#### Sample records for mathematical programming linear

1. Linear programming mathematics, theory and algorithms

CERN Document Server

1996-01-01

Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

2. Linear programming

CERN Document Server

Solow, Daniel

2014-01-01

This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

3. DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS

Directory of Open Access Journals (Sweden)

Volodymyr M. Mykhalevych

2013-11-01

Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.

4. Linear programming

CERN Document Server

Karloff, Howard

1991-01-01

To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

5. Evaluation of mathematical methods and linear programming for optimization of the planning in radiotherapy

International Nuclear Information System (INIS)

Fernandes, Marco A.R.; Fernandes, David M.; Florentino, Helenice O.

2010-01-01

The work detaches the importance of the use of mathematical tools and computer systems for optimization of the planning in radiotherapy, seeking to the distribution of dose of appropriate radiation in the white volume that provides an ideal therapeutic rate between the tumor cells and the adjacent healthy tissues, extolled in the radiotherapy protocols. Examples of target volumes mathematically modeled are analyzed with the technique of linear programming, comparing the obtained results using the Simplex algorithm with those using the algorithm of Interior Points. The System Genesis II was used for obtaining of the isodose curves for the outline and geometry of fields idealized in the computer simulations, considering the parameters of a 10 MV photons beams. Both programming methods (Simplex and Interior Points) they resulted in a distribution of integral dose in the tumor volume and allow the adaptation of the dose in the critical organs inside of the restriction limits extolled. The choice of an or other method should take into account the facility and the need of limiting the programming time. The isodose curves, obtained with the Genesis II System, illustrate that the adjacent healthy tissues to the tumor receives larger doses than those reached in the computer simulations. More coincident values can be obtained altering the weights and some factors of minimization of the objective function. The prohibitive costs of the computer planning systems, at present available for radiotherapy, it motivates the researches to look for the implementation of simpler and so effective methods for optimization of the treatment plan. (author)

6. Finite element historical deformation analysis in piecewise linear plasticity by mathematical programming

International Nuclear Information System (INIS)

De Donato, O.; Parisi, M.A.

1977-01-01

When loads increase proportionally beyond the elastic limit in the presence of elastic-plastic piecewise-linear constitutive laws, the problem of finding the whole evolution of the plastic strain and displacements of structures was recently shown to be amenable to a parametric linear complementary problem (PLCP) in which the parameter is represented by the load factor, the matrix is symmetric positive definite or at least semi-definite (for perfect plasticity) and the variables with a direct mechanical meaning are the plastic multipliers. With reference to plane trusses and frames with elastic-plastic linear work-hardening material behaviour numerical solutions were also fairly efficiently obtained using a recent mathematical programming algorithm (due to R.W. Cottle) which is able to provide the whole deformation history of the structure and, at the same time to rule out local unloadings along the given proportional loading process by means of 'a priori' checks carried out before each pivotal step of the procedure. Hence it becomes possible to use the holonomic (reversible, path-independent) constitutive laws in finite terms and to benefit by all the relevant numerical and computational advantages despite the non-holonomic nature of plastic behaviour. In the present paper the method of solution is re-examined in view to overcome an important drawback of the algorithm deriving from the size of PLCP fully populated matrix when structural problems with large number of variables are considered and, consequently, the updating, the storing or, generally, the handling of the current tableau may become prohibitive. (Auth.)

7. Algorithmic Principles of Mathematical Programming

NARCIS (Netherlands)

Faigle, Ulrich; Kern, Walter; Still, Georg

2002-01-01

Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

8. Linear programming using Matlab

CERN Document Server

Ploskas, Nikolaos

2017-01-01

This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book  are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus.  The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...

9. Investigating Integer Restrictions in Linear Programming

Science.gov (United States)

Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

2015-01-01

Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

10. Reduction of Linear Programming to Linear Approximation

OpenAIRE

Vaserstein, Leonid N.

2006-01-01

It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

11. Learning Mathematics through Programming

DEFF Research Database (Denmark)

Misfeldt, Morten; Ejsing-Duun, Stine

2015-01-01

In this paper we explore the potentials for learning mathematics through programming by a combination of theoretically derived potentials and cases of practical pedagogical work. We propose a model with three interdependent learning potentials as programming which can: (1) help reframe the students...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....

12. A linear programming manual

Science.gov (United States)

Tuey, R. C.

1972-01-01

Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

13. Linear-Algebra Programs

Science.gov (United States)

Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

1982-01-01

The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

14. Linear Programming (LP)

International Nuclear Information System (INIS)

Rogner, H.H.

1989-01-01

The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig

15. Analysis and monitoring of energy security and prediction of indicator values using conventional non-linear mathematical programming

Directory of Open Access Journals (Sweden)

Elena Vital'evna Bykova

2011-09-01

Full Text Available This paper describes the concept of energy security and a system of indicators for its monitoring. The indicator system includes more than 40 parameters that reflect the structure and state of fuel and energy complex sectors (fuel, electricity and heat & power, as well as takes into account economic, environmental and social aspects. A brief description of the structure of the computer system to monitor and analyze energy security is given. The complex contains informational, analytical and calculation modules, provides applications for forecasting and modeling energy scenarios, modeling threats and determining levels of energy security. Its application to predict the values of the indicators and methods developed for it are described. This paper presents a method developed by conventional nonlinear mathematical programming needed to address several problems of energy and, in particular, the prediction problem of the security. An example of its use and implementation of this method in the application, "Prognosis", is also given.

16. A Direct Heuristic Algorithm for Linear Programming

Abstract. An (3) mathematically non-iterative heuristic procedure that needs no artificial variable is presented for solving linear programming problems. An optimality test is included. Numerical experiments depict the utility/scope of such a procedure.

17. Linear genetic programming

CERN Document Server

Brameier, Markus

2007-01-01

Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field

18. Generalised Assignment Matrix Methodology in Linear Programming

Science.gov (United States)

Jerome, Lawrence

2012-01-01

Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

19. An {Mathematical expression} iteration bound primal-dual cone affine scaling algorithm for linear programmingiteration bound primal-dual cone affine scaling algorithm for linear programming

NARCIS (Netherlands)

J.F. Sturm; J. Zhang (Shuzhong)

1996-01-01

textabstractIn this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993;

20. Linear models in the mathematics of uncertainty

CERN Document Server

Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

2013-01-01

The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

Science.gov (United States)

Klumpp, A. R.; Lawson, C. L.

1988-01-01

Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

2. Linear and integer programming made easy

CERN Document Server

Hu, T C

2016-01-01

Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...

3. Linear Programming and Network Flows

CERN Document Server

Bazaraa, Mokhtar S; Sherali, Hanif D

2011-01-01

The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

4. ALPS: A Linear Program Solver

Science.gov (United States)

Ferencz, Donald C.; Viterna, Larry A.

1991-01-01

ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

5. Elementary linear programming with applications

CERN Document Server

Kolman, Bernard

1995-01-01

Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

6. Linear Programming across the Curriculum

Science.gov (United States)

Yoder, S. Elizabeth; Kurz, M. Elizabeth

2015-01-01

Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

7. Optimization Research of Generation Investment Based on Linear Programming Model

Science.gov (United States)

Wu, Juan; Ge, Xueqian

Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

8. Machine Learning via Mathematical Programming

National Research Council Canada - National Science Library

Mamgasarian, Olivi

1999-01-01

Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...

9. Linear programming algorithms and applications

CERN Document Server

Vajda, S

1981-01-01

This text is based on a course of about 16 hours lectures to students of mathematics, statistics, and/or operational research. It is intended to introduce readers to the very wide range of applicability of linear programming, covering problems of manage­ ment, administration, transportation and a number of other uses which are mentioned in their context. The emphasis is on numerical algorithms, which are illustrated by examples of such modest size that the solutions can be obtained using pen and paper. It is clear that these methods, if applied to larger problems, can also be carried out on automatic (electronic) computers. Commercially available computer packages are, in fact, mainly based on algorithms explained in this book. The author is convinced that the user of these algorithms ought to be knowledgeable about the underlying theory. Therefore this volume is not merely addressed to the practitioner, but also to the mathematician who is interested in relatively new developments in algebraic theory and in...

10. A Fuzzy Linear Programming Approach for Aggregate Production Planning

DEFF Research Database (Denmark)

Iris, Cagatay; Cevikcan, Emre

2014-01-01

a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different a...

11. Mathematical methods linear algebra normed spaces distributions integration

CERN Document Server

Korevaar, Jacob

1968-01-01

Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

12. Mathematical algorithm to relate digital maps of distribution of biomass with algorithms of linear programming to optimize bio-energy delivery chains

NARCIS (Netherlands)

2008-01-01

Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

13. Mathematical algorithm to transform digital biomass distribution maps into linear programming networks in order to optimize bio-energy delivery chains

NARCIS (Netherlands)

2008-01-01

Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

14. Linear programming foundations and extensions

CERN Document Server

Vanderbei, Robert J

2001-01-01

Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

15. Constraint Programming versus Mathematical Programming

DEFF Research Database (Denmark)

Hansen, Jesper

2003-01-01

Constraint Logic Programming (CLP) is a relatively new technique from the 80's with origins in Computer Science and Artificial Intelligence. Lately, much research have been focused on ways of using CLP within the paradigm of Operations Research (OR) and vice versa. The purpose of this paper...

16. Analysis of Students' Errors on Linear Programming at Secondary ...

African Journals Online (AJOL)

The purpose of this study was to identify secondary school students' errors on linear programming at 'O' level. It is based on the fact that students' errors inform teaching hence an essential tool for any serious mathematics teacher who intends to improve mathematics teaching. The study was guided by a descriptive survey ...

17. A cutting- plane approach for semi- infinite mathematical programming

African Journals Online (AJOL)

Many situations ranging from industrial to social via economic and environmental problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane approach which lends itself better for standard non-linear programs is exploited with good reasons for grappling with linear, convex and ...

18. Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses

Science.gov (United States)

Martínez-Sierra, Gustavo; García-González, María del Socorro

2016-01-01

Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…

19. A Framework for Mathematical Thinking: The Case of Linear Algebra

Science.gov (United States)

Stewart, Sepideh; Thomas, Michael O. J.

2009-01-01

Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

20. 175 Years of Linear Programming

polynomial-time solvability of linear programming, that is, testing if a polyhedron Q E ~ ... Q is rational, i.e. all extreme points and rays of Q are ra- tional vectors or ..... rithrll terminates with an interior solution, a post-processing step is usually ...

1. 175 Years of Linear Programming

Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. 175 Years of Linear Programming - Max Flow = Min Cut. Vijay Chandru M R Rao. Series Article Volume 4 Issue 10 October 1999 pp 22-39. Fulltext. Click here to view fulltext PDF. Permanent link:

2. 175 Years of Linear Programming

Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. 175 Years of Linear Programming - Pune's Gift. Vijay Chandru M R Rao. Series Article Volume 4 Issue 5 May ... Computer Science and Automation, IISc Bangalore 560012, India. Director, Indian Institute of Management, Bannerghatta Road, ...

3. Advanced Mathematics Online: Assessing Particularities in the Online Delivery of a Second Linear Algebra Course

Science.gov (United States)

Montiel, Mariana; Bhatti, Uzma

2010-01-01

This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…

4. ALPS - A LINEAR PROGRAM SOLVER

Science.gov (United States)

Viterna, L. A.

1994-01-01

Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

5. The mathematical structure of the approximate linear response relation

International Nuclear Information System (INIS)

Yasuda, Muneki; Tanaka, Kazuyuki

2007-01-01

In this paper, we study the mathematical structures of the linear response relation based on Plefka's expansion and the cluster variation method in terms of the perturbation expansion, and we show how this linear response relation approximates the correlation functions of the specified system. Moreover, by comparing the perturbation expansions of the correlation functions estimated by the linear response relation based on these approximation methods with exact perturbative forms of the correlation functions, we are able to explain why the approximate techniques using the linear response relation work well

6. On the linear programming bound for linear Lee codes.

Science.gov (United States)

Astola, Helena; Tabus, Ioan

2016-01-01

Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

7. Ranking Forestry Investments With Parametric Linear Programming

Science.gov (United States)

Paul A. Murphy

1976-01-01

Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

8. Numerical methods of mathematical optimization with Algol and Fortran programs

CERN Document Server

Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner

1971-01-01

Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition

9. A Spreadsheet-Based, Matrix Formulation Linear Programming Lesson

DEFF Research Database (Denmark)

Harrod, Steven

2009-01-01

The article focuses on the spreadsheet-based, matrix formulation linear programming lesson. According to the article, it makes a higher level of theoretical mathematics approachable by a wide spectrum of students wherein many may not be decision sciences or quantitative methods majors. Moreover...

10. Computer Program For Linear Algebra

Science.gov (United States)

Krogh, F. T.; Hanson, R. J.

1987-01-01

Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

11. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

Science.gov (United States)

Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

2018-01-01

This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

12. [Relations between biomedical variables: mathematical analysis or linear algebra?].

Science.gov (United States)

Hucher, M; Berlie, J; Brunet, M

1977-01-01

The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.

13. The linear programming bound for binary linear codes

NARCIS (Netherlands)

Brouwer, A.E.

1993-01-01

Combining Delsarte's (1973) linear programming bound with the information that certain weights cannot occur, new upper bounds for dmin (n,k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.

14. Damped oscillations of linear systems a mathematical introduction

CERN Document Server

Veselić, Krešimir

2011-01-01

The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...

15. ICT- The Educational Programs in Teaching Mathematics

Directory of Open Access Journals (Sweden)

Dance Sivakova

2017-08-01

Full Text Available The range of information and communication technology in teaching mathematics is unlimited. Despite numerous researches about the opportunities and application of the ICT in teaching mathematics and in the world, however, many aspects remain unexplored. This research comes to knowledge that will be applicable to the educational practice. The findings will serve as motivation for more frequent use of the ICT in teaching mathematics from first to fifth grade as a mean for improving of the educational process. Through application of the ICT in the educational programs in teaching mathematics the technological improved practice is investigated and discussed and it helps overcoming of the challenges that arise when trying to integrate the ICT in the educational curricula in mathematics. The biggest challenge are the findings about the possibilities of the application of the ICT in the educational programs in math from first to fifth grade as well as their dissemination, all aimed to improving of teaching mathematics from the first to the fifth grade. The application of the most ICT in the educational programs of mathematics affects the training of the students for easier adoption of the mathematical concepts and the mathematical procedures and in the easier identification and resolving problem situations.

16. Joint shape segmentation with linear programming

KAUST Repository

Huang, Qixing; Koltun, Vladlen; Guibas, Leonidas

2011-01-01

program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape

17. Timetabling an Academic Department with Linear Programming.

Science.gov (United States)

Bezeau, Lawrence M.

This paper describes an approach to faculty timetabling and course scheduling that uses computerized linear programming. After reviewing the literature on linear programming, the paper discusses the process whereby a timetable was created for a department at the University of New Brunswick. Faculty were surveyed with respect to course offerings…

18. Non-linear wave equations:Mathematical techniques

International Nuclear Information System (INIS)

1978-01-01

An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

19. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

OpenAIRE

2007-01-01

In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

20. Enhancement of Linear Circuit Program

DEFF Research Database (Denmark)

Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

1996-01-01

In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...

1. Mathematical programming in multiperson cooperative games

Energy Technology Data Exchange (ETDEWEB)

Lucas, W.

1994-12-31

Many fundamental solution notions in mathematical economics relate to mathematical programming. This includes various types of equilibrium points for the noncooperative (strategic) competitions, as well as the core for the cooperative (coalitional) models. This talk concerns alternate cooperative solution concepts such as various nucleoli points and other proposed fairness outcomes. These concepts become of particular interest for those cases when the core is an empty set. Recent results on these alternate solutions for classes of assignment games will be presented.

2. The Use of Linear Programming for Prediction.

Science.gov (United States)

Schnittjer, Carl J.

The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

3. Sparsity Prevention Pivoting Method for Linear Programming

DEFF Research Database (Denmark)

Li, Peiqiang; Li, Qiyuan; Li, Canbing

2018-01-01

When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

4. Sparsity Prevention Pivoting Method for Linear Programming

DEFF Research Database (Denmark)

Li, Peiqiang; Li, Qiyuan; Li, Canbing

2018-01-01

. The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

5. Non-linear nuclear engineering models as genetic programming application

International Nuclear Information System (INIS)

Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

1997-01-01

This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

6. Evaluation of film dosemeters by linear programming

International Nuclear Information System (INIS)

Kragh, P.; Nitschke, J.

1992-01-01

An evaluation method for multi-component dosemeters is described which uses linear programming in order to decrease the dependence on energy and direction. The results of this method are more accurate than those obtained with the evaluation methods so far applied in film dosimetry. In addition, systematic errors can be given when evaluating individual measurements. Combined linear programming, as a special case of the presented method, is described taking a film dosemeter of particular type as an example. (orig.) [de

7. Fuzzy Multi-objective Linear Programming Approach

Directory of Open Access Journals (Sweden)

Amna Rehmat

2007-07-01

Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

8. S.M.P. SEQUENTIAL MATHEMATICS PROGRAM.

Science.gov (United States)

CICIARELLI, V; LEONARD, JOSEPH

A SEQUENTIAL MATHEMATICS PROGRAM BEGINNING WITH THE BASIC FUNDAMENTALS ON THE FOURTH GRADE LEVEL IS PRESENTED. INCLUDED ARE AN UNDERSTANDING OF OUR NUMBER SYSTEM, AND THE BASIC OPERATIONS OF WORKING WITH WHOLE NUMBERS--ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. COMMON FRACTIONS ARE TAUGHT IN THE FIFTH, SIXTH, AND SEVENTH GRADES. A…

9. Micronesian Mathematics Program, Level 1, Children's Workbook.

Science.gov (United States)

Gring, Carolyn

This workbook for children was prepared especially to accompany the level 1 Micronesian Mathematics Program Teacher's Guide. It is to be used to check whether children have learned concepts taught by activities and activity cards. Work is provided for such concepts as color recognition, categorizing, counting, ordering, numeration, contrasting,…

10. Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming

Science.gov (United States)

Gurski, Katharine F.

2009-01-01

We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…

11. Mathematical and Numerical Methods for Non-linear Beam Dynamics

International Nuclear Information System (INIS)

Herr, W

2014-01-01

Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

12. Frontiers in economic research on petroleum allocation using mathematical programming methods

International Nuclear Information System (INIS)

Rowse, J.

1991-01-01

This paper presents a state of the art of operations research techniques applied in petroleum allocation, namely mathematical programming methods, with principal attention directed toward linear programming and nonlinear programming (including quadratic programming). Contributions to the economics of petroleum allocation are discussed for international trade, industrial organization, regional/macro economics, public finance and natural resource/environmental economics

13. Portfolio optimization using fuzzy linear programming

Science.gov (United States)

Pandit, Purnima K.

2013-09-01

Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

14. Some Properties of Multiple Parameters Linear Programming

Directory of Open Access Journals (Sweden)

Maoqin Li

2010-01-01

Full Text Available We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function f can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of f at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

15. Some Properties of Multiple Parameters Linear Programming

Directory of Open Access Journals (Sweden)

Yan Hong

2010-01-01

Full Text Available Abstract We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

16. PCX, Interior-Point Linear Programming Solver

International Nuclear Information System (INIS)

Czyzyk, J.

2004-01-01

1 - Description of program or function: PCX solves linear programming problems using the Mehrota predictor-corrector interior-point algorithm. PCX can be called as a subroutine or used in stand-alone mode, with data supplied from an MPS file. The software incorporates modules that can be used separately from the linear programming solver, including a pre-solve routine and data structure definitions. 2 - Methods: The Mehrota predictor-corrector method is a primal-dual interior-point method for linear programming. The starting point is determined from a modified least squares heuristic. Linear systems of equations are solved at each interior-point iteration via a sparse Cholesky algorithm native to the code. A pre-solver is incorporated in the code to eliminate inefficiencies in the user's formulation of the problem. 3 - Restriction on the complexity of the problem: There are no size limitations built into the program. The size of problem solved is limited by RAM and swap space on the user's computer

17. ACCULIB, Program Library of Mathematical Routines

International Nuclear Information System (INIS)

Van Kats, J.M.; Rusman, C.J.; Van der Vorst, H.A.

1987-01-01

Description of program or function - ACCULIB is a collection of programs and subprograms for: - approximation and interpolation problems; - the evaluation of series of orthogonal polynomials; - evaluation of the complementary error function; - sorting problems and permutations; - differential equation problems; - linear algebra eigenvalue problems; - optimization problems; - fast Fourier transformations and Fourier series; - numerical quadrature of continuous functions; - linear systems and other linear algebra problems; - bit manipulation and character handling/transmission; - systems of nonlinear equations, in particular the determination of zeros of polynomials; - solution of over-complete systems; - plotting routines for contouring and surface representation; - statistical investigation of data. In addition, many utilities such as code conversion, microfiche production, disk file surveys, layout improvements for ALGOL60 and FORTRAN programs, and the conversion of IBM FORTRAN programs to CDC FORTRAN are included in the collection

18. Spline smoothing of histograms by linear programming

Science.gov (United States)

Bennett, J. O.

1972-01-01

An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

19. Fuzzy linear programming approach for solving transportation

Transportation problem (TP) is an important network structured linear programming problem that arises in several contexts and has deservedly received a great deal of attention in the literature. The central concept in this problem is to find the least total transportation cost of a commodity in order to satisfy demands at ...

20. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

Science.gov (United States)

Tucker, Alan

1993-01-01

Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

1. Menu-Driven Solver Of Linear-Programming Problems

Science.gov (United States)

Viterna, L. A.; Ferencz, D.

1992-01-01

Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

2. XIV International Conference on Mathematical Programming

CERN Document Server

Pardalos, Panos; Rapcsák, Tamás

2001-01-01

This volume contains refereed papers based on the lectures presented at the XIV International Conference on Mathematical Programming held at Matrahaza, Hungary, between 27-31 March 1999. This conference was organized by the Laboratory of Operations Research and Deci­ sion Systems at the Computer and Automation Institute, Hungarian Academy of Sciences. The editors hope this volume will contribute to the theory and applications of mathematical programming. As a tradition of these events, the main purpose of the confer­ ence was to review and discuss recent advances and promising research trends concerning theory, algorithms and applications in different fields of Optimization Theory and related areas such as Convex Analysis, Complementarity Systems and Variational Inequalities. The conference is traditionally held in the Matra Mountains, and housed by the resort house of the Hungarian Academy of Sciences. This was the 14th event of the long lasting series of conferences started in 1973. The organizers wish to...

3. Characteristic of critical and creative thinking of students of mathematics education study program

Science.gov (United States)

2018-03-01

Critical and creative thinking give important role in learning matematics for mathematics education students. This research to explored the characteristic of critical and creative thinking of students of mathematics study program in mathematics department. Critical thinking and creative thinking can be illustrated as two sides of a coin, which one is associated to the other. In elementary linear algebra courses, however, critical thinking can be seen as a foundation to build students’ creative thinking.

4. The simplex method of linear programming

CERN Document Server

Ficken, Frederick A

1961-01-01

This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation. The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boun

5. Updating Linear Schedules with Lowest Cost: a Linear Programming Model

Science.gov (United States)

Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata

2017-10-01

Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.

6. Problem Based Learning Technique and Its Effect on Acquisition of Linear Programming Skills by Secondary School Students in Kenya

Science.gov (United States)

Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice

2015-01-01

The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…

7. Joint shape segmentation with linear programming

KAUST Repository

Huang, Qixing

2011-01-01

We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques. © 2011 ACM.

8. Description of mathematical models and computer programs

International Nuclear Information System (INIS)

1977-01-01

The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

9. Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation

Science.gov (United States)

Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...

10. International program on linear electric motors

Energy Technology Data Exchange (ETDEWEB)

Dawson, G.E.; Eastham, A.R.; Parker, J.H.

1992-05-01

The International Program on Linear Electric Motors (LEM) was initiated for the purposes of commumication and coordination between various centers of expertise in LEM technology in Germany, Japan and Canada. Furthermore, it was intended to provide assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators and policy makers, and to ensure that full advantage can be taken if opportunities for technology transfer occur. In the process, the program was able to provide closer contacts between researchers, to enhance and encourage collaborative research and development, and to facilitate joint ventures in advanced transportation technologies. Work done under the program is documented, and seminar materials presented by Canadian researchers in Italy, and by Italian researchers at Queen's University in Canada are presented. Five separate abstracts have been prepared for the main body of the report and the seminar materials.

11. Controller design approach based on linear programming.

Science.gov (United States)

Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

2013-11-01

12. Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design

DEFF Research Database (Denmark)

Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul

2015-01-01

This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....

13. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

Science.gov (United States)

Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

2016-01-01

The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

14. Applications of a Sequence of Points in Teaching Linear Algebra, Numerical Methods and Discrete Mathematics

Science.gov (United States)

Shi, Yixun

2009-01-01

Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…

15. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

CERN Document Server

2013-01-01

This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

16. Mathematical problems in non-linear Physics: some results

International Nuclear Information System (INIS)

1979-01-01

The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)

17. Effects of a Mathematics Fluency Program on Mathematics Performance of Students with Challenging Behaviors

Science.gov (United States)

Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.

2016-01-01

In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…

18. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

Science.gov (United States)

Wati, S.; Fitriana, L.; Mardiyana

2018-04-01

Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

19. A program package for solving linear optimization problems

International Nuclear Information System (INIS)

Horikami, Kunihiko; Fujimura, Toichiro; Nakahara, Yasuaki

1980-09-01

Seven computer programs for the solution of linear, integer and quadratic programming (four programs for linear programming, one for integer programming and two for quadratic programming) have been prepared and tested on FACOM M200 computer, and auxiliary programs have been written to make it easy to use the optimization program package. The characteristics of each program are explained and the detailed input/output descriptions are given in order to let users know how to use them. (author)

20. The Impact of an Online Tutoring Program on Mathematics Achievement

Science.gov (United States)

Clark, Amy K.; Whetstone, Patti

2014-01-01

The authors explored the impact of an online tutoring program, Math Whizz (Whizz Education, 2014), on student mathematics achievement at 15 elementary schools. Students participated in the use of the Math Whizz program for the duration of the school year as a supplement to mathematics instruction. The Math Whizz program recorded such information…

1. Game Theory and its Relationship with Linear Programming Models ...

African Journals Online (AJOL)

Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.

2. Mathematical modelling and linear stability analysis of laser fusion cutting

International Nuclear Information System (INIS)

Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

2016-01-01

A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

3. Mathematical modelling and linear stability analysis of laser fusion cutting

Energy Technology Data Exchange (ETDEWEB)

Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

2016-06-08

A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

4. Insights into the School Mathematics Tradition from Solving Linear Equations

Science.gov (United States)

Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

2015-01-01

In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

5. Mathematical programming solver based on local search

CERN Document Server

Gardi, Frédéric; Darlay, Julien; Estellon, Bertrand; Megel, Romain

2014-01-01

This book covers local search for combinatorial optimization and its extension to mixed-variable optimization. Although not yet understood from the theoretical point of view, local search is the paradigm of choice for tackling large-scale real-life optimization problems. Today's end-users demand interactivity with decision support systems. For optimization software, this means obtaining good-quality solutions quickly. Fast iterative improvement methods, like local search, are suited to satisfying such needs. Here the authors show local search in a new light, in particular presenting a new kind of mathematical programming solver, namely LocalSolver, based on neighborhood search. First, an iconoclast methodology is presented to design and engineer local search algorithms. The authors' concern about industrializing local search approaches is of particular interest for practitioners. This methodology is applied to solve two industrial problems with high economic stakes. Software based on local search induces ex...

6. Introduction to linear programming: Coalitional game experiments

Energy Technology Data Exchange (ETDEWEB)

Lucas, W.

1994-12-31

Many solution notions in the multiperson cooperative games (in characteristic function form) make use of linear programming (LP). The popular concept of the {open_quotes}core{close_quotes} of a coalitional game is a special type of LP. It can be introduced in a very simple and quite exciting manner by means of a group experiment. A total of fifty dollars will be given to three randomly selected attendees who will take part in an experiment during this talk, presuming they behave in a Pareto optimal manner. Furthermore, the dual of the particular LP for the core gives rise to the idea of {open_quotes}balanced sets{close_quotes} which is an interesting combinatorial structure in its own right.

7. Robust Control Design via Linear Programming

Science.gov (United States)

Keel, L. H.; Bhattacharyya, S. P.

1998-01-01

This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

8. Stochastic linear programming models, theory, and computation

CERN Document Server

Kall, Peter

2011-01-01

This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

9. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

Science.gov (United States)

Fleming, P.

1985-01-01

A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

10. Josai Mathematical Monographs Vol.7 Program

OpenAIRE

城西大学大学院理学研究科

2014-01-01

Mathematics and Computer Science : Proceedings of Annual Workshop on Mathematics and Computer Science, held at Josai University on March 25 in 2014 / edited by Masatoshi IIDA, Manabu INUMA, Kiyoko NISHIZAWA

11. Some mathematical problems in non-linear Physics

International Nuclear Information System (INIS)

1983-01-01

The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs

12. Application of linear programming and perturbation theory in optimization of fuel utilization in a nuclear reactor

International Nuclear Information System (INIS)

Zavaljevski, N.

1985-01-01

Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time

13. Exact penalty results for mathematical programs with vanishing constraints

Czech Academy of Sciences Publication Activity Database

Hoheisel, T.; Kanzow, Ch.; Outrata, Jiří

2010-01-01

Roč. 72, č. 5 (2010), s. 2514-2526 ISSN 0362-546X R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mathematical programs with vanishing constraints * Mathematical programs with equilibrium constraints * Exact penalization * Calmness * Subdifferential calculus * Limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-exact penalty results for mathematical programs with vanishing constraints.pdf

14. Fuzzy linear programming approach for solving transportation ...

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail: ..... est grade of membership at x are μ ˜AL (x) and μ ˜AU (x), respectively. ..... trapezoidal fuzzy numbers transportation problem (12) are.

15. Some contributions to non-linear physic: Mathematical problems

International Nuclear Information System (INIS)

1981-01-01

The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs

16. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

Directory of Open Access Journals (Sweden)

Andrea Dorila Cárcamo

2016-03-01

Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

17. Optimized remedial groundwater extraction using linear programming

International Nuclear Information System (INIS)

Quinn, J.J.

1995-01-01

Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary

18. APL programs for the mathematics classroom

CERN Document Server

Thomson, Norman D

1989-01-01

The idea for this book grew out of proposals at the APL86 con­ ference in Manchester which led to the initiation of the I-APL (International APL) project, and through it to the availability of an interpreter which would bring the advantages of APL within the means of vast numbers of school children and their teachers. The motivation is that once school teachers have glimpsed the possibilities, there will be a place for an "ideas" book of short programs which will enable useful algorithms to be brought rapidly into classroom use, and perhaps even to be written and developed in front of the class. A scan of the contents will show how the conciseness of APL makes it possible to address a huge range of topics in a small number of pages. There is naturally a degree of idiosyncrasy in the choice of topics - the selection I have made reflects algo­ rithms which have either proved useful in real work, or which have caught my imagination as candidates for demonstrating the value of APL as a mathematical notation. Wh...

19. Towards lexicographic multi-objective linear programming using grossone methodology

Science.gov (United States)

Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

2016-10-01

Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

20. An Approach for Solving Linear Fractional Programming Problems

OpenAIRE

Andrew Oyakhobo Odior

2012-01-01

Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

1. Computer programming in the UK undergraduate mathematics curriculum

Science.gov (United States)

Sangwin, Christopher J.; O'Toole, Claire

2017-11-01

This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016, programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first-year courses than a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination).

2. A New Finite Continuation Algorithm for Linear Programming

DEFF Research Database (Denmark)

Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa

1996-01-01

We describe a new finite continuation algorithm for linear programming. The dual of the linear programming problem with unit lower and upper bounds is formulated as an $\\ell_1$ minimization problem augmented with the addition of a linear term. This nondifferentiable problem is approximated...... by a smooth problem. It is shown that the minimizers of the smooth problem define a family of piecewise-linear paths as a function of a smoothing parameter. Based on this property, a finite algorithm that traces these paths to arrive at an optimal solution of the linear program is developed. The smooth...

3. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

Science.gov (United States)

Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

2016-01-01

Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

4. Developing Conceptual Understanding and Definitional Clarity in Linear Algebra through the Three Worlds of Mathematical Thinking

Science.gov (United States)

Hannah, John; Stewart, Sepideh; Thomas, Michael

2016-01-01

Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…

5. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

Science.gov (United States)

Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

2017-01-01

In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

6. An Introduction to Graphical and Mathematical Methods for Detecting Heteroscedasticity in Linear Regression.

Science.gov (United States)

Thompson, Russel L.

Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…

7. Mathematics Programming on the Apple II and IBM PC.

Science.gov (United States)

Myers, Roy E.; Schneider, David I.

1987-01-01

Details the features of BASIC used in mathematics programming and provides the information needed to translate between the Apple II and IBM PC computers. Discusses inputing a user-defined function, setting scroll windows, displaying subscripts and exponents, variable names, mathematical characters and special symbols. (TW)

8. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

CERN Document Server

Li, Deng-Feng

2016-01-01

This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

9. Quality of secondary preservice mathematics teacher education programs

OpenAIRE

Gómez, Pedro

2005-01-01

Characterizing the quality of teacher education programs and courses Supported by the Ministry of Science and Technology Working for three years Three universities working on secondary mathematics pre- service teacher education Almeria, Cantabria and Granada With a common model

10. A Mathematical Sciences Program at an Upper-Division Campus.

Science.gov (United States)

Swetz, Frank J.

1978-01-01

The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

11. An approach for solving linear fractional programming problems ...

African Journals Online (AJOL)

The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

12. Analysis of the efficiency of the linearization techniques for solving multi-objective linear fractional programming problems by goal programming

Directory of Open Access Journals (Sweden)

Tunjo Perić

2017-01-01

Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.

13. A Sawmill Manager Adapts To Change With Linear Programming

Science.gov (United States)

George F. Dutrow; James E. Granskog

1973-01-01

Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.

14. Analytic central path, sensitivity analysis and parametric linear programming

NARCIS (Netherlands)

A.G. Holder; J.F. Sturm; S. Zhang (Shuzhong)

1998-01-01

textabstractIn this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face

15. Application of the simplex method of linear programming model to ...

African Journals Online (AJOL)

This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...

16. Comparison of open-source linear programming solvers.

Energy Technology Data Exchange (ETDEWEB)

Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

2013-10-01

When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

17. Integrating Linear Programming and Analytical Hierarchical ...

African Journals Online (AJOL)

Study area is about 28000 ha of Keleibar- Chai Watershed, located in eastern Azerbaijan, Iran. Socio-economic information collected through a two-stage survey of 19 villages, including 300 samples. Thematic maps also have summarized Ecological factors, including physical and economic data. A comprehensive Linear ...

18. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

Directory of Open Access Journals (Sweden)

Tan Chan Sin

2015-01-01

Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

19. Introductory Linear Regression Programs in Undergraduate Chemistry.

Science.gov (United States)

Gale, Robert J.

1982-01-01

Presented are simple programs in BASIC and FORTRAN to apply the method of least squares. They calculate gradients and intercepts and express errors as standard deviations. An introduction of undergraduate students to such programs in a chemistry class is reviewed, and issues instructors should be aware of are noted. (MP)

20. A mathematical programming approach for sequential clustering of dynamic networks

Science.gov (United States)

Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

2016-02-01

A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

1. Flow discharge prediction in compound channels using linear genetic programming

Science.gov (United States)

Azamathulla, H. Md.; Zahiri, A.

2012-08-01

SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

2. High profile students’ growth of mathematical understanding in solving linier programing problems

Science.gov (United States)

2018-04-01

Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

3. Optimization of radioactive waste management system by application of multiobjective linear programming

International Nuclear Information System (INIS)

Shimizu, Yoshiaki

1981-01-01

A mathematical procedure is proposed to make a radioactive waste management plan comprehensively. Since such planning is relevant to some different goals in management, decision making has to be formulated as a multiobjective optimization problem. A mathematical programming method was introduced to make a decision through an interactive manner which enables us to assess the preference of decision maker step by step among the conflicting objectives. The reference system taken as an example is the radioactive waste management system at the Research Reactor Institute of Kyoto University (KUR). Its linear model was built based on the experience in the actual management at KUR. The best-compromise model was then formulated as a multiobjective linear programming by the aid of the computational analysis through a conventional optimization. It was shown from the numerical results that the proposed approach could provide some useful informations to make an actual management plan. (author)

4. Non-linear programming method in optimization of fast reactors

International Nuclear Information System (INIS)

Pavelesku, M.; Dumitresku, Kh.; Adam, S.

1975-01-01

Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

5. An easy way to obtain strong duality results in linear, linear semidefinite and linear semi-infinite programming

NARCIS (Netherlands)

Pop, P.C.; Still, Georg J.

1999-01-01

In linear programming it is known that an appropriate non-homogeneous Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite

6. Mathematical considerations regarding the stability of the trace element systems by linear regressions

International Nuclear Information System (INIS)

Mihai, Maria; Popescu, I.V.

2002-01-01

In this paper we present a mathematical model that would describe the stability and instability conditions, respectively of the organs of human body assumed as a living cybernetic system with feedback. We tested the theoretical model on the following trace elements: Mn, Zn and As. The trace elements were determined from the nose-pharyngeal carcinoma. We utilise the linear approximation to describe the dependencies between the trace elements determined in the hair of the patient. We present the results graphically. (authors)

7. Mathematical models of flat linear induction motors used in mining drives

Energy Technology Data Exchange (ETDEWEB)

Tall, M

1984-01-01

Design parameters are calculated for electric flat linear induction motors, widely employed in the coal and ore mining industries in Poland. A mathematical model of this motor with a single-layer ferromagnetic secondary part is presented. A three-dimensional electromagnetic field analysis is carried out, taking relative magnetic permeability variation, discrete winding distribution, influence of armature grooving and pulsating field influence into account. A computer calculation algorithm is proposed for determining motor characteristics. 17 refs.

8. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

Science.gov (United States)

Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

2018-01-01

The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

9. A Mixed Integer Linear Programming Model for the North Atlantic Aircraft Trajectory Planning

OpenAIRE

Sbihi , Mohammed; Rodionova , Olga; Delahaye , Daniel; Mongeau , Marcel

2015-01-01

International audience; This paper discusses the trajectory planning problem for ights in the North Atlantic oceanic airspace (NAT). We develop a mathematical optimization framework in view of better utilizing available capacity by re-routing aircraft. The model is constructed by discretizing the problem parameters. A Mixed integer linear program (MILP) is proposed. Based on the MILP a heuristic to solve real-size instances is also introduced

10. Learning Bayesian network structure: towards the essential graph by integer linear programming tools

Czech Academy of Sciences Publication Activity Database

Studený, Milan; Haws, D.

2014-01-01

Roč. 55, č. 4 (2014), s. 1043-1071 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf

11. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

Science.gov (United States)

El-Gebeily, M.; Yushau, B.

2008-01-01

In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

12. Duality in non-linear programming

Science.gov (United States)

Jeyalakshmi, K.

2018-04-01

In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

13. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

Directory of Open Access Journals (Sweden)

Yi-hua Zhong

2013-01-01

Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

14. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

OpenAIRE

Zuidwijk, Rob

2005-01-01

textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an optimal solution are investigated, and the optimal solution is studied on a so-called critical range of the initial data, in which certain properties such as the optimal basis in linear programming are ...

15. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

Directory of Open Access Journals (Sweden)

Denis N. Butorin

2014-01-01

Full Text Available In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.

16. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

OpenAIRE

Denis N. Butorin

2014-01-01

In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.

17. Teacher Perceptions of an Online Tutoring Program for Elementary Mathematics

Science.gov (United States)

Whetstone, Patti; Clark, Amy; Flake, Mari Wheeler

2014-01-01

This study explores elementary teacher perceptions related to the implementation of an online tutoring program. Teachers were surveyed regarding factors that affected use of the online tutoring program as a supplement to mathematics instruction. Results indicated that teachers overwhelmingly reported positive views of the training and support…

18. Mathematics Learning by Programming in a Game Engine

DEFF Research Database (Denmark)

Triantafyllou, Evangelia; Timcenko, Olga; Misfeldt, Morten

2017-01-01

This paper emerges from our research focusing on mathematics education in trans-disciplinary engineering programs and presents a case study in such an engineering discipline, namely the Media Technology program at Aalborg University Copenhagen, Denmark. In this case study, we substituted traditio...

19. General guidelines solution for linear programming with fuzzy coefficients

Directory of Open Access Journals (Sweden)

Sergio Gerardo de los Cobos Silva

2013-08-01

Full Text Available This work introduce to the Possibilistic Programming and the Fuzzy Programming as paradigms that allow to resolve problems of linear programming when the coefficients of the model or the restrictions on the same are presented as fuzzy numbers, rather than exact numbers (crisp. This work presents some examples based on [1].

20. Reconstruction of tomographic images from projections of a small number of views by means of mathematical programming

International Nuclear Information System (INIS)

Kobayashi, Fujio; Yamaguchi, Shoichiro

1985-01-01

Fundamental studies have been made on the application of mathematical programming to the reconstruction of tomographic images from projections of a small number of views without requiring any circular symmetry nor periodicity. Linear programming and quadratic programming were applied to minimize the quadratic sum of the residue and to finally obtain optimized reconstruction images. The mathematical algorithms were verified by the method of computer simulation, and the relationship between the number of picture elements and the number of iterations necessary for convergence was also investigated. The methods of linear programming and quadratic programming require fairly simple mathematical procedures, and strict solutions can be obtained within a finite number of iterations. Their only draw back is the requirement of a large quantity of computer memory. But this problem will be desolved by the advent of large fast memory devices in the near future. (Aoki, K.)

1. Thirty-three miniatures mathematical and algorithmic applications of linear algebra

CERN Document Server

Matousek, Jiří

2010-01-01

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lov�sz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for s...

2. Large-scale linear programs in planning and prediction.

Science.gov (United States)

2017-06-01

Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

3. Evaluating forest management policies by parametric linear programing

Science.gov (United States)

Daniel I. Navon; Richard J. McConnen

1967-01-01

An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.

4. Formulated linear programming problems from game theory and its ...

African Journals Online (AJOL)

Formulated linear programming problems from game theory and its computer implementation using Tora package. ... Game theory, a branch of operations research examines the various concepts of decision ... AJOL African Journals Online.

5. Near-Regular Structure Discovery Using Linear Programming

KAUST Repository

Huang, Qixing; Guibas, Leonidas J.; Mitra, Niloy J.

2014-01-01

as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both

6. A property of assignment type mixed integer linear programming problems

NARCIS (Netherlands)

Benders, J.F.; van Nunen, J.A.E.E.

1982-01-01

In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is

7. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

Directory of Open Access Journals (Sweden)

Hideki Katagiri

2017-10-01

Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

8. Linear Programming and Its Application to Pattern Recognition Problems

Science.gov (United States)

Omalley, M. J.

1973-01-01

Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

9. Mathematical programming and game theory for decision making

CERN Document Server

Bapat, R B; Das, A K; Parthasarathy, T

2008-01-01

This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel pro

10. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

Science.gov (United States)

Jarvis, John J.; And Others

Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

11. The RANDOM computer program: A linear congruential random number generator

Science.gov (United States)

Miles, R. F., Jr.

1986-01-01

The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

12. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

Science.gov (United States)

Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

2017-03-14

Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

13. Planning Student Flow with Linear Programming: A Tunisian Case Study.

Science.gov (United States)

Bezeau, Lawrence

A student flow model in linear programming format, designed to plan the movement of students into secondary and university programs in Tunisia, is described. The purpose of the plan is to determine a sufficient number of graduating students that would flow back into the system as teachers or move into the labor market to meet fixed manpower…

14. Linear Programming for Vocational Education Planning. Interim Report.

Science.gov (United States)

Young, Robert C.; And Others

The purpose of the paper is to define for potential users of vocational education management information systems a quantitative analysis technique and its utilization to facilitate more effective planning of vocational education programs. Defining linear programming (LP) as a management technique used to solve complex resource allocation problems…

15. A Novel Linear Programming Formulation of Maximum Lifetime Routing Problem in Wireless Sensor Networks

DEFF Research Database (Denmark)

2011-01-01

In wireless sensor networks, one of the key challenge is to achieve minimum energy consumption in order to maximize network lifetime. In fact, lifetime depends on many parameters: the topology of the sensor network, the data aggregation regime in the network, the channel access schemes, the routing...... protocols, and the energy model for transmission. In this paper, we tackle the routing challenge for maximum lifetime of the sensor network. We introduce a novel linear programming approach to the maximum lifetime routing problem. To the best of our knowledge, this is the first mathematical programming...

16. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

Science.gov (United States)

2018-01-01

The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

17. Using linear programming to analyze and optimize stochastic flow lines

DEFF Research Database (Denmark)

Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik

2011-01-01

This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....

18. The conceptual basis of mathematics in cardiology III: linear systems theory and integral transforms.

Science.gov (United States)

Bates, Jason H T; Sobel, Burton E

2003-05-01

This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to

19. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

Directory of Open Access Journals (Sweden)

Jairo Marlon Corrêa

2016-03-01

Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

20. New verifiable stationarity concepts for a class of mathematical programs with disjunctive constraints.

Science.gov (United States)

Benko, Matúš; Gfrerer, Helmut

2018-01-01

In this paper, we consider a sufficiently broad class of non-linear mathematical programs with disjunctive constraints, which, e.g. include mathematical programs with complemetarity/vanishing constraints. We present an extension of the concept of [Formula: see text]-stationarity which can be easily combined with the well-known notion of M-stationarity to obtain the stronger property of so-called [Formula: see text]-stationarity. We show how the property of [Formula: see text]-stationarity (and thus also of M-stationarity) can be efficiently verified for the considered problem class by computing [Formula: see text]-stationary solutions of a certain quadratic program. We consider further the situation that the point which is to be tested for [Formula: see text]-stationarity, is not known exactly, but is approximated by some convergent sequence, as it is usually the case when applying some numerical method.

1. Mathematical-programming approaches to test item pool design

NARCIS (Netherlands)

Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.

2002-01-01

This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

2. Programming-Languages as a Conceptual Framework for Teaching Mathematics

Science.gov (United States)

Feurzeig, Wallace; Papert, Seymour A.

2011-01-01

Formal mathematical methods remain, for most high school students, mysterious, artificial and not a part of their regular intuitive thinking. The authors develop some themes that could lead to a radically new approach. According to this thesis, the teaching of programming languages as a regular part of academic progress can contribute effectively…

3. A Developmental Mapping Program Integrating Geography and Mathematics.

Science.gov (United States)

Muir, Sharon Pray; Cheek, Helen Neely

Presented and discussed is a model which can be used by educators who want to develop an interdisciplinary map skills program in geography and mathematics. The model assumes that most children in elementary schools perform cognitively at Piaget's concrete operational stage, that readiness for map skills can be assessed with Piagetian or…

4. CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR

Directory of Open Access Journals (Sweden)

V. F. Novikov

2015-06-01

Full Text Available Purpose.To reduce labor costs and the amount of computer time in the design of linear synchronous motors with excitation from a source of a constant magnetic field of high-speed ground transportation it is necessary to use engineering methods. The purpose of this study is to confirm the adequacy of the previously proposed mathematical model of this engine and assumptions. It is also intended to confirm the possibility of applying the method of calculation of traction that occurs in the engine in the interaction of the permanent magnetic field of the excitation system of a vehicle with a coil track structure.Methodology. As for empirical theories the positive result of the experiment is not absolute proof of the truth, for an unambiguous conclusion about the adequacy of the developed model and the effectiveness of the developed methods need to be tested for falsification. In accordance with this criterion, it is necessary to conduct an experiment, the results of which will coincide with the calculation but you also need to avoid errors caused by random coincidences. For this purpose the experiments with varying parameters are conducted. Findings. In a critical experiment configuration changes of the excitation system were held so that the shape dependence of traction from displacement is differed significantly. The comparison of the results of the calculated and experimental values of traction for different configurations showed that the differences are minor and easily explained by measurement error and uneven gaps between the poles and excitation coils of the track structure. Originality. The adequacy of the mathematical model of a linear synchronous motor without a ferromagnetic magnetic circuit and the assumptions and applicability of the calculation method of traction forces involved in it, at the interaction of a permanent magnetic field of the excitation system of a vehicle with a coil track structure were proved. This proof is built on

5. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

Science.gov (United States)

Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

2015-04-01

Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

6. On the implicit programming approach in a class of mathematical programs with equilibrium constraints

Czech Academy of Sciences Publication Activity Database

Outrata, Jiří; Červinka, Michal

2009-01-01

Roč. 38, 4B (2009), s. 1557-1574 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical problem with equilibrium constraint * state constraints * implicit programming * calmness * exact penalization Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009 http://library.utia.cas.cz/separaty/2010/MTR/outrata-on the implicit programming approach in a class of mathematical programs with equilibrium constraints.pdf

7. Linear program differentiation for single-channel speech separation

DEFF Research Database (Denmark)

Pearlmutter, Barak A.; Olsson, Rasmus Kongsgaard

2006-01-01

Many apparently difficult problems can be solved by reduction to linear programming. Such problems are often subproblems within larger systems. When gradient optimisation of the entire larger system is desired, it is necessary to propagate gradients through the internally-invoked LP solver....... For instance, when an intermediate quantity z is the solution to a linear program involving constraint matrix A, a vector of sensitivities dE/dz will induce sensitivities dE/dA. Here we show how these can be efficiently calculated, when they exist. This allows algorithmic differentiation to be applied...... to algorithms that invoke linear programming solvers as subroutines, as is common when using sparse representations in signal processing. Here we apply it to gradient optimisation of over complete dictionaries for maximally sparse representations of a speech corpus. The dictionaries are employed in a single...

8. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

NARCIS (Netherlands)

R.A. Zuidwijk (Rob)

2005-01-01

textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an

9. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

Science.gov (United States)

Rosu, Grigore; Havelund, Klaus

2001-01-01

The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

10. An Instructional Note on Linear Programming--A Pedagogically Sound Approach.

Science.gov (United States)

Mitchell, Richard

1998-01-01

Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)

11. Applied Research of Enterprise Cost Control Based on Linear Programming

Directory of Open Access Journals (Sweden)

Yu Shuo

2015-01-01

This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

12. A mathematical method for boiling water reactor control rod programming

International Nuclear Information System (INIS)

Tokumasu, S.; Hiranuma, H.; Ozawa, M.; Yokomi, M.

1985-01-01

A new mathematical programming method has been developed and utilized in OPROD, an existing computer code for automatic generation of control rod programs as an alternative inner-loop routine for the method of approximate programming. The new routine is constructed of a dual feasible direction algorithm, and consists essentially of two stages of iterative optimization procedures Optimization Procedures I and II. Both follow almost the same algorithm; Optimization Procedure I searches for feasible solutions and Optimization Procedure II optimizes the objective function. Optimization theory and computer simulations have demonstrated that the new routine could find optimum solutions, even if deteriorated initial control rod patterns were given

13. Optimization of production planning in Czech agricultural co-operative via linear programming

Directory of Open Access Journals (Sweden)

Jitka Janová

2009-01-01

Full Text Available The production planning is one of the key managerial decisions in agricultural business, which must be done periodically every year. Correct decision must cover the agriculture demands of planting the crops such as crop rotation restrictions or water resource scarcity, while the decision maker aims to plan the crop design in most profitable way in sense of maximizing the total profit from the crop yield. This decision problem represents the optimization of crop design and can be treated by the me­thods of linear programming which begun to be extensively used in agriculture production planning in USA during 50’s. There is ongoing research of mathematical programming applications in agriculture worldwide, but the results are not easily transferable to other localities due to the specific local restrictions in each country. In Czech Republic the farmers use for production planning mainly their expert knowledge and past experience. However, the mathematical programming approach enables find the true optimal solution of the problem, which especially in the problems with a great number of constraints is not easy to find intuitively. One of the possible barriers for using the general decision support systems (which are based on mathematical programming methods for agriculture production planning in Czech Republic is its expensiveness. The small farmer can not afford to buy the expensive software or to employ a mathematical programming specialist. The aim of this paper is to present a user friendly linear programming model of the typical agricultural production planning problem in Czech Republic which can be solved via software tools commonly available in any farm (e.g. EXCEL. The linear programming model covering the restrictions on total costs, crop rotation, thresholds for the total area sowed by particular crops, total amount of manure and the need of feed crops is developed. The model is applied in real-world problem of Czech agriculture

14. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated to Cathleen Synge Morawetz on her 85th Birthday. The Fields Institute, Toronto, Canada September 18-20, 2008. Sponsors: Association for Women in Mathematics, Inc. and The Fields Institute

Energy Technology Data Exchange (ETDEWEB)

Lewis, Jennifer

2012-10-15

This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.

15. A MICROCOMPUTER LINEAR PROGRAMMING PACKAGE: AN ALTERNATIVE TO MAINFRAMES

OpenAIRE

Laughlin, David H.

1984-01-01

This paper presents the capabilities and limitations of a microcomputer linear programming package. The solution algorithm is a version of the revised simplex. Rapid problem entry, user ease of operation, sensitivity analyses on objective function and right hand sides are advantages. A problem size of 150 activities and 64 constraints can be solved in present form. Due to problem size, limitations and lack of parametric and integer programming routines, this package is thought to have the mos...

16. Non-linear nuclear engineering models as genetic programming application; Modelos nao-lineares de engenharia nuclear como aplicacao de programacao genetica

Energy Technology Data Exchange (ETDEWEB)

Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

1997-12-01

This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs.

17. The Relationship between Handedness and Mathematics Is Non-linear and Is Moderated by Gender, Age, and Type of Task

Science.gov (United States)

Sala, Giovanni; Signorelli, Michela; Barsuola, Giulia; Bolognese, Martina; Gobet, Fernand

2017-01-01

The relationship between handedness and mathematical ability is still highly controversial. While some researchers have claimed that left-handers are gifted in mathematics and strong right-handers perform the worst in mathematical tasks, others have more recently proposed that mixed-handers are the most disadvantaged group. However, the studies in the field differ with regard to the ages and the gender of the participants, and the type of mathematical ability assessed. To disentangle these discrepancies, we conducted five studies in several Italian schools (total participants: N = 2,314), involving students of different ages (six to seventeen) and a range of mathematical tasks (e.g., arithmetic and reasoning). The results show that (a) linear and quadratic functions are insufficient for capturing the link between handedness and mathematical ability; (b) the percentage of variance in mathematics scores explained by handedness was larger than in previous studies (between 3 and 10% vs. 1%), and (c) the effect of handedness on mathematical ability depended on age, type of mathematical tasks, and gender. In accordance with previous research, handedness does represent a correlate of achievement in mathematics, but the shape of this relationship is more complicated than has been argued so far. PMID:28649210

18. Optimal traffic control in highway transportation networks using linear programming

KAUST Repository

Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

2014-01-01

of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can

19. LCPT: a program for finding linear canonical transformations

International Nuclear Information System (INIS)

Char, B.W.; McNamara, B.

1979-01-01

This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists

20. Fitting program for linear regressions according to Mahon (1996)

Energy Technology Data Exchange (ETDEWEB)

2018-01-09

This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

1. Linear Programming, the Simplex Algorithm and Simple Polytopes

Directory of Open Access Journals (Sweden)

Das Bhusan

2010-09-01

Full Text Available In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.

2. A mixed integer linear program for an integrated fishery | Hasan ...

African Journals Online (AJOL)

... and labour allocation of quota based integrated fisheries. We demonstrate the workability of our model with a numerical example and sensitivity analysis based on data obtained from one of the major fisheries in New Zealand. Keywords: mixed integer linear program, fishing, trawler scheduling, processing, quotas ORiON: ...

3. Interior-Point Methods for Linear Programming: A Review

Science.gov (United States)

Singh, J. N.; Singh, D.

2002-01-01

The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…

4. A Partitioning and Bounded Variable Algorithm for Linear Programming

Science.gov (United States)

Sheskin, Theodore J.

2006-01-01

An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

5. 175 Years of Linear Programming - Minimax and Cake Topography

Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. 175 Years of Linear Programming - Minimax and Cake Topography. Vijay Chandru M R Rao. Series Article Volume 4 Issue 7 July 1999 pp 4-13. Fulltext. Click here to view fulltext PDF. Permanent link:

6. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

Science.gov (United States)

Fleming, P.

1983-01-01

A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

7. Linear decomposition approach for a class of nonconvex programming problems.

Science.gov (United States)

Shen, Peiping; Wang, Chunfeng

2017-01-01

This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.

8. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

DEFF Research Database (Denmark)

Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

2014-01-01

In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

9. Train Repathing in Emergencies Based on Fuzzy Linear Programming

Directory of Open Access Journals (Sweden)

Xuelei Meng

2014-01-01

Full Text Available Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

10. Train repathing in emergencies based on fuzzy linear programming.

Science.gov (United States)

Meng, Xuelei; Cui, Bingmou

2014-01-01

Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

11. Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs

International Nuclear Information System (INIS)

Kiwiel, K. C.

1998-01-01

We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)

12. A LINEAR PROGRAMMING ALGORITHM FOR LEAST-COST SCHEDULING

Directory of Open Access Journals (Sweden)

AYMAN H AL-MOMANI

1999-12-01

Full Text Available In this research, some concepts of linear programming and critical path method are reviewed to describe recent modeling structures that have been of great value in analyzing extended planning horizon project time-cost trade-offs problems. A simplified representation of a small project and a linear programming model is formulated to represent this system. Procedures to solve these various problems formulations were cited and the final solution is obtained using LINDO program. The model developed represents many restrictions and management considerations of the project. It could be used by construction managers in a planning stage to explore numerous possible opportunities to the contractor and predict the effect of a decision on the construction to facilitate a preferred operating policy given different management objectives. An implementation using this method is shown to outperform several other techniques and a large class of test problems. Linear programming show that the algorithm is very promising in practice on a wide variety of time-cost trade-offs problems. This method is simple, applicable to a large network, and generates a shorter computational time at low cost, along with an increase in robustness.

13. Mathematical models and algorithms for the computer program 'WOLF'

International Nuclear Information System (INIS)

Halbach, K.

1975-12-01

The computer program FLOW finds the nonrelativistic self- consistent set of two-dimensional ion trajectories and electric fields (including space charges from ions and electrons) for a given set of initial and boundary conditions for the particles and fields. The combination of FLOW with the optimization code PISA gives the program WOLF, which finds the shape of the emitter which is consistent with the plasma forming it, and in addition varies physical characteristics such as electrode position, shapes, and potentials so that some performance characteristics are optimized. The motivation for developing these programs was the desire to design optimum ion source extractor/accelerator systems in a systematic fashion. The purpose of this report is to explain and derive the mathematical models and algorithms which approximate the real physical processes. It serves primarily to document the computer programs. 10 figures

14. The EMERGE Summer Program: Supporting Incoming Freshmen's Success in Mathematics Developmental Coursework

Science.gov (United States)

Bird, Katherine; Oppland-Cordell, Sarah; Hibdon, Joseph

2016-01-01

This paper describes the development, results, and future directions of the mathematics component of the EMERGE Summer Program at Northeastern Illinois University. Initiated summer 2014, EMERGE offered English and mathematics sessions for incoming freshmen. The mathematics session aimed to strengthen participants' mathematical foundations,…

15. A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems

Directory of Open Access Journals (Sweden)

Tunjo Perić

2014-12-01

Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.

16. Mathematical programs with complementarity constraints in traffic and telecommunications networks.

Science.gov (United States)

Ralph, Daniel

2008-06-13

Given a suitably parametrized family of equilibrium models and a higher level criterion by which to measure an equilibrium state, mathematical programs with equilibrium constraints (MPECs) provide a framework for improving or optimizing the equilibrium state. An example is toll design in traffic networks, which attempts to reduce total travel time by choosing which arcs to toll and what toll levels to impose. Here, a Wardrop equilibrium describes the traffic response to each toll design. Communication networks also have a deep literature on equilibrium flows that suggest some MPECs. We focus on mathematical programs with complementarity constraints (MPCCs), a subclass of MPECs for which the lower level equilibrium system can be formulated as a complementarity problem and therefore, importantly, as a nonlinear program (NLP). Although MPECs and MPCCs are typically non-convex, which is a consequence of the upper level objective clashing with the users' objectives in the lower level equilibrium program, the last decade of research has paved the way for finding local solutions of MPCCs via standard NLP techniques.

17. Correction of heterogeneities in the issue compositions in the construction plans optimized in radiotherapy using linear programming

International Nuclear Information System (INIS)

Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon

2009-01-01

Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)

18. No-signaling quantum key distribution: solution by linear programming

Science.gov (United States)

Hwang, Won-Young; Bae, Joonwoo; Killoran, Nathan

2015-02-01

We outline a straightforward approach for obtaining a secret key rate using only no-signaling constraints and linear programming. Assuming an individual attack, we consider all possible joint probabilities. Initially, we study only the case where Eve has binary outcomes, and we impose constraints due to the no-signaling principle and given measurement outcomes. Within the remaining space of joint probabilities, by using linear programming, we get bound on the probability of Eve correctly guessing Bob's bit. We then make use of an inequality that relates this guessing probability to the mutual information between Bob and a more general Eve, who is not binary-restricted. Putting our computed bound together with the Csiszár-Körner formula, we obtain a positive key generation rate. The optimal value of this rate agrees with known results, but was calculated in a more straightforward way, offering the potential of generalization to different scenarios.

19. Planning under uncertainty solving large-scale stochastic linear programs

Energy Technology Data Exchange (ETDEWEB)

Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

1992-12-01

For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

20. Optimal selection for shielding materials by fuzzy linear programming

International Nuclear Information System (INIS)

Kanai, Y.; Miura, N.; Sugasawa, S.

1996-01-01

An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

1. Algorithmic Trading with Developmental and Linear Genetic Programming

Science.gov (United States)

Wilson, Garnett; Banzhaf, Wolfgang

A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

2. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

Energy Technology Data Exchange (ETDEWEB)

Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)

2014-06-19

This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

3. MAGDM linear-programming models with distinct uncertain preference structures.

Science.gov (United States)

Xu, Zeshui S; Chen, Jian

2008-10-01

Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

4. MIPS to the "4", Mathematics Improves Promotes Students. A Program of Mathematics for the Elementary Math Laboratory. Limited Edition.

Science.gov (United States)

Wichita Unified School District 259, KS.

This book is a guide for the reinforcement of the elementary mathematics laboratory program. It uses a hands-on and activity approach with maximum involvement of the students. Reinforcement strategies for the first three phases (concrete, semiconcrete, and semiabstract) of each mathematics concept are suggested. Also included are specific job…

5. An algorithm for the solution of dynamic linear programs

Science.gov (United States)

Psiaki, Mark L.

1989-01-01

The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation

6. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

Science.gov (United States)

Matzke, Orville R.

The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

7. A Primal-Dual Interior Point-Linear Programming Algorithm for MPC

DEFF Research Database (Denmark)

Edlund, Kristian; Sokoler, Leo Emil; Jørgensen, John Bagterp

2009-01-01

Constrained optimal control problems for linear systems with linear constraints and an objective function consisting of linear and l1-norm terms can be expressed as linear programs. We develop an efficient primal-dual interior point algorithm for solution of such linear programs. The algorithm...

8. Mathematical modeling of laser linear thermal effects on the anterior layer of the human eye

Science.gov (United States)

2018-02-01

In this paper, mathematical analysis of thermal effects of excimer lasers on the anterior side of the human eye is presented, where linear effect of absorption by the human eye is considered. To this end, Argon Fluoride (ArF) and Holmium:Yttrium-Aluminum-Garent (Ho:YAG) lasers are utilized in this investigation. A three-dimensional model of the human eye with actual dimensions is employed and finite element method (FEM) is utilized to numerically solve the governing (Penne) heat transfer equation. The simulation results suggest the corneal temperature of 263 °C and 83.4 °C for ArF and Ho:YAG laser radiations, respectively, and show less heat penetration depth in comparison to the previous reports. Moreover, the heat transfer equation is solved semi-analytically in one-dimension. It is shown that the exploited simulation results are also consistent with those derived from the semi-analytical solution of the Penne heat transfer equation for both types of laser radiations.

9. Optimal traffic control in highway transportation networks using linear programming

KAUST Repository

Li, Yanning

2014-06-01

This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

10. Mathematical programming methods for large-scale topology optimization problems

DEFF Research Database (Denmark)

Rojas Labanda, Susana

for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...

CERN Document Server

Murphy, Patrick

1982-01-01

Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional

12. A recurrent neural network for solving bilevel linear programming problem.

Science.gov (United States)

He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

2014-04-01

In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

13. A scalable parallel algorithm for multiple objective linear programs

Science.gov (United States)

Wiecek, Malgorzata M.; Zhang, Hong

1994-01-01

This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

14. The MARX Modulator Development Program for the International Linear Collider

International Nuclear Information System (INIS)

Leyh, G.E.

2006-01-01

The International Linear Collider (ILC) Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC

15. Marginal cost of electricity conservation: an application of linear program

International Nuclear Information System (INIS)

Silveira, A.M. da; Hollanda, J.B. de

1987-01-01

This paper is addressed ti the planning of electricity industry when the use of energetically efficient appliances (conservation) is financed by the utilities. It is based on the Linear Programming Model proposed by Masse and Boiteaux for planning of conventional energy sources, where one unity of electricity (Kw/Kw h) saved is treated as if it were a generator of equivalent size. In spite of the formal simplicity of the models it can support interesting concessions on the subject of a electrical energy conservation policy. (author)

16. EABOT - Energetic analysis as a basis for robust optimization of trigeneration systems by linear programming

International Nuclear Information System (INIS)

Piacentino, A.; Cardona, F.

2008-01-01

The optimization of synthesis, design and operation in trigeneration systems for building applications is a quite complex task, due to the high number of decision variables, the presence of irregular heat, cooling and electric load profiles and the variable electricity price. Consequently, computer-aided techniques are usually adopted to achieve the optimal solution, based either on iterative techniques, linear or non-linear programming or evolutionary search. Large efforts have been made in improving algorithm efficiency, which have resulted in an increasingly rapid convergence to the optimal solution and in reduced calculation time; robust algorithm have also been formulated, assuming stochastic behaviour for energy loads and prices. This paper is based on the assumption that margins for improvements in the optimization of trigeneration systems still exist, which require an in-depth understanding of plant's energetic behaviour. Robustness in the optimization of trigeneration systems has more to do with a 'correct and comprehensive' than with an 'efficient' modelling, being larger efforts required to energy specialists rather than to experts in efficient algorithms. With reference to a mixed integer linear programming model implemented in MatLab for a trigeneration system including a pressurized (medium temperature) heat storage, the relevant contribute of thermoeconomics and energo-environmental analysis in the phase of mathematical modelling and code testing are shown

17. Uncertainty Modeling and Robust Output Feedback Control of Nonlinear Discrete Systems: A Mathematical Programming Approach

Directory of Open Access Journals (Sweden)

Olav Slupphaug

2001-01-01

Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.

18. Polymorphic Uncertain Linear Programming for Generalized Production Planning Problems

Directory of Open Access Journals (Sweden)

Xinbo Zhang

2014-01-01

Full Text Available A polymorphic uncertain linear programming (PULP model is constructed to formulate a class of generalized production planning problems. In accordance with the practical environment, some factors such as the consumption of raw material, the limitation of resource and the demand of product are incorporated into the model as parameters of interval and fuzzy subsets, respectively. Based on the theory of fuzzy interval program and the modified possibility degree for the order of interval numbers, a deterministic equivalent formulation for this model is derived such that a robust solution for the uncertain optimization problem is obtained. Case study indicates that the constructed model and the proposed solution are useful to search for an optimal production plan for the polymorphic uncertain generalized production planning problems.

19. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

Science.gov (United States)

Risnawati; Khairinnisa, S.; Darwis, A. H.

2018-01-01

The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

20. The Overgeneralization of Linear Models among University Students' Mathematical Productions: A Long-Term Study

Science.gov (United States)

Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.

2010-01-01

Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…

1. AN APPLICATION FOR EFFICIENT TELECOMMUNICATION NETWORKS PROVISIONING USING LINEAR PROGRAMMING

Directory of Open Access Journals (Sweden)

2015-03-01

Full Text Available This paper presents a practical proposition for the application of the Linear Programming quantitative method in order to assist planning and control of customer circuit delivery activities in telecommunications companies working with the corporative market. Based upon data provided for by a telecom company operating in Brazil, the Linear Programming method was employed for one of the classical problems of determining the optimum mix of production quantities for a set of five products of that company: Private Telephone Network, Internet Network, Intranet Network, Low Speed Data Network, and High Speed Data Network, in face of several limitations of the productive resources, seeking to maximize the company’s monthly revenue. By fitting the production data available into a primary model, observation was made as to what number of monthly activations for each product would be mostly optimized in order to achieve maximum revenues in the company. The final delivery of a complete network was not observed but the delivery of the circuits that make it up, and this was a limiting factor for the study herein, which, however, brings an innovative proposition for the planning of private telecommunications network provisioning.

2. Assembling networks of microbial genomes using linear programming.

Science.gov (United States)

Holloway, Catherine; Beiko, Robert G

2010-11-20

Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

3. Linear programming based on neural networks for radiotherapy treatment planning

International Nuclear Information System (INIS)

Xingen Wu; Limin Luo

2000-01-01

In this paper, we propose a neural network model for linear programming that is designed to optimize radiotherapy treatment planning (RTP). This kind of neural network can be easily implemented by using a kind of 'neural' electronic system in order to obtain an optimization solution in real time. We first give an introduction to the RTP problem and construct a non-constraint objective function for the neural network model. We adopt a gradient algorithm to minimize the objective function and design the structure of the neural network for RTP. Compared to traditional linear programming methods, this neural network model can reduce the time needed for convergence, the size of problems (i.e., the number of variables to be searched) and the number of extra slack and surplus variables needed. We obtained a set of optimized beam weights that result in a better dose distribution as compared to that obtained using the simplex algorithm under the same initial condition. The example presented in this paper shows that this model is feasible in three-dimensional RTP. (author)

4. A Study of Joint Cost Inclusion in Linear Programming Optimization

Directory of Open Access Journals (Sweden)

P. Armaos

2013-08-01

Full Text Available The concept of Structural Optimization has been a topic or research over the past century. Linear Programming Optimization has proved being the most reliable method of structural optimization. Global advances in linear programming optimization have been recently powered by University of Sheffield researchers, to include joint cost, self-weight and buckling considerations. A joint cost inclusion scopes to reduce the number of joints existing in an optimized structural solution, transforming it to a practically viable solution. The topic of the current paper is to investigate the effects of joint cost inclusion, as this is currently implemented in the optimization code. An extended literature review on this subject was conducted prior to familiarization with small scale optimization software. Using IntelliFORM software, a structured series of problems were set and analyzed. The joint cost tests examined benchmark problems and their consequent changes in the member topology, as the design domain was expanding. The findings of the analyses were remarkable and are being commented further on. The distinct topologies of solutions created by optimization processes are also recognized. Finally an alternative strategy of penalizing joints is presented.

5. How to Use Linear Programming for Information System Performances Optimization

Directory of Open Access Journals (Sweden)

Hell Marko

2014-09-01

Full Text Available Background: Organisations nowadays operate in a very dynamic environment, and therefore, their ability of continuously adjusting the strategic plan to the new conditions is a must for achieving their strategic objectives. BSC is a well-known methodology for measuring performances enabling organizations to learn how well they are doing. In this paper, “BSC for IS” will be proposed in order to measure the IS impact on the achievement of organizations’ business goals. Objectives: The objective of this paper is to present the original procedure which is used to enhance the BSC methodology in planning the optimal targets of IS performances value in order to maximize the organization's effectiveness. Methods/Approach: The method used in this paper is the quantitative methodology - linear programming. In the case study, linear programming is used for optimizing organization’s strategic performance. Results: Results are shown on the example of a case study national park. An optimal performance value for the strategic objective has been calculated, as well as an optimal performance value for each DO (derived objective. Results are calculated in Excel, using Solver Add-in. Conclusions: The presentation of methodology through the case study of a national park shows that this methodology, though it requires a high level of formalisation, provides a very transparent performance calculation.

6. What's Working: Program Factors Influencing California Community College Basic Skills Mathematics Students' Advancement to Transfer Level

Science.gov (United States)

Fiero, Diane M.

2013-01-01

Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…

7. A mathematical programming framework for early stage design of wastewater treatment plants

DEFF Research Database (Denmark)

Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

2015-01-01

The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based on e...... the design problem is formulated as a Mixed Integer (Non)linear Programming problem e MI(N)LP e and solved. A case study is formulated and solved to highlight the application of the framework. © 2014 Elsevier Ltd. All rights reserved....... on expert decisions and previous experiences. This paper proposes a new approach based on mathematical programming to manage the complexity of the problem. The approach generates/identifies novel and optimal wastewater treatment process selection, and the interconnection between unit operations to create...

8. Finite mathematics models and applications

CERN Document Server

Morris, Carla C

2015-01-01

Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

9. Solving a bi-objective mathematical programming model for bloodmobiles location routing problem

Directory of Open Access Journals (Sweden)

Masoud Rabbani

2017-01-01

Full Text Available Perishability of platelets, uncertainty of donors’ arrival and conflicting views in platelet supply chain have made platelet supply chain planning a problematic issue. In this paper, mobile blood collection system for platelet production is investigated. Two mathematical models are presented to cover the bloodmobile collection planning problem. The first model is a multi-objective fuzzy mathematical programming in which the bloodmobiles locations are considered with the aim of maximizing potential amount of blood collection and minimizing the operational cost. The second model is a vehicle routing problem with time windows which studies the shuttles routing problem. To tackle the first model, it is reformulated as a crisp multi objective linear programming model and then solved through a fuzzy multi objective programming approach. Several sensitivity analysis are conducted on important parameters to demonstrate the applicability of the proposed model. The proposed model is then solved by using a tailored Simulated Annealing (SA algorithm. The numerical results demonstrate promising efficiency of the proposed solution method.

10. DEVELOPING AND THE ANALYSIS OF MATHEMATICAL MODELS OF GENERATORS OF LINEAR AND RECIPROCATING TYPES WITH ELECTROMAGNETIC EXCITATION

Directory of Open Access Journals (Sweden)

A. B. Menzhinski

2018-01-01

Full Text Available The mathematical modeling of generators of linear and reciprocating types with electromagnetic excitation resulted in obtaining the equivalent electrical circuit and diagrams of magnetic circuit of generators as well as the expressions that describe the electromagnetic processes in generators of linear and reciprocating types with electromagnetic excitation is presented in the article. Mathematical models of generators of linear and reciprocating types with electromagnetic excitation take into account the geometrical parameters of the magnetic system of generators, effect of the armature reaction, the unequal distribution of the magnetic field in the magnetic system of the generators and the dependence of the scattering coefficient and the fringe effect (in linear generators and buckling (in the reciprocating electric generators on the coordinates of the movement. An evaluation of the effectiveness of the generators of linear and reciprocating types with electromagnetic excitation was performed that demonstrated that the efficiency of the reciprocating generator with electromagnetic excitation is limited to the amount of movement of the moving part of the generator that can be considered as a drawback of this type of generators. Therefore, the reciprocating generator with electromagnetic excitation is more effective to be used in a small value of the working stroke of the movable part of it or in conjunction with a linear generator as a compensator of the end effect in reciprocating motion. In the linear generator the rate of change of inductance and mutual inductance throughout the movement of the moving part is practically constant. So if an increase of the magnitude of the working stroke of the movable part takes place the benefits of the linear generator are undeniable. However, it should be noted that a reduction of the stroke magnitude of the movable part of the linear generator is limited by constructional dimensions of the magnetic

11. Mathematical model for HIV spreads control program with ART treatment

Science.gov (United States)

Maimunah; Aldila, Dipo

2018-03-01

In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.

12. Mathematical programming and financial objectives for scheduling projects

CERN Document Server

Kimms, Alf

2001-01-01

Mathematical Programming and Financial Objectives for Scheduling Projects focuses on decision problems where the performance is measured in terms of money. As the title suggests, special attention is paid to financial objectives and the relationship of financial objectives to project schedules and scheduling. In addition, how schedules relate to other decisions is treated in detail. The book demonstrates that scheduling must be combined with project selection and financing, and that scheduling helps to give an answer to the planning issue of the amount of resources required for a project. The author makes clear the relevance of scheduling to cutting budget costs. The book is divided into six parts. The first part gives a brief introduction to project management. Part two examines scheduling projects in order to maximize their net present value. Part three considers capital rationing. Many decisions on selecting or rejecting a project cannot be made in isolation and multiple projects must be taken fully into a...

13. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

Directory of Open Access Journals (Sweden)

H.M.I.U. Herath

2015-08-01

Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

14. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

Energy Technology Data Exchange (ETDEWEB)

Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Shiro, Masanori [Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mathematical Neuroinformatics Group, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, Nozomu; Mas, Paloma [Center for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB, Barcelona 08193 (Spain)

2015-01-15

The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

15. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

International Nuclear Information System (INIS)

Hirata, Yoshito; Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma

2015-01-01

The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data

16. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

Science.gov (United States)

Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

2015-01-01

The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

17. Aether: leveraging linear programming for optimal cloud computing in genomics.

Science.gov (United States)

Luber, Jacob M; Tierney, Braden T; Cofer, Evan M; Patel, Chirag J; Kostic, Aleksandar D

2018-05-01

Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users' existing HPC pipelines. Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org. chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu. Supplementary data are available at Bioinformatics online.

18. Linear programming phase unwrapping for dual-wavelength digital holography.

Science.gov (United States)

Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand

2017-01-20

A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.

19. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

Energy Technology Data Exchange (ETDEWEB)

Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

2013-05-23

This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

20. CONTRIBUTION OF A LINEAR PROGRAMMING VBA MODULE TO STUDENTS PEFORMANCE

Directory of Open Access Journals (Sweden)

KUČÍRKOVÁ Lenka

2010-12-01

Full Text Available This paper deals with the application of freeware modules as a teaching support of Operations Research methods at the Department of Systems Engineering, Czech university of Life Sciences (CULS Prague. In particular, we concentrated on a linear programming module and measured the impact on student performance. The motivation for this evaluation is based on a current development of a new module that focuses on Traveling Salesman Problem. First, we explain the current situation both worldwide and in the Czech Republic and the CULS Prague. Subsequently, we describe the content of students’ exams and statistical methods applied to the evaluation. Finally, we analyze and generalize the obtained results. The students exams have show a positive impact of the modules. Further, our analysis has proven that this impact is statistically significant. The findings motivate us to made new modules for other methods.

1. Local beam angle optimization with linear programming and gradient search

International Nuclear Information System (INIS)

Craft, David

2007-01-01

The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

2. Optimization of refinery product blending by using linear programming

International Nuclear Information System (INIS)

Ristikj, Julija; Tripcheva-Trajkovska, Loreta; Rikaloski, Ice; Markovska, Liljana

1999-01-01

The product slate of a simple refinery consists mainly of liquefied petroleum gas, leaded and unleaded gasoline, jet fuel, diesel fuel, extra light heating oil and fuel oil. The quality of the oil products (fuels) for sale has to comply with the adopted standards for liquid fuels, and the produced quantities have to be comply with the market needs. The oil products are manufactured by blending two or more different fractions which quantities and physical-chemical properties depend on the crude oil type, the way and conditions of processing, and at the same time the fractions are used to blend one or more products. It is in producer's interest to do the blending in an optimal way, namely, to satisfy the requirements for the oil products quality and quantity with a maximal usage of the available fractions and, of course, with a maximal profit out of the sold products. This could be accomplished by applying linear programming, that is by using a linear model for oil products blending optimization. (Author)

3. C-program LINOP for the evaluation of film dosemeters by linear optimization. User manual

International Nuclear Information System (INIS)

Kragh, P.

1995-11-01

Linear programming results in an optimal measuring value for film dosemeters. The Linop program was developed to be used for linear programming. The program permits the evaluation and control of film dosemeters and of all other multi-component dosemeters. This user manual for the Linop program contains the source program, a description of the program and installation and use instructions. The data sets with programs and examples are available upon request. (orig.) [de

4. Mathematical Model and Computational Analysis of Selected Transient States of Cylindrical Linear Induction Motor Fed via Frequency Converter

Directory of Open Access Journals (Sweden)

Andrzej Rusek

2008-01-01

Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.

5. Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model

Directory of Open Access Journals (Sweden)

P. Rubino

2008-09-01

Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring

6. Split diversity in constrained conservation prioritization using integer linear programming.

Science.gov (United States)

Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

2015-01-01

Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

7. Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program

Science.gov (United States)

Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy

2016-01-01

The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…

8. Effects of a Mathematics Cognitive Acceleration Program on Student Achievement and Motivation

Science.gov (United States)

Finau, Teukava; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

2018-01-01

This paper presents the effects of a cognitive acceleration program in mathematics classes on Tongan students' achievements, motivation and self-regulation. Cognitive Acceleration in Mathematics Education (CAME) is a program developed at King's College and implemented worldwide with the aim of improving students' thinking skills, mathematics…

9. A linear programming approach for placement of applicants to academic programs

OpenAIRE

Kassa, Biniyam Asmare

2013-01-01

This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the ...

10. Improving the Graduate School Experience for Women in Mathematics: the Edge Program

Science.gov (United States)

Bozeman, Sylvia T.; Hughes, Rhonda J.

For over a decade, Spelman College and Bryn Mawr College have collaborated on initiatives designed to increase the presence of women, with a special focus on women of color, in the upper ranks of mathematical science. The most recent initiative is the EDGE Program (Enhancing Diversity in Graduate Education), which addresses this challenge by attempting to decrease the loss of talent from U.S. graduate programs. To this end, the program provides structures that help women make successful transitions from undergraduate into graduate mathematics programs, redirect or refocus their ambitions when programs are inappropriate or unsuitable, and, ultimately, enable them to "accumulate advantages" that will empower them and foster success in their careers. A broader goal of this program is to diversify the mathematics community by creating models for mathematics programs that allow people from all backgrounds and cultures to thrive, advance, and contribute to the profession.

11. An overview of solution methods for multi-objective mixed integer linear programming programs

DEFF Research Database (Denmark)

Andersen, Kim Allan; Stidsen, Thomas Riis

Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

12. Mathematics

CERN Document Server

Eringen, A Cemal

2013-01-01

Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

13. PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS

Directory of Open Access Journals (Sweden)

A. B. Lisitsyn

2016-01-01

Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.

14. School Effectiveness and Teacher Effectiveness in Mathematics: Some Preliminary Findings from the Evaluation of the Mathematics Enhancement Program (Primary).

Science.gov (United States)

Muijs, Daniel; Reynolds, David

2000-01-01

Examines effects of teacher behaviors and classroom organization on 2,128 pupils' progress in mathematics in UK primary schools participating in a math intervention program. Using multilevel modeling techniques, finds that teacher behaviors could explain between 60 and 70 percent of pupils' progress on numeracy tests. (Contains 35 references.)…

15. Approximate labeling via graph cuts based on linear programming.

Science.gov (United States)

Komodakis, Nikos; Tziritas, Georgios

2007-08-01

A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

16. Periodic inventory system in cafeteria using linear programming

Science.gov (United States)

Usop, Mohd Fais; Ishak, Ruzana; Hamdan, Ahmad Ridhuan

2017-11-01

Inventory management is an important factor in running a business. It plays a big role of managing the stock in cafeteria. If the inventories are failed to be managed wisely, it will affect the profit of the cafeteria. Therefore, the purpose of this study is to find the solution of the inventory management in cafeteria. Most of the cafeteria in Malaysia did not manage their stock well. Therefore, this study is to propose a database system of inventory management and to develop the inventory model in cafeteria management. In this study, new database system to improve the management of the stock in a weekly basis will be provided using Linear Programming Model to get the optimal range of the inventory needed for selected categories. Data that were collected by using the Periodic Inventory System at the end of the week within three months period being analyzed by using the Food Stock-take Database. The inventory model was developed from the collected data according to the category of the inventory in the cafeteria. Results showed the effectiveness of using the Periodic Inventory System and will be very helpful to the cafeteria management in organizing the inventory. Moreover, the findings in this study can reduce the cost of operation and increased the profit.

17. Learning oncogenetic networks by reducing to mixed integer linear programming.

Science.gov (United States)

Shahrabi Farahani, Hossein; Lagergren, Jens

2013-01-01

Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

18. Near-Regular Structure Discovery Using Linear Programming

KAUST Repository

Huang, Qixing

2014-06-02

Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets. © 2014 ACM.

19. Maximum likelihood pedigree reconstruction using integer linear programming.

Science.gov (United States)

Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A

2013-01-01

Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.

20. Discovery of Boolean metabolic networks: integer linear programming based approach.

Science.gov (United States)

Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

2018-04-11

Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

1. Storage and distribution/Linear programming for storage operations

Energy Technology Data Exchange (ETDEWEB)

Coleman, D

1978-07-15

The techniques of linear programing to solve storage problems as applied in a tank farm tie-in with refinery throughput operation include: (1) the time-phased model which works on storage and refinery operations input parameters, e.g., production, distribution, cracking, etc., and is capable of representing product stockpiling in slack periods to meet future peak demands, and investigating alternative strategies such as exchange deals and purchase and leasing of additional storage, and (2) the Monte Carlo simulation method, which inputs parameters, e.g., arrival of crude products at refinery, tankage size, likely demand for products, etc., as probability distributions rather than single values, and is capable of showing the average utilization of facilities, potential bottlenecks, investment required to achieve an increase in utilization, and to enable the user to predict total investment, cash flow, and profit emanating from the original financing decision. The increasing use of computer techniques to solve refinery and storage problems is attributed to potential savings resulting from more effective planning, reduced computer costs, ease of access and more usable software. Diagrams.

2. Mixed integer linear programming for maximum-parsimony phylogeny inference.

Science.gov (United States)

Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

2008-01-01

Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

3. Fitting boxes to Manhattan scenes using linear integer programming

KAUST Repository

Li, Minglei

2016-02-19

We propose an approach for automatic generation of building models by assembling a set of boxes using a Manhattan-world assumption. The method first aligns the point cloud with a per-building local coordinate system, and then fits axis-aligned planes to the point cloud through an iterative regularization process. The refined planes partition the space of the data into a series of compact cubic cells (candidate boxes) spanning the entire 3D space of the input data. We then choose to approximate the target building by the assembly of a subset of these candidate boxes using a binary linear programming formulation. The objective function is designed to maximize the point cloud coverage and the compactness of the final model. Finally, all selected boxes are merged into a lightweight polygonal mesh model, which is suitable for interactive visualization of large scale urban scenes. Experimental results and a comparison with state-of-the-art methods demonstrate the effectiveness of the proposed framework.

4. Developing a pedagogical problem solving view for mathematics teachers with two reflection programs

Directory of Open Access Journals (Sweden)

Bracha KRAMARSKI

2009-10-01

Full Text Available The study investigated the effects of two reflection support programs on elementary school mathematics teachers’ pedagogical problem solving view. Sixty-two teachers participated in a professional development program. Thirty teachers were assigned to the self-questioning (S_Q training and thirty two teachers were assigned to the reflection discourse (R_D training. The S_Q program was based on the IMPROVE self-questioning approach which emphasizes systematic discussion along the phases of mathematical or pedagogical problem solving as student and teacher. The R_D program emphasized discussion of standard based teaching and learning principles. Findings indicated that systematic reflection support (S_Q is effective for developing mathematics PCK, and strengthening metacognitive knowledge of mathematics teachers, more than reflection discourse (R_D. No differences were found between the groups in developing beliefs about teaching mathematics in using problem solving view.

5. Computer Programming in the UK Undergraduate Mathematics Curriculum

Science.gov (United States)

Sangwin, Christopher J.; O'Toole, Claire

2017-01-01

This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received…

6. Mathematics Education: Student Terminal Goals, Program Goals, and Behavioral Objectives.

Science.gov (United States)

Mesa Public Schools, AZ.

Behavioral objectives are listed for the primary, intermediate and junior high mathematics curriculum in the Mesa Public Schools (Arizona). Lists of specific objectives are given by level for sets, symbol recognition, number operations, mathematical structures, measurement and problem solving skills. (JP)

7. The Evolution of an Undergraduate Actuarial Mathematics Program

Science.gov (United States)

Kennedy, Kristin; Schumacher, Phyllis

2014-01-01

Bryant University was originally a school for business majors and offered only a few mathematics courses. After becoming accredited by the New England Association of Colleges and Universities in the 1960s, the college was required to upgrade its offerings in the area of mathematics. In the 1970s, the department offerings were increased to include…

8. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

Science.gov (United States)

Pilkey, W. D.; Chen, Y. H.

1974-01-01

An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

9. Collaboration between Mathematics Facilitators and Preschool Teachers Using the Innovative "Senso-Math" Preschool Program

Science.gov (United States)

Hassidov, Dina; Ilany, Bat-Sheva

2018-01-01

This article presents a mixed-method study of the innovative "Senso-Math" preschool program and the reactions of both the facilitators, who underwent a special training program, and the preschool teachers in whose classes the program was implemented. The goal of the program is to enhance mathematical development in preschool children…

10. NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program

OpenAIRE

Chermakani, Deepak Ponvel

2012-01-01

We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...

11. Inverse truss design as a conic mathematical program with equilibrium constraints

Czech Academy of Sciences Publication Activity Database

Kočvara, Michal; Outrata, Jiří

2017-01-01

Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf

12. Linear programming model can explain respiration of fermentation products

Science.gov (United States)

Möller, Philip; Liu, Xiaochen; Schuster, Stefan

2018-01-01

Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

13. Optimizing Biorefinery Design and Operations via Linear Programming Models

Energy Technology Data Exchange (ETDEWEB)

Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

2017-03-28

The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with 4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for 14. Linear programming model can explain respiration of fermentation products. Science.gov (United States) Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel 2018-01-01 Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. 15. Theoretical constructs for early intervention programs in mathematics: DEFF Research Database (Denmark) Lindenskov, Lena; Kirsted, Katrine 2017-01-01 . It is not a straightforward endeavour. One reason is that the term theory as well as the term practice may very well be given different meanings by different agents. This variation is in our view to be considered in “implementation research” and Lewin’s statement ought to be qualified by two questions “Who cares for a good...... theory?” and “What makes a good theory good for whom?” This paper explores this variation of how theory is perceived by mathematics teachers and by mathematics researchers involved in a developmental project on early intervention in mathematics education in Denmark. The paper exemplifies how agents... 16. Linear-programming approach to nonconvex variational problems Czech Academy of Sciences Publication Activity Database Bartels, S.; Roubíček, Tomáš 2004-01-01 Roč. 99, č. 2 (2004), s. 251-287 ISSN 0029-599X R&D Projects: GA AV ČR IAA1075005 Institutional research plan: CEZ:AV0Z1075907 Keywords : young measures * convex approximations * adaptive scheme Subject RIV: BA - General Mathematics Impact factor: 1.011, year: 2004 17. Algorithmic mathematics CERN Document Server Hougardy, Stefan 2016-01-01 Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years. 18. Very Low-Cost Nutritious Diet Plans Designed by Linear Programming. Science.gov (United States) Foytik, Jerry 1981-01-01 Provides procedural details of Linear Programing, developed by the U.S. Department of Agriculture to devise a dietary guide for consumers that minimizes food costs without sacrificing nutritional quality. Compares Linear Programming with the Thrifty Food Plan, which has been a basis for allocating coupons under the Food Stamp Program. (CS) 19. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis Science.gov (United States) Jeffrey, Alan 1971-01-01 The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG) 20. Introduction to the discrete Fourier series considering both mathematical and engineering aspects - A linear-algebra approach Directory of Open Access Journals (Sweden) Ludwig Kohaupt 2015-12-01 Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations. 1. Mathematics CERN Document Server Stein, Sherman K 2010-01-01 Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi 2. Basic training in mathematics a fitness program for science students CERN Document Server Shankar, R 1995-01-01 Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences 3. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems. Science.gov (United States) Takabe, Satoshi; Hukushima, Koji 2016-05-01 Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken. 4. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems Science.gov (United States) Takabe, Satoshi; Hukushima, Koji 2016-05-01 Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken. 5. User's guide to the Sandia Mathematical Program Library at Livermore Energy Technology Data Exchange (ETDEWEB) Huddleston, R.E.; Jefferson, T.H. 1976-03-01 The Sandia Mathematical Program Library is a collection of general-purpose mathematical subroutines which are maintained within Sandia on a quick service basis. This document is intended to be a reference guide for using the library at Sandia Laboratories, Livermore. (auth) 6. Effects of a Teacher Professional Development Program on the Mathematics Achievement of Middle School Students Science.gov (United States) Sample McMeeking, Laura B.; Orsi, Rebecca; Cobb, R. Brian 2012-01-01 The effect of a 15- to 24-month in-service professional development (PD) program on state accountability mathematics test scores for middle school students was examined using a quasi-experimental design. Middle level mathematics teachers (n = 128) from 7 school districts and 64 middle schools volunteered for a PD sequence of content-oriented… 7. Modeling Clinic for Industrial Mathematics: A Collaborative Project Under Erasmus+ Program DEFF Research Database (Denmark) Jurlewicz, Agnieszka; Nunes, Claudia; Russo, Giovanni 2018-01-01 Modeling Clinic for Industrial Mathematics (MODCLIM) is a Strategic Partnership for the Development of Training Workshops and Modeling Clinic for Industrial Mathematics, funded through the European Commission under the Erasmus Plus Program, Key Action 2: Cooperation for innovation and the exchang... 8. Mathematics International Nuclear Information System (INIS) Demazure, M. 1988-01-01 The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr 9. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation Science.gov (United States) Frost, Susan A.; Bodson, Marc; Acosta, Diana M. 2009-01-01 The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming. 10. Perceptions of Preservice Teachers about Adaptive Learning Programs in K-8 Mathematics Education OpenAIRE Smith, Kevin 2018-01-01 Adaptivelearning programs are frequently used in the K-8 mathematics classroom. Theseprograms provide instruction to students at the appropriate level of difficultyby presenting content, providing feedback, and allowing students to masterskills before progressing. The purpose of the study was to seek to interprethow preservice teachers’ experiences influence their perceptions and plans tointegrate adaptive learning programs in their future K-8 mathematics classroom.This was a qualitative stud... 11. Personalized Computer-Assisted Mathematics Problem-Solving Program and Its Impact on Taiwanese Students Science.gov (United States) Chen, Chiu-Jung; Liu, Pei-Lin 2007-01-01 This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.… 12. Toward Social Justice: The Characteristics of an Effective Mathematics Intervention Program for Urban Middle School Students Science.gov (United States) Bowens, Bryan D.; Warren, Susan R. 2016-01-01 This two-part investigation (a) assessed the impact of the Jaime Escalante Math Program (JEMP), a structured summer mathematics intervention program, on the math achievement of urban middle school students, (b) identified the characteristics of the program that the administrators and teachers perceived to contribute to student achievement, and (c)… 13. Optimal timing of joint replacement using mathematical programming and stochastic programming models. Science.gov (United States) Keren, Baruch; Pliskin, Joseph S 2011-12-01 The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when. 14. Continuum mechanics the birthplace of mathematical models CERN Document Server Allen, Myron B 2015-01-01 Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe 15. Some mathematical problems in non-linear Physics; Algunos problemas matematicos en fisica no-lineal Energy Technology Data Exchange (ETDEWEB) NONE 1983-07-01 The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs. 16. N queens on an fpga: mathematics,programming, or both? NARCIS (Netherlands) Kuper, Jan; Wester, Rinse 2014-01-01 This paper presents a design methodology for deriving an FPGA implementation directly from a mathematical specification, thus avoiding the switch in semantic perspective as is present in widely applied methods which include an imperative implementation as an intermediate step. The first step in the 17. Sensitivity analysis of linear programming problem through a recurrent neural network Science.gov (United States) Das, Raja 2017-11-01 In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network. 18. A Comparison of Traditional Worksheet and Linear Programming Methods for Teaching Manure Application Planning. Science.gov (United States) Schmitt, M. A.; And Others 1994-01-01 Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH) 19. Fundamental solution of the problem of linear programming and method of its determination Science.gov (United States) Petrunin, S. V. 1978-01-01 The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited. 20. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming DEFF Research Database (Denmark) Ren, Jingzheng; Dong, Liang; Sun, Lu 2015-01-01 in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed... 1. The essential multiobjectivity of linear programming | Stewart | ORiON African Journals Online (AJOL) It is argued that any non-trivial real world problems involve multiple objectives. The simplistic approach of combining objectives in linear form can generate highly misleading and biased results, and is poor operational research practice. Such biases are illustrated by means of a simple example, and it is demonstrated that ... 2. Program LINEAR (version 79-1): linearize data in the evaluated nuclear data file/version B (ENDF/B) format International Nuclear Information System (INIS) Cullen, D.E. 1979-01-01 Program LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form (i.e., removes points not needed for linear interpolability). The main advantage of the code is that it allows subsequent codes to consider only linear-linear data. A listing of the source deck is available on request 3. Effective radiological safety program for electron linear accelerators International Nuclear Information System (INIS) Swanson, W.P. 1980-10-01 An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program 4. Portfolio optimization by using linear programing models based on genetic algorithm Science.gov (United States) Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S. 2018-01-01 In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models. 5. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways. Science.gov (United States) Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G 2012-01-01 Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. 6. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways. Directory of Open Access Journals (Sweden) Alexander Mitsos Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. 7. A multiple objective mixed integer linear programming model for power generation expansion planning Energy Technology Data Exchange (ETDEWEB) Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal) 2004-03-01 Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author) 8. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system. Science.gov (United States) Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth 2007-01-01 A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters. 9. Solving a class of generalized fractional programming problems using the feasibility of linear programs. Science.gov (United States) Shen, Peiping; Zhang, Tongli; Wang, Chunfeng 2017-01-01 This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm. 10. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints. Science.gov (United States) Zhao, Yingfeng; Liu, Sanyang 2016-01-01 We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient. 11. Las Matematicas: Lenguaje Universal. Grados Intermedios, Nivel 5b: Medida Lineal, Perimetro y Area (Mathematics: A Universal Language. Intermediate Grades, Level 5b: Linear Measure, Perimeter and Area). Science.gov (United States) Dissemination and Assessment Center for Bilingual Education, Austin, TX. This is one of a series of student booklets designed for use in a bilingual mathematics program in grades 6-8. The general format is to present each page in both Spanish and English. The mathematical topics in this booklet include measurement, perimeter, and area. (MK) 12. Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26) Science.gov (United States) Harris, John G. 2001-10-01 Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines 13. Mixed-Integer Conic Linear Programming: Challenges and Perspectives Science.gov (United States) 2013-10-01 The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky 14. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report Energy Technology Data Exchange (ETDEWEB) NONE 1997-12-31 Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included. 15. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique. Science.gov (United States) Bogen, Kenneth T 2016-03-01 To improve U.S. Environmental Protection Agency (EPA) dose-response (DR) assessments for noncarcinogens and for nonlinear mode of action (MOA) carcinogens, the 2009 NRC Science and Decisions Panel recommended that the adjustment-factor approach traditionally applied to these endpoints should be replaced by a new default assumption that both endpoints have linear-no-threshold (LNT) population-wide DR relationships. The panel claimed this new approach is warranted because population DR is LNT when any new dose adds to a background dose that explains background levels of risk, and/or when there is substantial interindividual heterogeneity in susceptibility in the exposed human population. Mathematically, however, the first claim is either false or effectively meaningless and the second claim is false. Any dose-and population-response relationship that is statistically consistent with an LNT relationship may instead be an additive mixture of just two quasi-threshold DR relationships, which jointly exhibit low-dose S-shaped, quasi-threshold nonlinearity just below the lower end of the observed "linear" dose range. In this case, LNT extrapolation would necessarily overestimate increased risk by increasingly large relative magnitudes at diminishing values of above-background dose. The fact that chemically-induced apoptotic cell death occurs by unambiguously nonlinear, quasi-threshold DR mechanisms is apparent from recent data concerning this quintessential toxicity endpoint. The 2009 NRC Science and Decisions Panel claims and recommendations that default LNT assumptions be applied to DR assessment for noncarcinogens and nonlinear MOA carcinogens are therefore not justified either mathematically or biologically. © 2015 The Author. Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis. 16. Findings From the EASY Minds Cluster Randomized Controlled Trial: Evaluation of a Physical Activity Integration Program for Mathematics in Primary Schools. Science.gov (United States) Riley, Nicholas; Lubans, David R; Holmes, Kathryn; Morgan, Philip J 2016-02-01 To evaluate the impact of a primary school-based physical activity (PA) integration program delivered by teachers on objectively measured PA and key educational outcomes. Ten classes from 8 Australian public schools were randomly allocated to treatment conditions. Teachers from the intervention group were taught to embed movement-based learning in their students' (n = 142) daily mathematics program in 3 lessons per week for 6 weeks. The control group (n = 98) continued its regular mathematics program. The primary outcome was accelerometer-determined PA across the school day. Linear mixed models were used to analyze treatment effects. Significant intervention effects were found for PA across the school day (adjusted mean difference 103 counts per minute [CPM], 95% confidence interval [CI], 36.5-169.7, P = .008). Intervention effects were also found for PA (168 CPM, 95% CI, 90.1-247.4, P = .008) and moderate-to-vigorous PA (2.6%, 95% CI, 0.9-4.4, P = .009) in mathematics lessons, sedentary time across the school day (-3.5%, 95% CI, -7.0 to -0.13, P = .044) and during mathematics (-8.2%, CI, -13.0 to -2.0, P = .010) and on-task behavior (13.8%, 95% CI, 4.0-23.6, P = .011)-but not for mathematics performance or attitude. Integrating movement across the primary mathematics syllabus is feasible and efficacious. 17. PROGRAMMING FUNDAMENTALS TEACHING TO THE STUDENTS OF PHYSICO-MATHEMATICAL PROFILE Directory of Open Access Journals (Sweden) Vdovychyn Tatiana 2017-05-01 Full Text Available The article provides methodical recommendations on studying of the discipline "Informatics" for the specialists preparation of the first (Bachelor level of higher education of the field of knowledge 01 "Education" of the specialty 014.04 "Secondary education (mathematics", 014.08 "Secondary education (physics". This discipline plays a particularly important role in the higher education establishments physical and mathematical field specialists training, since it combines both the fundamental concepts and principles of various mathematical and informatics disciplines, as well as applied models and algorithms for their application. The methodological aspects of the discipline "Informatics" study include the pedagogical feasibility of the forms, methods and means of training for students who are qualified as a teacher of mathematics and a physics teacher respectively. The discipline program includes issues on informatics theoretical foundations, applied software, and the basics of programming. Students are encouraged to consider the basics of programming in the C ++ environment. Basic C ++ language designs have a convenient, professional programming toolkit. Integrated C ++ environment is characterized by speed, convenience in debugging and compiling of the program. Therefore, the article focuses on the practical skills formation in the C ++ environment for the students of the physical and mathematical profile and highlights the methodological aspects of the C ++ programming language use in the course of the discipline "Informatics" teaching. The formation of practical skills takes place during the performance of laboratory works, namely: the original problem setting, the construction of an algorithm for its solution, analysis of the received results. 18. Solving applied mathematical problems with Matlab CERN Document Server Xue, Dingyu 2008-01-01 Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems. 19. Combinatorial therapy discovery using mixed integer linear programming. Science.gov (United States) Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong 2014-05-15 Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online. 20. Beyond Cognitive Increase: Investigating the Influence of Computer Programming on Perception and Application of Mathematical Skills Science.gov (United States) Rich, Peter J.; Bly, Neil; Leatham, Keith R. 2014-01-01 This study aimed to provide first-hand accounts of the perceived long-term effects of learning computer programming on a learner's approach to mathematics. These phenomenological accounts, garnered from individual interviews of seven different programmers, illustrate four specific areas of interest: (1) programming provides context for many… 1. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev Science.gov (United States) Park, Hyoung Seo 2006-01-01 The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The… 2. "Let's Count": Evaluation of a Pilot Early Mathematics Program in Low Socioeconomic Locations in Australia Science.gov (United States) Perry, Bob; Gervasoni, Ann; Dockett, Sue 2012-01-01 The "Let's Count" pilot early mathematics program was implemented in five early childhood educational contexts across Australia during 2011. The program used specifically formulated materials and workshops to enlist the assistance of early childhood educators to work with parents and other family members of children in their settings to… 3. A note on stability of stationary points in mathematical programs with generalized complementarity constraints Czech Academy of Sciences Publication Activity Database Červinka, Michal 2016-01-01 Roč. 65, č. 5 (2016), s. 1049-1060 ISSN 0233-1934 R&D Projects: GA ČR GAP402/12/1309 Institutional support: RVO:67985556 Keywords : parameter-dependent mathematical programs with generalized equilibrium constraints * M-stationarity * C-stationarity * isolated calmness * Aubin property Subject RIV: BA - General Mathematics Impact factor: 0.943, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/cervinka-0461163.pdf 4. Building counting by traditional game: Mathematics Program for Young Children OpenAIRE Nasrullah Nasrullah; Zulkardi Zulkardi 2011-01-01 In line with design research, the use of Bermain Satu Rumah (BSR) as traditional game to support children’s counting classroom wherein students are encouraged to construct mathematical understanding. Number in traditional games is an interesting aspect that is helpful for children to encounter numerous situations that bring them into contact with sounds, symbols and meanings that relate to numbers. Bermain satu rumah as starting activity would be media to enhance student’s sense of number as... 5. A linear programming approach for placement of applicants to academic programs. Science.gov (United States) Kassa, Biniyam Asmare 2013-01-01 This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the new approach allows the college's management to easily incorporate additional placement criteria, if needed. Comparison of our approach against manually constructed placement decisions based on actual data for the 2012/13 academic year suggested that about 93 percent of the placements from our model concur with the actual placement decisions. For the remaining 7 percent of placements, however, the actual placements made by the manual system display inconsistencies of decisions judged against the very criteria intended to guide placement decisions by the college's program management office. Overall, the new approach proves to be a significant improvement over the manual system in terms of efficiency of the placement process and the quality of placement decisions. 6. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results. Science.gov (United States) Bruhn, Peter; Geyer-Schulz, Andreas 2002-01-01 In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors. 7. A linear program for assessing the assignment and scheduling of radioactive wastes for disposal to sea International Nuclear Information System (INIS) Hutchinson, W. 1983-04-01 The report takes the form of a user guide to a computer program using linear programming techniques to aid the assignment and scheduling of radioactive wastes for disposal to sea. The program is aimed at the identification of 'optimum' amounts of each waste stream for disposal to sea without violating specific constraints values and/or fairness parameters. (author) 8. A LINEAR PROGRAMMING METHOD TO ENHANCE RESOURCE UTILIZATION CASE OF ETHIOPIAN APPAREL SECTOR Directory of Open Access Journals (Sweden) Gezahegn Tesfaye 2016-06-01 Full Text Available The Ethiopian industrial development strategy is characterized by export-led and labor intensive industrialization. The country is emerging as the most important investment destination in its apparel sector. Thought this sector is expected to generate more income from the export market, its export earnings remain trivial mainly due to the inefficient organizational resource utilization. One of the competent techniques that help companies to efficiently improve the use of their resources to increase their profit is linear programming. In apparel manufacturing firms, efficient use of materials such as fabrics and sewing threads and processing time at different stages of production as well as minimization of labor and materials cost are necessary to enhance their profitability. Cutting, sewing, and finishing operations deserve more attention for apparel process optimization. However, the issue of proper resource allocation remains an unsolved problem within the Ethiopian apparel industry. The aim of this research is to devise efficient resource utilization mechanism for Ethiopian apparel sector to improve their resource utilization and profitability, taking one of the garment factories engaged in the export market as a case study. Five types of products the company is currently producing, the amount of resources employed to produce each unit of the products, and the value of profit per unit from the sale of each products have been collected from the case company. The monthly availability of resources utilized and the monthly production volume of the five products have also been collected from the company. The data gathered was mathematically modeled using a linear programming technique, and solved using MS-Excel solver. The findings of the study depicts that all of the organizational resources are severely underutilized. This research proved that the resource utilization of the case company can be improved from 46.41% of the current resource 9. Mathematics in everyday life CERN Document Server Haigh, John 2016-01-01 How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und... 10. Linear and nonlinear programming with Maple an interactive, applications-based approach CERN Document Server Fishback, Paul E 2009-01-01 ""… this text could be ideal for the right course and the right group of students. An independent or directed study in mathematical programming using this book could be an excellent introduction to applied optimization for an interested group of undergraduates. …""-MAA Reviews, March 2010 11. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems Czech Academy of Sciences Publication Activity Database Lukšan, Ladislav; Vlček, Jan 1998-01-01 Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998 12. A Comprehensive Mathematical Programming Model for Minimizing Costs in A Multiple-Item Reverse Supply Chain with Sensitivity Analysis Directory of Open Access Journals (Sweden) Mahmoudi Hoda 2014-09-01 Full Text Available These instructions give you guidelines for preparing papers for IFAC conferences. A reverse supply chain is configured by a sequence of elements forming a continuous process to treat return-products until they are properly recovered or disposed. The activities in a reverse supply chain include collection, cleaning, disassembly, test and sorting, storage, transport, and recovery operations. This paper presents a mathematical programming model with the objective of minimizing the total costs of reverse supply chain including transportation, fixed opening, operation, maintenance and remanufacturing costs of centers. The proposed model considers the design of a multi-layer, multi-product reverse supply chain that consists of returning, disassembly, processing, recycling, remanufacturing, materials and distribution centers. This integer linear programming model is solved by using Lingo 9 software and the results are reported. Finally, a sensitivity analysis of the proposed model is also presented. 13. adapta~k>n -11 of the surrogate memods for linear programming ... African Journals Online (AJOL) 2005-08-02 Aug 2, 2005 ... inequality problem is made uj~ of the primal and dual optimal solutions for the given primal ... KEYWORDS: Linear Programming, Duality Theory, Surrogate Methods. ..... replaces x and the process IS repeated with the new x. 14. Development of demand functions and their inclusion in linear programming forecasting models International Nuclear Information System (INIS) Chamberlin, J.H. 1976-05-01 The purpose of the paper is to present a method for including demand directly within a linear programming model, and to use this method to analyze the effect of the Liquid Metal Fast Breeder Reactor upon the nuclear energy system 15. An introduction to fuzzy linear programming problems theory, methods and applications CERN Document Server Kaur, Jagdeep 2016-01-01 The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty. 16. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters Directory of Open Access Journals (Sweden) Zahra Shahraki 2015-07-01 Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used. 17. Dose optimization based on linear programming implemented in a system for treatment planning in Monte Carlo International Nuclear Information System (INIS) Ureba, A.; Palma, B. A.; Leal, A. 2011-01-01 Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously. 18. Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming Directory of Open Access Journals (Sweden) Fusun Kucukbay 2016-04-01 Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP. 19. The Teachers Academy for Mathematics and Science. Executive summary and program activities update Energy Technology Data Exchange (ETDEWEB) 1992-09-01 In his State of the Union address on January 31, 1990, President Bush set a goal for US students to be number one in the world in mathematics and science achievement by the year 2000. The Teachers Academy for Mathematics and Science in Chicago is an experiment of unprecedented boldness and scale that can provide a means to the Presidents goal, both for the Chicago area and as a national model. This document covers organization and governance, program activities, future training goals, and evaluation programs. 20. Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters International Nuclear Information System (INIS) Mavrotas, George; Florios, Kostas; Vlachou, Dimitra 2010-01-01 For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or regional level aiming at cost minimization subject to specific technological, political and demand satisfaction constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of competition and forced energy consumers, even at the unit level, to make their choices among a large number of alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile parameters of the objective function such as the fuel costs and the interest rate. The results come in the form of probability distributions that provide fruitful information to the decision maker. The effect of model reduction through appropriate data compression of the load data is also addressed. 1. Arc-Search Infeasible Interior-Point Algorithm for Linear Programming OpenAIRE Yang, Yaguang 2014-01-01 Mehrotra's algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra's algorithm. This paper proposes an alternative algorithm, arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by arc-search infeasible interior-point algorithm and Mehrotra's algorithm, that the propo... 2. The experimentation of LC7E learning model on the linear program material in terms of interpersonal intelligence on Wonogiri Vocational School students Science.gov (United States) Antinah; Kusmayadi, T. A.; Husodo, B. 2018-03-01 This study aimed to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students’ mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material. 3. The experimentation of LC7E learning model on the linear program material in terms of interpersonal intelligence on Wonogiri vocational school students Science.gov (United States) Antinah; Kusmayadi, T. A.; Husodo, B. 2018-05-01 This study aims to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students' mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material. 4. Mathematical programming model for heat exchanger design through optimization of partial objectives International Nuclear Information System (INIS) Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A. 2013-01-01 Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature 5. Simulation of a coal-fired power plant using mathematical programming algorithms in order to optimize its efficiency International Nuclear Information System (INIS) Tzolakis, G.; Papanikolaou, P.; Kolokotronis, D.; Samaras, N.; Tourlidakis, A.; Tomboulides, A. 2012-01-01 Since most of the world's electric energy production is mainly based on fossil fuels and need for better efficiency of the energy conversion systems is imminent, mathematical programming algorithms were applied for the simulation and optimization of a detailed model of an existing lignite-fired power plant in Kozani, Greece (KARDIA IV). The optimization of its overall thermal efficiency, using as control variables the mass flow rates of the steam turbine extractions and the fuel consumption, was performed with the use of the simulation and optimization software gPROMS. The power plant components' mathematical models were imported in software by the authors and the results showed that further increase to the overall thermal efficiency of the plant can be achieved (a 0.55% absolute increase) through reduction of the HP turbine's and increase of the LP turbine's extractions mass flow rates and the parallel reduction of the fuel consumption by 2.05% which also results to an equivalent reduction of the greenhouse gasses. The setup of the mathematical model and the flexibility of gPROMS, make this software applicable to various power plants. - Highlights: ► Modeling and simulation of the flue gases circuit of a specific plant. ► Designing of modules in gPROMS FO (Foreign Objects). ► Simulation of the complete detailed plant with gPROMS. ► Optimization using a non-linear optimization algorithm of the plant's efficiency. 6. A linear programming computational framework integrates phosphor-proteomics and prior knowledge to predict drug efficacy. Science.gov (United States) Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei 2017-12-21 In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets. 7. Diet models with linear goal programming: impact of achievement functions. Science.gov (United States) Gerdessen, J C; de Vries, J H M 2015-11-01 Diet models based on goal programming (GP) are valuable tools in designing diets that comply with nutritional, palatability and cost constraints. Results derived from GP models are usually very sensitive to the type of achievement function that is chosen.This paper aims to provide a methodological insight into several achievement functions. It describes the extended GP (EGP) achievement function, which enables the decision maker to use either a MinSum achievement function (which minimizes the sum of the unwanted deviations) or a MinMax achievement function (which minimizes the largest unwanted deviation), or a compromise between both. An additional advantage of EGP models is that from one set of data and weights multiple solutions can be obtained. We use small numerical examples to illustrate the 'mechanics' of achievement functions. Then, the EGP achievement function is demonstrated on a diet problem with 144 foods, 19 nutrients and several types of palatability constraints, in which the nutritional constraints are modeled with fuzzy sets. Choice of achievement function affects the results of diet models. MinSum achievement functions can give rise to solutions that are sensitive to weight changes, and that pile all unwanted deviations on a limited number of nutritional constraints. MinMax achievement functions spread the unwanted deviations as evenly as possible, but may create many (small) deviations. EGP comprises both types of achievement functions, as well as compromises between them. It can thus, from one data set, find a range of solutions with various properties. 8. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management. Science.gov (United States) Li, Pu; Chen, Bing 2011-04-01 Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved. 9. Study and program implementation of transient curves' piecewise linearization International Nuclear Information System (INIS) Shi Yang; Zu Hongbiao 2014-01-01 Background: Transient curves are essential for the stress analysis of related equipment in nuclear power plant (NPP). The actually operating data or the design transient data of a NPP usually consist of a large number of data points with very short time intervals. To simplify the analysis, transient curves are generally piecewise linearized in advance. Up to now, the piecewise linearization of transient curves is accomplished manually, Purpose: The aim is to develop a method for the piecewise linearization of transient curves, and to implement it by programming. Methods: First of all, the fitting line of a number of data points was obtained by the least square method. The segment of the fitting line is set while the accumulation error of linearization exceeds the preset limit with the increasing number of points. Then the linearization of subsequent data points was begun from the last point of the preceding curve segment to get the next segment in the same way, and continue until the final data point involved. Finally, averaging of junction points is taken for the segment connection. Results: A computer program named PLTC (Piecewise Linearization for Transient Curves) was implemented and verified by the linearization of the standard sine curve and typical transient curves of a NPP. Conclusion: The method and the PLTC program can be well used to the piecewise linearization of transient curves, with improving efficiency and precision. (authors) 10. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity Directory of Open Access Journals (Sweden) Amir R. Ali 2017-01-01 Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper. 11. An Introduction to Business Mathematics OpenAIRE Henk van Elst 2015-01-01 These lecture notes provide a self-contained introduction to the mathematical methods required in a Bachelor degree programme in Business, Economics, or Management. In particular, the topics covered comprise real-valued vector and matrix algebra, systems of linear algebraic equations, Leontief's stationary input-output matrix model, linear programming, elementary financial mathematics, as well as differential and integral calculus of real-valued functions of one real variable. A special focus... 12. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming Science.gov (United States) Shea, John E. The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum 13. A Nutritional Analysis of the Food Basket in BIH: A Linear Programming Approach Directory of Open Access Journals (Sweden) Arnaut-Berilo Almira 2017-04-01 Full Text Available This paper presents linear and goal programming optimization models for determining and analyzing the food basket in Bosnia and Herzegovina (BiH in terms of adequate nutritional needs according to World Health Organization (WHO standards and World Bank (WB recommendations. A linear programming (LP model and goal linear programming model (GLP are adequate since price and nutrient contents are linearly related to food weight. The LP model provides information about the minimal value and the structure of the food basket for an average person in BiH based on nutrient needs. GLP models are designed to give us information on minimal deviations from nutrient needs if the budget is fixed. Based on these results, poverty analysis can be performed. The data used for the models consisted of 158 food items from the general consumption of the population of BiH according to COICOP classifications, with average prices in 2015 for these products. 14. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators International Nuclear Information System (INIS) Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K. 2011-01-01 Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC. 15. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing. Science.gov (United States) Yang, Changju; Kim, Hyongsuk 2016-08-19 A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. 16. Decomposition techniques in mathematical programming engineering and science applications CERN Document Server Conejo, Antonio J; Minguez, Roberto; Garcia-Bertrand, Raquel 2006-01-01 Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning p... 17. A Comparison of Functional and Imperative Programming Techniques for Mathematical Software Development Directory of Open Access Journals (Sweden) Scott Frame 2014-04-01 Full Text Available Functional programming has traditionally been considered elegant and powerful, but also somewhat impractical for ordinary computing. Proponents of functional programming claim that the evolution of functional languages makes their use feasible in many domains. In this work, a popular imperative language (C++ and the leading functional language (Haskell are compared in a math-intensive, real-world application using a variety of criteria: ease of implementation, efficiency, and readability. The programming tasks that were used as benchmarks involved mathematical transformations between local and global coordinate systems. Details regarding the application area and how language features of both languages were used to solve critical problems are described. The paper closes with some conclusions regarding applicability of functional programming for mathematical applications. 18. Analyzing the Psychological Symptoms of Students in Undergraduate Program in Elementary Mathematics Teaching Science.gov (United States) Masal, Ercan; Koc, Mustafa; Colak, Tugba Seda; Takunyaci, Mithat 2013-01-01 The main purpose of this research is to analyse whether there is a difference or not in levels of having psychological symptoms of the students of undergraduate program in elementary mathematics teaching. Another aim of the research is to determine whether the levels of having psychological symptoms of the students differ or not regarding various… 19. Mathematical description and program documentation for CLASSY, an adaptive maximum likelihood clustering method Science.gov (United States) Lennington, R. K.; Rassbach, M. E. 1979-01-01 Discussed in this report is the clustering algorithm CLASSY, including detailed descriptions of its general structure and mathematical background and of the various major subroutines. The report provides a development of the logic and equations used with specific reference to program variables. Some comments on timing and proposed optimization techniques are included. 20. Large-scale budget applications of mathematical programming in the Forest Service Science.gov (United States) Malcolm Kirby 1978-01-01 Mathematical programming applications in the Forest Service, U.S. Department of Agriculture, are growing. They are being used for widely varying problems: budgeting, lane use planning, timber transport, road maintenance and timber harvest planning. Large-scale applications are being mace in budgeting. The model that is described can be used by developing economies.... 1. An Investigation of the Relative Effectiveness of the Basic Mathematics Review Program at Essex Community College. Science.gov (United States) Bloomberg, Jerome Basic Mathematics Review (BMR) is a remedial non-credit course at Essex Community College (Maryland) being taught on an individualized basis. Following diagnostic testing and placement, instruction utilizes programmed materials, tutors, and self-tests. Evaluation of the new individualized BMR and comparison with the traditional remedial course… 2. Secondary Students' Perceptions of an Interactive Mathematics Review Program: An Action Research Study Science.gov (United States) Wingard, Crystal Burroughs 2017-01-01 The present action research study describes an Interactive Mathematics Review Program (IMRP) developed by the participant-researcher to enable remedial algebra students to learn in a cooperative classroom with pedagogy that promoted collaboration and hands-on, active learning. Data are comprised of surveys, field notes, semi-structured interviews,… 3. The Effects of a Model Developmental Mathematics Program on Elementary and Middle School Preservice Teachers Science.gov (United States) Gerber, Lindsey N. 2012-01-01 Teacher quality is instrumental in improving student performance. Unfortunately, discrepancies between teacher preparation programs and national and state K-12 student standards have contributed to the difficult task of producing quality teachers. The contemporary mathematics education paradigm used at most colleges and universities relies on… 4. Secondary Mathematics Teacher Differences: Teacher Quality and Preparation in a New York City Alternative Certification Program Science.gov (United States) Evans, Brian R. 2011-01-01 Providing students in urban settings with quality teachers is important for student achievement. This study examined the differences in content knowledge, attitudes toward mathematics, and teacher efficacy among several different types of alternatively certified teachers in a sample from the New York City Teaching Fellows program in order to… 5. Critical sets in one-parametric mathematical programs with complementarity constraints NARCIS (Netherlands) Bouza Allende, G.; Guddat, J.; Still, Georg J. 2008-01-01 One-parametric mathematical programs with complementarity constraints are considered. The structure of the set of generalized critical points is analysed for the generic case. It is shown how this analysis can locally be reduced to the study of appropriate standard one-parametric finite problems. By 6. The Relationship between Gender and Students' Attitude and Experience of Using a Mathematical Software Program (MATLAB) Science.gov (United States) Ocak, Mehmet A. 2006-01-01 This correlation study examined the relationship between gender and the students' attitude and prior knowledge of using one of the mathematical software programs (MATLAB). Participants were selected from one community college, one state university and one private college. Students were volunteers from three Calculus I classrooms (one class from… 7. Teaching the Relevance of Mathematics in Information Technologies through Functional Programming in Secondary School Science.gov (United States) Ruiz, Rosario Vera 2011-01-01 From the point of view of functional programming, a computational process to solve a problem is described as a mathematical function taking some arguments (corresponding to the data of the problem) and returning as a result its solution. Turtle Graphics can be used to describe the movements of a virtual turtle, which leaves a trail along his path… 8. Foundations in Science and Mathematics Program for Middle School and High School Students Science.gov (United States) Desai, Karna Mahadev; Yang, Jing; Hemann, Jason 2016-01-01 The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ . 9. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science Science.gov (United States) Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard 2011-01-01 A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally… 10. Curve Fitting via the Criterion of Least Squares. Applications of Algebra and Elementary Calculus to Curve Fitting. [and] Linear Programming in Two Dimensions: I. Applications of High School Algebra to Operations Research. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 321, 453. Science.gov (United States) Alexander, John W., Jr.; Rosenberg, Nancy S. This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to… 11. International program on linear electric motors. CIGGT report No. 92-1 Energy Technology Data Exchange (ETDEWEB) Dawson, G.E.; Eastham, A.R.; Parker, J.H. 1992-12-31 The International Program for Linear Electric Motors (LEM) was begun in April 1989 to communicate and coordinate activities with centers of expertise in Germany, Canada, and Japan; to provide for the assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators, and policy makers; and to ensure that full advantage can be taken if opportunities for technology transfer occur. This report documents the work done under the program, including standardizing linear induction motor (LIM) design characteristics; test procedures and measurement methods; rating; database for design data; criteria for evaluation of designs; computer programs for modelling performance; and a design study for an agreed application. 12. The initial response of secondary mathematics teachers to a one-to-one laptop program Science.gov (United States) Zuber, Edward Nordin; Anderson, Judy 2013-06-01 Studies of one-to-one programs consistently report lower use of laptops in mathematics classrooms compared to other subjects but do not elaborate reasons for these observations. This mixed-method study investigated the experiences and beliefs of 28 mathematics teachers at five secondary schools during the second year of the New South Wales Digital Education Revolution laptop program. While some mathematics teachers planned for students to use their laptops up to once a week, most reported less frequent use in the classroom. Teachers were grouped into categories "Non Adopters," "Cautious Adopters," and "Early Adopters" according to reported classroom use of laptops, then analysed for differences in confidence, knowledge, and beliefs relating to technology for teaching and learning mathematics. A prevalent belief limiting laptop use is that students authentically learn mathematics only using pen and paper. Cautious Adopters and Non Adopters expressed beliefs that laptops exacerbate classroom management problems, especially for lower-achieving students. In the context of ability-streamed classes these beliefs effectively ruled out use of laptops for entire classrooms. 13. Strengthening programs in science, engineering and mathematics. Third annual progress report Energy Technology Data Exchange (ETDEWEB) Sandhu, S.S. 1997-09-30 The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The divisions pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratory equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry. 14. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program. Science.gov (United States) Berlin, Donna F.; White, Arthur L. 2002-01-01 Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS) 15. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students Science.gov (United States) Dubetz, Terry A.; Wilson, Jo Ann 2013-01-01 Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help… 16. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE) Science.gov (United States) National Academies Press, 2009 2009-01-01 In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,… 17. Object matching using a locally affine invariant and linear programming techniques. Science.gov (United States) Li, Hongsheng; Huang, Xiaolei; He, Lei 2013-02-01 In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm. 18. Development and adjustment of programs for solving systems of linear equations International Nuclear Information System (INIS) Fujimura, Toichiro 1978-03-01 Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.) 19. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models. Science.gov (United States) Okubo, Hitomi; Sasaki, Satoshi; Murakami, Kentaro; Yokoyama, Tetsuji; Hirota, Naoko; Notsu, Akiko; Fukui, Mitsuru; Date, Chigusa 2015-06-06 Simultaneous dietary achievement of a full set of nutritional recommendations is difficult. Diet optimization model using linear programming is a useful mathematical means of translating nutrient-based recommendations into realistic nutritionally-optimal food combinations incorporating local and culture-specific foods. We used this approach to explore optimal food intake patterns that meet the nutrient recommendations of the Dietary Reference Intakes (DRIs) while incorporating typical Japanese food selections. As observed intake values, we used the food and nutrient intake data of 92 women aged 31-69 years and 82 men aged 32-69 years living in three regions of Japan. Dietary data were collected with semi-weighed dietary record on four non-consecutive days in each season of the year (16 days total). The linear programming models were constructed to minimize the differences between observed and optimized food intake patterns while also meeting the DRIs for a set of 28 nutrients, setting energy equal to estimated requirements, and not exceeding typical quantities of each food consumed by each age (30-49 or 50-69 years) and gender group. We successfully developed mathematically optimized food intake patterns that met the DRIs for all 28 nutrients studied in each sex and age group. Achieving nutritional goals required minor modifications of existing diets in older groups, particularly women, while major modifications were required to increase intake of fruit and vegetables in younger groups of both sexes. Across all sex and age groups, optimized food intake patterns demanded greatly increased intake of whole grains and reduced-fat dairy products in place of intake of refined grains and full-fat dairy products. Salt intake goals were the most difficult to achieve, requiring marked reduction of salt-containing seasoning (65-80%) in all sex and age groups. Using a linear programming model, we identified optimal food intake patterns providing practical food choices and 20. Adam Smith in the Mathematics Classroom Science.gov (United States) Lipsey, Sally I. 1975-01-01 The author describes a series of current economic ideas and situations which can be used in the mathematics classroom to illustrate the use of signed numbers, the coordinate system, univariate and multivariate functions, linear programing, and variation. (SD) 1. Informing Estimates of Program Effects for Studies of Mathematics Professional Development Using Teacher Content Knowledge Outcomes. Science.gov (United States) Phelps, Geoffrey; Kelcey, Benjamin; Jones, Nathan; Liu, Shuangshuang 2016-10-03 Mathematics professional development is widely offered, typically with the goal of improving teachers' content knowledge, the quality of teaching, and ultimately students' achievement. Recently, new assessments focused on mathematical knowledge for teaching (MKT) have been developed to assist in the evaluation and improvement of mathematics professional development. This study presents empirical estimates of average program change in MKT and its variation with the goal of supporting the design of experimental trials that are adequately powered to detect a specified program effect. The study drew on a large database representing five different assessments of MKT and collectively 326 professional development programs and 9,365 teachers. Results from cross-classified hierarchical growth models found that standardized average change estimates across the five assessments ranged from a low of 0.16 standard deviations (SDs) to a high of 0.26 SDs. Power analyses using the estimated pre- and posttest change estimates indicated that hundreds of teachers are needed to detect changes in knowledge at the lower end of the distribution. Even studies powered to detect effects at the higher end of the distribution will require substantial resources to conduct rigorous experimental trials. Empirical benchmarks that describe average program change and its variation provide a useful preliminary resource for interpreting the relative magnitude of effect sizes associated with professional development programs and for designing adequately powered trials. © The Author(s) 2016. 2. A new methodological development for solving linear bilevel integer programming problems in hybrid fuzzy environment Directory of Open Access Journals (Sweden) Animesh Biswas 2016-04-01 Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided. 3. Parental Characteristics and the Achievement Gap in Mathematics: Hierarchical Linear Modeling Analysis of Longitudinal Study of American Youth (LSAY) Science.gov (United States) Shoraka, Mohammad; Arnold, Robert; Kim, Eun Sook; Salinitri, Geri; Kromrey, Jeffrey 2015-01-01 One of the most salient problems in education is the achievement gap. The researchers investigated the effects of parental education and parental occupations in science, technology, engineering, mathematics, or medical professions (STEMM) on the achievement gap in mathematics. Because students were nested within schools, two-level Hierarchical… 4. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle Science.gov (United States) Bergmann, E.; Weiler, P. 1983-01-01 An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft. 5. Method for solving fully fuzzy linear programming problems using deviation degree measure Institute of Scientific and Technical Information of China (English) Haifang Cheng; Weilai Huang; Jianhu Cai 2013-01-01 A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method. 6. A novel recurrent neural network with finite-time convergence for linear programming. Science.gov (United States) Liu, Qingshan; Cao, Jinde; Chen, Guanrong 2010-11-01 In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network. 7. Fault detection and initial state verification by linear programming for a class of Petri nets Science.gov (United States) Rachell, Traxon; Meyer, David G. 1992-01-01 The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute. 8. BEAMPATH: a program library for beam dynamics simulation in linear accelerators International Nuclear Information System (INIS) Batygin, Y.K. 1992-01-01 A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs 9. Modeling the distribution of ciliate protozoa in the reticulo-rumen using linear programming. Science.gov (United States) Hook, S E; Dijkstra, J; Wright, A-D G; McBride, B W; France, J 2012-01-01 The flow of ciliate protozoa from the reticulo-rumen is significantly less than expected given the total density of rumen protozoa present. To maintain their numbers in the reticulo-rumen, protozoa can be selectively retained through association with feed particles and the rumen wall. Few mathematical models have been designed to model rumen protozoa in both the free-living and attached phases, and the data used in the models were acquired using classical techniques. It has therefore become necessary to provide an updated model that more accurately represents these microorganisms and incorporates the recent literature on distribution, sequestration, and generation times. This paper represents a novel approach to synthesizing experimental data on rumen microorganisms in a quantitative and structured manner. The development of a linear programming model of rumen protozoa in an approximate steady state will be described and applied to data from healthy ruminants consuming commonly fed diets. In the model, protozoa associated with the liquid phase and protozoa attached to particulate matter or sequestered against the rumen wall are distinguished. Growth, passage, death, and transfer of protozoa between both pools are represented. The results from the model application using the contrasting diets of increased forage content versus increased starch content indicate that the majority of rumen protozoa, 63 to 90%, are found in the attached phase, either attached to feed particles or sequestered on the rumen wall. A slightly greater proportion of protozoa are found in the attached phase in animals fed a hay diet compared with a starch diet. This suggests that experimental protocols that only sample protozoa from the rumen fluid could be significantly underestimating the size of the protozoal population of the rumen. Further data are required on the distribution of ciliate protozoa in the rumen of healthy animals to improve model development, but the model described herein 10. Orthogonal sets and polar methods in linear algebra applications to matrix calculations, systems of equations, inequalities, and linear programming CERN Document Server Castillo, Enrique; Jubete, Francisco 0 2011-01-01 ENRIQUE CASTILLO is a professor in the Department of Applied Mathematics and Computational Science at the University of Cantabria, Spain. During 25 years of research and teaching, he has published hundreds of papers as well as 18 books. ANGEL COBO is an associate professor in the Department of Applied Mathematics and Computational Science in the University of Cantabria. FRANCISCO JUBETE is a civil engineer and research assistant in the Department of Applied Mathematics and Computational Science at the University of Cantabria. ROSA EVA PRUNEDA is a research assistant in the Department of Appl 11. Broadband demonstrations of true-time delay using linear sideband chirped programming and optical coherent transients International Nuclear Information System (INIS) Reibel, R.R.; Barber, Z.W.; Fischer, J.A.; Tian, M.; Babbitt, W.R. 2004-01-01 Linear sideband chirped (LSC) programming is introduced as a means of configuring spatial-spectral holographic gratings for optical coherent transient processors. Similar to linear frequency chirped programming, LSC programming allows the use of broadband integrated electro-optic phase modulators to produce chirps instead of using elaborate broadband chirped lasers. This approach has several advantages including the ability to use a stabilized laser for the optical carrier as well as stable, reproducible chirped optical signals when the modulator is driven digitally. Using LSC programming, we experimentally demonstrate broadband true-time delay as a proof of principle for the optical control of phased array radars. Here both cw phase modulated and binary phase shift keyed probe signals are true-time delayed with bandwidths of 1 GHz and delay resolutions better than 60 ps 12. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data Directory of Open Access Journals (Sweden) Chandra Nagasuma R 2009-02-01 Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known 13. [Process monitoring of dissolution of valsartan and hydrochlorothiazide tablets by fiber-chemical sensor assisted by mathematical separation model of linear equations]. Science.gov (United States) Ding, Hai-Yan; Li, Gai-Ru; Yu, Ying-Ge; Guo, Wei; Zhi, Ling; Li, Xin-Xia 2014-04-01 A method for on-line monitoring the dissolution of Valsartan and hydrochlorothiazide tablets assisted by mathematical separation model of linear equations was established. UV spectrums of valsartan and hydrochlorothiazide were overlapping completely at the maximum absorption wavelength respectively. According to the Beer-Lambert principle of absorbance additivity, the absorptivity of Valsartan and hydrochlorothiazide was determined at the maximum absorption wavelength, and the dissolubility of Valsartan and hydrochlorothiazide tablets was detected by fiber-optic dissolution test (FODT) assisted by the mathematical separation model of linear equations and compared with the HPLC method. Results show that two ingredients were real-time determined simultaneously in given medium. There was no significant difference for FODT compared with HPLC (p > 0.05). Due to the dissolution behavior consistency, the preparation process of different batches was stable and with good uniformity. The dissolution curves of valsartan were faster and higher than hydrochlorothiazide. The dissolutions at 30 min of Valsartan and hydrochlorothiazide were concordant with US Pharmacopoeia. It was concluded that fiber-optic dissolution test system assisted by the mathematical separation model of linear equations that can detect the dissolubility of Valsartan and hydrochlorothiazide simultaneously, and get dissolution profiles and overall data, which can directly reflect the dissolution speed at each time. It can provide the basis for establishing standards of the drug. Compared to HPLC method with one-point data, there are obvious advantages to evaluate and analyze quality of sampling drug by FODT. 14. A novel approach based on preference-based index for interval bilevel linear programming problem OpenAIRE Aihong Ren; Yuping Wang; Xingsi Xue 2017-01-01 This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrain... 15. A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints Directory of Open Access Journals (Sweden) Yu-xin Li 2014-01-01 Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed. 16. Warehouse design and product assignment and allocation: A mathematical programming model OpenAIRE Geraldes, Carla A. S.; Carvalho, Maria Sameiro; Pereira, Guilherme 2012-01-01 Warehouses can be considered one of the most important nodes in supply chains. The dynamic nature of today's markets compels organizations to an incessant reassessment in an effort to respond to continuous challenges. Therefore warehouses must be continually re-evaluated to ensure that they are consistent with both market's demands and management's strategies. In this paper we discuss a mathematical programming model aiming to support product assignment and allocation to the functional areas ... 17. Parametric synthesis of a robust controller on a base of mathematical programming method Science.gov (United States) Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A. 2018-05-01 Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle. 18. A new mathematical programming model for long-term production scheduling considering geological uncertainty OpenAIRE Gholamnejad, J.; Moosavi, E. 2012-01-01 Determination of the optimum production schedules over the life of a mine is a critical mechanism in open pit mine planning procedures. Long-term production scheduling is used to maximize the net present value of the project under technical, financial, and environmental constraints. Mathematical programming models are well suited for optimizing long-term production schedules of open pit mines. There are two approaches to solving long-term production problems: deterministic- and uncertainty- b... 19. Using emission functions in mathematical programming models for ustainable urban transportation: an application in bilevel optimization OpenAIRE Hızır, Ahmet Esat; Hizir, Ahmet Esat 2006-01-01 Sustainability is an emerging issue as a direct consequence of the population increase in the world. Urban transport systems play a crucial role in maintaining sustainability. Recently, sustainable urban transportation has become a major research area. Most of these studies propose evaluation methods that use simulation tools to assess the sustainability of different transportation policies. Despite all studies, there seems to be lack of mathematical programming models to determine the optima... 20. Introduction to computational linear algebra CERN Document Server Nassif, Nabil; Erhel, Jocelyne 2015-01-01 Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s 1. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R. Science.gov (United States) Pang, Haotian; Liu, Han; Vanderbei, Robert 2014-02-01 We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems. 2. Exploring the mathematical confidence of Indigenous preservice teachers in a remote teacher education program Science.gov (United States) Thornton, Steve; Giles, Wendy; Prescott, Debbie; Rhodes, David 2011-06-01 This paper reports on the efficacy of an accelerated teacher education program ( Growing Our Own) focused in remote Indigenous communities in the Northern Territory. The program is a joint initiative of Charles Darwin University and the Northern Territory Catholic Education Office, providing an intensive two-year program designed to educate Indigenous Teacher Assistants to full teacher status. We describe the growth in knowledge and confidence that has occurred through the program using the story of one of the students in the project, Philomena, as an evocative representation of the experiences of the participants in the program. This growth is particularly evident in one lesson that Philomena taught towards the end of the program in which she was able to challenge her previously accepted role as subservient to the non-Indigenous teacher. Our discussion highlights some key issues for improving outcomes for Indigenous children, including the potential mismatch between Western and Aboriginal ways of thinking in mathematics and developing the mathematical capacity of Indigenous teacher assistants in remote settings. We suggest that the mutual respect of the participants at various levels of Growing Our Own, the situated and purposeful nature of the learning, and the capacity of students to engage in that learning without abandoning their community responsibilities have been pivotal in enhancing educational outcomes in remote communities and in providing opportunities for Indigenous people. 3. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World Science.gov (United States) 1996-01-01 This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center? 4. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program Energy Technology Data Exchange (ETDEWEB) NONE 1996-11-01 This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). 5. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program Energy Technology Data Exchange (ETDEWEB) NONE 1996-06-01 This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information. 6. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach Science.gov (United States) Fleury, Benoit; Labbe, Julien 2014-08-01 The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution. 7. Optimal local dimming for LED-backlit LCD displays via linear programming DEFF Research Database (Denmark) Shu, Xiao; Wu, Xiaolin; Forchhammer, Søren 2012-01-01 and the attenuations of LCD pixels. The objective is to minimize the distortion in luminance reproduction due to the leakage of LCD and the coarse granularity of the LED lights. The optimization problem is formulated as one of linear programming, and both exact and approximate algorithms are proposed. Simulation... 8. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids DEFF Research Database (Denmark) Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises 2017-01-01 -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data... 9. Linear Programming Approaches for Power Savings in Software-defined Networks NARCIS (Netherlands) Moghaddam, F.A.; Grosso, P. 2016-01-01 Software-defined networks have been proposed as a viable solution to decrease the power consumption of the networking component in data center networks. Still the question remains on which scheduling algorithms are most suited to achieve this goal. We propose 4 different linear programming 10. GIS Application to Define Biomass Collection Points as Sources for Linear Programming of Delivery Networks NARCIS (Netherlands) Velazquez-Marti, B.; Annevelink, E. 2009-01-01 Much bio-energy can be obtained from wood pruning operations in forests and fruit orchards. Several spatial studies have been carried out for biomass surveys, and many linear programming models have been developed to model the logistics of bio-energy chains. These models can assist in determining 11. Discounted semi-Markov decision processes : linear programming and policy iteration NARCIS (Netherlands) Wessels, J.; van Nunen, J.A.E.E. 1975-01-01 For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal 12. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production DEFF Research Database (Denmark) Rong, Aiying; Lahdelma, Risto 2008-01-01 the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product... 13. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems. Science.gov (United States) Shama, Gilli; Dreyfus, Tommy 1994-01-01 Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)… 14. Discounted semi-Markov decision processes : linear programming and policy iteration NARCIS (Netherlands) Wessels, J.; van Nunen, J.A.E.E. 1974-01-01 For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal 15. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives Science.gov (United States) Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers 2006-01-01 Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (... 16. Nutrient density score of typical Indonesian foods and dietary formulation using linear programming. Science.gov (United States) Jati, Ignasius Radix A P; Vadivel, Vellingiri; Nöhr, Donatus; Biesalski, Hans Konrad 2012-12-01 The present research aimed to analyse the nutrient density (ND), nutrient adequacy score (NAS) and energy density (ED) of Indonesian foods and to formulate a balanced diet using linear programming. Data on typical Indonesian diets were obtained from the Indonesian Socio-Economic Survey 2008. ND was investigated for 122 Indonesian foods. NAS was calculated for single nutrients such as Fe, Zn and vitamin A. Correlation analysis was performed between ND and ED, as well as between monthly expenditure class and food consumption pattern in Indonesia. Linear programming calculations were performed using the software POM-QM for Windows version 3. Republic of Indonesia, 2008. Public households (n 68 800). Vegetables had the highest ND of the food groups, followed by animal-based foods, fruits and staple foods. Based on NAS, the top ten food items for each food group were identified. Most of the staple foods had high ED and contributed towards daily energy fulfillment, followed by animal-based foods, vegetables and fruits. Commodities with high ND tended to have low ED. Linear programming could be used to formulate a balanced diet. In contrast to staple foods, purchases of fruit, vegetables and animal-based foods increased with the rise of monthly expenditure. People should select food items based on ND and NAS to alleviate micronutrient deficiencies in Indonesia. Dietary formulation calculated using linear programming to achieve RDA levels for micronutrients could be recommended for different age groups of the Indonesian population. 17. Using Set Covering with Item Sampling to Analyze the Infeasibility of Linear Programming Test Assembly Models Science.gov (United States) Huitzing, Hiddo A. 2004-01-01 This article shows how set covering with item sampling (SCIS) methods can be used in the analysis and preanalysis of linear programming models for test assembly (LPTA). LPTA models can construct tests, fulfilling a set of constraints set by the test assembler. Sometimes, no solution to the LPTA model exists. The model is then said to be… 18. An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models Science.gov (United States) Huitzing, Hiddo A. 2004-01-01 In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,… 19. Research and evaluation of the effectiveness of e-learning in the case of linear programming Directory of Open Access Journals (Sweden) Ljiljana Miletić 2016-04-01 Full Text Available The paper evaluates the effectiveness of the e-learning approach to linear programming. The goal was to investigate how proper use of information and communication technologies (ICT and interactive learning helps to improve high school students’ understanding, learning and retention of advanced non-curriculum material. The hypothesis was that ICT and e-learning is helpful in teaching linear programming methods. In the first phase of the research, a module of lessons for linear programming (LP was created using the software package Loomen Moodle and other interactive software packages such as Geogebra. In the second phase, the LP module was taught as a short course to two groups of high school students. These two groups of students were second-grade students in a Croatian high school. In Class 1, the module was taught using ICT and e-learning, while the module was taught using classical methods in Class 2. The action research methodology was an integral part in delivering the course to both student groups. The sample student groups were carefully selected to ensure that differences in background knowledge and learning potential were statistically negligible. Relevant data was collected while delivering the course. Statistical analysis of the collected data showed that the student group using the e-learning method produced better results than the group using a classical learning method. These findings support previous results on the effectiveness of e-learning, and also establish a specific approach to e-learning in linear programming. 20. A penalization approach to linear programming duality with application to capacity constrained transport OpenAIRE Korman, Jonathan; McCann, Robert J.; Seis, Christian 2013-01-01 A new approach to linear programming duality is proposed which relies on quadratic penalization, so that the relation between solutions to the penalized primal and dual problems becomes affine. This yields a new proof of Levin's duality theorem for capacity-constrained optimal transport as an infinite-dimensional application. 1. The effect of workload constraints in linear programming models for production planning NARCIS (Netherlands) Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F. 2011-01-01 Linear programming (LP) models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these deterministic models are the current state-of-the-art, it should be recognized that they are used in an environment that is inherently stochastic. 2. A linear programming model of diet choice of free-living beavers NARCIS (Netherlands) Nolet, BA; VanderVeer, PJ; Evers, EGJ; Ottenheim, MM 1995-01-01 Linear programming has been remarkably successful in predicting the diet choice of generalist herbivores. We used this technique to test the diet choice of free-living beavers (Castor fiber) in the Biesbosch (The Netherlands) under different Foraging goals, i.e. maximization of intake of energy, 3. Program to enrich science and mathematics experiences of high school students through interactive museum internships Energy Technology Data Exchange (ETDEWEB) Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States) 1998-11-01 This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching. 4. Mathematical simulation of stressed-deformed state in rod cylindrical fuel elemnts KONDOR program International Nuclear Information System (INIS) Khmelevskij, M.Ya.; Malakhova, E.I.; Dolmatov, P.S. 1987-01-01 A mathematical model for numerical computation of stressed-deformed stae in a rod cylindrical fuel element is developed. The model is based on preliminary discretization of the design scheme and linearization of radial parameters as radius functions. The formulation generality enables to calculate strength parameter kinetics in any circular cylindrical fuel element (e.g. annular fuel element; solid or tubular core; ceramic, metallic or dispersion fuel) for arbitrary transient operating conditions and taking into account all possible loading factors. The method is realized in the KONDOR programm (FORTRAN, ES-1061 computer). An example illustrating computation of stress kinetics in a fast reactor fuel element during transient operation is given 5. STICAP: A linear circuit analysis program with stiff systems capability. Volume 1: Theory manual. [network analysis Science.gov (United States) Cooke, C. H. 1975-01-01 STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given. 6. A Comparison of Linear and Systems Thinking Approaches for Program Evaluation Illustrated Using the Indiana Interdisciplinary GK-12 Science.gov (United States) Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa 2009-01-01 Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted… 7. Assessment of Training Programs for Elementary Mathematics Teachers on Developed Curricula and Attitudes towards Teaching in Najran-Saudi Arabia Science.gov (United States) Aly, Hassan Shawky; Abdulhakeem, Hassan Daker 2016-01-01 This study aimed at assessing the training programs for Mathematics teachers at elementary stage on developed Curricula and attitudes toward teaching at Najran educational administration in Saudi Arabia. To achieve this objective, two instruments were developed, one of them measures the opinions of Mathematics teachers about the training programs… 8. Comparing Differences in Math Achievement and Attitudes toward Math in a Sixth Grade Mathematics Enrichment Pilot Program Science.gov (United States) Tow, Tamara 2011-01-01 High-stakes assessments have encouraged educators to ignore the needs of the top performers. Therefore, the Oakwood School District decided to implement a mathematics pilot enrichment program in order to meet the needs of the advanced mathematics students. As a result, this study used quantitative data to determine if there was a significant… 9. An Analysis of First Year Engineering Students' Satisfaction with a Support Distance Learning Program in Mathematics Science.gov (United States) Matzakos, Nikolaos M.; Kalogiannakis, Michail 2018-01-01 An online support distance-learning program in Mathematics was developed to aid first year engineering students for their transition from the secondary to the tertiary education in order to reinforce deficiencies they may have in mathematical knowledge. The aim of the present study is to examine, firstly, to what extent the attendance of such a… 10. Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers Directory of Open Access Journals (Sweden) Victor-Eduard Cenușă 2017-08-01 Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters. 11. Experience and development program for the I.V. Kurchatov Atomic Energy Institute electron linear accelerator International Nuclear Information System (INIS) Aref'ev, A.V.; Blokhov, M.V.; Gerasimov, V.F. 1981-01-01 A program of physical investigations and the corresponding requirements to accelerated beam parameters are discussed in brief. The state and working capacity of separate units and the accelerator as a whole for the 8-year operating period are analyzed. The aim and principal program points of linear electron accelerator modernization are defined. The program of accelerator modernization assumes: electron beam energy increase up to 100-120 MeV; mounting of three additional accelerating sections; clystron efficiency increase; development of a highly reliable modulator; stabilized power supply sources; a system of synchronous start-up; a focusing system; a beam separation system and etc [ru 12. User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0) Science.gov (United States) Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E. 2009-01-01 Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics. 13. SLFP: a stochastic linear fractional programming approach for sustainable waste management. Science.gov (United States) Zhu, H; Huang, G H 2011-12-01 A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved. 14. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation Science.gov (United States) Masuda, Hiroshi; Kanda, Yutaro; Okamoto, Yoshifumi; Hirono, Kazuki; Hoshino, Reona; Wakao, Shinji; Tsuburaya, Tomonori 2017-12-01 It is very important to design electrical machineries with high efficiency from the point of view of saving energy. Therefore, topology optimization (TO) is occasionally used as a design method for improving the performance of electrical machinery under the reasonable constraints. Because TO can achieve a design with much higher degree of freedom in terms of structure, there is a possibility for deriving the novel structure which would be quite different from the conventional structure. In this paper, topology optimization using sequential linear programming using move limit based on adaptive relaxation is applied to two models. The magnetic shielding, in which there are many local minima, is firstly employed as firstly benchmarking for the performance evaluation among several mathematical programming methods. Secondly, induction heating model is defined in 2-D axisymmetric field. In this model, the magnetic energy stored in the magnetic body is maximized under the constraint on the volume of magnetic body. Furthermore, the influence of the location of the design domain on the solutions is investigated. 15. Using discrete-time mathematical programming to optimise the extraction rate of a durable non-renewable resource with a single primary supplier Directory of Open Access Journals (Sweden) Albert Corominas Full Text Available A non-linear discrete-time mathematical program model is proposed to determining the optimal extraction policy for a single primary supplier of a durable non-renewable resource, such as gemstones or some metals. Karush, Kuhn and Tucker conditions allow obtaining analytic solutions and general properties of them in some specific settings. Moreover, provided that the objective function (i.e., the discounted value of the incomes throughout the planning horizon is concave, the model can be easily solved, even using standard commercial solver. However, the analysis of the solutions obtained for different assumptions of the values of the parameters show that the optimal extraction policies and the corresponding prices do not exhibit a general shape. Keywords: Durable non-renewable resources, Single primary supplier, Non-linear programming 16. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming Science.gov (United States) Guo, Sangang 2017-09-01 There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient. 17. A mathematical model, algorithm, and package of programs for simulation and prompt estimation of the atmospheric dispersion of radioactive pollutants International Nuclear Information System (INIS) Nikolaev, V.I.; Yatsko, S.N. 1995-01-01 A mathematical model and a package of programs are presented for simulating the atmospheric turbulent diffusion of contaminating impurities from land based and other sources. Test calculations and investigations of the effect of various factors are carried out 18. The Effect of Teacher Education Programs on Future Elementary Mathematics Teachers' Knowledge: A Five-Country Analysis Using TEDS-M Data Science.gov (United States) Qian, Hong; Youngs, Peter 2016-01-01 This article addresses the problem of how opportunities to learn in teacher education programs influence future elementary mathematics teachers' knowledge. This study used data collected for the Teacher Education and Development Study in Mathematics (TEDS-M). TEDS-M measured the mathematics content knowledge (MCK) and the mathematics pedagogical… 19. Stability of multi-objective bi-level linear programming problems under fuzziness Directory of Open Access Journals (Sweden) Abo-Sinna Mahmoud A. 2013-01-01 Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration. 20. LOGO programming contents for supporting mathematical concept development : promotion of the verbalization and imaging of figure concepts OpenAIRE 杉野, 裕子 2014-01-01 I have been studying to show the importance of adopting a programming in the mathematical education and developed the LOGO teaching materials which is made good use of in the field of Euclidean geometry, in order to improve understanding and learning figure concepts. The present article offers a theoretical framework with consistency about my study and also new programming materials in which I embody my theory. I consider logically the system of mathematical expression with computers and espe... 1. New results on the mathematical problems in nonlinear physics; Nuevos resultados sobre problemas matematicos en fisica no-linear Energy Technology Data Exchange (ETDEWEB) NONE 1980-07-01 The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs. 2. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students Science.gov (United States) Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert 2017-01-01 This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around… 3. A Mathematical Program to Develop the Skills of Thinking of Children Directory of Open Access Journals (Sweden) Magda M. Saleh 2009-10-01 Full Text Available The importance of this study emerges from the importance of the points it discusses as it attempts to study the effectiveness of the suggested program of mathematics that develop the thinking skill of the children in preschool age. Accordingly, it comes from the attempt to teach the children the skill of thinking as one of the important and required skills for the children to accommodate with the surrounded environment and to help them develop and grow completely and to accommodate with themselves and their society. The purpose of this study is, thus, summarized in the answering of the following questions: 1- How can we create a program that uses mathematical activities and that contribute in the development of thinking skill of the preschool child? 2- To what extent is that program effective to develop the skills of thinking of the preschool child? The research sample is composed of 35 children for the experimental group and the same number for the controller group from the KJ2 children. The results of the research showed the effectiveness of the suggested program and its obvious contribution in the development of the thinking skills for the preschool children in a more effective way than the traditional methods used. 4. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2). Energy Technology Data Exchange (ETDEWEB) Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muldoon, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Stephen Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backlund, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Roy Eugene [Teledyne Brown Engineering, Huntsville, AL (United States) 2017-09-01 In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor- ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features. 5. Mathematical programming models for the economic design and assessment of wind energy conversion systems Science.gov (United States) Reinert, K. A. The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

6. E-Learning Technologies: Employing Matlab Web Server to Facilitate the Education of Mathematical Programming

Science.gov (United States)

Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.

2006-01-01

This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…

7. The effect of workload constraints in mathematical programming models for production planning

NARCIS (Netherlands)

Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.

2010-01-01

Linear and mixed integer programming models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these eterministic models are the current-state-of-art, it should be recognized that they are used in an environment that is inherently

8. A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints

Czech Academy of Sciences Publication Activity Database

Outrata, Jiří; Henrion, R.; Surowiec, T.

2010-01-01

Roč. 46, č. 3 (2010), s. 423-434 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical programs with equilibrium constraints * S-stationary points * M-stationary points * Frechet normal cone * limiting normal cone Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-a note on the relation between strong and m-stationarity for a class of mathematical programs with equilibrium constraints.pdf

9. The use of linear programming in optimization of HDR implant dose distributions

International Nuclear Information System (INIS)

Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.

2003-01-01

The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time

10. Linear programming to build food-based dietary guidelines: Romanian food baskets

DEFF Research Database (Denmark)

Parlesak, Alexandr; Robertson, Aileen; Hondru, Gabriela

approach using linear programming methodology to design national dietary recommendations which aim to prevent both NCDs and micronutrient deficiencies and still be affordable by low income groups. This new approach is applied within the context of food availability in Romania in 2014. Eating the same food...... every day is unrealistic and too monotonous to be maintained, so this novel approach is used to select a wide range of diverse foods that can be recommended for a period of up to, for example, one month. The following are the key findings of this report. • The simplest version of the Romanian food.......65 lei (~€ 4.46) for a day. • Key nutrients, primarily vitamin D, calcium, potassium and iron, were found to control the overall price. • The least expensive basket (one day’s rations) is monotonous and the linear programming approach is used to select a wide range of foods that can be recommended...

11. Mixed integer linear programming model for dynamic supplier selection problem considering discounts

Directory of Open Access Journals (Sweden)

2018-01-01

Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.

12. Visualizing measurement for 3D smooth density distributions by means of linear programming

International Nuclear Information System (INIS)

Tayama, Norio; Yang, Xue-dong

1994-01-01

This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)

13. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

Science.gov (United States)

Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

2015-01-01

The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

14. Refining and end use study of coal liquids II - linear programming analysis

Energy Technology Data Exchange (ETDEWEB)

Lowe, C.; Tam, S.

1995-12-31

A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is \$3-4/bbl.

15. A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning

International Nuclear Information System (INIS)

Romeijn, H Edwin; Ahuja, Ravindra K; Dempsey, James F; Kumar, Arvind; Li, Jonathan G

2003-01-01

We present a novel linear programming (LP) based approach for efficiently solving the intensity modulated radiation therapy (IMRT) fluence-map optimization (FMO) problem to global optimality. Our model overcomes the apparent limitations of a linear-programming approach by approximating any convex objective function by a piecewise linear convex function. This approach allows us to retain the flexibility offered by general convex objective functions, while allowing us to formulate the FMO problem as a LP problem. In addition, a novel type of partial-volume constraint that bounds the tail averages of the differential dose-volume histograms of structures is imposed while retaining linearity as an alternative approach to improve dose homogeneity in the target volumes, and to attempt to spare as many critical structures as possible. The goal of this work is to develop a very rapid global optimization approach that finds high quality dose distributions. Implementation of this model has demonstrated excellent results. We found globally optimal solutions for eight 7-beam head-and-neck cases in less than 3 min of computational time on a single processor personal computer without the use of partial-volume constraints. Adding such constraints increased the running times by a factor of 2-3, but improved the sparing of critical structures. All cases demonstrated excellent target coverage (>95%), target homogeneity (<10% overdosing and <7% underdosing) and organ sparing using at least one of the two models

16. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

Directory of Open Access Journals (Sweden)

Weihua Jin

2013-01-01

Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

17. A new neural network model for solving random interval linear programming problems.

Science.gov (United States)

2017-05-01

This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

18. CiOpt: a program for optimization of the frequency response of linear circuits

OpenAIRE

Miró Sans, Joan Maria; Palà Schönwälder, Pere

1991-01-01

An interactive personal-computer program for optimizing the frequency response of linear lumped circuits (CiOpt) is presented. CiOpt has proved to be an efficient tool in improving designs where the inclusion of more accurate device models distorts the desired frequency response, as well as in device modeling. The outputs of CiOpt are the element values which best match the obtained and the desired frequency response. The optimization algorithms used (the Fletcher-Powell and Newton's methods,...

19. Construction of Healthy and Palatable Diet for Low Socioeconomic Female Adults using Linear Programming

OpenAIRE

Roslee Rajikan; Nurul Izza Ahmad Zaidi; Siti Masitah Elias; Suzana Shahar; Zahara Abd Manaf; Noor Aini Md Yusoff

2017-01-01

Differences in socioeconomic profile may influences healthy food choices, particularly among individuals with low socioeconomic status. Thus, high-energy dense foods become the preferences compared to high nutritional content foods due to their cheaper price. The present study aims to develop healthy and palatable diet at the minimum cost based on Malaysian Dietary Guidelines 2010 and Recommended Nutrient Intake 2005 via linear programming. A total of 96 female adults from low socioeconomic f...

20. A linear programming approach to characterizing norm bounded uncertainty from experimental data

Science.gov (United States)

Scheid, R. E.; Bayard, D. S.; Yam, Y.

1991-01-01

The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).

1. A Unique Technique to get Kaprekar Iteration in Linear Programming Problem

Science.gov (United States)

Sumathi, P.; Preethy, V.

2018-04-01

This paper explores about a frivolous number popularly known as Kaprekar constant and Kaprekar numbers. A large number of courses and the different classroom capacities with difference in study periods make the assignment between classrooms and courses complicated. An approach of getting the minimum value of number of iterations to reach the Kaprekar constant for four digit numbers and maximum value is also obtained through linear programming techniques.

2. Stress-constrained truss topology optimization problems that can be solved by linear programming

DEFF Research Database (Denmark)

Stolpe, Mathias; Svanberg, Krister

2004-01-01

We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....

3. Fuzzy solution of the linear programming problem with interval coefficients in the constraints

OpenAIRE

Dorota Kuchta

2005-01-01

A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...

4. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

Directory of Open Access Journals (Sweden)

Monalisha Pattnaik

2014-12-01

Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights.

5. The Linear Programming to evaluate the performance of Oral Health in Primary Care.

Science.gov (United States)

Colussi, Claudia Flemming; Calvo, Maria Cristina Marino; Freitas, Sergio Fernando Torres de

2013-01-01

To show the use of Linear Programming to evaluate the performance of Oral Health in Primary Care. This study used data from 19 municipalities of Santa Catarina city that participated of the state evaluation in 2009 and have more than 50,000 habitants. A total of 40 indicators were evaluated, calculated using the Microsoft Excel 2007, and converted to the interval [0, 1] in ascending order (one indicating the best situation and zero indicating the worst situation). Applying the Linear Programming technique municipalities were assessed and compared among them according to performance curve named "quality estimated frontier". Municipalities included in the frontier were classified as excellent. Indicators were gathered, and became synthetic indicators. The majority of municipalities not included in the quality frontier (values different of 1.0) had lower values than 0.5, indicating poor performance. The model applied to the municipalities of Santa Catarina city assessed municipal management and local priorities rather than the goals imposed by pre-defined parameters. In the final analysis three municipalities were included in the "perceived quality frontier". The Linear Programming technique allowed to identify gaps that must be addressed by city managers to enhance actions taken. It also enabled to observe each municipal performance and compare results among similar municipalities.

6. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

Directory of Open Access Journals (Sweden)

Meriem Ait Mehdi

2014-01-01

Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

7. Technology Focus: Enhancing Conceptual Knowledge of Linear Programming with a Flash Tool

Science.gov (United States)

Garofalo, Joe; Cory, Beth

2007-01-01

Mathematical knowledge can be categorized in different ways. One commonly used way is to distinguish between procedural mathematical knowledge and conceptual mathematical knowledge. Procedural knowledge of mathematics refers to formal language, symbols, algorithms, and rules. Conceptual knowledge is essential for meaningful understanding of…

8. THE EFFECT OF A READING COMPREHENSION SOFTWARE PROGRAM ON STUDENT ACHIEVEMENT IN MATHEMATICS

Directory of Open Access Journals (Sweden)

David E. Proudfoot

2016-06-01

9. Sub-regional linear programming models in land use analysis: a case study of the Neguev settlement, Costa Rica.

NARCIS (Netherlands)

Schipper, R.A.; Stoorvogel, J.J.; Jansen, D.M.

1995-01-01

The paper deals with linear programming as a tool for land use analysis at the sub-regional level. A linear programming model of a case study area, the Neguev settlement in the Atlantic zone of Costa Rica, is presented. The matrix of the model includes five submatrices each encompassing a different

10. Mathematics for energy

International Nuclear Information System (INIS)

Snow, D.R.

1975-01-01

This paper provides mathematicians and other persons interested in energy problems with some ideas of the kinds of mathematics being applied and a few ideas for further investigation both in the relevant mathematics and in mathematical modeling. This paper is not meant to be an extensive bibliography on the subject, but references are provided. The Conference emphasized large scale and economic considerations related to energy rather than specific technologies, but additional mathematical problems arising in current and future technologies are suggested. Several of the papers dealt with linear programming models of large scale systems related to energy. These included economic models, policy models, energy sector models for supply and demand and environmental concerns. One of the economic models utilized variational techniques including such things as the Hamiltonian, the Euler-Lagrange differential equation, transversality and natural boundary conditions

11. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

KAUST Repository

Canepa, Edward S.

2013-09-01

Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.

12. Program controlled system for mathematical processing the αp-experiment data

International Nuclear Information System (INIS)

Glagolev, V.V.; Govorun, N.N.; Dirner, A.; Ivanov, V.G.; Kretov, A.P.; Mirolyubov, V.P.; Pervushov, V.V.; Shelontsev, I.I.

1982-01-01

ZEUS system which allows one mathematical processing of bubble chamber pictures for αp-experiment with computer control is descibed. The comparison and basic defect of traditional processing of film information is considered. The structure, operation and further development of this system are described. It consists of the monitoring programs, directory file, input request language, data bank and documentation. ZEUS system is developed for processing αp-experiment from JINR one-meter-hydrogen liquid chamber. It makes possible to eliminate big manual work at organization of mass data processing by a computer. The system is realized on the CDC-6500 computer

13. The application of the fall-vector method in decomposition schemes for the solution of integer linear programming problems

International Nuclear Information System (INIS)

Sergienko, I.V.; Golodnikov, A.N.

1984-01-01

This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints

14. Mathematical methods for physicists and engineers

CERN Document Server

Collins, Royal Eugene

2011-01-01

This practical, highly readable text provides physics and engineering students with the essential mathematical tools for thorough comprehension of their disciplines. Featuring all the necessary topics in applied mathematics in the form of programmed instruction, the text can be understood by advanced undergraduates and beginning graduate students without any assistance from the instructor. Topics include elementary vector calculus, matrix algebra, and linear vector operations; the many and varied methods of solving linear boundary value problems, including the more common special functions o

15. Prepare 2 Learn: A mathematics intervention program for students at risk in Years 3 to 6 designed to help them reach expected level and become confident, responsible, independent mathematics learners

OpenAIRE

2017-01-01

This study reports on an intervention, Prepare 2 Learn, designed taking into account research literature and components of other successful mathematics programs. The research targeted students approximately 6 months behind the expected mathematics level for their year. The intervention consisted of four key components: building prerequisite knowledge of mathematical language, concepts, and skills to prepare students for their classroom mathematics; increasing fluency with mental computation; ...

16. Linear Programming in the economic estimate of livestock-crop integration: application to a Brazilian dairy farm

Directory of Open Access Journals (Sweden)

Augusto Hauber Gameiro

2016-04-01

Full Text Available ABSTRACT A linear programming mathematical model was applied to a representative dairy farm located in Brazil. The results showed that optimization models are relevant tools to assist in the planning and management of agricultural production, as well as to assist in estimating potential gains from the use of integrated systems. Diversification was a necessary condition for economic viability. A total cost reduction potential of about 30% was revealed when a scenario of lower levels of diversification was contrasted to one of higher levels. Technical complementarities proved to be important sources of economies. The possibility of reusing nitrogen, phosphorus, and potassium present in animal waste could be increased to 167%, while water reuse could be increased up to 150%. In addition to economic gains, integrated systems bring benefits to the environment, especially with reference to the reuse of resources. The cost dilution of fixed production factors can help economies of scope to be achieved. However, this does not seem to have been the main source of these benefits. Still, the percentage of land use could increase up to 30.7% when the lowest and the highest diversification scenarios were compared. The labor coefficient could have a 4.3 percent increase. Diversification also leads to drastic transaction cost reductions.

17. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

Science.gov (United States)

Fogle, F. R.

1994-01-01

IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

18. Chance-constrained/stochastic linear programming model for acid rain abatement. I. Complete colinearity and noncolinearity

Energy Technology Data Exchange (ETDEWEB)

Ellis, J H; McBean, E A; Farquhar, G J

1985-01-01

A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO/sub 2/ emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty, Chance-Constrained Programming and Stochastic Linear Programming. A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.

19. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

Energy Technology Data Exchange (ETDEWEB)

Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

2008-06-15

This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

20. PROGRAMS FOR MODELLING RANDOM EVENTS FOR THE SAKE OF LEARNING BOTH PROGRAMMING AND MATHEMATICS

Directory of Open Access Journals (Sweden)

Y. Gayev

2015-04-01

Full Text Available MATLAB-programs of some discrete random event has been developed and intended (1 as an exercise at the study of Algorithmization and Programming Course, and (2 for carrying out some "experiments" by lecturing the Course of Probability and Statistics Theory, or at its self-study by students. The programs allows to do several probabilistic experiments in a necessary amount M, using the random number generator, to count up frequency of "favorable events" appearance and compare it to theoretical probability. This displays the Law of large numbers, i.e. approaching experimental results to theory with unlimited increase of М. The work, however, lies not only in this pragmatic result. It should encourage students to study problems of Probability Theory by means of creation appropriate computer codes. The most easy and quick way to this leads to MATLAB-environment. That is why the paper suggests principles of programming in it along with creation of graphical user interface (GUI.