions for the concentration of reactant, product and charge carrier were obtained in terms of diffusion coefficient and rate constant. In this work the numerical simulation of the problem is reported using Scilab program. In this manuscript analytical results are compared with simulation results and satisfactory agreement is noted.
Directory of Open Access Journals (Sweden)
Jennifer M. Suh
2017-06-01
Full Text Available This paper examines the experiences of two elementary teachers’ implementation of mathematical modeling in their classrooms and how the enactment by the teachers and the engagement by students exhibited their creativity, critical thinking, collaboration and communication skills. In particular, we explore the questions: (1 How can phases of mathematical modeling as a process serve as a venue for exhibiting students’ critical 21st century skills? (2 What were some effective pedagogical practices teachers used as they implemented mathematical modeling with elementary students and how did these promote students’ 21st century skills? We propose that mathematical modeling provides space for teachers and students to have a collective experience through the iterative process of making sense of and building knowledge of important mathematical ideas while engaging in the critical 21st century skills necessary in our complex modern world.
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Energy Technology Data Exchange (ETDEWEB)
Shipman, Galen M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-13
These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematic approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.
Energy Technology Data Exchange (ETDEWEB)
Kahn, Marcio [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Hamacher, Silvio [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)
2012-07-01
A mathematical programming model to support the decision maker how to identify the optimal infrastructure design solution to the Development and Production of an oil field is proposed in this paper. The problem addressed is to maximize the economic return of the additional production of oil in a field with existing production infrastructure installed and as a proposed solution to this problem a model of mixed integer linear programming was developed. This formulation allows identifying the optimal level of exploration and production of a field subject to uncertainties. The variables to be defined are: Floating Production Units installed to be utilized and their oil production, the use of manifolds or not, and the number of wells that will be connected to the Floating Production Units. Finally, the model provides the optimal development plan with the best economic return considering the constraints and uncertainties of the problem. Besides the optimal solution, sensitivity analyzes were performed improving the understanding of the problem and providing useful information to the decision maker. (author)
Mathematical problems in modeling artificial heart
Directory of Open Access Journals (Sweden)
Ahmed N. U.
1995-01-01
Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.
Modeling EERE deployment programs
Energy Technology Data Exchange (ETDEWEB)
Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2007-11-01
The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.
The use of mathematical models in teaching wastewater treatment engineering
DEFF Research Database (Denmark)
Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....
Wichita Unified School District 259, KS.
This book is a guide for the reinforcement of the elementary mathematics laboratory program. It uses a hands-on and activity approach with maximum involvement of the students. Reinforcement strategies for the first three phases (concrete, semiconcrete, and semiabstract) of each mathematics concept are suggested. Also included are specific job…
The limitations of mathematical modeling in high school physics education
Forjan, Matej
geometrical approach to solving differential equations is appropriate, while in dynamical systems of higher dimensions mathematical constraints are avoided by using a graphical oriented programs for modeling. Because in dealing with dynamical systems with four or more dimensions we may encounter problems in numerical solving, we also show how to overcome them. In the case of electrostatic pendulum we show the process of modeling the real dynamical system and we put a particular emphasize on the different phases of modeling and on the way of overcoming constraints on which we encounter in the development of the model.
Mathematical modeling of diphtheria transmission in Thailand.
Sornbundit, Kan; Triampo, Wannapong; Modchang, Charin
2017-08-01
In this work, a mathematical model for describing diphtheria transmission in Thailand is proposed. Based on the course of diphtheria infection, the population is divided into 8 epidemiological classes, namely, susceptible, symptomatic infectious, asymptomatic infectious, carrier with full natural-acquired immunity, carrier with partial natural-acquired immunity, individual with full vaccine-induced immunity, and individual with partial vaccine-induced immunity. Parameter values in the model were either directly obtained from the literature, estimated from available data, or estimated by means of sensitivity analysis. Numerical solutions show that our model can correctly describe the decreasing trend of diphtheria cases in Thailand during the years 1977-2014. Furthermore, despite Thailand having high DTP vaccine coverage, our model predicts that there will be diphtheria outbreaks after the year 2014 due to waning immunity. Our model also suggests that providing booster doses to some susceptible individuals and those with partial immunity every 10 years is a potential way to inhibit future diphtheria outbreaks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mathematical models for indoor radon prediction
International Nuclear Information System (INIS)
Malanca, A.; Pessina, V.; Dallara, G.
1995-01-01
It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model
Mathematical foundations of the dendritic growth models.
Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos
2007-11-01
At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.
Mathematical modeling of alcohol distillation columns
Directory of Open Access Journals (Sweden)
Ones Osney Pérez
2011-04-01
Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.
Mathematical Modeling of the Origins of Life
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Mathematical modeling in mechanics of heterogeneous media
International Nuclear Information System (INIS)
Fedorov, A.V.; Fomin, V.M.
1991-01-01
The paper reviews the work carried out at the Department of Multi-Phase Media Mechanics of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the USSR Academy of Sciences. It deals with mathematical models for the flow of gas mixtures and solid particles that account for phase transitions and chemical reactions. This work is concerned with the problems of construction of laws of conservation, determination of the type of equations of heterogeneous media mechanics, structure of shock waves, and combined discontinuities in mixtures. The theory of ideal and nonideal detonation in suspension of matter in gases is discussed. Self-similar flows of gas mixtures and responding particles, as well as the problem of breakup of discontinuity for suspension of matter in gases, is studied. 42 refs
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Noise in restaurants: Levels and mathematical model
Directory of Open Access Journals (Sweden)
Wai Ming To
2014-01-01
Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Selection of productivity improvement techniques via mathematical modeling
Directory of Open Access Journals (Sweden)
Mahassan M. Khater
2011-07-01
Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.
Mathematical modeling plasma transport in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)
1997-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10^{20}/m^{3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Mathematical modeling plasma transport in tokamaks
International Nuclear Information System (INIS)
Quiang, Ji
1995-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.
Mathematics in Nature Modeling Patterns in the Natural World
Adam, John A
2011-01-01
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature.Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathem
An introduction to mathematical modeling a course in mechanics
Oden, Tinsley J
2011-01-01
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...
Mathematical model insights into arsenic detoxification
Directory of Open Access Journals (Sweden)
Nijhout H Frederik
2011-08-01
Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic
Strengthening programs in science, engineering and mathematics. Third annual progress report
Energy Technology Data Exchange (ETDEWEB)
Sandhu, S.S.
1997-09-30
The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratory equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.
Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe
2016-01-01
Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…
DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS
Directory of Open Access Journals (Sweden)
Volodymyr M. Mykhalevych
2013-11-01
Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Models of Cardiac Pacemaking Function
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Manual on mathematical models in isotope hydrogeology
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.
Mathematical Models of Cardiac Pacemaking Function
Directory of Open Access Journals (Sweden)
Pan eLi
2013-10-01
Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Manual on mathematical models in isotope hydrogeology
International Nuclear Information System (INIS)
1996-10-01
Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs
Ocular hemodynamics and glaucoma: the role of mathematical modeling.
Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A
2013-01-01
To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.
Mathematical model development for a new solar desalination system (SDS)
Energy Technology Data Exchange (ETDEWEB)
Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering
2007-07-01
Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.
Logistics of Mathematical Modeling-Focused Projects
Harwood, R. Corban
2018-01-01
This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower- and upper-division mathematics courses with an emphasis on mathematical…
Modelling Mathematical Argumentation: The Importance of Qualification
Inglis, Matthew; Mejia-Ramos, Juan; Simpson, Adrian
2007-01-01
In recent years several mathematics education researchers have attempted to analyse students' arguments using a restricted form of Toulmina's ["The Uses of Argument," Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students,…
A mathematical model of brain glucose homeostasis
Directory of Open Access Journals (Sweden)
Kimura Hidenori
2009-11-01
Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.
Mathematical programming methods for large-scale topology optimization problems
DEFF Research Database (Denmark)
Rojas Labanda, Susana
for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...
Mathematical Modeling of Tuberculosis Granuloma Activation
Directory of Open Access Journals (Sweden)
Steve M. Ruggiero
2017-12-01
Full Text Available Tuberculosis (TB is one of the most common infectious diseases worldwide. It is estimated that one-third of the world’s population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb. Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1 has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.
A mathematical model of forgetting and amnesia
Directory of Open Access Journals (Sweden)
Jaap M. J. Murre
2013-02-01
Full Text Available We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time-scales share two fundamental properties: (1 representations in a store decline in strength (2 while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i the temporal gradient of retrograde amnesia (Ribot's Law, (ii forgetting curves with and without anterograde amnesia, and (iii learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff's Disease, Alzheimer's Dementia, Huntington's Disease, and other disorders.
Simple mathematical models of gene regulatory dynamics
Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S
2016-01-01
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...
Mathematical Formulation Requirements and Specifications for the Process Models
International Nuclear Information System (INIS)
Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.
2010-01-01
The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally
Mathematical modeling of the mixing zone for getting bimetallic compound
Energy Technology Data Exchange (ETDEWEB)
Kim, Stanislav L. [Institute of Applied Mechanics, Ural Branch, Izhevsk (Russian Federation)
2011-07-01
A mathematical model of the formation of atomic bonds in metals and alloys, based on the electrostatic interaction between the outer electron shells of atoms of chemical elements. Key words: mathematical model, the interatomic bonds, the electron shell of atoms, the potential, the electron density, bimetallic compound.
iSTEM: Promoting Fifth Graders' Mathematical Modeling
Yanik, H. Bahadir; Karabas, Celil
2014-01-01
Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…
PROBLEMS OF MATHEMATICAL MODELING OF THE ENTERPRISES ORGANIZATIONAL STRUCTURE
Directory of Open Access Journals (Sweden)
N. V. Andrianov
2006-01-01
Full Text Available The analysis of the mathematical models which can be used at optimization of the control system of the enterprise organizational structure is presented. The new approach to the mathematical modeling of the enterprise organizational structure, based on using of temporary characteristics of the control blocks working, is formulated
How to Introduce Mathematic Modeling in Industrial Design Education
Langereis, G.R.; Hu, J.; Feijs, L.M.G.; Stillmann, G.A.; Kaiser, G.; Blum, W.B.; Brown, J.P.
2013-01-01
With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this chapter, a model is proposed where conventional education is seen as a process from mathematics to design, while competency driven approaches
Mathematical Modelling Research in Turkey: A Content Analysis Study
Çelik, H. Coskun
2017-01-01
The aim of the present study was to examine the mathematical modelling studies done between 2004 and 2015 in Turkey and to reveal their tendencies. Forty-nine studies were selected using purposeful sampling based on the term, "mathematical modelling" with Higher Education Academic Search Engine. They were analyzed with content analysis.…
An Integrated Approach to Mathematical Modeling: A Classroom Study.
Doerr, Helen M.
Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…
Mathematical modeling of rainwater runoff over catchment surface ...
African Journals Online (AJOL)
The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...
Mathematical modeling of dissolved oxygen in fish ponds ...
African Journals Online (AJOL)
Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...
Phelps, Geoffrey; Kelcey, Benjamin; Jones, Nathan; Liu, Shuangshuang
2016-10-03
Mathematics professional development is widely offered, typically with the goal of improving teachers' content knowledge, the quality of teaching, and ultimately students' achievement. Recently, new assessments focused on mathematical knowledge for teaching (MKT) have been developed to assist in the evaluation and improvement of mathematics professional development. This study presents empirical estimates of average program change in MKT and its variation with the goal of supporting the design of experimental trials that are adequately powered to detect a specified program effect. The study drew on a large database representing five different assessments of MKT and collectively 326 professional development programs and 9,365 teachers. Results from cross-classified hierarchical growth models found that standardized average change estimates across the five assessments ranged from a low of 0.16 standard deviations (SDs) to a high of 0.26 SDs. Power analyses using the estimated pre- and posttest change estimates indicated that hundreds of teachers are needed to detect changes in knowledge at the lower end of the distribution. Even studies powered to detect effects at the higher end of the distribution will require substantial resources to conduct rigorous experimental trials. Empirical benchmarks that describe average program change and its variation provide a useful preliminary resource for interpreting the relative magnitude of effect sizes associated with professional development programs and for designing adequately powered trials. © The Author(s) 2016.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise
A mathematical model to forecast uranium production
International Nuclear Information System (INIS)
Camisani-Calzolari, F.A.G.M.
1987-01-01
The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies
MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR
Directory of Open Access Journals (Sweden)
S. YU. Buryak
2014-03-01
Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
Mathematics of epidemics on networks from exact to approximate models
Kiss, István Z; Simon, Péter L
2017-01-01
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...
Mathematical models in marketing a collection of abstracts
Funke, Ursula H
1976-01-01
Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...
Modeling EERE Deployment Programs
Energy Technology Data Exchange (ETDEWEB)
Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2007-11-01
This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.
Mathematical model of radon activity measurements
Energy Technology Data Exchange (ETDEWEB)
Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)
2015-07-01
Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)
Perspectives on instructor modeling in mathematics teacher education
Brown, Cassondra
2009-01-01
Teachers' instructional practices are greatly shaped by their own learning experiences as students in K-12 and college classrooms, which for most teachers was traditional, teacher-centered instruction. One of the challenges facing mathematics education reform is that, traditional teaching is in contrast to reform student- centered instruction. If teachers learn from their experiences as mathematics students, mathematics teacher educators are encouraged to model practices they would like teach...
Energy Technology Data Exchange (ETDEWEB)
Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-07
This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.
Mathematical model of parking space unit for triangular parking area
Syahrini, Intan; Sundari, Teti; Iskandar, Taufiq; Halfiani, Vera; Munzir, Said; Ramli, Marwan
2018-01-01
Parking space unit (PSU) is an effective measure for the area size of a vehicle, including the free space and the width of the door opening of the vehicle (car). This article discusses a mathematical model for parking space of vehicles in triangular shape area. An optimization model for triangular parking lot is developed. Integer Linear Programming (ILP) method is used to determine the maximum number of the PSU. The triangular parking lot is in isosceles and equilateral triangles shape and implements four possible rows and five possible angles for each field. The vehicles which are considered are cars and motorcycles. The results show that the isosceles triangular parking area has 218 units of optimal PSU, which are 84 units of PSU for cars and 134 units of PSU for motorcycles. Equilateral triangular parking area has 688 units of optimal PSU, which are 175 units of PSU for cars and 513 units of PSU for motorcycles.
Introduction to mathematical biology modeling, analysis, and simulations
Chou, Ching Shan
2016-01-01
This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to t...
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Fiero, Diane M.
2013-01-01
Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…
Symmetrization of mathematical model of charge transport in semiconductors
Directory of Open Access Journals (Sweden)
Alexander M. Blokhin
2002-11-01
Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.
The mathematics of models for climatology and environment. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Ildefonso Diaz, J. [ed.] [Universidad Complutense de Madrid (Spain). Facultad de Ciencas Matematicas
1997-12-31
This book presents a coherent survey of modelling in climatology and the environment and the mathematical treatment of those problems. It is divided into 4 parts containing a total of 16 chapters. Parts I, II and III are devoted to general models and part IV to models related to some local problems. Most of the mathematical models considered here involve systems of nonlinear partial differential equations.
Handayani, I.; Januar, R. L.; Purwanto, S. E.
2018-01-01
This research aims to know the influence of Missouri Mathematics Project Learning Model to Mathematical Problem-solving Ability of Students at Junior High School. This research is a quantitative research and uses experimental research method of Quasi Experimental Design. The research population includes all student of grade VII of Junior High School who are enrolled in the even semester of the academic year 2016/2017. The Sample studied are 76 students from experimental and control groups. The sampling technique being used is cluster sampling method. The instrument is consisted of 7 essay questions whose validity, reliability, difficulty level and discriminating power have been tested. Before analyzing the data by using t-test, the data has fulfilled the requirement for normality and homogeneity. The result of data shows that there is the influence of Missouri mathematics project learning model to mathematical problem-solving ability of students at junior high school with medium effect.
Methods and models in mathematical biology deterministic and stochastic approaches
Müller, Johannes
2015-01-01
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
Energy Technology Data Exchange (ETDEWEB)
Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)
1998-11-01
This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.
Evolvable mathematical models: A new artificial Intelligence paradigm
Grouchy, Paul
We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.
Mathematical programming and financial objectives for scheduling projects
Kimms, Alf
2001-01-01
Mathematical Programming and Financial Objectives for Scheduling Projects focuses on decision problems where the performance is measured in terms of money. As the title suggests, special attention is paid to financial objectives and the relationship of financial objectives to project schedules and scheduling. In addition, how schedules relate to other decisions is treated in detail. The book demonstrates that scheduling must be combined with project selection and financing, and that scheduling helps to give an answer to the planning issue of the amount of resources required for a project. The author makes clear the relevance of scheduling to cutting budget costs. The book is divided into six parts. The first part gives a brief introduction to project management. Part two examines scheduling projects in order to maximize their net present value. Part three considers capital rationing. Many decisions on selecting or rejecting a project cannot be made in isolation and multiple projects must be taken fully into a...
Mathematical modeling and computational intelligence in engineering applications
Silva Neto, Antônio José da; Silva, Geraldo Nunes
2016-01-01
This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.
Mathematical Model of Nicholson’s Experiment
Directory of Open Access Journals (Sweden)
Sergey D. Glyzin
2017-01-01
Full Text Available Considered is a mathematical model of insects population dynamics, and an attempt is made to explain classical experimental results of Nicholson with its help. In the first section of the paper Nicholson’s experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there the stability loss of the problem equilibrium of the leads to the bifurcation of a stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain the classical Nicholson’s experiment, whose detailed theoretical substantiation is given in the last section. There for an atrractor of the system the largest Lyapunov exponent is computed. The nature of this exponent change allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to the combination of analytical and numerical methods in studying equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations.
Mathematical manipulative models: in defense of "beanbag biology".
Jungck, John R; Gaff, Holly; Weisstein, Anton E
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.
Technological geological and mathematical models of petroleum stratum
International Nuclear Information System (INIS)
Zhumagulov, B.T.; Monakhov, V.N.
1997-01-01
The comparative analysis of different mathematical methods of petroleum stratum, the limit of their applicability and hydrodynamical analysis of numerical calculation's results is carried out. The problem of adaptation of the mathematical models and the identification of petroleum stratum parameters are considered. (author)
Mathematical Modeling, Sense Making, and the Common Core State Standards
Schoenfeld, Alan H.
2013-01-01
On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…
Teaching Writing and Communication in a Mathematical Modeling Course
Linhart, Jean Marie
2014-01-01
Writing and communication are essential skills for success in the workplace or in graduate school, yet writing and communication are often the last thing that instructors think about incorporating into a mathematics course. A mathematical modeling course provides a natural environment for writing assignments. This article is an analysis of the…
Mathematical model of melt flow channel granulator
Directory of Open Access Journals (Sweden)
A. A. Kiselev
2016-01-01
Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.
Mathematical modeling in wound healing, bone regeneration and tissue engineering.
Geris, Liesbet; Gerisch, Alf; Schugart, Richard C
2010-12-01
The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.
Jenness, Samuel M; Goodreau, Steven M; Morris, Martina
2018-04-01
Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.
Mathematical model of gluconic acid fermentation by Aspergillus niger
Energy Technology Data Exchange (ETDEWEB)
Takamatsu, T.; Shioya, S.; Furuya, T.
1981-11-01
A mathematical model for the study of gluconic acid fermentation by Aspergillus niger has been developed. The model has been deduced from the basic biological concept of multicellular filamentous microorganisms, i.e. cell population balance. It can be used to explain the behaviour of both batch and continuous cultures, even when in a lag phase. A new characteristic, involving the existence of dual equilibrium stages during fermentation, has been predicted using this mathematical model. (Refs. 6).
A Mathematical Model, Implementation and Study of a Swarm System
Varghese, Blesson; McKee, Gerard
2013-01-01
The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...
Mathematical model of the Savannah River Site waste tank farm
International Nuclear Information System (INIS)
Smith, F.G. III.
1991-01-01
A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers
The possibilities of a modelling perspective for school mathematics
Directory of Open Access Journals (Sweden)
Dirk Wessels
2009-09-01
complex teaching methodology requires in-depth thinking about the role of the teacher, the role of the learner, the nature of the classroom culture, the nature of the negotiation of meaning between the teacher and individuals or groups, the nature of selected problems and material, as well as the kind of integrative assessment used in the mathematics classroom. Modelling is closely related to the problem-centred teaching approach, but it also smoothly relates to bigger and longer mathematical tasks. This article gives a theoretical exposition of the scope and depth of mathematical modelling. It is possible to introduce modelling at every school phase in our educational sytem. Modelling in school mathematics seems to make the learning of mathematics more effective. The mastering of problem solving and modelling strategies has deﬁnitely changed the orientation, the competencies and performances of learners at each school level. It would appear from research that learners like the application side of mathematics and that they want to see it in action. Genuine real life problems should be selected, which is why a modelling perspective is so important for the teaching and mastering of mathematics. Modelling should be integrated into the present curriculum because learners will then get full access to involvement in the classroom, to mathematisation, to doing problems, to criticising arguments, to ﬁnding proofs, to recognising concepts and to obtaining the ability to abstract these from the realistic situation. Modelling should be given a full opportunity in mathematics teacher education so that our learners can get the full beneﬁt of it. This will put the mathematical performances of learners in our country on a more solid base, which will make our learners more competitive at all levels in the future.
Mathematical model of the metal mould surface temperature optimization
Energy Technology Data Exchange (ETDEWEB)
Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)
2015-11-30
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.
Mathematical model of the metal mould surface temperature optimization
International Nuclear Information System (INIS)
Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek
2015-01-01
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article
Mathematical modeling of control subsystems for CELSS: Application to diet
Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery
1991-01-01
The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.
a Discrete Mathematical Model to Simulate Malware Spreading
Del Rey, A. Martin; Sánchez, G. Rodriguez
2012-10-01
With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Key Concept Mathematics and Management Science Models
Macbeth, Thomas G.; Dery, George C.
1973-01-01
The presentation of topics in calculus and matrix algebra to second semester freshmen along with a treatment of exponential and power functions would permit them to cope with a significant portion of the mathematical concepts that comprise the essence of several disciplines in a business school curriculum. (Author)
Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors
Directory of Open Access Journals (Sweden)
Zoran Benić
2016-01-01
Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.
Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity
Stohlmann, Micah S.
2017-01-01
Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…
Optimization of mathematical models for soil structure interaction
International Nuclear Information System (INIS)
Vallenas, J.M.; Wong, C.K.; Wong, D.L.
1993-01-01
Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate
Mathematical Modelling for Micropiles Embedded in Salt Rock
Directory of Open Access Journals (Sweden)
Rădan (Toader Georgiana
2016-03-01
Full Text Available This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated based with the in-situ tests results for axially loaded micropiles, embedded in salt rock. The paper presents the results obtained with the three software, the calibration and validation models.
Mathematical modelling with case studies using Maple and Matlab
Barnes, B
2014-01-01
Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-
Mechanical-mathematical modeling for landslide process
Svalova, V.
2009-04-01
500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.
Schwerdtfeger, Sara
2017-01-01
This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…
Mathematical rainfall model for hydrographic demarcation of Manabi ...
African Journals Online (AJOL)
PROMOTING ACCESS TO AFRICAN RESEARCH ... To achieve this objective, the basins of the Hydrographic Demarcation of Manabí ... Keywords: multiple regression; mathematical model; GIS; Hydrology; rainfall. ... HOW TO USE AJOL.
Mathematical models of thermohydraulic disturbance sources in the NPP circuits
International Nuclear Information System (INIS)
Proskuryakov, K.N.
1999-01-01
Methods and means of diagnostics of equipment and processes at NPPs allowing one to substantially increase safety and economic efficiency of nuclear power plant operation are considered. Development of mathematical models, describing the occurrence and propagation of violations is conducted
Mathematical modelling of a farm enterprise value on the ...
African Journals Online (AJOL)
Mathematical modelling of a farm enterprise value on the agricultural market with the ... Subsidies in the EU countries reached 45-50% of the value of commodity output ... This financing gap entailed a number of negative consequences.
Stability Analysis of a Mathematical Model for Onchocerciaisis ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: In this work, we propose a Deterministic Mathematical Model that ... blackflies Center for Disease Control and World ... villages located along fast flowing rivers where the ..... distribution of Blackflies (Simulium Species) in.
Improved Mathematical Models for Particle-Size Distribution Data
African Journals Online (AJOL)
BirukEdimon
School of Civil & Environmental Engineering, Addis Ababa Institute of Technology,. 3. Murray Rix ... two improved mathematical models to describe ... demand further improvement to handle the PSD ... statistics and the range of the optimized.
MATHEMATICAL MODELING OF HEATING AND COOLING OF SAUSAGES
Directory of Open Access Journals (Sweden)
A. V. Zhuchkov
2013-01-01
Full Text Available In the article the mathematical modeling of the processes of heating and cooling of sausage products in order to define reference characteristics of the processes was carried out. Basic regularities of the processes are graphically shown.
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
A mathematical look at a physical power prediction model
DEFF Research Database (Denmark)
Landberg, L.
1998-01-01
This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot....... The article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning...
2nd Tbilisi-Salerno Workshop on Modeling in Mathematics
Ricci, Paolo; Tavkhelidze, Ilia
2017-01-01
This book contains a collection of papers presented at the 2nd Tbilisi Salerno Workshop on Mathematical Modeling in March 2015. The focus is on applications of mathematics in physics, electromagnetics, biochemistry and botany, and covers such topics as multimodal logic, fractional calculus, special functions, Fourier-like solutions for PDE’s, Rvachev-functions and linear dynamical systems. Special chapters focus on recent uniform analytic descriptions of natural and abstract shapes using the Gielis Formula. The book is intended for a wide audience with interest in application of mathematics to modeling in the natural sciences.
A Mathematical Approach to Establishing Constitutive Models for Geomaterials
Directory of Open Access Journals (Sweden)
Guang-hua Yang
2013-01-01
Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.
A practical course in differential equations and mathematical modeling
Ibragimov , Nail H
2009-01-01
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame
Modeling EERE Deployment Programs
Energy Technology Data Exchange (ETDEWEB)
Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.
2007-11-08
The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.
Mathematical modeling of a process the rolling delivery
Stepanov, Mikhail A.; Korolev, Andrey A.
2018-03-01
An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.
Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program
Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy
2016-01-01
The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…
Effects of a Mathematics Cognitive Acceleration Program on Student Achievement and Motivation
Finau, Teukava; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.
2018-01-01
This paper presents the effects of a cognitive acceleration program in mathematics classes on Tongan students' achievements, motivation and self-regulation. Cognitive Acceleration in Mathematics Education (CAME) is a program developed at King's College and implemented worldwide with the aim of improving students' thinking skills, mathematics…
Neves, Rui Gomes; Teodoro, Vítor Duarte
2012-09-01
A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.
Mathematical model of polyethylene pipe bending stress state
Serebrennikov, Anatoly; Serebrennikov, Daniil
2018-03-01
Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.
MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH
Directory of Open Access Journals (Sweden)
И. Кузнецов
2012-04-01
Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.
Mathematical modeling of a V-stack piezoelectric aileron actuation
Directory of Open Access Journals (Sweden)
Ioan URSU
2016-12-01
Full Text Available The article presents a mathematical modeling of aileron actuation that uses piezo V-shaped stacks. The aim of the actuation is the increasing of flutter speed in the context of a control law, in order to widen the flight envelope. In this way the main advantage of such a piezo actuator, the bandwidth is exploited. The mathematical model is obtained based on free body diagrams, and the numerical simulations allow a preliminary sizing of the actuator.
Classical and Weak Solutions for Two Models in Mathematical Finance
Gyulov, Tihomir B.; Valkov, Radoslav L.
2011-12-01
We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.
Mathematical modelling and numerical simulation of oil pollution problems
2015-01-01
Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics, together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems. The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...
High profile students’ growth of mathematical understanding in solving linier programing problems
Utomo; Kusmayadi, TA; Pramudya, I.
2018-04-01
Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.
Mathematical Formulation Requirements and Specifications for the Process Models
Energy Technology Data Exchange (ETDEWEB)
Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.
2010-11-01
The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Application of mathematical modeling in sustained release delivery systems.
Grassi, Mario; Grassi, Gabriele
2014-08-01
This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Directory of Open Access Journals (Sweden)
Nita Delima
2017-03-01
Full Text Available Kesetaraan dalam pendidikan merupakan elemen penting dari beberapa standar visi NCTM dalam pendidikan matematika. Kesetaraan yang dimaksud, tidak berarti bahwa setiap siswa harus menerima pembelajaran yang identik dari guru; sebaliknya, menuntut sebuah pembelajaran yang mengakomodasi sebuah akses dalam mencapai kemampuan setiap siswa. Selain itu, NCTM juga mengemukakan bahwa dalam pembelajaran matematika terdapat lima standar proses yang harus terpenuhi, yakni problem solving, reasoning and proof, connections, communication, dan representation. Sementara itu, kemampuan problem solving yang dimiliki oleh seseorang akan mempengaruhi pada fleksibilitas proses berpikir mereka. Proses berpikir yang dimaksud dapat berupa proses dinamik yang memuat kompleksitas ide–ide matematik yang dimiliki serta dapat mengekspansi pemahaman tentang matematika yang disebut sebagai mathematical thinking. Dengan demikian, diperlukan sebuah model pembelajaran yang dapat berfungsi sebagai alat pedagogis guru, baik sebelum, selama dan setelah pembelajaran, terutama dalam membangun mathematical thinking siswa. Kerangka Comprehensive Mathematics Instruction (CMI merupakan sebuah kerangka prinsip – prinsip praktek pembelajaran yang bertujuan untuk menciptakan pengalaman matematika yang seimbang, sehingga siswa dapat memiliki pemikiran dan pemahaman matematika secara mendalam, kerangka CMI memiliki semua kriteria sebuah model pembelajaran. Adapun syntax untuk model CMI terdiri dari develop, solidify dan practice. Dalam penerapannya, setiap syntax tersebut meliputi tiga tahapan, yakni tujuan (purpose, peran guru (teacher role dan peran siswa (student role. Berdasarkan hasil analisis eksploratif yang telah dilakukan, dapat disimpulkan bahwa model pembelajaran CMI ini dapat menjadi sebuah alat pedagogis yang baru bagi guru yang dapat digunakan, baik sebelum, selama dan setelah pembelajaran dalam membangun kemampuan mathematical thinking siswa. Kata Kunci: Comprehensive
Mathematical model for solid fuel combustion in fluidized bed
International Nuclear Information System (INIS)
Kostikj, Zvonimir; Noshpal, Aleksandar
1994-01-01
A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)
Mathematical modeling of swirled flows in industrial applications
Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.
2018-03-01
Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.
Eringen, A Cemal
2013-01-01
Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th
Mathematical model for temperature change of a journal bearing
Directory of Open Access Journals (Sweden)
Antunović Ranko
2018-01-01
Full Text Available In this work, a representative mathematical model has been developed, which reliably describes the heating and cooling of a journal bearing as a result of its malfunctioning, and the model has been further confirmed on a test bench. The bearing model was validated by using analytical modeling methods, i. e. the experimental results were compared to the data obtained by analytical calculations. The regression and variance analysis techniques were applied to process the recorded data, to test the mathematical model and to define mathematical functions for the heating/cooling of the journal bearing. This investigation shows that a representative model may reliably indicate the change in the thermal field, which may be a consequence of journal bearing damage.
Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance
Clarke, David C.; Skiba, Philip F.
2013-01-01
A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of…
Boronico, Jess; Murdy, Jim; Kong, Xinlu
2014-01-01
This manuscript proposes a mathematical model to address faculty sufficiency requirements towards assuring overall high quality management education at a global university. Constraining elements include full-time faculty coverage by discipline, location, and program, across multiple campus locations subject to stated service quality standards of…
Developing a pedagogical problem solving view for mathematics teachers with two reflection programs
Directory of Open Access Journals (Sweden)
Bracha KRAMARSKI
2009-10-01
Full Text Available The study investigated the effects of two reflection support programs on elementary school mathematics teachers’ pedagogical problem solving view. Sixty-two teachers participated in a professional development program. Thirty teachers were assigned to the self-questioning (S_Q training and thirty two teachers were assigned to the reflection discourse (R_D training. The S_Q program was based on the IMPROVE self-questioning approach which emphasizes systematic discussion along the phases of mathematical or pedagogical problem solving as student and teacher. The R_D program emphasized discussion of standard based teaching and learning principles. Findings indicated that systematic reflection support (S_Q is effective for developing mathematics PCK, and strengthening metacognitive knowledge of mathematics teachers, more than reflection discourse (R_D. No differences were found between the groups in developing beliefs about teaching mathematics in using problem solving view.
Fasni, N.; Turmudi, T.; Kusnandi, K.
2017-09-01
This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.
Computer Programming in the UK Undergraduate Mathematics Curriculum
Sangwin, Christopher J.; O'Toole, Claire
2017-01-01
This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received…
Mathematics Education: Student Terminal Goals, Program Goals, and Behavioral Objectives.
Mesa Public Schools, AZ.
Behavioral objectives are listed for the primary, intermediate and junior high mathematics curriculum in the Mesa Public Schools (Arizona). Lists of specific objectives are given by level for sets, symbol recognition, number operations, mathematical structures, measurement and problem solving skills. (JP)
The Evolution of an Undergraduate Actuarial Mathematics Program
Kennedy, Kristin; Schumacher, Phyllis
2014-01-01
Bryant University was originally a school for business majors and offered only a few mathematics courses. After becoming accredited by the New England Association of Colleges and Universities in the 1960s, the college was required to upgrade its offerings in the area of mathematics. In the 1970s, the department offerings were increased to include…
Mathematical modeling of physiological systems: an essential tool for discovery.
Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J
2014-08-28
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.
Identification of Chemical Reactor Plant’s Mathematical Model
Pyakullya, Boris Ivanovich; Kladiev, Sergey Nikolaevich
2015-01-01
This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.
Identification of Chemical Reactor Plant’s Mathematical Model
Directory of Open Access Journals (Sweden)
Pyakillya Boris
2015-01-01
Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.
Introducing Program Evaluation Models
Directory of Open Access Journals (Sweden)
Raluca GÂRBOAN
2008-02-01
Full Text Available Programs and project evaluation models can be extremely useful in project planning and management. The aim is to set the right questions as soon as possible in order to see in time and deal with the unwanted program effects, as well as to encourage the positive elements of the project impact. In short, different evaluation models are used in order to minimize losses and maximize the benefits of the interventions upon small or large social groups. This article introduces some of the most recently used evaluation models.
Potential of mathematical modeling in fruit quality | Vazquez-Cruz ...
African Journals Online (AJOL)
A review of mathematical modeling applied to fruit quality showed that these models ranged inresolution from simple yield equations to complex representations of processes as respiration, photosynthesis and assimilation of nutrients. The latter models take into account complex genotype environment interactions to ...
Mathematical modelling of dextran filtration through hollow fibre membranes
DEFF Research Database (Denmark)
Vinther, Frank; Pinelo, Manuel; Brøns, Morten
2014-01-01
In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...
Díaz, Verónica; Poblete, Alvaro
2017-07-01
This paper describes part of a research and development project carried out in public elementary schools. Its objective was to update the mathematical and didactic knowledge of teachers in two consecutive levels in urban and rural public schools of Region de Los Lagos and Region de Los Rios of southern Chile. To that effect, and by means of an advanced training project based on a professional competences model, didactic interventions based on types of problems and types of mathematical competences with analysis of contents and learning assessment were designed. The teachers' competence regarding the didactic strategy used and its results, as well as the students' learning achievements are specified. The project made possible to validate a strategy of lifelong improvement in mathematics, based on the professional competences of teachers and their didactic transposition in the classroom, as an alternative to consolidate learning in areas considered vulnerable in two regions of the country.
Mathematical model and simulations of radiation fluxes from buried radionuclides
International Nuclear Information System (INIS)
Ahmad Saat
1999-01-01
A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)
Outlooks for mathematical modelling of the glass melting process
Energy Technology Data Exchange (ETDEWEB)
Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)
1997-12-31
Mathematical modelling is nowadays a standard tool for major producers of float glass, T.V. glass and fiberglass. Also for container glass furnaces, glass tank modelling proves to be a valuable method to optimize process conditions. Mathematical modelling is no longer just a way to visualize the flow patterns and to provide data on heat transfer. It can also predict glass quality in relation to process parameters, because all chemical and physical phenomena are included in the latest generation of models, based on experimental and theoretical research on these phenomena.
Mathematical model comparing of the multi-level economics systems
Brykalov, S. M.; Kryanev, A. V.
2017-12-01
The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.
Mathematical models for correction of images, obtained at radioisotope scan
International Nuclear Information System (INIS)
Glaz, A.; Lubans, A.
2002-01-01
The images, which obtained at radioisotope scintigraphy, contain distortions. Distortions appear as a result of absorption of radiation by patient's body's tissues. Two mathematical models for reducing of such distortions are proposed. Image obtained by only one gamma camera is used in the first mathematical model. Unfortunately, this model allows processing of the images only in case, when it can be assumed, that the investigated organ has a symmetric form. The images obtained by two gamma cameras are used in the second model. It gives possibility to assume that the investigated organ has non-symmetric form and to acquire more precise results. (authors)
A mathematical model for camera calibration based on straight lines
Directory of Open Access Journals (Sweden)
Antonio M. G. Tommaselli
2005-12-01
Full Text Available In other to facilitate the automation of camera calibration process, a mathematical model using straight lines was developed, which is based on the equivalent planes mathematical model. Parameter estimation of the developed model is achieved by the Least Squares Method with Conditions and Observations. The same method of adjustment was used to implement camera calibration with bundles, which is based on points. Experiments using simulated and real data have shown that the developed model based on straight lines gives results comparable to the conventional method with points. Details concerning the mathematical development of the model and experiments with simulated and real data will be presented and the results with both methods of camera calibration, with straight lines and with points, will be compared.
Fun with maths: exploring implications of mathematical models for malaria eradication.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A
2014-12-11
Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.
Tsunami evacuation mathematical model for the city of Padang
International Nuclear Information System (INIS)
Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.; Soewono, E.
2012-01-01
Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuate people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.
Tsunami evacuation mathematical model for the city of Padang
Energy Technology Data Exchange (ETDEWEB)
Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.; Soewono, E. [Department of Mathematics Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Civil Engineering Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics Institut Teknologi Bandung, Bandung 40132 (Indonesia)
2012-05-22
Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuate people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.
Frontiers in economic research on petroleum allocation using mathematical programming methods
International Nuclear Information System (INIS)
Rowse, J.
1991-01-01
This paper presents a state of the art of operations research techniques applied in petroleum allocation, namely mathematical programming methods, with principal attention directed toward linear programming and nonlinear programming (including quadratic programming). Contributions to the economics of petroleum allocation are discussed for international trade, industrial organization, regional/macro economics, public finance and natural resource/environmental economics
Hassidov, Dina; Ilany, Bat-Sheva
2018-01-01
This article presents a mixed-method study of the innovative "Senso-Math" preschool program and the reactions of both the facilitators, who underwent a special training program, and the preschool teachers in whose classes the program was implemented. The goal of the program is to enhance mathematical development in preschool children…
Inverse truss design as a conic mathematical program with equilibrium constraints
Czech Academy of Sciences Publication Activity Database
Kočvara, Michal; Outrata, Jiří
2017-01-01
Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf
Characteristic of critical and creative thinking of students of mathematics education study program
Rochmad; Agoestanto, A.; Kharis, M.
2018-03-01
Critical and creative thinking give important role in learning matematics for mathematics education students. This research to explored the characteristic of critical and creative thinking of students of mathematics study program in mathematics department. Critical thinking and creative thinking can be illustrated as two sides of a coin, which one is associated to the other. In elementary linear algebra courses, however, critical thinking can be seen as a foundation to build students’ creative thinking.
Theoretical constructs for early intervention programs in mathematics:
DEFF Research Database (Denmark)
Lindenskov, Lena; Kirsted, Katrine
2017-01-01
. It is not a straightforward endeavour. One reason is that the term theory as well as the term practice may very well be given different meanings by different agents. This variation is in our view to be considered in “implementation research” and Lewin’s statement ought to be qualified by two questions “Who cares for a good...... theory?” and “What makes a good theory good for whom?” This paper explores this variation of how theory is perceived by mathematics teachers and by mathematics researchers involved in a developmental project on early intervention in mathematics education in Denmark. The paper exemplifies how agents...
Effectiveness of discovery learning model on mathematical problem solving
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Mathematical models to predict rheological parameters of lateritic hydromixtures
Directory of Open Access Journals (Sweden)
Gabriel Hernández-Ramírez
2017-10-01
Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.
Mathematical modelling and numerical simulation of forces in milling process
Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.
2018-04-01
Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Mathematical modeling for novel cancer drug discovery and development.
Zhang, Ping; Brusic, Vladimir
2014-10-01
Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.