WorldWideScience

Sample records for mathematical morphology approach

  1. Mathematics of shape description a morphological approach to image processing and computer graphics

    CERN Document Server

    Ghosh, Pijush K

    2009-01-01

    Image processing problems are often not well defined because real images are contaminated with noise and other uncertain factors. In Mathematics of Shape Description, the authors take a mathematical approach to address these problems using the morphological and set-theoretic approach to image processing and computer graphics by presenting a simple shape model using two basic shape operators called Minkowski addition and decomposition. This book is ideal for professional researchers and engineers in Information Processing, Image Measurement, Shape Description, Shape Representation and Computer Graphics. Post-graduate and advanced undergraduate students in pure and applied mathematics, computer sciences, robotics and engineering will also benefit from this book.  Key FeaturesExplains the fundamental and advanced relationships between algebraic system and shape description through the set-theoretic approachPromotes interaction of image processing geochronology and mathematics in the field of algebraic geometryP...

  2. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology

    Directory of Open Access Journals (Sweden)

    Andrea Loddo

    2018-02-01

    Full Text Available Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  3. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

    Science.gov (United States)

    Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel

    2018-02-08

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  4. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  5. Deaf college students' mathematical skills relative to morphological knowledge, reading level, and language proficiency.

    Science.gov (United States)

    Kelly, Ronald R; Gaustad, Martha G

    2007-01-01

    This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.

  6. Biogeneric tooth: a new mathematical representation for tooth morphology in lower first molars.

    Science.gov (United States)

    Mehl, Albert; Blanz, Volker; Hickel, Reinhard

    2005-08-01

    A mathematical representation of tooth morphology may help to improve and automate restorative computer-aided design processes, virtual dental education, and parametric morphology. However, to date, no quantitative formulation has been identified for the description of dental features. The aim of this study was to establish and to validate a mathematical process for describing the morphology of first lower molars. Stone replicas of 170 caries-free first lower molars from young patients were measured three-dimensionally with a resolution of about 100,000 points. First, the average tooth was computed, which captures the common features of the molar's surface quantitatively. For this, the crucial step was to establish a dense point-to-point correspondence between all teeth. The algorithm did not involve any prior knowledge about teeth. In a second step, principal component analysis was carried out. Repeated for 3 different reference teeth, the procedure yielded average teeth that were nearly independent of the reference (less than +/- 40 microm). Additionally, the results indicate that only a few principal components determine a high percentage of the three-dimensional shape variability of first lower molars (e.g. the first five principal components describe 52% of the total variance, the first 10 principal components 72% and the first 20 principal components 83%). With the novel approach presented in this paper, surfaces of teeth can be described efficiently in terms of only a few parameters. This mathematical representation is called the 'biogeneric tooth'.

  7. Manifold Shape : from Differential Geometry to Mathematical Morphology

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition

  8. Protective relaying of power systems using mathematical morphology

    CERN Document Server

    Wu, QH; Ji, TY

    2009-01-01

    Discusses the development of novel protective relaying algorithms, using Mathematical Morphology (MM). This book introduces the fundamental principles of MM, and brings together the applications of MM to develop different protective relaying algorithms for the protection of a variety of power system components.

  9. The Mathematical Morpho-Logical View on Reasoning about Space

    NARCIS (Netherlands)

    Aiello, Marco; Ottens, Brammert; Veloso, MM

    2007-01-01

    Qualitative reasoning about mereotopological relations has been extensively investigated, while more recently geometrical and spatio-temporal reasoning are gaining increasing attention. We propose to consider mathematical morphology operators as the inspiration for a new language and inference

  10. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  11. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  12. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  13. Approaches to teaching primary level mathematics

    Directory of Open Access Journals (Sweden)

    Caroline Long

    2014-12-01

    Full Text Available In this article we explore approaches to curriculum in the primary school in order to map and manage the omissions implicit in the current unfolding of the Curriculum and Assessment Policy Statement for mathematics. The focus of school-based research has been on curriculum coverage and cognitive depth. To address the challenges of teaching mathematics from the perspective of the learner, we ask whether the learners engage with the subject in such a way that they build foundations for more advanced mathematics. We firstly discuss three approaches that inform the teaching of mathematics in the primary school and which may be taken singly or in conjunction into organising the curriculum: the topics approach, the process approach, and the conceptual fields approach. Each of the approaches is described and evaluated by presenting both their advantages and disadvantages. We then expand on the conceptual fields approach by means of an illustrative example. The planning of an instructional design integrates both a topics and a process approach into a conceptual fields approach. To address conceptual depth within this approach, we draw on five dimensions required for understanding a mathematical concept. In conclusion, we reflect on an approach to curriculum development that draws on the integrated theory of conceptual fields to support teachers and learners in the quest for improved teaching and learning.

  14. [Bone Cell Biology Assessed by Microscopic Approach. A mathematical approach to understand bone remodeling].

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2015-10-01

    It is well known that bone tissue can change its outer shape and internal structure by remodeling according to a changing mechanical environment. However, the mechanism of bone functional adaptation induced by the collaborative metabolic activities of bone cells in response to mechanical stimuli remains elusive. In this article, we focus on the hierarchy of bone structure and function from the microscopic cellular level to the macroscopic tissue level. We provide an overview of a mathematical approach to understand the adaptive changes in trabecular morphology under the application of mechanical stress.

  15. Manifold Shape: from Differential Geometry to Mathematical Morphology

    OpenAIRE

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition or shape description of patterns on spherical surfaces. Also in computer vision much use is made of spherical mappings to describe the world as seen by a human or machine observer. Stimulated by th...

  16. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  17. Mathematical Modeling Approaches in Plant Metabolomics.

    Science.gov (United States)

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  18. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  19. Application of mathematical morphology in discrimination nuclear track images

    International Nuclear Information System (INIS)

    Zhang Qingxian; Ge Liangquan; Xiao Caijin

    2008-01-01

    Solid nuclear tracks test is an important and usual method in radioactivity test. But how to divide the overlapped tracks is the key of the processing of digital images of the nuclear tracks. Mathematical Morphology is used in processing of digital images of the nuclear tracks. As a result, the method has been programmed by c++ and used in experiments. It is successful in processing of digital images of the nuclear tracks. (authors)

  20. The Relationship between Mathematics Teachers' Teaching Approaches and 9th Grade Students' Mathematics Self

    Science.gov (United States)

    Briede, Liene

    2016-01-01

    The aim of the study is to investigate the relationship between the teaching approach adopted by mathematics teachers and their 9th grade students' mathematical self. The study searched for the answers on three research questions, namely, about 1) the approaches prevailing in mathematics teachers' beliefs about effective teaching and self-reports…

  1. Mathematics Literacy on Problem Based Learning with Indonesian Realistic Mathematics Education Approach Assisted E-Learning Edmodo

    Science.gov (United States)

    Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.

    2016-02-01

    This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.

  2. CULTUROLOGICAL APPROACH AS METHODOLOGICAL BASIS OF MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Ye. A. Perminov

    2017-01-01

    Full Text Available Introduction. Today, in the era of a mathematization of science and total expansion of digital technologies, mass mathematical education becomes a necessary part of culture of every person. However, there are some serious obstacles to formation and development of general mathematical culture: insufficient understanding of its importance by society and the state; fragmentary-clipconsciousness, emerging among representatives of the younger generation under the influence of the Internet, and preventing formation of a complete picture of the modern world; traditional system of disjointed subjects and courses in school, secondary vocational and high school mathematics education; non-cognitive (automatic transferring of the approaches, principles, technologies and techniques into training which are not specific in order to master a course. Development of sociological, axiological and especially culturological aspects of mathematical methodology is required for the solution of the urgent problems of methodology in mathematical education.The aim of the publication is to discuss methodological aspects of culturological approach realization in mathematical education.Methodology and research methods. The theoretical scientific methods of the present article involve analysis and synthesis of the content of philosophical, mathematical, pedagogical, methodological literature and normative documents; comparative, culturological and logical types of analysis of mathematical education; systematic, competence-based, practice-oriented and personal-activity metho-dological approaches were used to understand the concept of mathematical education.Results and scientific novelty. The practicability and leading role of culturological approach to promoting mathematical knowledge is proved from historical, philosophical and pedagogical positions. It is stated that objective conceptualization of progressive ideas and new methods of mathematical science and mathematical

  3. Mathematics Teachers' Use of Ethnomathematics Approach in Mathematics Teaching in Edo State

    Science.gov (United States)

    Aikpitanyi, Lucky Aiwuyor; Eraikhuemen, Lucy

    2017-01-01

    The study investigated mathematics teachers' use of ethnomathematics approach to teaching. Descriptive survey research was used with a target population of all mathematics teacher in all public secondary schools in Oredo, Egor and Ikpoba-Okha local government areas of Edo State out of which 121 mathematics teachers in 42 randomly selected public…

  4. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  5. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  6. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    Science.gov (United States)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  7. System-morphological approach: Another look at morphology research and geomorphological mapping

    Science.gov (United States)

    Lastochkin, Alexander N.; Zhirov, Andrey I.; Boltramovich, Sergei F.

    2018-02-01

    A large number of studies require a clear and unambiguous morphological basis. For over thirty years, Russian scientists have been applying a system-morphological approach for the Arctic and Antarctic research, ocean floor investigation, for various infrastructure construction projects (oil and gas, sports, etc.), in landscape and environmental studies. This article is a review aimed to introduce this methodological approach to the international scientific community. The details of the methods and techniques can be found in a series of earlier papers published in the Russian language in 1987-2016. The proposed system-morphological approach includes: 1) partitioning of the Earth surface, i.e. precise identification of linear, point, and areal elements of topography considered as a two-dimensional surface without any geological substance; 2) further identification of larger formations: geomorphological systems and regions; 3) analysis of structural relations and symmetry of topography; and 4) various dynamic (litho- and glaciodynamic, tectonic, etc.) interpretations of the observed morphology. This method can be used to study the morphology of the surface topography as well as less accessible interfaces such as submarine and subglacial ones.

  8. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  9. The influence of mathematics learning using SAVI approach on junior high school students’ mathematical modelling ability

    Science.gov (United States)

    Khusna, H.; Heryaningsih, N. Y.

    2018-01-01

    The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.

  10. Reassembling mathematical practices: a philosophicalanthropological approach

    Directory of Open Access Journals (Sweden)

    Karen François

    2016-06-01

    Full Text Available In this paper we first explore how Wittgenstein’s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein’s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics (Wittgenstein 1973. We will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics. The central philosophical investigation concerns Wittgenstein’s shift to abandoning the essentialist concept of language and therefore denying the existence of a universal language. Languages—or ‘language games’ as Wittgenstein calls them—are immersed in a form of life, in a cultural or social formation and are embedded in the totality of communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figure-making and sand drawing, to illustrate Wittgenstein’s ideas. Based on an ethnomathematical comparative analysis, we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality, as expressed in both string figure-making and sand drawing practices, from one society to another. Finally, we suggest that a philosophical-anthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cultures. Philosophical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better characterize mathematical

  11. Group investigation with scientific approach in mathematics learning

    Science.gov (United States)

    Indarti, D.; Mardiyana; Pramudya, I.

    2018-03-01

    The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.

  12. Teaching mathematics in Indonesian primary schools : using ralistic mathematics education (RME)-approach

    NARCIS (Netherlands)

    Fauzan, Ahmad; Slettenhaar, Dick; Plomp, T.

    2002-01-01

    This paper presents a case study about employing Realistic Mathematics Education (RME)-approach to teach mathematics in Indonesian primary schools. Many obstacles, such as the very dependent attitude of the pupils, the pupils who were not used to working in groups, lack of reasoning capability and

  13. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  14. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  15. The Comparison of Think Talk Write and Think Pair Share Model with Realistic Mathematics Education Approach Viewed from Mathematical-Logical Intelligence

    Directory of Open Access Journals (Sweden)

    Himmatul Afthina

    2017-12-01

    Full Text Available The aims of this research to determine the effect of Think Talk Write (TTW and Think Pair Share (TPS model with Realistic Mathematics Education (RME approach viewed from mathematical-logical intelligence. This research employed the quasi experimental research. The population of research was all students of the eight graders of junior high school in Karangamyar Regency in academic year 2016/2017. The result of this research shows that (1 TTW with RME approach gave better mathematics achievement than TPS with RME approach, (2 Students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one, (3 In TTW model with RME approach, students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average and low mathematical-logical intelligence gave same mathematics achievement, and  in TPS model with RME approach students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one (4 In each category of  mathematical-logical intelligence, TTW with RME approach and TPS with RME approach gave same mathematics achievement.

  16. Particulate morphology mathematics applied to particle assemblies

    CERN Document Server

    Gotoh, Keishi

    2012-01-01

    Encompassing over fifty years of research, Professor Gotoh addresses the correlation function of spatial structures and the statistical geometry of random particle assemblies. In this book morphological study is formed into random particle assemblies to which various mathematics are applied such as correlation function, radial distribution function and statistical geometry. This leads to the general comparison between the thermodynamic state such as gases and liquids and the random particle assemblies. Although structures of molecular configurations change at every moment due to thermal vibration, liquids can be regarded as random packing of particles. Similarly, gaseous states correspond to particle dispersion. If physical and chemical properties are taken away from the subject, the remainder is the structure itself. Hence, the structural study is ubiquitous and of fundamental importance. This book will prove useful to chemical engineers working on powder technology as well as mathematicians interested in le...

  17. Design and Realization of an Arabic Morphological Automaton-New Approach for Arabic Morphological Analysis and Generation

    OpenAIRE

    Mourad Gridach; Noureddine Chenfour

    2011-01-01

    Arabic morphological analysis is one of the essential stages in Arabic Natural Language Processing. In this paper we present an approach for Arabic morphological analysis. This approach is based on Arabic morphological automaton (AMAUT). The proposed technique uses a morphological database realized using XMODEL language. Arabic morphology represents a special type of morphological systems because it is based on the concept of scheme to represent Arabic words. We use this concept to develop th...

  18. A combinatorial approach to angiosperm pollen morphology.

    Science.gov (United States)

    Mander, Luke

    2016-11-30

    Angiosperms (flowering plants) are strikingly diverse. This is clearly expressed in the morphology of their pollen grains, which are characterized by enormous variety in their shape and patterning. In this paper, I approach angiosperm pollen morphology from the perspective of enumerative combinatorics. This involves generating angiosperm pollen morphotypes by algorithmically combining character states and enumerating the results of these combinations. I use this approach to generate 3 643 200 pollen morphotypes, which I visualize using a parallel-coordinates plot. This represents a raw morphospace. To compare real-world and theoretical morphologies, I map the pollen of 1008 species of Neotropical angiosperms growing on Barro Colorado Island (BCI), Panama, onto this raw morphospace. This highlights that, in addition to their well-documented taxonomic diversity, Neotropical rainforests also represent an enormous reservoir of morphological diversity. Angiosperm pollen morphospace at BCI has been filled mostly by pollen morphotypes that are unique to single plant species. Repetition of pollen morphotypes among higher taxa at BCI reflects both constraint and convergence. This combinatorial approach to morphology addresses the complexity that results from large numbers of discrete character combinations and could be employed in any situation where organismal form can be captured by discrete morphological characters. © 2016 The Author(s).

  19. Students' Attitudes towards Mathematics and the Impacts of Mathematics Teachers' Approaches on It

    Science.gov (United States)

    Elçi, Aysun Nüket

    2017-01-01

    The purpose of the study is to determine students' attitudes towards mathematics, to investigate these attitudes according to the different variables, and to reveal the impacts of mathematics teachers' approaches and in-class activities on the students' attitudes towards mathematics. The study was conducted with the high school students from…

  20. The stair-step approach in mathematics

    CERN Document Server

    Sedrakyan, Hayk

    2018-01-01

    This book is intended as a teacher’s manual and as an independent-study handbook for students and mathematical competitors. Based on a traditional teaching philosophy and a non-traditional writing approach (the stair-step method), this book consists of new problems with solutions created by the authors. The main idea of this approach is to start from relatively easy problems and “step-by-step” increase the level of difficulty toward effectively maximizing students' learning potential. In addition to providing solutions, a separate table of answers is also given at the end of the book. A broad view of mathematics is covered, well beyond the typical elementary level, by providing more in depth treatment of Geometry and Trigonometry, Number Theory, Algebra, Calculus, and Combinatorics.

  1. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  2. Developing a New Approach for Arabic Morphological Analysis and Generation

    OpenAIRE

    Gridach, Mourad; Chenfour, Noureddine

    2011-01-01

    Arabic morphological analysis is one of the essential stages in Arabic Natural Language Processing. In this paper we present an approach for Arabic morphological analysis. This approach is based on Arabic morphological automaton (AMAUT). The proposed technique uses a morphological database realized using XMODEL language. Arabic morphology represents a special type of morphological systems because it is based on the concept of scheme to represent Arabic words. We use this concept to develop th...

  3. The enhancement of students' mathematical self-efficacy through teaching with metacognitive scaffolding approach

    Science.gov (United States)

    Prabawanto, S.

    2018-05-01

    This research aims to investigate the enhancement of students’ mathematical self- efficacy through teaching with metacognitive scaffolding approach. This research used a quasi- experimental design with pre-post respon control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 students who acquire teaching mathematics under metacognitive approach, while the control group consists of 58 students who acquire teaching mathematics under direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical self-efficacy instruments. By using mean difference test, two conclusions of the research: (1) there is a significant difference in the enhancement of mathematical self-efficacy between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and (2) there is no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students’ mathematical self-efficacy.

  4. Reassembling mathematical practices: a philosophical-anthropological approach

    Directory of Open Access Journals (Sweden)

    Karen François

    2016-01-01

    Full Text Available In this paper we first explore h ow Wittgenstein ’ s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein ’ s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics ( Wittgenstein 1973 . W e will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics . The central philosophical investigation concerns Wittgenstein’s shift to abandon ing the essentialist concept of language and therefore deny ing the existence of a universal language. Languages — or ‘language games’ as Wittgenstein calls them — are immersed in a form of life, in a cultural or social formation and are embedded in the totality o f communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figure - making and sand drawing, to illustrate Wittgenstein ’s ideas . Base d on an ethnomathematical comparative analysis , we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality , as expressed in both string figure - making and sand drawing practices, from one society to another . Finally, w e suggest that a philosop hical - anthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cul tures. Philoso phical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better

  5. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    Science.gov (United States)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  6. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  7. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  8. The Increase of Critical Thinking Skills through Mathematical Investigation Approach

    Science.gov (United States)

    Sumarna, N.; Wahyudin; Herman, T.

    2017-02-01

    Some research findings on critical thinking skills of prospective elementary teachers, showed a response that is not optimal. On the other hand, critical thinking skills will lead a student in the process of analysis, evaluation and synthesis in solving a mathematical problem. This study attempts to perform an alternative solution with a focus on mathematics learning conditions that is held in the lecture room through mathematical investigation approach. This research method was Quasi-Experimental design with pre-test post-test design. Data analysis using a mixed method with Embedded design. Subjects were regular students enrolled in 2014 at the study program of education of primary school teachers. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The results of the study showed that (1) there is a significant difference in the improvement of critical thinking ability of students who receive learning through mathematical investigation approach when compared with students studying through expository approach, and (2) there is no interaction effect between prior knowledge of mathematics and learning factors (mathematical investigation and expository) to increase of critical thinking skills of students.

  9. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  10. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  11. Socially Response-Able Mathematics Education: Implications of an Ethical Approach

    Science.gov (United States)

    Atweh, Bill; Brady, Kate

    2009-01-01

    This paper discusses an approach to mathematics education based on the concept of ethical responsibility. It argues that an ethical approach to mathematics teaching lays the theoretical foundations for social justice concerns in the discipline. The paper develops a particular understanding of ethical responsibility based on the writings of Emanuel…

  12. Morphological modeling of terrains and volume data

    CERN Document Server

    Comic, Lidija; Magillo, Paola; Iuricich, Federico

    2014-01-01

    This book describes the mathematical background behind discrete approaches to morphological analysis of scalar fields, with a focus on Morse theory and on the discrete theories due to Banchoff and Forman. The algorithms and data structures presented are used for terrain modeling and analysis, molecular shape analysis, and for analysis or visualization of sensor and simulation 3D data sets. It covers a variety of application domains including geography, geology, environmental sciences, medicine and biology. The authors classify the different approaches to morphological analysis which are all ba

  13. Mathematical approaches in deriving hydrocarbons expressions from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering & Reservoir Simulation Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Time Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.

  14. Trajectory-based morphological operators: a model for efficient image processing.

    Science.gov (United States)

    Jimeno-Morenilla, Antonio; Pujol, Francisco A; Molina-Carmona, Rafael; Sánchez-Romero, José L; Pujol, Mar

    2014-01-01

    Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.

  15. Research on Mathematical Literacy in Schools--Aim, Approach and Attention

    Science.gov (United States)

    Haara, Frode Olav; Bolstad, Oda Heidi; Jenssen, Eirik S.

    2017-01-01

    The development of mathematical literacy in schools is of significant concern at the policy level, and research is an important source of information in this process. This review article focuses on areas of research interest identified in empirical projects on mathematical literacy, and how mathematical literacy in schools is approached by…

  16. OPEN-ENDED APPROACH: AN EFFORT IN CULTIVATING STUDENTS’ MATHEMATICAL CREATIVE THINKING ABILITY AND SELF-ESTEEM IN MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Abdul Fatah

    2016-01-01

    Full Text Available The present study aims at examining the use of open-ended approach in cultivating senior high school students’ mathematical creative thinking ability (MCTA and self-esteem (SE in mathematics viewed from school category. The subjects of this research were the students grade XI at three schools; high, middle and low category in Kota Serang, Banten Province. In every school category, two classes were chosen; one class was the experimental group which was taught by open-ended approach, while another class was a control group which was taught by conventional way. This quasi-experimental research employed MCTA test and SE in mathematics scale as the instruments. In general, the research result shows that the MCTA improvement and SE level of the students who are taught by open-ended approach is better than those who are taught conventionally. The results of students’ MCTA and SE viewed from school category will be further discussed.Keywords: mathematical creative thinking ability, self-esteem, open-ended approach DOI: http://dx.doi.org/10.22342/jme.7.1.2813.9-18

  17. Finding mesoscale ocean structures with mathematical morphology

    International Nuclear Information System (INIS)

    Lea, S.M.; Lybanon, M.

    1993-01-01

    The authors introduce a technique to aid in interpreting infrared satellite images of the North Atlantic Ocean Gulf Stream region. Present interpretive methods are largely manual, require significant effort, and are highly dependent on the interpreter's skill. The quasiautomated technique is based on mathematical morphology, specifically the image transformations of opening and closing, which are defined in terms of erosion and dilation. The implementation performs successive openings and closings at increasing thresholds until a stable division into objects and background is found. This method finds the North Wall of the Gulf Stream in approximately the same place as human analysts and another automated procedure, and does less smoothing of small irregularities than the other two methods. The North Wall is continuous and sharp except where obscured by clouds. Performance in locating warm-core eddies is also comparable to the other methods. However, the present procedure does not find cold-core rings well. The authors are presently investigating ways to reduce the effects of clouds and delete the unwanted water areas found by the method. They expect to be able to improve the cold-core eddy performance

  18. Mathematical Knowledge for Teaching, Standards-Based Mathematics Teaching Practices, and Student Achievement in the Context of the "Responsive Classroom Approach"

    Science.gov (United States)

    Ottmar, Erin R.; Rimm-Kaufman, Sara E.; Larsen, Ross A.; Berry, Robert Q.

    2015-01-01

    This study investigates the effectiveness of the Responsive Classroom (RC) approach, a social and emotional learning intervention, on changing the relations between mathematics teacher and classroom inputs (mathematical knowledge for teaching [MKT] and standards-based mathematics teaching practices) and student mathematics achievement. Work was…

  19. Mathematical-programming approaches to test item pool design

    NARCIS (Netherlands)

    Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.

    2002-01-01

    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

  20. Mathematical and computational analyses of cracking formation fracture morphology and its evolution in engineering materials and structures

    CERN Document Server

    Sumi, Yoichi

    2014-01-01

    This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks.   In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive ...

  1. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    Science.gov (United States)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  2. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  3. Evaluation models of some morphological characteristics for talent scouting in sport.

    Science.gov (United States)

    Rogulj, Nenad; Papić, Vladan; Cavala, Marijana

    2009-03-01

    In this paper, for the purpose of expert system evaluation within the scientific project "Talent scouting in sport", two methodological approaches for recognizing an athlete's morphological compatibility for various sports has been presented, evaluated and compared. First approach is based on the fuzzy logic and expert opinion about compatibility of proposed hypothetical morphological models for 14 different sports which are part of the expert system. Second approach is based on determining the differences between morphological characteristics of a tested individual and top athlete's morphological characteristics for particular sport. Logical and mathematical bases of both methodological approaches have been explained in detail. High prognostic efficiency in recognition of individual's sport has been determined. Some improvements in further development of both methods have been proposed. Results of the research so far suggest that this or similar approaches can be successfully used for detection of individual's morphological compatibility for different sports. Also, it is expected to be useful in the selection of young talents for particular sport.

  4. The enhancement of students' mathematical problem solving ability through teaching with metacognitive scaffolding approach

    Science.gov (United States)

    Prabawanto, Sufyani

    2017-05-01

    This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.

  5. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  6. Mathematical beauty in service of deep approach to learning

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza

    2015-01-01

    was hands-on MATLAB programming, where the algorithms were tested and applied to solve physical modelbased problems. To encourage a deep approach, and discourage a surface approach to learning, I introduced into the lectures a basic but rigorous mathematical treatment of crucial theoretical points...

  7. Open-Ended Approach: An Effort in Cultivating Students' Mathematical Creative Thinking Ability and Self-Esteem in Mathematics

    Science.gov (United States)

    Fatah, Abdul; Suryadi, Didi; Sabandar, Jozua; Turmudi

    2016-01-01

    The present study aims at examining the use of open-ended approach in cultivating senior high school students' mathematical creative thinking ability (MCTA) and self-esteem (SE) in mathematics viewed from school category. The subjects of this research were the students grade XI at three schools; high, middle and low category in Kota Serang, Banten…

  8. Morphology on convolution lattices with applications to the slope transformand random set theory

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); I.S. Molchanov (Ilya)

    1996-01-01

    textabstractThis paper develops an abstract theory for mathematical morphology on complete lattices. The approach is based upon the idea that objects are only known through information provided by a given collection of measurements (called evaluations in this paper). This abstract approach leads in

  9. Solving the empty space problem in robot path planning by mathematical morphology

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1993-01-01

    In this paper we formulate a morphological approach to path planning problems, in particular with respect to the empty­-space problem, that is, the question of finding the allowed states for an object, moving in a space with obstacles. Our approach is based upon a recent generalization of

  10. Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach

    Directory of Open Access Journals (Sweden)

    Rippi Maya

    2011-07-01

    Full Text Available This paper reports findings of  a  post test experimental control group design conducted to investigate the role of modified Moore learning approach  on improving students’ mathematical understanding and proving abilities. Subject of study were 56 undergradute students of one state university in Bandung, who took advanced abstract algebra course. Instrument of study were a set test of mathematical understanding ability, a set test of mathematical proving ability, and a set of students’ opinion scale on modified Moore learning approach. Data were analyzed by using two path ANOVA. The study found that proof construction process was more difficult than mathematical understanding  task  for all students, and students still posed some difficulties on constructing mathematical proof task.  The study also found there were not differences  between students’  abilities on mathematical understanding and on proving abilities of  the both classes, and both abilities were classified as mediocre. However, in modified Moore learning approach class there were more students who got above average grades on mathematical understanding than those of conventional class. Moreover, students performed positive  opinion toward  modified Moore learning approach. They  were  active in questioning and solving problems, and in explaining their works in front of class as well, while students of conventional teaching prefered to listen to lecturer’s explanation. The study also found that there was no interaction between learning approach and students’ prior mathematics ability on mathematical understanding and proving abilities,  but  there were  quite strong  association between students’ mathematical understanding and proving abilities.Keywords:  modified Moore learning approach, mathematical understanding ability, mathematical proving ability. DOI: http://dx.doi.org/10.22342/jme.2.2.751.231-250

  11. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    Science.gov (United States)

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  12. The Impact of Problem-Based Learning Approach to Senior High School Students’ Mathematics Critical Thinking Ability

    Directory of Open Access Journals (Sweden)

    Reviandari Widyatiningtyas

    2015-07-01

    Full Text Available The study was report the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students’ prior mathematical ability to student’s mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from excellent and moderate school level. The research instruments a set of mathematical critical thinking ability test, and the data were analyzed by using two ways ANOVA and t-test. The research found that the problem based learning approach has significant impact to the ability of students’ mathematics critical thinking in terms of school level and students’ prior mathematical abilities. Furthermore. This research also found that there is no interaction between learning approach and school level, and learning approach and students’ prior mathematics ability to students’ mathematics critical thinking ability.

  13. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    Directory of Open Access Journals (Sweden)

    Shibin Wu

    2013-01-01

    Full Text Available A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR, and contrast improvement index (CII.

  14. Three Different Teaching Approaches in Pre-Calculus Bridging Mathematics

    Science.gov (United States)

    Miller-Reilly, Barbara

    2007-01-01

    During the past decade three different bridging mathematics courses have been offered at the University of Auckland. A case study approach was used to investigate the effectiveness of these courses: two larger courses and one individual study programme. A different teaching approach, by committed experienced teachers, was used in each course. The…

  15. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.

    Science.gov (United States)

    Wang, Ying; You, Guoxing; Chen, Peipei; Li, Jianjun; Chen, Gan; Wang, Bo; Li, Penglong; Han, Dong; Zhou, Hong; Zhao, Lian

    2016-03-01

    The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young's modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells' extension ratio, the Young's moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.

  16. Approaches to qualitative research in mathematics education examples of methodology and methods

    CERN Document Server

    Bikner-Ahsbahs, Angelika; Presmeg, Norma

    2014-01-01

    This volume documents a range of qualitative research approaches emerged within mathematics education over the last three decades, whilst at the same time revealing their underlying methodologies. Continuing the discussion as begun in the two 2003 ZDM issues dedicated to qualitative empirical methods, this book presents astate of the art overview on qualitative research in mathematics education and beyond. The structure of the book allows the reader to use it as an actual guide for the selection of an appropriate methodology, on a basis of both theoretical depth and practical implications. The methods and examples illustrate how different methodologies come to life when applied to a specific question in a specific context. Many of the methodologies described are also applicable outside mathematics education, but the examples provided are chosen so as to situate the approach in a mathematical context.

  17. Contextual Teaching and Learning Approach of Mathematics in Primary Schools

    Science.gov (United States)

    Selvianiresa, D.; Prabawanto, S.

    2017-09-01

    The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.

  18. Introduction to Mathematical Systems Theory: A Behavioral Approach

    NARCIS (Netherlands)

    Polderman, Jan W.; Willems, J.C.

    1998-01-01

    This is a book about modelling, analysis, and control of linear time-invariant systems. The book uses what is called the behavioral approach towards mathematical modelling. Thus a system is viewed as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems

  19. Software design of automatic counting system for nuclear track based on mathematical morphology algorithm

    International Nuclear Information System (INIS)

    Pan Yi; Mao Wanchong

    2010-01-01

    The parameter measurement of nuclear track occupies an important position in the field of nuclear technology. However, traditional artificial counting method has many limitations. In recent years, DSP and digital image processing technology have been applied in nuclear field more and more. For the sake of reducing errors of visual measurement in artificial counting method, an automatic counting system for nuclear track based on DM642 real-time image processing platform is introduced in this article, which is able to effectively remove interferences from the background and noise points, as well as automatically extract nuclear track-points by using mathematical morphology algorithm. (authors)

  20. Professional Competencies of (Prospective) Mathematics Teachers--Cognitive versus Situated Approaches

    Science.gov (United States)

    Kaiser, Gabriele; Blömeke, Sigrid; König, Johannes; Busse, Andreas; Döhrmann, Martina; Hoth, Jessica

    2017-01-01

    Recent research on the professional competencies of mathematics teachers, which has been carried out during the last decade, is characterized by different theoretical approaches on the conceptualization and evaluation of teachers' professional competencies, namely cognitive versus situated approaches. Building on the international IEA Teacher…

  1. Mathematical Approaches in Studying the Ideal Image of the Goal

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov

    2014-03-01

    Full Text Available The article outlines the possible approaches in the mathematical computations of integrated behavioral units in functional systems supporting homeostasis through in behavioral changes. By an imbalance in the homeostasis system which initiates adaptive behavior we assume: for metabolism – a departure of the parameters from the “normal zone” to the level of a suprathreshold sensitivity of the receptors; for structures of the psychological and social spectra – to the “cognized-not cognized”, “acceptable-not acceptable” levels. For the system analysis of goal-directed behavior dynamics, we present a combination of the “creation – retention” of the ideal image of the goal and the entire effector structure of the integrated behavioral unit by introducing an integrating term, motivational gradient. The integrated Behavioral Unit (BU is described as a psychophysiological metamer in behavioral continuum, including a mathematical description of the BU as a whole including its elements viz., the ideal image of the goal and the motivational gradient. The hemodynamic equivalent of the motivational gradient (the scalar gradient and subjective time (the time marker are used as the BU markers. For the mathematical description, we use the mathematical apparatus of topological spaces and elements of the string theory to open up opportunities for new approaches in psychology and neurobiology.

  2. Brain based learning with contextual approach to mathematics achievement

    Directory of Open Access Journals (Sweden)

    V Kartikaningtyas

    2017-12-01

    Full Text Available The aim of this study was to know the effect of Brain Based Learning (BBL with a contextual approach to mathematics achievement. BBL-contextual is the learning model that designed to develop and optimize the brain ability for getting a new concept and solving the real life problem. This study method was a quasi-experiment. The population was the junior high school students. The sample chosen by using stratified cluster random sampling. The sample was 109 students. The data collected through a mathematics achievement test that was given after the treatment. The data analyzed by using one way ANOVA. The results of the study showed that BBL-contextual is better than direct learning on mathematics achievement. It means BBL-contextual could be an effective and innovative model.

  3. A mathematical approach to human pterygium shape

    Directory of Open Access Journals (Sweden)

    Pajic B

    2016-07-01

    Full Text Available Bojan Pajic,1–4 Iraklis Vastardis,1 Predrag Rajkovic,5 Brigitte Pajic-Eggspuehler,1 Daniel M Aebersold,6 Zeljka Cvejic2 1Eye Clinic ORASIS, Swiss Eye Research Foundation, Reinach AG, Switzerland; 2Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad,3Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia; 4Division of Ophthalmology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; 5Department of Mathematics, Faculty of Mechanical Engineering, University of Niš, Niš, Serbia; 6Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland Purpose: Pterygium is a common lesion affecting the population in countries with high levels of ultraviolet exposure. The final shape of a pterygium is the result of a growth pattern, which remains poorly understood. This manuscript provides a mathematical analysis as a tool to determine the shape of human pterygia.Materials and methods: Eighteen patients, all affected by nasal unilateral pterygia, were randomly selected from our patient database independently of sex, origin, or race. We included all primary or recurrent pterygia with signs of proliferation, dry eye, and induction of astigmatism. Pseudopterygia were excluded from this study. Pterygia were outlined and analyzed mathematically using a Cartesian coordinate system with two axes (X, Y and five accurate landmarks of the pterygium.Results: In 13 patients (72%, the shape of the pterygia was hyperbolic and in five patients (28%, the shape was rather elliptical.Conclusion: This analysis gives a highly accurate mathematical description of the shape of human pterygia. This might help to better assess the clinical results and outcome of the great variety of therapeutic approaches concerning these lesions. Keywords: etiology, pterygium, limbal stem cells, stem cells dysfunction, mathematical shape analysis

  4. An XML Approach of Coding a Morphological Database for Arabic Language

    OpenAIRE

    Gridach, Mourad; Chenfour, Noureddine

    2011-01-01

    We present an XML approach for the production of an Arabic morphological database for Arabic language that will be used in morphological analysis for modern standard Arabic (MSA). Optimizing the production, maintenance, and extension of morphological database is one of the crucial aspects impacting natural language processing (NLP). For Arabic language, producing a morphological database is not an easy task, because this it has some particularities such as the phenomena of agglutination and a...

  5. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    Science.gov (United States)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  6. Prospective Mathematics Teachers' Perceptions on and Adaptation of Student-Centred Approach to Teaching

    Science.gov (United States)

    Osmanoglu, Aslihan; Dincer, Emrah Oguzhan

    2018-01-01

    The aim of this study was to investigate prospective secondary mathematics teachers' perceptions on and adaptation of student-centred approach to teaching. The study was conducted with 58 prospective secondary mathematics teachers who were the graduates from mathematics departments from different universities' Science and Literature faculties.…

  7. Contextual approach using VBA learning media to improve students’ mathematical displacement and disposition ability

    Science.gov (United States)

    Chotimah, Siti; Bernard, M.; Wulandari, S. M.

    2018-01-01

    The main problems of the research were the lack of reasoning ability and mathematical disposition of students to the learning of mathematics in high school students in Cimahi - West Java. The lack of mathematical reasoning ability in students was caused by the process of learning. The teachers did not train the students to do the problems of reasoning ability. The students still depended on each other. Sometimes, one of patience teacher was still guiding his students. In addition, the basic ability aspects of students also affected the ability the mathematics skill. Furthermore, the learning process with contextual approach aided by VBA Learning Media (Visual Basic Application for Excel) gave the positive influence to the students’ mathematical disposition. The students are directly involved in learning process. The population of the study was all of the high school students in Cimahi. The samples were the students of SMA Negeri 4 Cimahi class XIA and XIB. There were both of tested and non-tested instruments. The test instrument was a description test of mathematical reasoning ability. The non-test instruments were questionnaire-scale attitudes about students’ mathematical dispositions. This instrument was used to obtain data about students’ mathematical reasoning and disposition of mathematics learning with contextual approach supported by VBA (Visual Basic Application for Excel) and by conventional learning. The data processed in this study was from the post-test score. These scores appeared from both of the experimental class group and the control class group. Then, performing data was processed by using SPSS 22 and Microsoft Excel. The data was analyzed using t-test statistic. The final result of this study concluded the achievement and improvement of reasoning ability and mathematical disposition of students whose learning with contextual approach supported by learning media of VBA (Visual Basic Application for Excel) was better than students who got

  8. Generalized Morphology using Sponges

    NARCIS (Netherlands)

    van de Gronde, Jasper J.; Roerdink, Jos B.T.M.

    2016-01-01

    Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological

  9. Promoting middle school students’ mathematical creative thinking ability using scientific approach

    Science.gov (United States)

    Istiqomah, A.; Perbowo, K. S.; Purwanto, S. E.

    2018-01-01

    This research aims to identify the strength of scientific approach in order to develop mathematical creative thinking in junior high school. Descriptive qualitative method is used in this research. 34 students in 7th grade are chosen using purposive sampling. For collecting data, this research uses test, observation, and interview. The test consists of 6 items which have been tested for their validity and reliability and used in pre-test and post-test. The pre-test shows that students average score in mathematical creative thinking is 43 (low), while in post-test it is 69 (middle). The N-gain in mathematical creative thinking point is 0.461, which is classified in the middle grade. Furthermore, the N-gain for each indicator, they score 0.438 for fluency; 0.568 for flexibility; and 0.382 for novelty. The N-gain for those indicators falls under middle grade. The research shows that scientific approach develops more flexibility, and, on the other hand, it develops less novelty.

  10. An XML Approach of Coding a Morphological Database for Arabic Language

    Directory of Open Access Journals (Sweden)

    Mourad Gridach

    2011-01-01

    Full Text Available We present an XML approach for the production of an Arabic morphological database for Arabic language that will be used in morphological analysis for modern standard Arabic (MSA. Optimizing the production, maintenance, and extension of morphological database is one of the crucial aspects impacting natural language processing (NLP. For Arabic language, producing a morphological database is not an easy task, because this it has some particularities such as the phenomena of agglutination and a lot of morphological ambiguity phenomenon. The method presented can be exploited by NLP applications such as syntactic analysis, semantic analysis, information retrieval, and orthographical correction.

  11. An approach to unraveling the coexistence of snappers (Lutjanidae using otolith morphology

    Directory of Open Access Journals (Sweden)

    Zahra Sadighzadeh

    2014-09-01

    Full Text Available The sagittae otolith morphology of marine fishes has been used in many ecomorphological studies to explain certain ecological adaptations of species to habitat. Our study compares the sagittal otolith shapes of ten species of snappers (Family Lutjanidae inhabiting the Persian Gulf. We used a morphometric analysis of the otolith measurements (length, height, perimeter, area and weight and of the ratio between the area of the sulcus acusticus and the area of the otolith (S:O. The otolith contour was also analysed using wavelets as a mathematical descriptor. Morphological variations in the otoliths were associated with the morphology and external colouration of snappers as well as ecological traits. An analysis of the interspecific S:O ratio suggested that the highest ratios occurred in snappers inhabiting shallower waters. A categorical multivariate analysis, including morphological, ecological and otolith size factors, showed that the species adapted to dim light conditions had a greater otolith perimeter. An analysis of variance of the otolith contour revealed zones with a higher interspecific variability, although only the antero-dorsal zone showed differing patterns. Although the otolith patterns appear to have a phylogenetic component, they might also be related to diel activity rhythms or to the light conditions in the habitat. The results of the study showed that variation in otolith morphology can be used to explain the coexistence of sympatric species.

  12. Women in Mathematics: A Nested Approach

    Science.gov (United States)

    Köse, Emek; Johnson, Angela C.

    2016-01-01

    In this article, we present a case study of a course called Women in Mathematics. Students in the course studied the lives and the mathematical contributions of women mathematicians throughout history, as well as current gender equity issues in the study of mathematics and in mathematical careers. They also mentored 20 middle school girls…

  13. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  14. Morphology control in polymer blend fibers—a high throughput computing approach

    Science.gov (United States)

    Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar

    2016-08-01

    Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.

  15. A cutting- plane approach for semi- infinite mathematical programming

    African Journals Online (AJOL)

    Many situations ranging from industrial to social via economic and environmental problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane approach which lends itself better for standard non-linear programs is exploited with good reasons for grappling with linear, convex and ...

  16. The affordances of using a flipped classroom approach in the teaching of mathematics: a case study of a grade 10 mathematics class

    Science.gov (United States)

    Muir, Tracey; Geiger, Vince

    2016-03-01

    Teaching secondary mathematics has a number of challenges, including the expectations that teachers cover the prescribed curriculum, help students learn difficult concepts, prepare students for future studies, and, increasingly, that they do so incorporating digital technologies. This study investigates a teacher's, and his students', perceptions of the benefits or otherwise of a flipped classroom approach in meeting these challenges, within a prescribed curriculum context. Data collection instruments included a survey designed to investigate the nature of students' engagement with the flipped approach and semi-structured student and teacher interviews. Analysis of these data indicated that the teacher and students were positive about their experiences with a flipped classroom approach and that students were motivated to engage with the teacher-created online mathematics resources. The study adds to the limited research literature related to student and teacher perceptions of the affordances of the flipped classroom approach and has implications for secondary mathematics teachers who face the challenge of the twin demands of covering the prescribed curriculum and catering for a range of students' learning needs.

  17. Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    International Nuclear Information System (INIS)

    Bouchet, A; Pastore, J; Colabella, L; Omar, S; Ballarre, J

    2016-01-01

    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials. (paper)

  18. Detection of high-impedance fault in low-voltage DC distribution system via mathematical morphology

    Directory of Open Access Journals (Sweden)

    Yun-Sik Oh

    2016-01-01

    Full Text Available This study presents a method for high-impedance fault (HIF detection in a low-voltage DC (LVDC distribution system via mathematical morphology (MM, which is composed of two elementary transformations, namely, dilation and erosion. Various MM-based filters are used to detect abnormal signals of current waveform. The LVDC distribution system, including power conversion devices, such as AC/DC and DC/DC converters, is modelled with electromagnetic transient program (EMTP software to verify the proposed method. The HIF arc model in the DC system is also implemented with EMTP/MODELS, which is a symbolic language interpreter for EMTP. Simulation results show that the proposed method can be applied to detect HIF effectively in the LVDC distribution system.

  19. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  20. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1 using directional mathematical morphology to enhance the contrast between roads and non-roads; (2 using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.

  1. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    Science.gov (United States)

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  2. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    Science.gov (United States)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  3. Deep and shallow approaches to learning mathematics are not mutually exclusive.

    OpenAIRE

    Mathias, J.; Newton, D.P.

    2016-01-01

    From time to time, students are characterised as having a deep or shallow approach to learning. A deep approach to learning tends to attract more approval than a shallow approach, at least in the West. Students on a university-based Foundation course to prepare them for undergraduate studies were divided into those likely to have a deep approach (26) and those likely to have a shallow approach (18). Their performance in a test of problem solving in an aspect of applied mathematics was compare...

  4. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    Science.gov (United States)

    Gasparri, J. P.; Bouchet, A.; Abras, G.; Ballarin, V.; Pastore, J. I.

    2011-12-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  5. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    International Nuclear Information System (INIS)

    Gasparri, J P; Bouchet, A; Abras, G; Ballarin, V; Pastore, J I

    2011-01-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  6. Mathematics teachers' beliefs about scientific approach (SA) and implementation in mathematics learning

    Science.gov (United States)

    Mutholib, Ahmad Abdul; Sujadi, Imam; Subanti, Sri

    2017-08-01

    SA is the approach used for the exploration of research and answer questions. Teachers' beliefs have a greater influence than the teacher's knowledge of designing lesson plans in the classroom. The objectives of this study are to explore the teachers' beliefs in SA, to reveal how the beliefs are reflected in classroom practices; and to figure out the factors affecting their beliefs and practices of SA to the teaching of mathematics. This qualitative research applied case study. The data was gained from classroom observation, face-to-face interview, and documentation. Interactive models from Miles and Huberman were used to examine the data. Results of the study: 1) The teachers believe about the conception of SA. They also believe that the SA is important and gives impact to students' progress. They believe that by applying SA, the target of mathematics learning is acquired. As to learning procedure, they believe that SA steps are conducted in sequence by combining some steps for each. 2) Teachers formulate their beliefs of applying the five scientific step of integrating all steps by keeping the sequence. Teachers argue that target of mathematics learning can be attained by some ways, namely presence of theoretical and practical support, teachers' guidance, providing variety of media and motivation to students. 3) There are five factors which influence teachers' beliefs and practices of SA, namely learning and teaching experience, teachers' motivation, sharing with colleagues and facility. This study concludes that teachers believe in the importance of SA, therefore they implement it in the classroom.

  7. THE IMPORTANCE OF INDIVIDUAL APPROACH IN TEACHING HIGHER MATHEMATICS AT TECHNICAL UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Medvedeva Natal'ya Aleksandrovna

    2015-12-01

    Full Text Available The article discusses the importance of an individual approach when considering the time needed for learning basic technical courses of a technical University (such as higher mathematics, physics, etc. to motivate a student to obtain 100% standard of mastering the educational material using the experience of the Department of mathematics. In the modern conditions of the world of information technologies it is extremely important to teach people how to handle information independently and, what is the most important, to assess it. As you know, universities set a certain studying time for each academic subject fixed by curriculum. But time should not be a constant component. Obviously, such a new approach will require innovation in the methodological literature. Using the experience of the Department of Mathematics of MGSU the author offers methodical developments and research works for studying under the direction of a teacher along with standard digestion of the curriculum.

  8. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  9. Approaches to the mathematical description of NPP operational safety management and oversight

    International Nuclear Information System (INIS)

    Bilej, D.V.; Berzhanskij, S.V.

    2014-01-01

    The paper presents analysis of features related to NPP operational safety management and oversight. According to analysis results, approaches are proposed to perform mathematical description of specific processes and to develop a scale for management to the current safety level as regards NPP power generation. Proposed approaches are making experimental equations and process approach of ISO-9001 quality system

  10. Mathematical knowledge in teaching of fraction concepts using diagrammatical approach

    Science.gov (United States)

    Veloo, Palanisamy Kathir; Puteh, Marzita

    2017-05-01

    Teachers need various types of knowledge in order to deliver various fraction concepts at elementary level. In this paper, Balls' framework (2008) or, Mathematical Knowledge for Teaching (MKT) is used as benchmark guideline. This paper investigates and explores component of MKT knowledge among eight experienced teachers of the primary school. Data was collected using paper pencil test, interview and video recording. This paper, narrowed to teacher's knowledge and their practices while teaching of various fractions concepts using diagrammatical approach in present of MKT. The data gathered from teachers were analyzed using thematic analysis techniques. The results indicated that teachers lack various components of MKT knowledge as a proposal by various researchers and assumed that teaching as procedural more than enough due to lack of deep understanding of mathematics and the various types of MKT is not required due to the present of practices in the mathematics classroom.

  11. A Signal Based Triangular Structuring Element for Mathematical Morphological Analysis and Its Application in Rolling Element Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhaowen Chen

    2014-01-01

    Full Text Available Mathematical morphology (MM is an efficient nonlinear signal processing tool. It can be adopted to extract fault information from bearing signal according to a structuring element (SE. Since the bearing signal features differ for every unique cause of failure, the SEs should be well tailored to extract the fault feature from a particular signal. In the following, a signal based triangular SE according to the statistics of the magnitude of a vibration signal is proposed, together with associated methodology, which processes the bearing signal by MM analysis based on proposed SE to get the morphology spectrum of a signal. A correlation analysis on morphology spectrum is then employed to obtain the final classification of bearing faults. The classification performance of the proposed method is evaluated by a set of bearing vibration signals with inner race, ball, and outer race faults, respectively. Results show that all faults can be detected clearly and correctly. Compared with a commonly used flat SE, the correlation analysis on morphology spectrum with proposed SE gives better performance at fault diagnosis of bearing, especially the identification of the location of outer race fault and the level of fault severity.

  12. Mathematics and social science : a statistical mechanics approach to immigration

    NARCIS (Netherlands)

    Contucci, P.; Giardinà, C.

    2008-01-01

    Is modern science able to study social matters like those related to immigration phenomena on solid mathematical grounds? Can we for instance determine cultural robustness and the causes behind abrupt changes from cultural legacies? Can we predict, cause or avoid swings? A novel approach is under

  13. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  14. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  15. On the implicit programming approach in a class of mathematical programs with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Červinka, Michal

    2009-01-01

    Roč. 38, 4B (2009), s. 1557-1574 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical problem with equilibrium constraint * state constraints * implicit programming * calmness * exact penalization Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009 http://library.utia.cas.cz/separaty/2010/MTR/outrata-on the implicit programming approach in a class of mathematical programs with equilibrium constraints.pdf

  16. Implementing a Flipped Classroom Approach in a University Numerical Methods Mathematics Course

    Science.gov (United States)

    Johnston, Barbara M.

    2017-01-01

    This paper describes and analyses the implementation of a "flipped classroom" approach, in an undergraduate mathematics course on numerical methods. The approach replaced all the lecture contents by instructor-made videos and was implemented in the consecutive years 2014 and 2015. The sequential case study presented here begins with an…

  17. The Prevalent Rate of Problem-Solving Approach in Teaching Mathematics in Ghanaian Basic Schools

    Science.gov (United States)

    Nyala, Joseph; Assuah, Charles; Ayebo, Abraham; Tse, Newel

    2016-01-01

    Stakeholders of mathematics education decry the rate at which students' performance are falling below expectation; they call for a shift to practical methods of teaching the subject in Ghanaian basic schools. The study explores the extent to which Ghanaian basic school mathematics teachers use problem-solving approach in their lessons. The…

  18. Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches

    International Nuclear Information System (INIS)

    Berman, Jules

    2005-01-01

    For over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms. Their success has been stunning, permitting the accurate diagnosis of thousands of different types of neoplasms using only a microscope and a trained eye. In the past two decades, cancer genomics has challenged the supremacy of histomorphology by identifying genetic alterations shared by morphologically diverse tumors and by finding genetic features that distinguish subgroups of morphologically homogeneous tumors. The Developmental Lineage Classification and Taxonomy of Neoplasms groups neoplasms by their embryologic origin. The putative value of this classification is based on the expectation that tumors of a common developmental lineage will share common metabolic pathways and common responses to drugs that target these pathways. The purpose of this manuscript is to show that grouping tumors according to their developmental lineage can reconcile certain fundamental discrepancies resulting from morphologic and molecular approaches to neoplasm classification. In this study, six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors. The discussion of these issues in the context of describing different methods of tumor classification is intended to underscore the clinical value of a robust tumor classification. A

  19. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  20. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    Science.gov (United States)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  1. Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach.

    Science.gov (United States)

    Campitelli, Guillermo; Gerrans, Paul

    2014-04-01

    We used a mathematical modeling approach, based on a sample of 2,019 participants, to better understand what the cognitive reflection test (CRT; Frederick In Journal of Economic Perspectives, 19, 25-42, 2005) measures. This test, which is typically completed in less than 10 min, contains three problems and aims to measure the ability or disposition to resist reporting the response that first comes to mind. However, since the test contains three mathematically based problems, it is possible that the test only measures mathematical abilities, and not cognitive reflection. We found that the models that included an inhibition parameter (i.e., the probability of inhibiting an intuitive response), as well as a mathematical parameter (i.e., the probability of using an adequate mathematical procedure), fitted the data better than a model that only included a mathematical parameter. We also found that the inhibition parameter in males is best explained by both rational thinking ability and the disposition toward actively open-minded thinking, whereas in females this parameter was better explained by rational thinking only. With these findings, this study contributes to the understanding of the processes involved in solving the CRT, and will be particularly useful for researchers who are considering using this test in their research.

  2. Approach to mathematics in textbooks at tertiary level - exploring authors' views about their texts

    Science.gov (United States)

    Randahl, Mira

    2012-10-01

    The aim of this article is to present and discuss some results from an inquiry into mathematics textbooks authors' visions about their texts and approaches they choose when new concepts are introduced. Authors' responses are discussed in relation to results about students' difficulties with approaching calculus reported by previous research. A questionnaire has been designed and sent to seven authors of the most used calculus textbooks in Norway and four authors have responded. The responses show that the authors mainly view teaching in terms of transmission so they focus mainly on getting the mathematical content correct and 'clear'. The dominant view is that the textbook is intended to help the students to learn by explaining and clarifying. The authors prefer the approach to introduce new concepts based on the traditional way of perceiving mathematics as a system of definitions, examples and exercises. The results of this study may enhance our understanding of the role of the textbook at tertiary level. They may also form a foundation for further research.

  3. THE MORPHOLOGICAL PYRAMID AND ITS APPLICATIONS TO REMOTE SENSING: MULTIRESOLUTION DATA ANALYSIS AND FEATURES EXTRACTION

    Directory of Open Access Journals (Sweden)

    Laporterie Florence

    2011-05-01

    Full Text Available In remote sensing, sensors are more and more numerous, and their spatial resolution is higher and higher. Thus, the availability of a quick and accurate characterisation of the increasing amount of data is now a quite important issue. This paper deals with an approach combining a pyramidal algorithm and mathematical morphology to study the physiographic characteristics of terrestrial ecosystems. Our pyramidal strategy involves first morphological filters, then extraction at each level of resolution of well-known landscapes features. The approach is applied to a digitised aerial photograph representing an heterogeneous landscape of orchards and forests along the Garonne river (France. This example, simulating very high spatial resolution imagery, highlights the influence of the parameters of the pyramid according to the spatial properties of the studied patterns. It is shown that, the morphological pyramid approach is a promising attempt for multi-level features extraction by modelling geometrical relevant parameters.

  4. The Acquisition of Morphology by a Bilingual Child: A Whole-Word Approach.

    Science.gov (United States)

    Vihman, Marilyn May

    A delay in the acquisition of morphology by a two-year-old Estonian-speaking boy was investigated to determine the role the child's bilingualism (with English) played in the delay. In contrast to his older sister, whose exposure to English was delayed, the boy exhibited a "whole word" approach to morphology, characterized by the following: (1)…

  5. The Effects of Brain Based Learning Approach on Motivation and Students Achievement in Mathematics Learning

    Science.gov (United States)

    Mekarina, M.; Ningsih, Y. P.

    2017-09-01

    This classroom action research is based by the facts that the students motivation and achievement mathematics learning is less. One of the factors causing is learning that does not provide flexibility to students to empower the potential of the brain optimally. The aim of this research was to improve the student motivation and achievement in mathematics learning by implementing brain based learning approach. The subject of this research was student of grade XI in senior high school. The research consisted of two cycles. Data of student achievement from test, and the student motivation through questionnaire. Furthermore, the finding of this research showed the result of the analysis was the implementation of brain based learning approach can improve student’s achievement and motivation in mathematics learning.

  6. Influence of the Constructivist Learning Approach on Students' Levels of Learning Trigonometry and on Their Attitudes towards Mathematics

    OpenAIRE

    İNAN, CEMİL

    2014-01-01

    In this experimental study, the influence of the constructivist learning approach on students’ levels of learning trigonometry and on their attitudes towards mathematics was examined in comparison with the traditional methods of instruction. The constructivist learning approach was the independent variable, while mathematics achievement, the lessons of trigonometry and the attitudes towards mathematics constituted the dependent variables. The study was designed as the pretest-posttest control...

  7. Mathematical Approaches to Problems in Resource Management and Epidemiology

    CERN Document Server

    Levin, Simon; Shoemaker, Christine

    1989-01-01

    Increasingly, mathematical methods are being used to advantage in addressing the problems facing humanity in managing its environment. Problems in resource management and epidemiology especially have demonstrated the utility of quantitative modeling. To explore these approaches, the Center of Applied Mathematics at Cornell University organized a conference in Fall, 1987, with the objective of surveying and assessing the state of the art. This volume records the proceedings of that conference. Underlying virtually all of these studies are models of population growth, from individual cells to large vertebrates. Cell population growth presents the simplest of systems for study, and is of fundamental importance in its own right for a variety of medical and environmental applications. In Part I of this volume, Michael Shuler describes computer models of individual cells and cell populations, and Frank Hoppensteadt discusses the synchronization of bacterial culture growth. Together, these provide a valuable introdu...

  8. Automatic detection of optic disc based on PCA and mathematical morphology.

    Science.gov (United States)

    Morales, Sandra; Naranjo, Valery; Angulo, Us; Alcaniz, Mariano

    2013-04-01

    The algorithm proposed in this paper allows to automatically segment the optic disc from a fundus image. The goal is to facilitate the early detection of certain pathologies and to fully automate the process so as to avoid specialist intervention. The method proposed for the extraction of the optic disc contour is mainly based on mathematical morphology along with principal component analysis (PCA). It makes use of different operations such as generalized distance function (GDF), a variant of the watershed transformation, the stochastic watershed, and geodesic transformations. The input of the segmentation method is obtained through PCA. The purpose of using PCA is to achieve the grey-scale image that better represents the original RGB image. The implemented algorithm has been validated on five public databases obtaining promising results. The average values obtained (a Jaccard's and Dice's coefficients of 0.8200 and 0.8932, respectively, an accuracy of 0.9947, and a true positive and false positive fractions of 0.9275 and 0.0036) demonstrate that this method is a robust tool for the automatic segmentation of the optic disc. Moreover, it is fairly reliable since it works properly on databases with a large degree of variability and improves the results of other state-of-the-art methods.

  9. Morphology Dependent Assessment of Resilience for Urban Areas

    Directory of Open Access Journals (Sweden)

    Kai Fischer

    2018-05-01

    Full Text Available The formation of new threats and the increasing complexity of urban built infrastructures underline the need for more robust and sustainable systems, which are able to cope with adverse events. Achieving sustainability requires the strengthening of resilience. Currently, a comprehensive approach for the quantification of resilience of urban infrastructure is missing. Within this paper, a new generalized mathematical framework is presented. A clear definition of terms and their interaction builds the basis of this resilience assessment scheme. Classical risk-based as well as additional components are aligned along the timeline before, during and after disruptive events, to quantify the susceptibility, the vulnerability and the response and recovery behavior of complex systems for multiple threat scenarios. The approach allows the evaluation of complete urban surroundings and enables a quantitative comparison with other development plans or cities. A comprehensive resilience framework should cover at least preparation, prevention, protection, response and recovery. The presented approach determines respective indicators and provides decision support, which enhancement measures are more effective. Hence, the framework quantifies for instance, if it is better to avoid a hazardous event or to tolerate an event with an increased robustness. An application example is given to assess different urban forms, i.e., morphologies, with consideration of multiple adverse events, like terrorist attacks or earthquakes, and multiple buildings. Each urban object includes a certain number of attributes, like the object use, the construction type, the time-dependent number of persons and the value, to derive different performance targets. The assessment results in the identification of weak spots with respect to single resilience indicators. Based on the generalized mathematical formulation and suitable combination of indicators, this approach can quantify the

  10. Computational morphology of the lung and its virtual imaging

    International Nuclear Information System (INIS)

    Kitaoka, Hiroko

    2002-01-01

    The author proposes an entirely new approach called 'virtual imaging' of an organ based on 'computational morphology'. Computational morphology describes mathematically design as principles of an organ structure to generate the organ model via computer, which can be called virtual organ. Virtual imaging simulates image data using the virtual organ. The virtual organ is divided into cubic voxels, and the CT value or other intensity value for each voxel is calculated according to the tissue properties within the voxel. The validity of the model is examined by comparing virtual images with clinical images. Computational image analysis methods can be developed based on validated models. In this paper, computational anatomy of the lung and its virtual X-ray imaging are introduced

  11. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  12. Mathematical approach in galvanized steel sheet coatings

    International Nuclear Information System (INIS)

    Perez, A.; Andres, L.J.; Gonzalez, I.; Fernandez, B.; Puente, J.M.

    1998-01-01

    A short review of the kinetics models for the formation of Fe-Zn alloy phases in the galvannealing process is presented. It will focus on the continuous process which is often used by the automotive industry. A first mathematical approach of the kinetics growth of the δ phase has been done using a continuous hot-dipping process simulator which resembles the conditions of the galvannealing process in production lines. Hold time and the galvannealing temperature as well as the weight of the coating were varied. The preliminary results of the iron content and proportion of δ phase in the coating are in agreement with the results obtained by other authors. (Author) 16 refs

  13. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    Science.gov (United States)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  14. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    Science.gov (United States)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  15. Mathematical modelling a case studies approach

    CERN Document Server

    Illner, Reinhard; McCollum, Samantha; Roode, Thea van

    2004-01-01

    Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...

  16. FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD

    Directory of Open Access Journals (Sweden)

    Misael Lopez-Ramirez

    2018-03-01

    Full Text Available Power quality disturbances (PQD in electric distribution systems can be produced by the utilization of non-linear loads or environmental circumstances, causing electrical equipment malfunction and reduction of its useful life. Detecting and classifying different PQDs implies great efforts in planning and structuring the monitoring system. The main disadvantage of most works in the literature is that they treat a limited number of electrical disturbances through personal computer (PC-based computation techniques, which makes it difficult to perform an online PQD classification. In this work, the novel contribution is a methodology for PQD recognition and classification through discrete wavelet transform, mathematical morphology, decomposition of singular values, and statistical analysis. Furthermore, the timely and reliable classification of different disturbances is necessary; hence, a field programmable gate array (FPGA-based integrated circuit is developed to offer a portable hardware processing unit to perform fast, online PQD classification. The obtained numerical and experimental results demonstrate that the proposed method guarantees high effectiveness during online PQD detection and classification of real voltage/current signals.

  17. Mathematical Approaches to Cognitive Linguistics

    Directory of Open Access Journals (Sweden)

    Chuluundorj Begz

    2013-05-01

    Full Text Available Cognitive linguistics, neuro-cognitive and psychological analysis of human verbal cognition present important area of multidisciplinary research. Mathematical methods and models have been introduced in number of publications with increasing attention to these theories. In this paper we have described some possible applications of mathematical methods to cognitive linguistics. Human verbal perception and verbal mapping deal with dissipative mental structures and symmetric/asymmetric relationships between objects of perception and deep (also surface structures of language. In that’s way methods of tensor analysis are ambitious candidate to be applied to analysis of human verbal thinking and mental space.

  18. The Impact of Problem-Based Learning Approach to Senior High School Students' Mathematics Critical Thinking Ability

    Science.gov (United States)

    Widyatiningtyas, Reviandari; Kusumah, Yaya S.; Sumarmo, Utari; Sabandar, Jozua

    2015-01-01

    The study reported the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students' prior mathematical ability to student's mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from…

  19. Teaching by Open-Approach Method in Japanese Mathematics Classroom.

    Science.gov (United States)

    Nohda, Nobuhiko

    Mathematics educators in Japan have traditionally emphasized mathematical perspectives in research and practice. This paper features an account of changes in mathematics education in Japan that focus on the possibilities of individual students as well as their mathematical ways of thinking. Students' mathematical thinking, mathematical…

  20. Approach to Mathematics in Textbooks at Tertiary Level--Exploring Authors' Views about Their Texts

    Science.gov (United States)

    Randahl, Mira

    2012-01-01

    The aim of this article is to present and discuss some results from an inquiry into mathematics textbooks authors' visions about their texts and approaches they choose when new concepts are introduced. Authors' responses are discussed in relation to results about students' difficulties with approaching calculus reported by previous research. A…

  1. Test-and-treat approach to HIV/AIDS: a primer for mathematical modeling.

    Science.gov (United States)

    Nah, Kyeongah; Nishiura, Hiroshi; Tsuchiya, Naho; Sun, Xiaodan; Asai, Yusuke; Imamura, Akifumi

    2017-09-05

    The public benefit of test-and-treat has induced a need to justify goodness for the public, and mathematical modeling studies have played a key role in designing and evaluating the test-and-treat strategy for controlling HIV/AIDS. Here we briefly and comprehensively review the essence of contemporary understanding of the test-and-treat policy through mathematical modeling approaches and identify key pitfalls that have been identified to date. While the decrease in HIV incidence is achieved with certain coverages of diagnosis, care and continued treatment, HIV prevalence is not necessarily decreased and sometimes the test-and-treat is accompanied by increased long-term cost of antiretroviral therapy (ART). To confront with the complexity of assessment on this policy, the elimination threshold or the effective reproduction number has been proposed for its use in determining the overall success to anticipate the eventual elimination. Since the publication of original model in 2009, key issues of test-and-treat modeling studies have been identified, including theoretical problems surrounding the sexual partnership network, heterogeneities in the transmission dynamics, and realistic issues of achieving and maintaining high treatment coverage in the most hard-to-reach populations. To explicitly design country-specific control policy, quantitative modeling approaches to each single setting with differing epidemiological context would require multi-disciplinary collaborations among clinicians, public health practitioners, laboratory technologists, epidemiologists and mathematical modelers.

  2. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  3. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  4. PhiMSAMP: philosophy of mathematics: sociological aspects and mathematical practice

    NARCIS (Netherlands)

    Löwe, B.; Müller, T.

    2010-01-01

    Philosophy of mathematics is moving in a new direction: away from a foundationalism in terms of formal logic and traditional ontology, and towards a broader range of approaches that are united by a focus on mathematical practice. The scientific research network PhiMSAMP (Philosophy of Mathematics:

  5. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines.

    Science.gov (United States)

    Piantadosi, Steven

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.

  6. A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-04-26

    Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electron microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.

  7. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  8. Are students who have been educated in an outcomes-based approach prepared for university mathematics?

    Directory of Open Access Journals (Sweden)

    Johann Engelbrecht

    2009-09-01

    Full Text Available Following the political changes of 1994 in South Africa, the decision was taken to replace the traditional skills-based education system at primary and secondary school level (Grades 1 - 12 with an outcomes-based education system (OBE. The OBE approach, referred to as Curriculum 2005, was introduced into schools in 1998. The implementation of the OBE system did not occur without problems, giving rise to revised initiatives and a fair amount of criticism. The 2009 intake of students at universities is the first group of students that had been subjected to the OBE approach for their entire school career. This is also the first group of students for whom some form of mathematics was compulsory up to Grade 12 level in the form of mathematics or mathematical literacy. These students were characterised by the fact that their mathematics marks for Grade 12 were exceptionally high and that many more students qualified for university entrance. This article reports on the impact of this new education system on the mathematics prepared-ness of students entering university. The study involves an empirical analysis of the students in the first-year mathematics course for engineering students at the University of Pretoria as well as an analysis of a questionnaire completed by experienced lecturers at this university. The question addressed in this article is how the 2009 intake of students cope with mathematics at university level with regard to Performance General attributes Mathematical attributes Content-related attributesResults indicate a decrease in mathematics performance of these students at university level and that the inflated matric marks result in unjustified expectations. However, it is not unusual for marks to decrease from school to university and there is still too little evidence for serious concern. The study also indicates that these students seem to be better equipped with regard to personal attributes such as self-confidence and

  9. Mathematics and linguistics

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

  10. A mathematical approach to protein biophysics

    CERN Document Server

    Scott, L Ridgway

    2017-01-01

    This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way.  This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins.  L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001.  He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Ins...

  11. Handbook of mathematical methods in imaging

    CERN Document Server

    2015-01-01

    The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...

  12. Mathematics, Science and the Cambridge Tradition

    OpenAIRE

    Nuno Ornelas Martins

    2012-01-01

    Copyright © 2012 World Economics Association. In this paper the use of mathematics in economics will be discussed, by comparing two approaches to mathematics, a Cartesian approach, and a Newtonian approach. I will argue that while mainstream economics is underpinned by a Cartesian approach which led to a divorce between mathematics and reality, the contributions of key authors of the Cambridge tradition, like Marshall, Keynes and Sraffa, are characterised by a Newtonian approach to mathema...

  13. Description of SOFC anode behavior by a mathematical modelling procedure

    International Nuclear Information System (INIS)

    Ielo, I.; Maggio, G.; Antonucci, V.; Giordano, N.

    1993-01-01

    One of the principal objectives in the development of SOFC is the identification of a stable Ni-cermet anode material with low polarization at high current density. In this respect, a mathematical approach, based on theoretical considerations, has been made in order to identify the optimal combination of geometrical and morphological characteristics of the system. The two limiting cases of diffusion-controlled and kinetic-controlled mechanisms are taken into account. Results in terms of limiting current have been treated by substituting into the related equations morphological parameters (surface area and pore size distribution of the support, metal content and surface area, electrode film thickness). Results are compared to existing experimental data and the influence of various parameters on the overall anode performance is evaluated. 2 tabs., 24 refs

  14. Introduction to mathematical systems theory a behavioral approach

    CERN Document Server

    Polderman, Jan Willem

    1998-01-01

    Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modem as well as the classical techniques of applied mathematics. This renewal of interest,both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The developmentof new courses is a natural consequenceof a high level of excite­ ment on the research frontier as newer techniques, such as numerical and symbolic computersystems,dynamicalsystems,and chaos, mix with and reinforce the tradi­ tional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbookssuitable for use in advancedundergraduate and begin­ ning graduate courses, and will complement the Applied Mathematical Seiences (AMS) series, which will focus on advanced tex...

  15. Pluralism in mathematics a new position in philosophy of mathematics

    CERN Document Server

    Friend, Michèle

    2014-01-01

    This book is about philosophy, mathematics and logic, giving a philosophical account of Pluralism which is a family of positions in the philosophy of mathematics. There are four parts to this book, beginning with a look at motivations for Pluralism by way of Realism, Maddy's Naturalism, Shapiro's Structuralism and Formalism. In the second part of this book the author covers: the philosophical presentation of Pluralism; using a formal theory of logic metaphorically; rigour and proof for the Pluralist; and mathematical fixtures. In the third part the author goes on to focus on the transcendental presentation of Pluralism, and in part four looks at applications of Pluralism, such as a Pluralist approach to proof in mathematics and how Pluralism works in regard to together-inconsistent philosophies of mathematics. The book finishes with suggestions for further Pluralist enquiry. In this work the author takes a deeply radical approach in developing a new position that will either convert readers, or act as a stron...

  16. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  17. An automated approach for extracting Barrier Island morphology from digital elevation models

    Science.gov (United States)

    Wernette, Phillipe; Houser, Chris; Bishop, Michael P.

    2016-06-01

    The response and recovery of a barrier island to extreme storms depends on the elevation of the dune base and crest, both of which can vary considerably alongshore and through time. Quantifying the response to and recovery from storms requires that we can first identify and differentiate the dune(s) from the beach and back-barrier, which in turn depends on accurate identification and delineation of the dune toe, crest and heel. The purpose of this paper is to introduce a multi-scale automated approach for extracting beach, dune (dune toe, dune crest and dune heel), and barrier island morphology. The automated approach introduced here extracts the shoreline and back-barrier shoreline based on elevation thresholds, and extracts the dune toe, dune crest and dune heel based on the average relative relief (RR) across multiple spatial scales of analysis. The multi-scale automated RR approach to extracting dune toe, dune crest, and dune heel based upon relative relief is more objective than traditional approaches because every pixel is analyzed across multiple computational scales and the identification of features is based on the calculated RR values. The RR approach out-performed contemporary approaches and represents a fast objective means to define important beach and dune features for predicting barrier island response to storms. The RR method also does not require that the dune toe, crest, or heel are spatially continuous, which is important because dune morphology is likely naturally variable alongshore.

  18. Many-electron approaches in physics, chemistry and mathematics a multidisciplinary view

    CERN Document Server

    Site, Luigi

    2014-01-01

    This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.

  19. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  20. Equity Analytics: A Methodological Approach for Quantifying Participation Patterns in Mathematics Classroom Discourse

    Science.gov (United States)

    Reinholz, Daniel L.; Shah, Niral

    2018-01-01

    Equity in mathematics classroom discourse is a pressing concern, but analyzing issues of equity using observational tools remains a challenge. In this article, we propose equity analytics as a quantitative approach to analyzing aspects of equity and inequity in classrooms. We introduce a classroom observation tool that focuses on relatively…

  1. Implementing a flipped classroom approach in a university numerical methods mathematics course

    Science.gov (United States)

    Johnston, Barbara M.

    2017-05-01

    This paper describes and analyses the implementation of a 'flipped classroom' approach, in an undergraduate mathematics course on numerical methods. The approach replaced all the lecture contents by instructor-made videos and was implemented in the consecutive years 2014 and 2015. The sequential case study presented here begins with an examination of the attitudes of the 2014 cohort to the approach in general as well as analysing their use of the videos. Based on these responses, the instructor makes a number of changes (for example, the use of 'cloze' summary notes and the introduction of an extra, optional tutorial class) before repeating the 'flipped classroom' approach the following year. The attitudes to the approach and the video usage of the 2015 cohort are then compared with the 2014 cohort and further changes that could be implemented for the next cohort are suggested.

  2. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  3. Rival approaches to mathematical modelling in immunology

    Science.gov (United States)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  4. A Computer-Based Game That Promotes Mathematics Learning More than a Conventional Approach

    Science.gov (United States)

    McLaren, Bruce M.; Adams, Deanne M.; Mayer, Richard E.; Forlizzi, Jodi

    2017-01-01

    Excitement about learning from computer-based games has been papable in recent years and has led to the development of many educational games. However, there are relatively few sound empirical studies in the scientific literature that have shown the benefits of learning mathematics from games as opposed to more traditional approaches. The…

  5. An Investigation of the Teaching Approach Used by Tutors to Prepare Science and Mathematics Teachers during Training at Morogoro Teachers' College

    Science.gov (United States)

    Mungure, Daudi Mika

    2017-01-01

    This paper investigated the teaching approach used by tutors to prepare science and mathematics teachers during training at Morogoro teachers' college. For six years consecutive the performance of science and mathematics in secondary school has become very poor even though the training colleges produce science and mathematics teachers every year…

  6. Analysis of mathematical literacy ability based on self-efficacy in model eliciting activities using metaphorical thinking approach

    Science.gov (United States)

    Setiani, C.; Waluya, S. B.; Wardono

    2018-03-01

    The purposes of this research are: (1) to identify learning quality in Model Eliciting Activities (MEAs) using a Metaphorical Thinking (MT) approach regarding qualitative and quantitative; (2) to analyze mathematical literacy of students based on Self-Efficacy (SE). This research is mixed method concurrent embedded design with qualitative research as the primary method. The quantitative research used quasi-experimental with non-equivalent control group design. The population is VIII grade students of SMP Negeri 3 Semarang Indonesia. Quantitative data is examined by conducting completeness mean test, standard completeness test, mean differentiation test and proportional differentiation test. Qualitative data is analyzed descriptively. The result of this research shows that MEAs learning using MT approach accomplishes good criteria both quantitatively and qualitatively. Students with low self-efficacy can identify problems, but they are lack ability to arrange problem-solving strategy on mathematical literacy questions. Students with medium self-efficacy can identify information provided in issues, but they find difficulties to use math symbols in making a representation. Students with high self-efficacy are excellent to represent problems into mathematical models as well as figures by using appropriate symbols and tools, so they can arrange strategy easily to solve mathematical literacy questions.

  7. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    International Nuclear Information System (INIS)

    Benalcázar, M; Padín, J; Brun, M; Pastore, J; Ballarin, V; Peirone, L; Pereyra, G

    2011-01-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  8. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    Science.gov (United States)

    Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.

    2011-12-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  9. An approach critical in mathematics education: Opportunities and interaction theory-practice-through critical mathematics education

    Directory of Open Access Journals (Sweden)

    Itamar Miranda da Silva

    2011-06-01

    Full Text Available This paper discusses the possibilities of articulation of theory-and-practice in the teaching, by means of critical mathematics education as a proposal for the teacher facing the challenges of daily life in the classroom. The discussion is based on the literature through which was estudied and analyzed several books, articles and dissertations on the subject, as well as our experiences and reflections resulting from the process of teacher education we experienced. From the readings and analysis was possible to construct a teaching proposal that suggests to address critical mathematics education as an alternative link between theory and practice and to assign to the teaching of mathematics a greater dynamism, with the prospect of developing knowledge and pedagogical practices that contribute to a broader training, which prepares for citizenship and for being critical students and teachers in the training process. Conjectures were raised about possible contributions of critical mathematics education as a differentiated alternative as opposed to reproductivist teaching. We believe therefore that this article could help with the reflections on the importance of mathematics education in teacher education which enables the realization that beyond disciplinary knowledge (content, are necessary pedagogical knowledge, curriculum and experiential to address the problems that relate to the teaching of mathematics

  10. A GRU-based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition

    OpenAIRE

    Zhang, Jianshu; Du, Jun; Dai, Lirong

    2017-01-01

    In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimensional ink trajectory information of handwritten expression is encoded via the gated recurrent unit based recurrent neural network (GRU-RNN). Then the decoder is also implemented by the GRU-RNN with a coverage-based attention model. The proposed approach can simultaneously accompl...

  11. Spatially variant morphological restoration and skeleton representation.

    Science.gov (United States)

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  12. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  13. Learning Environments in Mathematics

    Science.gov (United States)

    Turner, Vanshelle E.

    2017-01-01

    Learning mathematics is problematic for most primary school age children because mathematics is rote and the memorization of steps rather than an approach to seeing relationships that builds inquiry and understanding. Therefore, the traditional "algorithmic" way of teaching mathematics has not fully prepared students to be critical…

  14. Mathematical Gossip: Relevance and Context in the Mathematics Classroom

    Science.gov (United States)

    Callingham, Rosemary

    2004-01-01

    Using mathematical gossip in the classroom allows teachers to expand their students' horizons, and provide pathways to improvement of understanding. The expansion of a simple idea into another mathematical context can enrich a student's learning. In particular it may help to bridge the gap between purely procedural approaches and a conceptual…

  15. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  16. Parametric based morphological transformation for contrast ...

    Indian Academy of Sciences (India)

    rithm is illustrated through the processing of gray scale images and color images with different backgrounds. Keywords. Histogram equalization; image background; mathematical morphology; Weber's ratio. 1. Introduction. Contrast enhancement has a crucial role in image processing applications, such as digital.

  17. Morphological awareness and early and advanced reading and spelling in Dutch

    NARCIS (Netherlands)

    Rispens, J.E.; McBride-Chang, C.; Reitsma, P.

    2008-01-01

    This study investigated the relations of three aspects of morphological awareness to word recognition and spelling skills of Dutch speaking children. Tasks of inflectional and derivational morphology and lexical compounding, as well as measures of phonological awareness, vocabulary and mathematics

  18. New Avenues for History in Mathematics Education: Mathematical Competencies and Anchoring

    DEFF Research Database (Denmark)

    Jankvist, U. T.; Kjeldsen, T. H.

    2011-01-01

    . The first scenario occurs when history is used as a ‘tool’ for the learning and teaching of mathematics, the second when history of mathematics as a ‘goal’ is pursued as an integral part of mathematics education. We introduce a multiple-perspective approach to history, and suggest that research on history......The paper addresses the apparent lack of impact of ‘history in mathematics education’ in mathematics education research in general, and proposes new avenues for research. We identify two general scenarios of integrating history in mathematics education that each gives rise to different problems...... in mathematics education follows one of two different avenues in dealing with these scenarios. The first is to focus on students’ development of mathematical competencies when history is used a tool for the learning of curriculum-dictated mathematical in-issues. A framework for this is described. Secondly, when...

  19. The Effects of a Mathematics Infusion Curriculum on Middle School Student Mathematics Achievement

    Science.gov (United States)

    Burghardt, M. David; Lauckhardt, James; Kennedy, Maria; Hecht, Deborah; McHugh, Luisa

    2015-01-01

    Increasing mathematical competencies of American students has been a focus for educators, researchers, and policy makers alike. One purported approach to increase student learning is through connecting mathematics and science curricula. Yet there is a lack of research examining the impact of making these connections. The Mathematics Infusion into…

  20. Tumor Microenvironment In Experimental Models Of Human Cancer: Morphological Investigational Approaches

    Directory of Open Access Journals (Sweden)

    Lucia Minoli

    2017-05-01

    Discussion and conclusions. Due to the microenvironmental heterogeneity which influence tumor development and biological behavior, a sole quantification is unreliable for characterizing the TME. Considering that, morphological techniques proved to be a valuable approach, allowing the evaluation of the spatial distribution and mutual interaction between the different elements. Additional studies are needed for further investigate the biological significance of spatial distribution of the components of the TME.

  1. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  2. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  3. The Professional Learning of Grade Six Teachers of Mathematics Implementing the Flipped Classroom Approach

    Science.gov (United States)

    Goodnough, Karen; Murphy, Elizabeth

    2017-01-01

    The purpose of this paper is to make sense of the professional learning of four teachers implementing a flipped classroom approach in their grade six mathematics class. The professional learning took place within a two-year Action Research (AR) project that engaged teachers in collaborative and iterative planning, implementation, observation and…

  4. The Development of Interdisciplinary Teaching Approaches among Pre-service Science and Mathematics Teachers

    Science.gov (United States)

    Miranda Martins, Dominique

    This study sought to understand how a group of pre-service teachers in a combined secondary science and mathematics teaching methods course conceptualized and experienced interdisciplinary approaches to teaching. Although knowing how to plan interdisciplinary activities is an essential teaching practice in Quebec, these pre-service teachers faced many challenges during the process of learning to teach with this approach. By using two interdisciplinary frameworks (Nikitina, 2005; Boix Mansilla & Duraising, 2007), I qualitatively analyzed the development of the pre-service teachers' prior and emerging ideas about interdisciplinarity and their ability to plan interdisciplinary teaching activities. The provincial curriculum and issues related to time greatly shaped students' conceptions about interdisciplinarity in the classroom and constrained their ability to plan for and envision the enactment of interdisciplinary lessons in secondary science and mathematics classes. In addition, images of themselves as content-specialists, self-efficacy beliefs in relation to interdisciplinary teaching, and student learning as a source of teacher motivation emerged as key factors promoting or interrupting the development of interdisciplinary teaching approaches. Examination of these factors highlights the need for teacher-education programs to provide opportunities for pre-service teachers to explore how they see themselves as educators, increase their instructional self-efficacy beliefs, and motivate them to teach in an interdisciplinary fashion. Keywords: interdisciplinary teaching, student-teachers, curriculum, teacher-education program, self-efficacy, motivation.

  5. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  6. Mathematical knowledge in teaching

    CERN Document Server

    Rowland, Tim

    2011-01-01

    This book examines issues of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing approaches to characterizing, assessing and developing mathematical knowledge for teaching.

  7. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  8. CONTEXT AND EMPIRICAL APPROACH TO FORMATION OF MATHEMATICAL COMPETENCE IN STUDENTS OF HUMANITARIAN TRAINING DIRECTIONS AT UNIVERSITY

    Directory of Open Access Journals (Sweden)

    S V Shcherbatykh

    2016-12-01

    Full Text Available The article deals with the formation of students’ mathematical competence in higher humanitarian education. The scientific literature analysis and pedagogical experience has shown that in spite of the numerous studies conducted in this area, the idea of coupling mathematical education of the humanitarians with their cultural, methodological and professional training remains. In our opinion, the design of mathematical training of the humanitarians must rely on the theory of activity, which brings together the main statements of methodology, pedagogy, psychology, such as the principles and methods of teaching, the problems of the peculiarities of students’ thinking, the increase of the level of their cognitive activity, the person’s education as a whole.The article presents the components of mathematical competence, criteria indicators, stages and levels of its formation. For the formation of mathematical competence it is proposed to apply context- empirical approach and developed on the basis of its organizational and pedagogical model (the main elements of this model are described in the article. In conclusion the pedagogical conditions of effective formation of mathematical competence in students in the system profile of humanitarian education are highlighted and revealed.

  9. What is mathematical logic?

    CERN Document Server

    Crossley, J N; Brickhill, CJ; Stillwell, JC

    2010-01-01

    Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

  10. Teaching Mathematics in Geography Degrees

    Science.gov (United States)

    Bennett, Robert

    1978-01-01

    Examines ways of developing college students' motivation for mathematical training; describes the type of mathematical knowledge required in the geography discipline; and explores an applied approach to mathematics teaching based on a systems concept. For journal availability, see SO 506 224. (Author/AV)

  11. Does the Responsive Classroom Approach Affect the Use of Standards-Based Mathematics Teaching Practices?: Results from a Randomized Controlled Trial

    Science.gov (United States)

    Ottmar, Erin R.; Rimm-Kaufman, Sara E.; Berry, Robert Q.; Larsen, Ross A.

    2013-01-01

    This study highlights the connections between two facets of teachers' skills--those supporting teachers' mathematical instructional interactions and those underlying social interactions within the classroom. The impact of the Responsive Classroom (RC) approach and use of RC practices on the use of standards-based mathematics teaching practices was…

  12. Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms

    Science.gov (United States)

    Niu, Weihua; Zhou, Zheng; Zhou, Xinlin

    2017-01-01

    Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…

  13. Improving pedagogic competence using an e-learning approach for pre-service mathematics teachers

    Science.gov (United States)

    Retnowati, E.; Murdiyani, N. M.; Marsigit; Sugiman; Mahmudi, A.

    2018-03-01

    This article reported a classroom action research that was aimed to improve student’s pedagogic competence during a course namely Methods of Mathematics Instruction. An asynchronous e-learning approach was provided as supplementary material to the main lecture. This e-learning consisted of selected references and educational website addresses and also facilitated online discussions about various methods of mathematics instructions. The subject was twenty-six pre-service teachers in the Department of Mathematics Education, Yogyakarta State University, Indonesia, conducted by the researchers. The research completed three cycles, where each cycle consisted of plan-action-reflection. Through observation, documentation, and interview, it was concluded that asynchronous e-learning might be used to improve pedagogic competence when direct instruction is also applied in the classroom. Direct instruction in this study provided review, explanation, scheme, and examples which could be used by students to select relevant resources in the e-learning portal. Moreover, the pedagogic competence improved after students accomplished assignments to identify aspects of pedagogic instruction either from analyzing videos in e-learning course or simulating in the classroom with direct commentaries. Supporting factors were enthusiasm, discipline, and interactions among students and lecturer that were built throughout the lectures.

  14. Girls and Mathematics--A "Hopeless" Issue? A Control-Value Approach to Gender Differences in Emotions towards Mathematics

    Science.gov (United States)

    Frenzel, Anne C.; Pekrun, Reinhard; Goetz, Thomas

    2007-01-01

    This study analyzed gender differences in achievement emotions in the domain of mathematics. Based on Pekrun's (2000, 2006) control-value theory of achievement emotions, we hypothesized that there are gender differences in mathematics emotions due to the students' different levels of control and value beliefs in mathematics, even when controlling…

  15. DISCRETE MATHEMATICS AS FUNDAMENTAL DISCIPLINE IS IN SYSTEM OF MATHEMATICAL PREPARATION OF FUTURE SOFTWARE ENGINEER

    OpenAIRE

    D. Shchedrolosev

    2010-01-01

    Fundamental mathematical background is an important part of training future engineers and programmers. The paper considers existing approaches to teaching the fundamentals of discrete mathematics specialist IT profile, a comparative analysis of modern textbooks on discrete mathematics for IT professionals was conducted

  16. Morphological awareness and early and advanced word recognition and spelling in Dutch

    NARCIS (Netherlands)

    Rispens, J.E.; McBride-Chang, C.; Reitsma, P.

    2008-01-01

    This study investigated the relations of three aspects of morphological awareness to word recognition and spelling skills of Dutch speaking children. Tasks of inflectional and derivational morphology and lexical compounding, as well as measures of phonological awareness, vocabulary and mathematics

  17. Mathematical Graphic Organizers

    Science.gov (United States)

    Zollman, Alan

    2009-01-01

    As part of a math-science partnership, a university mathematics educator and ten elementary school teachers developed a novel approach to mathematical problem solving derived from research on reading and writing pedagogy. Specifically, research indicates that students who use graphic organizers to arrange their ideas improve their comprehension…

  18. Middle School Teachers' Views and Approaches to Implement Mathematical Tasks

    Science.gov (United States)

    Yesildere-Imre, Sibel; Basturk-Sahin, Burcu Nur

    2016-01-01

    This research examines middle school mathematics teachers' views regarding implementation of mathematical tasks and their enactments. We compare their views on tasks and their implementation, and determine the causes of difference between the two using qualitative research methods. We interview sixteen middle school mathematics teachers based on…

  19. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  20. An institutional approach to university mathematics education:

    DEFF Research Database (Denmark)

    Winsløw, Carl; Barquero, Berta; De Vleeschouwer, Martine

    2014-01-01

    University mathematics education (UME) is considered, in this paper, as a kind of didactic practice – characterised by institutional settings and by the purpose of inducting students into mathematical practices. We present a research programme – the anthropological theory of the didactic (ATD......) – in which this rough definition can be made much more precise; we also outline some cases of ATD-based research on UME. Three cases are presented in more detail. The first is a theoretical and empirical study of the topic of dual vector spaces, as it appears in undergraduate courses on linear algebra...... for engineering students....

  1. One-dimensional models for mountain-river morphology

    NARCIS (Netherlands)

    Sieben, A.

    1996-01-01

    In this report, some classical and new simplifications in mathematical and numerical models for river morphology are compared for conditions representing rivers in mountainous areas (high values of Froude numbers and relatively large values of sediment transport rates). Options for simplification

  2. DISCRETE MATHEMATICS AS FUNDAMENTAL DISCIPLINE IS IN SYSTEM OF MATHEMATICAL PREPARATION OF FUTURE SOFTWARE ENGINEER

    Directory of Open Access Journals (Sweden)

    D. Shchedrolosev

    2010-04-01

    Full Text Available Fundamental mathematical background is an important part of training future engineers and programmers. The paper considers existing approaches to teaching the fundamentals of discrete mathematics specialist IT profile, a comparative analysis of modern textbooks on discrete mathematics for IT professionals was conducted

  3. 'Whys' and 'Hows' of using philosophy in mathematics education

    DEFF Research Database (Denmark)

    Jankvist, Uffe Thomas; Iversen, Steffen Møllegaard

    2014-01-01

    The article elaborates and exemplifies a potential categorization of the reasons for using philosophy, in particular the philosophy of mathematics, in mathematics education and approaches to doing so—the so-called ‘whys’ and ‘hows’. More precisely, the ‘whys’ are divided into the two categories...... of ‘philosophy as a tool’ for teaching and learning mathematics, and ‘philosophy as a goal’, referring to a stance of considering it a purpose in itself to teach students certain aspects regarding the philosophy of mathematics. A division of the ‘hows’ into three different categories is offered: illumination...... approaches; modules approaches; and philosophy-based approaches. A major part of the article is spent on providing illustrative exemplifications of each of these approaches by referring to already implemented uses of philosophy of mathematics in mathematics education as well as by suggesting new ones....

  4. New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model.

    Science.gov (United States)

    Madeiro, João P V; Nicolson, William B; Cortez, Paulo C; Marques, João A L; Vázquez-Seisdedos, Carlos R; Elangovan, Narmadha; Ng, G Andre; Schlindwein, Fernando S

    2013-08-01

    This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, -0.38±7.12 ms and -3.70±15.46 ms, for the first database, and 1.40±8.99 ms and 2.83±15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. International Conference on Quantum Mathematical Physics : a Bridge between Mathematics and Physics

    CERN Document Server

    Kleiner, Johannes; Röken, Christian; Tolksdorf, Jürgen

    2016-01-01

    Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fu...

  6. A Mathematical Approach to Establishing Constitutive Models for Geomaterials

    Directory of Open Access Journals (Sweden)

    Guang-hua Yang

    2013-01-01

    Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.

  7. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies.

    Science.gov (United States)

    Herberg, Maria; Zerjatke, Thomas; de Back, Walter; Glauche, Ingmar; Roeder, Ingo

    2015-06-01

    Pluripotent embryonic stem cells (ESCs) have the potential to differentiate into cells of all three germ layers. This unique property has been extensively studied on the intracellular, transcriptional level. However, ESCs typically form clusters of cells with distinct size and shape, and establish spatial structures that are vital for the maintenance of pluripotency. Even though it is recognized that the cells' arrangement and local interactions play a role in fate decision processes, the relations between transcriptional and spatial patterns have not yet been studied. We present a systems biology approach which combines live-cell imaging, quantitative image analysis, and multiscale, mathematical modeling of ESC growth. In particular, we develop quantitative measures of the morphology and of the spatial clustering of ESCs with different expression levels and apply them to images of both in vitro and in silico cultures. Using the same measures, we are able to compare model scenarios with different assumptions on cell-cell adhesions and intercellular feedback mechanisms directly with experimental data. Applying our methodology to microscopy images of cultured ESCs, we demonstrate that the emerging colonies are highly variable regarding both morphological and spatial fluorescence patterns. Moreover, we can show that most ESC colonies contain only one cluster of cells with high self-renewing capacity. These cells are preferentially located in the interior of a colony structure. The integrated approach combining image analysis with mathematical modeling allows us to reveal potential transcription factor related cellular and intercellular mechanisms behind the emergence of observed patterns that cannot be derived from images directly. © 2015 International Society for Advancement of Cytometry.

  8. Mathematics through Experience

    Science.gov (United States)

    Hristozova, Nedyalka

    2016-01-01

    The author shares some examples from her Bulgarian project, "Mathematics Through Experience", which approaches mathematics from a practical, real-life perspective in order to develop creative thinking: just like science! What was most important to her was to motivate her students to study maths and science by giving them a taste of how…

  9. Application of Modern Experimental Technique to Solve Morphological Complexity in Plants Taxonomy

    Directory of Open Access Journals (Sweden)

    SURANTO

    2000-07-01

    Full Text Available Modern taxonomy has two approaches, i.e. classical and experimental taxonomy. Classical taxonomy uses morphological characters, while experimental taxonomy uses broader methods including chemistry, physics and mathematics, in the form of laboratory data that are revealed together with the progress of optical technique (microscope, chemistry methods (chromatography, electrophoresis, etc. Modern taxonomy tends to use series of interrelated data. More data used would result in more validity and give better clarification of taxonomic status. A lot of modern taxonomic data such as palynology, cytotaxonomy (cytology, chemical constituent (chemotaxonomy, isozyme and DNA sequencing were used recently.

  10. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    Science.gov (United States)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  11. Mathematical structures for computer graphics

    CERN Document Server

    Janke, Steven J

    2014-01-01

    A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap

  12. Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields

    NARCIS (Netherlands)

    van de Gronde, Jasper; Roerdink, Jos B. T. M.

    2014-01-01

    Rotation invariance is an important property for operators on tensor fields, but up to now, most methods for morphology on tensor fields had to either sacrifice rotation invariance, or do without the foundation of mathematical morphology: a lattice structure. Recently, we proposed a framework for

  13. Novel Approaches for Phylogenetic Inference from Morphological Data and Total-Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians).

    Science.gov (United States)

    Pyron, R Alexander

    2017-01-01

    Here, I combine previously underutilized models and priors to perform more biologically realistic phylogenetic inference from morphological data, with an example from squamate reptiles. When coding morphological characters, it is often possible to denote ordered states with explicit reference to observed or hypothetical ancestral conditions. Using this logic, we can integrate across character-state labels and estimate meaningful rates of forward and backward transitions from plesiomorphy to apomorphy. I refer to this approach as MkA, for “asymmetric.” The MkA model incorporates the biological reality of limited reversal for many phylogenetically informative characters, and significantly increases likelihoods in the empirical data sets. Despite this, the phylogeny of Squamata remains contentious. Total-evidence analyses using combined morphological and molecular data and the MkA approach tend toward recent consensus estimates supporting a nested Iguania. However, support for this topology is not unambiguous across data sets or analyses, and no mechanism has been proposed to explain the widespread incongruence between partitions, or the hidden support for various topologies in those partitions. Furthermore, different morphological data sets produced by different authors contain both different characters and different states for the same or similar characters, resulting in drastically different placements for many important fossil lineages. Effort is needed to standardize ontology for morphology, resolve incongruence, and estimate a robust phylogeny. The MkA approach provides a preliminary avenue for investigating morphological evolution while accounting for temporal evidence and asymmetry in character-state changes.

  14. Aesthetics of interdisciplinarity art and mathematics

    CERN Document Server

    Lähdesmäki, Tuuli

    2017-01-01

    This anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions.

  15. Higher engineering mathematics

    CERN Document Server

    John Bird

    2014-01-01

    A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in

  16. Morphological demosaicking

    Science.gov (United States)

    Quan, Shuxue

    2009-02-01

    Bayer patterns, in which a single value of red, green or blue is available for each pixel, are widely used in digital color cameras. The reconstruction of the full color image is often referred to as demosaicking. This paper introduced a new approach - morphological demosaicking. The approach is based on strong edge directionality selection and interpolation, followed by morphological operations to refine edge directionality selection and reduce color aliasing. Finally performance evaluation and examples of color artifacts reduction are shown.

  17. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  18. An Integrated Approach to Mathematical Modeling: A Classroom Study.

    Science.gov (United States)

    Doerr, Helen M.

    Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…

  19. Mathematical psychology.

    Science.gov (United States)

    Batchelder, William H

    2010-09-01

    Mathematical psychology is a sub-field of psychology that started in the 1950s and has continued to grow as an important contributor to formal psychological theory, especially in the cognitive areas of psychology such as learning, memory, classification, choice response time, decision making, attention, and problem solving. In addition, there are several scientific sub-areas that were originated by mathematical psychologists such as the foundations of measurement, stochastic memory models, and psychologically motivated reformulations of expected utility theory. Mathematical psychology does not include all uses of mathematics and statistics in psychology, and indeed there is a long history of such uses especially in the areas of perception and psychometrics. What is most unique about mathematical psychology is its approach to theory construction. While accepting the behaviorist dictum that the data in psychology must be observable and replicable, mathematical models are specified in terms of unobservable formal constructs that can predict detailed aspects of data across multiple experimental and natural settings. By now almost all the substantive areas of cognitive and experimental psychology have formal mathematical models and theories, and many of these are due to researchers that identify with mathematical psychology. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  20. The Psychological Basis of Learning Mathematics.

    Science.gov (United States)

    Ruberu, J.

    1982-01-01

    Mathematics is a hierarchial build-up of concepts and the process of this systematic building up of concepts is of prime importance in the study of mathematics. Although discovery approaches are currently used, there are limitations. Ausubel's "meaningful learning" approach is suggested as an alternative to discovery learning in…

  1. A multidimensional approach to training mathematics students at a university: improving the efficiency through the unity of social, psychological and pedagogical aspects

    Science.gov (United States)

    Kuznetsova, Elena; Matytcina, Marina

    2018-04-01

    The article deals with social, psychological and pedagogical aspects of teaching mathematics students at universities. The sociological portrait and the factors influencing a career choice of a mathematician have been investigated through the survey results of 198 first-year students of applied mathematics major at 27 state universities (Russia). Then, psychological characteristics of mathematics students have been examined based on scientific publications. The obtained results have allowed us to reveal pedagogical conditions and specific ways of training mathematics students in the process of their education at university. The article also contains the analysis of approaches to the development of mathematics education both in Russia and in other countries. The results may be useful for teaching students whose training requires in-depth knowledge of mathematics.

  2. Video rate morphological processor based on a redundant number representation

    Science.gov (United States)

    Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.

    1992-03-01

    This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.

  3. The Effectiveness of Problem-Based Learning Approach Based on Multiple Intelligences in Terms of Student’s Achievement, Mathematical Connection Ability, and Self-Esteem

    Science.gov (United States)

    Kartikasari, A.; Widjajanti, D. B.

    2017-02-01

    The aim of this study is to explore the effectiveness of learning approach using problem-based learning based on multiple intelligences in developing student’s achievement, mathematical connection ability, and self-esteem. This study is experimental research with research sample was 30 of Grade X students of MIA III MAN Yogyakarta III. Learning materials that were implemented consisting of trigonometry and geometry. For the purpose of this study, researchers designed an achievement test made up of 44 multiple choice questions with respectively 24 questions on the concept of trigonometry and 20 questions for geometry. The researcher also designed a connection mathematical test and self-esteem questionnaire that consisted of 7 essay questions on mathematical connection test and 30 items of self-esteem questionnaire. The learning approach said that to be effective if the proportion of students who achieved KKM on achievement test, the proportion of students who achieved a minimum score of high category on the results of both mathematical connection test and self-esteem questionnaire were greater than or equal to 70%. Based on the hypothesis testing at the significance level of 5%, it can be concluded that the learning approach using problem-based learning based on multiple intelligences was effective in terms of student’s achievement, mathematical connection ability, and self-esteem.

  4. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    Science.gov (United States)

    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  5. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    Science.gov (United States)

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  6. The effect of Think Pair Share (TPS) using scientific approach on students’ self-confidence and mathematical problem-solving

    Science.gov (United States)

    Rifa’i, A.; Lestari, H. P.

    2018-03-01

    This study was designed to know the effects of Think Pair Share using Scientific Approach on students' self-confidence and mathematical problem-solving. Quasi-experimental with pre-test post-test non-equivalent group method was used as a basis for design this study. Self-confidence questionnaire and problem-solving test have been used for measurement of the two variables. Two classes of the first grade in religious senior high school (MAN) in Indonesia were randomly selected for this study. Teaching sequence and series from mathematics book at control group in the traditional way and at experiment group has been in TPS using scientific approach learning method. For data analysis regarding students’ problem-solving skill and self-confidence, One-Sample t-Test, Independent Sample t-Test, and Multivariate of Variance (MANOVA) were used. The results showed that (1) TPS using a scientific approach and traditional learning had positive effects (2) TPS using scientific approach learning in comparative with traditional learning had a more significant effect on students’ self-confidence and problem-solving skill.

  7. Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor

    Science.gov (United States)

    Pustovetov, M. Yu

    2018-03-01

    This article discusses the development of the computer model of an induction motor based on the mathematical model in a three-phase stator reference frame. It uses an approach that allows combining during preparation of the computer model dual methods: means of visual programming circuitry (in the form of electrical schematics) and logical one (in the form of block diagrams). The approach enables easy integration of the model of an induction motor as part of more complex models of electrical complexes and systems. The developed computer model gives the user access to the beginning and the end of a winding of each of the three phases of the stator and rotor. This property is particularly important when considering the asymmetric modes of operation or when powered by the special circuitry of semiconductor converters.

  8. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  9. Bridging different perspectives of the physiological and mathematical disciplines.

    Science.gov (United States)

    Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut; Kappel, Franz; Schneditz, Daniel; Kenner, Thomas; Goswami, Nandu

    2012-12-01

    The goal of this report is to discuss educational approaches for bridging the different perspectives of the physiological and mathematical disciplines. These approaches can enhance the learning experience for physiology, medical, and mathematics students and simultaneously act to stimulate mathematical/physiological/clinical interdisciplinary research. While physiology education incorporates mathematics, via equations and formulas, it does not typically provide a foundation for interdisciplinary research linking mathematics and physiology. Here, we provide insights and ideas derived from interdisciplinary seminars involving mathematicians and physiologists that have been conducted over the last decade. The approaches described here can be used as templates for giving physiology and medical students insights into how sophisticated tools from mathematics can be applied and how the disciplines of mathematics and physiology can be integrated in research, thereby fostering a foundation for interdisciplinary collaboration. These templates are equally applicable to linking mathematical methods with other life and health sciences in the educational process.

  10. Mathematics for the liberal arts

    CERN Document Server

    Bindner, Donald; Hemmeter, Joe

    2014-01-01

    Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

  11. Methodological Approaches to Experimental Teaching of Mathematics to University Students

    Directory of Open Access Journals (Sweden)

    Nikolay I.

    2018-03-01

    Full Text Available Introduction: the article imparts authors’ thoughtson a new teaching methodology for mathematical education in universities. The aim of the study is to substantiate the efficiency of the comprehensive usage of mathematical electronic courses, computer tests, original textbooks and methodologies when teaching mathematics to future agrarian engineers. The authors consider this implementation a unified educational process. Materials and Methods: the synthesis of international and domestic pedagogical experience of teaching students in university and the following methods of empirical research were used: pedagogical experiment, pedagogical measurementsand experimental teaching of mathematics. The authors applied the methodology of revealing interdisciplinary links on the continuum of mathematical problems using the key examples and exercises. Results: the online course “Mathematics” was designed and developed on the platform of Learning Management System Moodle. The article presents the results of test assignments assessing students’ intellectual abilities and analysis of solutions of various types of mathematical problems by students. The pedagogical experiment substantiated the integrated selection of textbooks, online course and online tests using the methodology of determination of the key examples and exercises. Discussion and Conclusions: the analysis of the experimental work suggested that the new methodology is able to have positive effect on the learning process. The learning programme determined the problem points for each student. The findings of this study have a number of important implications for future educational practice.

  12. Back in Time on a Mathematics Trail

    Science.gov (United States)

    Moffett, Pamela

    2010-01-01

    The recently revised "Northern Ireland Primary Curriculum" recommends that teachers make use of the environment to extend children's understanding of mathematics. One approach to using the environment in mathematics is to take children on a mathematics trail. A mathematics trail uses the resources and features within the environment as a…

  13. Implementation of cooperative learning model type STAD with RME approach to understanding of mathematical concept student state junior high school in Pekanbaru

    Science.gov (United States)

    Nurhayati, Dian Mita; Hartono

    2017-05-01

    This study aims to determine whether there is a difference in the ability of understanding the concept of mathematics between students who use cooperative learning model Student Teams Achievement Division type with Realistic Mathematic Education approach and students who use regular learning in seventh grade SMPN 35 Pekanbaru. This study was quasi experiments with Posttest-only Control Design. The populations in this research were all the seventh grade students in one of state junior high school in Pekanbaru. The samples were a class that is used as the experimental class and one other as the control class. The process of sampling is using purposive sampling technique. Retrieval of data in this study using the documentation, observation sheets, and test. The test use t-test formula to determine whether there is a difference in student's understanding of mathematical concepts. Before the t-test, should be used to test the homogeneity and normality. Based in the analysis of these data with t0 = 2.9 there is a difference in student's understanding of mathematical concepts between experimental and control class. Percentage of students experimental class with score more than 65 was 76.9% and 56.4% of students control class. Thus be concluded, the ability of understanding mathematical concepts students who use the cooperative learning model type STAD with RME approach better than students using the regular learning. So that cooperative learning model type STAD with RME approach is well used in learning process.

  14. Provisional Approaches to Goals for School Mathematics; Cambridge Conference on School Mathematics Feasibility Study No. 37.

    Science.gov (United States)

    Cambridge Conference on School Mathematics, Newton, MA.

    These materials were written with the aim of reflecting the thinking of Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for school mathematics K-6. In view of the experiences of other curriculum groups and of the general discussions since 1963, the present report initiates the next step in evolving the "Goals".…

  15. Basics of modern mathematical statistics

    CERN Document Server

    Spokoiny, Vladimir

    2015-01-01

    This textbook provides a unified and self-contained presentation of the main approaches to and ideas of mathematical statistics. It collects the basic mathematical ideas and tools needed as a basis for more serious studies or even independent research in statistics. The majority of existing textbooks in mathematical statistics follow the classical asymptotic framework. Yet, as modern statistics has changed rapidly in recent years, new methods and approaches have appeared. The emphasis is on finite sample behavior, large parameter dimensions, and model misspecifications. The present book provides a fully self-contained introduction to the world of modern mathematical statistics, collecting the basic knowledge, concepts and findings needed for doing further research in the modern theoretical and applied statistics. This textbook is primarily intended for graduate and postdoc students and young researchers who are interested in modern statistical methods.

  16. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  17. Platonism, Naturalism, and Mathematical Knowledge

    CERN Document Server

    Brown, James Robert

    2011-01-01

    This study addresses a central theme in current philosophy: Platonism vs Naturalism and provides accounts of both approaches to mathematics, crucially discussing Quine, Maddy, Kitcher, Lakoff, Colyvan, and many others. Beginning with accounts of both approaches, Brown defends Platonism by arguing that only a Platonistic approach can account for concept acquisition in a number of special cases in the sciences. He also argues for a particular view of applied mathematics, a view that supports Platonism against Naturalist alternatives. Not only does this engaging book present the Platonist-Natural

  18. The Emergence of Objects from Mathematical Practices

    Science.gov (United States)

    Font, Vicenc; Godino, Juan D.; Gallardo, Jesus

    2013-01-01

    The nature of mathematical objects, their various types, the way in which they are formed, and how they participate in mathematical activity are all questions of interest for philosophy and mathematics education. Teaching in schools is usually based, implicitly or explicitly, on a descriptive/realist view of mathematics, an approach which is not…

  19. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  20. Symbolising the Real of Mathematics Education

    Science.gov (United States)

    Pais, Alexandre

    2015-01-01

    This text, occasioned by a critical reading of Tony Brown's new book "Mathematics Education and Subjectivity," aims at contributing to the building of a sociopolitical approach to mathematics education based on Lacanian psychoanalysis and Slavoj Žižek's philosophy. Brown has been bringing into the field of mathematics education the work…

  1. Morphology, molecules, and monogenean parasites: an example of an integrative approach to cichlid biodiversity.

    Directory of Open Access Journals (Sweden)

    Maarten Van Steenberge

    Full Text Available The unparalleled biodiversity of Lake Tanganyika (Africa has fascinated biologists for over a century; its unique cichlid communities are a preferred model for evolutionary research. Although species delineation is, in most cases, relatively straightforward, higher-order classifications were shown not to agree with monophyletic groups. Here, traditional morphological methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread and abundant cichlids are poorly understood. Molecular work suggested that genus and species boundaries should be revised. Moreover, previous morphological results indicated that intraspecific variation should be considered to delineate species in Lake Tanganyika cichlids. We review the genera Simochromis and Pseudosimochromis using an integrative approach. Besides a morphometric study and a barcoding approach, monogenean Cichlidogyrus (Platyhelminthes: Ancyrocephalidae gill parasites, often highly species-specific, are used as complementary markers. Six new species are described. Cichlidogyrus raeymaekersi sp. nov., C. muterezii sp. nov. and C. banyankimbonai sp. nov. infect S. diagramma. Cichlidogyrus georgesmertensi sp. nov. was found on S. babaulti and S. pleurospilus, C. franswittei sp. nov. on both S. marginatus and P. curvifrons and C. frankwillemsi sp. nov. only on P. curvifrons. As relatedness between Cichlidogyrus species usually reflects relatedness between hosts, we considered Simochromis monotypic because the three Cichlidogyrus species found on S. diagramma belonged to a different morphotype than those found on the other Simochromis. The transfer of S. babaulti, S. marginatus, S. pleurospilus and S. margaretae to Pseudosimochromis was justified by the similarity of their Cichlidogyrus fauna and the intermediate morphology of S. margaretae. Finally parasite data also supported the synonymy between S

  2. Investigations in Pure Mathematics: A Constructivist Perspective.

    Science.gov (United States)

    Hirst, Keith; Shiu, Christine

    1995-01-01

    Discusses an investigative, constructivist approach in the context of undergraduate mathematics, with particular reference to pure mathematics, general aims and objectives, assessment strategies, and problems of supervision that affect tutors and lecturers using this approach. Gives students' views on their experiences in this mode of working. (19…

  3. Mathematics and the real world

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2000-03-01

    Full Text Available In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured.

  4. A Multiple Intelligence Pedagogical Approach in Fifth Grade Mathematics: A Mixed Method Study

    Science.gov (United States)

    Davis, Claudine Davillier

    2012-01-01

    The need for mathematics intervention has increased tremendously over the years, particularly after the No Child Left Behind Act of 2001.Students who lack basic mathematics skills and students who experience mathematics difficulties greatly benefit from mathematics interventions. This study examined mathematics intervention through the use of the…

  5. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  6. Teaching Mathematical Functions Using Geometric Functions Approach and Its Effect on Ninth Grade Students' Motivation

    Science.gov (United States)

    Akçakin, Veysel

    2018-01-01

    The purpose of this study is to investigate the effects of using geometric functions approach on 9th grade students' motivation levels toward mathematics in functions unit. Participants of this study were 87 students who were ongoing in the first year of high school in Turkey. In this research, pretest and posttest control group quasiexperimental…

  7. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    Science.gov (United States)

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  8. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  9. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  10. Digital games and learning mathematics: Student, teacher and parent perspectives

    Directory of Open Access Journals (Sweden)

    Su Ting Yong

    2016-12-01

    Full Text Available The purpose of this study was to explore the potential use of digital games in learning mathematics at secondary school level in Malaysia. Three secondary school students, three mathematics teachers and three parents were interviewed in this study. All the participants were asked for their views and experiences in mathematics, technology usage and the use of digital games in learning mathematics. The results suggested that students were supportive and positive towards the use of computer games in learning mathematics. Nevertheless, parents preferred conventional teaching approach, in which they recognized personal communication and socialization as a significant component in learning. Although the teachers did not go on to oppose the idea of using computer games for teaching mathematics, they still perceived the use of discursive approaches as the best teaching approach for learning mathematics with digital technologies at best a possible additional complementary feature. In view of that, the combination of classroom teaching and computer games might the best mathematics pedagogy. 

  11. Nuevo enfoque de la ensenanza de las matematicas en el nivel de primaria (A New Approach to the Teaching of Mathematics at the Primary School Level).

    Science.gov (United States)

    Jimenez Lozano, Blanca; And Others

    This document is an English-language abstract (approximately 1500 words) of a new approach to the teaching of mathematics in Mexican elementary schools. Three aspects of mathematical reform are discussed: (1) syllabus content; (2) teaching methods; and (3) the question of introducing the pupil to modern mathematics at the earliest possible stage…

  12. Qualitative approaches to large scale studies and students' achievements in Science and Mathematics - An Australian and Nordic Perspective

    DEFF Research Database (Denmark)

    Davidsson, Eva; Sørensen, Helene

    Large scale studies play an increasing role in educational politics and results from surveys such as TIMSS and PISA are extensively used in medial debates about students' knowledge in science and mathematics. Although this debate does not usually shed light on the more extensive quantitative...... analyses, there is a lack of investigations which aim at exploring what is possible to conclude or not to conclude from these analyses. There is also a need for more detailed discussions about what trends could be discern concerning students' knowledge in science and mathematics. The aim of this symposium...... is therefore to highlight and discuss different approaches to how data from large scale studies could be used for additional analyses in order to increase our understanding of students' knowledge in science and mathematics, but also to explore possible longitudinal trends, hidden in the data material...

  13. Mathematical paradigms of climate science

    CERN Document Server

    Cannarsa, Piermarco; Jones, Christopher; Portaluri, Alessandro

    2016-01-01

    This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 (“Mathematics of Planet Earth 2013”). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth’s environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation te...

  14. Spatial mathematics theory and practice through mapping

    CERN Document Server

    Arlinghaus, Sandra Lach

    2013-01-01

    In terms of statistics, GIS offers many connections. With GIS, data are gathered, displayed, summarized, examined, and interpreted to discover patterns. Spatial Mathematics: Theory and Practice through Mapping uses GIS as a platform to teach mathematical concepts and skills through visualization of numbers. It examines theory and practice from disparate academic disciplines such as geography, mathematics, physics, and general social science. This approach allows students to grapple with biodiversity, crime, natural hazards, climate, energy, water, and other relevant real-world issues of the twenty-first century. Includes QR Codes Linked to Animated Maps, a Mapping Activity Site, or to an Interactive Webpage, Creating an Interactive Resource That Stays Relevant The book integrates competing philosophical views of the world: synthesis and analysis. These two approaches yield different results and employ different tools. This book considers both approaches to looking at real-world issues that have mathematics as...

  15. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  16. Generic model of morphological changes in growing colonies of fungi

    Science.gov (United States)

    López, Juan M.; Jensen, Henrik J.

    2002-02-01

    Fungal colonies are able to exhibit different morphologies depending on the environmental conditions. This allows them to cope with and adapt to external changes. When grown in solid or semisolid media the bulk of the colony is compact and several morphological transitions have been reported to occur as the external conditions are varied. Here we show how a unified simple mathematical model, which includes the effect of the accumulation of toxic metabolites, can account for the morphological changes observed. Our numerical results are in excellent agreement with experiments carried out with the fungus Aspergillus oryzae on solid agar.

  17. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches.

    Science.gov (United States)

    Wiratsudakul, Anuwat; Suparit, Parinya; Modchang, Charin

    2018-01-01

    . Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation.

  18. Mathematical aspects of field quantization. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1983-01-01

    Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)

  19. Situated Mathematics Teaching within Electrical Engineering Courses

    Science.gov (United States)

    Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic

    2015-01-01

    The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a "fundamentals of electrical…

  20. LEARNING AND THOUGHT PROCESSES IN REALISTIC MATHEMATICS INSTRUCTION

    NARCIS (Netherlands)

    Nelissen, J.; Tomic, W.

    2008-01-01

    This article deals with the various different approaches to mathematics and the influence that these approaches have had on the teaching of this subject. In addition to the three generally known schools of mathematics instruction - the mechanistic, the structuralistic and the empirical - the article

  1. MORPHOLOGICAL HIT-OR-MISS TRANSFORM BASED APPROACH FOR BUILDING DAMAGE ESTIMATION FROM VHR AIRBORNE IMAGERY IN 2011 PACIFIC COAST OF TOHOKU EARTHQUAKE AND TSUNAMI

    Directory of Open Access Journals (Sweden)

    C. D. K. Parape

    2012-08-01

    Full Text Available The very high resolution (VHR airborne images offer the opportunity to recognize features such as road, vegetation, buildings and other kind of infrastructures. The advantage of remote sensing and its applications made it possible to extract damaged, undamaged building and vulnerability assessment of wide urban areas due to a natural disaster. In this paper, we focus on an automatic building detection method which is helpful to optimizing, recognizing, rescuing, recovery and management tasks in the event of a disaster. Objective of this study is to develop techniques for tsunami damaged building extraction, based on very high resolution (VHR airborne images acquired before and after the 2011 East coastline of Japan among Tohoku area and to carry out a damage assessment of building and vulnerable area mapping. This paper presents a methodology and results of evaluating damaged buildings detection algorithm using an object recognition task based on Mathematical Morphological (MM operators for Very High Resolution (VHR remotely sensed airborne images. The proposed approach involves several advanced morphological operators among which an adaptive hit-or-miss transform with varying size and shape of the structuring elements. VHR airborne images consisting of pre and post 2011 Pacific coast of Tohoku earthquake and Tsunami site of the Ishinomaki, Miyagi area in Japan were used. The extracted results of building were compared with ground truth data giving 76% and 88% in accuracy before and after the Tsunami event.

  2. Mathematics Difficulties: Does One Approach Fit All?

    Science.gov (United States)

    Gifford, Sue; Rockliffe, Freda

    2012-01-01

    This article reviews the nature of learning difficulties in mathematics and, in particular, the nature and prevalence of dyscalculia, a condition that affects the acquisition of arithmetical skills. The evidence reviewed suggests that younger children (under the age of 10) often display a combination of problems, including minor physical…

  3. An empirical approach to the mathematical values of problem choice and argumentation

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2016-01-01

    In this paper we describe and discuss how mathematical values influence researchers’ choices when practicing mathematics. Our paper is based on a qualitative investigation of mathematicians’ practices, and its goal is to gain an empirically grounded understanding of mathematical values. More...... specifically, we will analyze the values connected to mathematicians’ choice of problems and their choice of argumentative style when communicating their results. We suggest that these two situations can be understood as relating to the three mathematical values: recognizability, formalizability...

  4. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    Science.gov (United States)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  5. Enhancing Students’ Interest through Mathematics Learning

    Science.gov (United States)

    Azmidar, A.; Darhim, D.; Dahlan, J. A.

    2017-09-01

    A number of previous researchers indicated that students’ mathematics interest still low because most of them have perceived that mathematics is very difficult, boring, not very practical, and have many abstract theorems that were very hard to understand. Another cause is the teaching and learning process used, which is mechanistic without considering students’ needs. Learning is more known as the process of transferring the knowledge to the students. Let students construct their own knowledge with the physical and mental reflection that is done by activity in the new knowledge. This article is literature study. The purpose of this article is to examine the Concrete-Pictorial-Abstract approach in theoretically to improve students’ mathematics interest. The conclusion of this literature study is the Concrete-Pictorial-Abstract approach can be used as an alternative to improve students’ mathematics interest.

  6. Students’ Mathematical Creative Thinking through Problem Posing Learning

    Science.gov (United States)

    Ulfah, U.; Prabawanto, S.; Jupri, A.

    2017-09-01

    The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story

  7. On an efficient general mathematical library

    International Nuclear Information System (INIS)

    Li Xiaomei; Yan Baoyong

    1992-01-01

    In this paper, the architecture of vector pipeline computer YH-1 is briefly described, and the characteristics of an efficient vector general mathematical library are discussed. Some approaches to vectorization, adopted in developing the vector mathematical library, are presented

  8. Black Holes and Beginning Teachers: A Connected Approach to Teaching Mathematics.

    Science.gov (United States)

    Ocean, Jude; Miller-Reilly, Barbara

    1997-01-01

    Presents a case study on how students fail to learn mathematics and leave school with a dislike of math. Describes the use of metaphors in changing attitudes towards mathematics. (Contains 18 references.) (ASK)

  9. Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach.

    Science.gov (United States)

    Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M

    2018-04-24

    Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.

  10. A MATHEMATICAL MODELLING APPROACH TO ONE-DAY CRICKET BATTING ORDERS

    Directory of Open Access Journals (Sweden)

    Matthews Ovens1

    2006-12-01

    Full Text Available While scoring strategies and player performance in cricket have been studied, there has been little published work about the influence of batting order with respect to One-Day cricket. We apply a mathematical modelling approach to compute efficiently the expected performance (runs distribution of a cricket batting order in an innings. Among other applications, our method enables one to solve for the probability of one team beating another or to find the optimal batting order for a set of 11 players. The influence of defence and bowling ability can be taken into account in a straightforward manner. In this presentation, we outline how we develop our Markov Chain approach to studying the progress of runs for a batting order of non- identical players along the lines of work in baseball modelling by Bukiet et al., 1997. We describe the issues that arise in applying such methods to cricket, discuss ideas for addressing these difficulties and note limitations on modelling batting order for One-Day cricket. By performing our analysis on a selected subset of the possible batting orders, we apply the model to quantify the influence of batting order in a game of One Day cricket using available real-world data for current players

  11. Instructional design in mathematics for undergraduate students based on learning by mistakes approach utilizing scilab assistance

    Science.gov (United States)

    Kartika, H.

    2018-03-01

    The issue related to making mistake while learning such as negative emotion is found while students learn mathematics with the aid of a computer. When the computer output showed a mistake message, the students considered it as a computer software malfunction. Based on this issue, the writer designs an instructional model based on learning by mistake approach and which is Scilab assisted. The method used in this research is research design involving undergraduate students in matrix algebra courses. The data collected throught survey with questionnaire to gain feedback about the approach implemented. The data analyzed using quantitative descriptive. The instructional design proposed is the student act as a mistake corrector while the teacher acts as a mistake maker. Teacher deliberately makes mistakes with the help of Scilab software. On the other hand, students correct, analyze and explain errors resulting from Scilab software. The result of this research is an ICT based instructional design which is expected to be applicable as an alternative learning in directing students to think positively about mistakes in learning. Furthermore, students are also expected to improve their ability in understanding and thinking critically while solving problems and improving themselves in learning mathematics.

  12. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  13. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    Science.gov (United States)

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  14. Mathematical evaluation of similarity factor using various weighing approaches on aceclofenac marketed formulations by model-independent method.

    Science.gov (United States)

    Soni, T G; Desai, J U; Nagda, C D; Gandhi, T R; Chotai, N P

    2008-01-01

    The US Food and Drug Administration's (FDA's) guidance for industry on dissolution testing of immediate-release solid oral dosage forms describes that drug dissolution may be the rate limiting step for drug absorption in the case of low solubility/high permeability drugs (BCS class II drugs). US FDA Guidance describes the model-independent mathematical approach proposed by Moore and Flanner for calculating a similarity factor (f2) of dissolution across a suitable time interval. In the present study, the similarity factor was calculated on dissolution data of two marketed aceclofenac tablets (a BCS class II drug) using various weighing approaches proposed by Gohel et al. The proposed approaches were compared with a conventional approach (W = 1). On the basis of consideration of variability, preference is given in the order of approach 3 > approach 2 > approach 1 as approach 3 considers batch-to-batch as well as within-samples variability and shows best similarity profile. Approach 2 considers batch-to batch variability with higher specificity than approach 1.

  15. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  16. Development and Validation of the Mathematical Resilience Scale

    Science.gov (United States)

    Kooken, Janice; Welsh, Megan E.; McCoach, D. Betsy; Johnston-Wilder, Sue; Lee, Clare

    2016-01-01

    The Mathematical Resilience Scale measures students' attitudes toward studying mathematics, using three correlated factors: Value, Struggle, and Growth. The Mathematical Resilience Scale was developed and validated using exploratory and confirmatory factor analyses across three samples. Results provide a new approach to gauge the likelihood of…

  17. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    Science.gov (United States)

    Rao, Prahalad Krishna

    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant

  18. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  19. Ancient Indian Leaps into Mathematics

    CERN Document Server

    Yadav, B S

    2011-01-01

    This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines th

  20. Mathematical analysis II

    CERN Document Server

    Canuto, Claudio

    2015-01-01

    The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...

  1. Teaching Statistics in Middle School Mathematics Classrooms: Making Links with Mathematics but Avoiding Statistical Reasoning

    Science.gov (United States)

    Savard, Annie; Manuel, Dominic

    2015-01-01

    Statistics is a domain that is taught in Mathematics in all school levels. We suggest a potential in using an interdisciplinary approach with this concept. Thus the development of the understanding of a situation might mean to use both mathematical and statistical reasoning. In this paper, we present two case studies where two middle school…

  2. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  3. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  4. The challenge of inadequate achievement in mathematics: Focus on a meta-approach

    Directory of Open Access Journals (Sweden)

    Kobus Maree

    2009-09-01

    Full Text Available As is the case elsewhere in the world, all stakeholders in South Africa are deeply concerned about the level and scope of underachievement in mathematics, not only at Grade 12 level, but, indeed, at University, University of Technology and Further Education and Training levels. These concerns assume a deeper dimension in light of the fact that inadequate achievement in mathematics inevitably will have a ripple effect on the academic situation in any country: inadequate achievement in mathematics precludes learners from applying for admission to sought-after fi elds of study, which, in turn, prevents numerous learners from realising their true potential and, eventually, from being happy and successful in careers that they might otherwise have been able to execute successfully. It goes without saying that inadequate achievement in mathematics will impact negatively on the overall economic situation in any country (even more so in a developing country such as South Africa. Truth being, achievement in mathematics amounts to equipping oneself with survival skills. In this article, the spotlight shifts from a narrow and outdated focus on problems that are associated with inadequate achievement in mathematics to possible solutions for this disconcerting situation and the implied challenge it raises. The focus is thus on three levels that collectively underpin and impact on achievement in mathematics, viz. the macro level, the meso level and the micro level. The macro level refers mainly to the input by the national government (and, by default, the National Department of Education. In the fi rst instance, it is the responsibility of the state to provide adequate schooling facilities for all learners, irrespective of where they fi nd themselves. Furthermore, it is the duty of the state to ensure that every learner has access to basic facilities, including food, water, sanitation and housing. The state (via the National Department of Education is also

  5. Exploring Mathematics Achievement Goals Using Kolb’s Learning Style Model

    Directory of Open Access Journals (Sweden)

    Avelino G. Ignacio Jr.

    2017-02-01

    Full Text Available This research work is an exploration of causality connection of learning styles to mathematics achievement goals. The objectives of the study are as follows: (1 to identify the mathematics achievement goal of students when grouped according to preferred learning style (2 to identify the learning style of students when grouped according to preferred mathematics achievement goal and (3 to determine if there is a significant difference in each mathematics achievement goal when grouped according to learning style. The researcher used explanatory cross-sectional design. The Revised Achievement Goal Questionnaire and Kolb’s Learning Style Inventory 3.1 were utilized to collect data. Results show that respondents hold mastery-approach achievement goals regardless of learning styles. Also, students with approach type of mathematics achievement goals hold assimilative learning style which operates on reflective observation and abstract conceptualization; and students with avoidance type of mathematics achievement goals hold accommodative learning style which operates on active experimentation and concrete experimentation. Furthermore, findings show that there is no significant difference in the mathematics achievement goals based on learning style. Exploratory research is recommended to understand why students with approach type of mathematics achievement goals hold assimilative learning style and why students with avoidance type of mathematics achievement goals hold accommodative learning style.

  6. Islamic design a mathematical approach

    CERN Document Server

    Wichmann, Brian

    2017-01-01

    This book deals with the genre of geometric design in the Islamic sphere. Part I presents an overview of Islamic history, its extraordinary spread from the Atlantic to the borders of China in its first century, its adoption of the cultural outlook of the older civilisations that it conquered (in the Middle East, Persia and Central Asia), including their philosophical and scientific achievements - from which it came to express its own unique and highly distinctive artistic and architectural forms. Part II represents the mathematical analysis of Islamic geometric designs.  The presentation offers unlimited precision that allows software to reconstruct the design vision of the original artist. This book will be of interest to Islamic academics, mathematicians as well as to artists & art students.

  7. Recent development in school mathematics' roles and relations

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Andresen, Mette

    2010-01-01

    The article sketches a national profile of Danish educational policy and school practice by three perspectives: regulations and teachers' autonomy, educational aims and goals, and students' attitudes towards mathematics. We present the enrollment of mathematics in a new construct, multi...... disciplinarity, introduced recently into Danish upper secondary schools with academically oriented programs. The potentials of multi-disciplinary mathematics teaxching at all levels are analysed and discussed within Realistic Mathematics Education Theory and philosophical approach to mathematical reflections...

  8. A Microworld-Based Role-Playing Game Development Approach to Engaging Students in Interactive, Enjoyable, and Effective Mathematics Learning

    Science.gov (United States)

    Wang, Sheng-Yuan; Chang, Shao-Chen; Hwang, Gwo-Jen; Chen, Pei-Ying

    2018-01-01

    In traditional teacher-centered mathematics instruction, students might show low learning motivation owing to the lack of applied contexts. Game-based learning has been recognized as a potential approach to addressing this issue; however, without proper alignment between the gaming and math-applied contexts, the benefits of game-based learning…

  9. ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS

    OpenAIRE

    J. BARKLEY ROSSER

    2012-01-01

    Kumaraswamy Vela Velupillai74 presents a constructivist perspective on the foundations of mathematical economics, praising the views of Feynman in developing path integrals and Dirac in developing the delta function. He sees their approach as consistent with the Bishop constructive mathematics and considers its view on the Bolzano-Weierstrass, Hahn-Banach, and intermediate value theorems, and then the implications of these arguments for such "crown jewels" of mathematical economics as the exi...

  10. An image processing approach to analyze morphological features of microscopic images of muscle fibers.

    Science.gov (United States)

    Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; Costa, Luciano da Fontoura; Yang, Zhong

    2014-12-01

    We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  12. Stochastic resonance a mathematical approach in the small noise limit

    CERN Document Server

    Herrmann, Samuel; Pavlyukevich, Ilya; Peithmann, Dierk

    2013-01-01

    Stochastic resonance is a phenomenon arising in a wide spectrum of areas in the sciences ranging from physics through neuroscience to chemistry and biology. This book presents a mathematical approach to stochastic resonance which is based on a large deviations principle (LDP) for randomly perturbed dynamical systems with a weak inhomogeneity given by an exogenous periodicity of small frequency. Resonance, the optimal tuning between period length and noise amplitude, is explained by optimizing the LDP's rate function. The authors show that not all physical measures of tuning quality are robust with respect to dimension reduction. They propose measures of tuning quality based on exponential transition rates explained by large deviations techniques and show that these measures are robust. The book sheds some light on the shortcomings and strengths of different concepts used in the theory and applications of stochastic resonance without attempting to give a comprehensive overview of the many facets of stochastic ...

  13. Evaluating the morphological completeness of a training image.

    Science.gov (United States)

    Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue

    2017-05-01

    Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.

  14. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-01-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students¿ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding of mathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education. In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students' intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum provides ways for students to maintain their identity while succeeding academically.

  15. The role ofcontextualinterpretationofthe mathematical resultsin professional formation

    OpenAIRE

    Eurico WongoGungula; Raquel Diéguez Batista; Eglys Pérez Ugartemendía

    2013-01-01

    This article aims to approach the application of mathematical problems results, using criteria issued by teachers, pre-university and university students surrounding this proc ess. The problems identified in pre-university and Higher Pedagogical institutes in Angola, are related to the lack of motivation among students in mathematical careers, due to insufficient contextualization achieved by the programmed contents, as well as the insistent use of scientific and methodological approaches tha...

  16. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  17. Shifting Pre-Service Teachers' Beliefs about Mathematics Teaching: The Contextual Situation of a Mathematics Methods Course

    Science.gov (United States)

    Jao, Limin

    2017-01-01

    For pre-service teachers (PSTs) who have been exposed to traditional approaches, teacher education courses can be a revelatory experience in their development as educators. This study explores if Canadian upper elementary/lower secondary (grades 4-10) PSTs change their beliefs about mathematics teaching as a result of taking a mathematics methods…

  18. English learners in the mathematics classroom

    CERN Document Server

    Coggins, Debra S (Susan)

    2014-01-01

    Research-based strategies to reach English learners - now aligned with the Common Core!Enable your English learners to build higher-level math skills and gain greater fluency in their new language-all while achieving the goals of the Common Core. Now in its second edition, this trusted resource includes:  Mathematics lesson scenarios in every chapter, directly connected to Common Core Standards and the Standards for Mathematical Practice Instructional approaches that promote participation, hands-on learning, and true comprehension of mathematics concepts that benefit ALL students Sample lessons, visuals, and essential vocabulary that connect mathematical concepts with language development.

  19. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  20. Mathematical concepts for mechanical engineering design

    CERN Document Server

    Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli

    2013-01-01

    PrefaceIntroductionHeat Flow: From Theory to PracticeDispersed Fluid and Ideal Fluid MechanicsModeling for Pressure Wave into Water PipelineHeat Transfer and Vapor BubbleMathematical Concepts and Computational Approaches on Hydrodynamics InstabilityMathematical Concepts and Dynamic ModelingModeling for Predictions of Air Entrance into Water PipelineIndex

  1. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  2. Systems Biology Approach and Mathematical Modeling for Analyzing Phase-Space Switch During Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Simeoni, Chiara; Dinicola, Simona; Cucina, Alessandra; Mascia, Corrado; Bizzarri, Mariano

    2018-01-01

    In this report, we aim at presenting a viable strategy for the study of Epithelial-Mesenchymal Transition (EMT) and its opposite Mesenchymal-Epithelial Transition (MET) by means of a Systems Biology approach combined with a suitable Mathematical Modeling analysis. Precisely, it is shown how the presence of a metastable state, that is identified at a mesoscopic level of description, is crucial for making possible the appearance of a phase transition mechanism in the framework of fast-slow dynamics for Ordinary Differential Equations (ODEs).

  3. Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: Experimental assays and mathematical approaches.

    Science.gov (United States)

    Mosquera-Vivas, Carmen S; Martinez, María J; García-Santos, Glenda; Guerrero-Dallos, Jairo A

    2018-01-01

    The adsorption-desorption, hysteresis phenomenon, and leachability of tebuconazole were studied for Inceptisol and Histosol soils at the surface (0-10 cm) and in the subsurface (40-50 cm) of an agricultural region from Colombia by the batch-equilibrium method and mathematical approaches. The experimental K fa and K d (L kg -1 ) values (7.9-289.2) decreased with depth for the two Inceptisols and increased with depth for the Histosol due to the organic carbon content, aryl and carbonyl carbon types. Single-point and desorption isotherms depended on adsorption reversibility and suggested that tebuconazole showed hysteresis; which can be adequately evaluated with the single-point desorption isotherm and the linear model using the hysteresis index HI. The most suitable mathematical approach to estimate the adsorption isotherms of tebuconazole at the surface and in the subsurface was that considering the combination of the n-octanol-water partition coefficient, pesticide solubility, and the mass-balance concept. Tebuconazole had similar moderate mobility potential as compared with the values of other studies conducted in temperate amended and unamended soils, but the risk of the fungicide to pollute groundwater sources increased when the pesticide reached subsurface soil layers, particularly in the Inceptisols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Construction and reconstruction concept in mathematics instruction

    Science.gov (United States)

    Mumu, Jeinne; Charitas Indra Prahmana, Rully; Tanujaya, Benidiktus

    2017-12-01

    The purpose of this paper is to describe two learning activities undertaken by lecturers, so that students can understand a mathematical concept. The mathematical concept studied in this research is the Vector Space in Linear Algebra instruction. Classroom Action Research used as a research method with pre-service mathematics teacher at University of Papua as the research subject. Student participants are divided into two parallel classes, 24 students in regular class, and remedial class consist of 18 students. Both approaches, construct and reconstruction concept, are implemented on both classes. The result shows that concept construction can only be done in regular class while in remedial class, learning with concept construction approach is not able to increase students' understanding on the concept taught. Understanding the concept of a student in a remedial class can only be carried out using the concept reconstruction approach.

  5. Psychological effects and epistemological education through mathematics "abstraction" and "construction"

    Directory of Open Access Journals (Sweden)

    Aurel Pera

    2015-10-01

    Full Text Available This study is part of a broader research which will be found in future work, Psychology and epistemology of mathematical creation, complementary work of experimental research psychology mathematics, whose investigative approach, promoting the combination type cross section paradigms and quantitative methods and qualitative and comparative method and the analytic-synthetic, based on the following idea: to make learning as efficient, contents and methods must be appropriate to the individual particularities of the pupils, a measure of the balance between converging and diverging dosing tasks as a promising opening to the transition from education proficiency in math performance. At this juncture, mathematical existence as ontological approach against the background of a history of "abstraction" mathematical and theoretical observations on the abstraction, realization and other mathematical thought processes, explanatory approach fulfills the context in which s mathematics constituted an important factor in psychological and methodological perspective, in a context of maximizing the educational effectiveness that depends on the quality of the methods used in teaching, focused on knowledge of the general principles of psycho-didactics not only mathematical and mental organization individual student or knowledge of the factors that make possible psycho-educational learning process.

  6. THE DEVELOPMENT OF ELECTRONIC TEACHING MATERIALS BY FLIPBOOK ASSISTANCE BASED PROBLEM SOLVING SKILL WITH CTL APPROACH ON LEARNING MATHEMATICS CLASS V

    Directory of Open Access Journals (Sweden)

    RUSNILAWATI Eva Gustiana RUSNILAWATI

    2018-01-01

    Full Text Available The purpose of this research is to produce Flipbook-based Electronic Teaching Materials (BAE based on problem solving skills with CTL Approach on Vocational School Class V learning valid, practical, and effective. This type of research is development research (Development Research. This research developed Flipbook-assisted Electronic Teaching Materials (BAE on the mathematics learning of Class V Primary School by using the 4-D development model developed by Thiagarajan, Semmel, and Semmel. The validation results show that the developed Teaching Materials are worthy of use with a good minimum category. The results of the experiments show that Electronic Materials developed are practical and effective. Completed learning in the classical has reached the minimum criteria of 75% that is for problem-solving test reached 86%. Based on a questionnaire of attitudes toward mathematics, 88% of students showed an increase in attitude scores on mathematics, and 85% of students showed attitudes toward mathematics with a good minimum category.

  7. Theological Metaphors in Mathematics

    Directory of Open Access Journals (Sweden)

    Krajewski Stanisław

    2016-03-01

    Full Text Available Examples of possible theological influences upon the development of mathematics are indicated. The best known connection can be found in the realm of infinite sets treated by us as known or graspable, which constitutes a divine-like approach. Also the move to treat infinite processes as if they were one finished object that can be identified with its limits is routine in mathematicians, but refers to seemingly super-human power. For centuries this was seen as wrong and even today some philosophers, for example Brian Rotman, talk critically about “theological mathematics”. Theological metaphors, like “God’s view”, are used even by contemporary mathematicians. While rarely appearing in official texts they are rather easily invoked in “the kitchen of mathematics”. There exist theories developing without the assumption of actual infinity the tools of classical mathematics needed for applications (For instance, Mycielski’s approach. Conclusion: mathematics could have developed in another way. Finally, several specific examples of historical situations are mentioned where, according to some authors, direct theological input into mathematics appeared: the possibility of the ritual genesis of arithmetic and geometry, the importance of the Indian religious background for the emergence of zero, the genesis of the theories of Cantor and Brouwer, the role of Name-worshipping for the research of the Moscow school of topology. Neither these examples nor the previous illustrations of theological metaphors provide a certain proof that religion or theology was directly influencing the development of mathematical ideas. They do suggest, however, common points and connections that merit further exploration.

  8. Mathematical manipulative models: in defense of "beanbag biology".

    Science.gov (United States)

    Jungck, John R; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.

  9. Rethinking Mathematics Teaching in Liberia: Realistic Mathematics Education

    Science.gov (United States)

    Stemn, Blidi S.

    2017-01-01

    In some African cultures, the concept of division does not necessarily mean sharing money or an item equally. How an item is shared might depend on the ages of the individuals involved. This article describes the use of the Realistic Mathematics Education (RME) approach to teach division word problems involving money in a 3rd-grade class in…

  10. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  11. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-09-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students’ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding ofmathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education.In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students’ intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum providesways for students to maintain their identity while succeeding academically.

  12. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  13. Application of morphological bit planes in retinal blood vessel extraction.

    Science.gov (United States)

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  14. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  15. From Anxiety as a Psychological and Biological Phenomenon to Mathematics Anxiety: A Theoretical Approach

    Science.gov (United States)

    Moreno-García, Elena; García-Santillán, Arturo; Molchanova, Violetta S.; Larracilla-Salazar, Némesis

    2017-01-01

    In the educational field, anxiety towards mathematics has been a recurrent theme that has been intensified with the results of the PISA test of 2012 and 2015. Since students who are anxious about mathematics tend to avoid any area related to mathematics, it leads to a decrease in the number of professionals in mathematics. However, this construct…

  16. Application of the Fourier descriptors method to the morphological classification of particles in geological materials

    International Nuclear Information System (INIS)

    Manzanas Lopez, J.; Santiago Buey, C.

    2010-01-01

    This study focuses on the use of Fourier descriptors to quantitatively describe the morphology of particles aggregates or pores in geological materials. Firstly, the mathematical fundaments of the method are explained. Then, the Fourier descriptors method is applied to the Krumbein Scale, a system of measuring roundness and sphericity of particles. the analysis of the comparison shows that there is good correlation between the Sphericity parameter at the Krumbein classifications and the value of the modulus of the Fourier descriptor No-1. This good correlation, along with the mathematical precision which allows to prevent subjective valorisations in the morphological description, corroborates the validity of the method to quantify the sphericity elongation of particles in geological materials. (Author) 12 refs.

  17. A General Approach to Access Morphologies of Polyoxometalates in Solution by Using SAXS: An Ab Initio Modeling Protocol.

    Science.gov (United States)

    Li, Mu; Wang, Weiyu; Yin, Panchao

    2018-05-02

    Herein, we reported a general protocol for an ab initio modeling approach to deduce structure information of polyoxometalates (POMs) in solutions from scattering data collected by the small-angle X-ray scattering (SAXS) technique. To validate the protocol, the morphologies of a serious of known POMs in either aqueous or organic solvents were analyzed. The obtained particle morphologies were compared and confirmed with previous reported crystal structures. To extend the feasibility of the protocol to an unknown system of aqueous solutions of Na 2 MoO 4 with the pH ranging from -1 to 8.35, the formation of {Mo 36 } clusters was probed, identified, and confirmed by SAXS. The approach was further optimized with a multi-processing capability to achieve fast analysis of experimental data, thereby, facilitating in situ studies of formations of POMs in solutions. The advantage of this approach is to generate intuitive 3D models of POMs in solutions without confining information such as symmetries and possible sizes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discrete mathematics course supported by CAS MATHEMATICA

    Science.gov (United States)

    Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.

    2017-08-01

    In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our approach, we conducted an anonymous survey. The results of the survey provide evidence that our approach contributes to high outcomes and aligns with the course aims and objectives.

  19. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  20. Critical relationships between teachers and learners of school mathematics

    OpenAIRE

    Wright, P.

    2017-01-01

    This article draws on critical theories and perspectives on mathematics education to explain the tendency of mathematics teaching worldwide to remain focused on developing procedural understanding, despite repeated calls from the mathematics education community for a more relevant and engaging curriculum. It highlights how conventional approaches to teaching mathematics contribute towards alienating a high proportion of learners and reproducing inequities within society. The article reports o...

  1. Educational Borrowing and Mathematics Curriculum: Realistic Mathematics Education in the Dutch and Indonesian Primary Curriculum

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2018-02-01

    Full Text Available Since the late 1990s, Indonesian mathematics educators have considered Realistic Mathematics Education (RME, the Dutch approach to mathematics instruction, to be the basis for educational reform. In the National curriculum development, RME has, therefore, been reviewed as among the theoretical references to the curriculum goals and content. In the present study, an analysis of the consistency between RME and the curriculum descriptors and contents in Indonesia is presented. This is supplemented with some comparisons to that in the Netherlands. Findings in this study revealed that while most of RME principles are reflected in the Indonesian curriculum, the descriptions were often very general and less explicit compared to the Dutch curriculum. They were also limited by the content-based approach as well as by the centralized decision making process of the contents to be taught which have been pre-determined at the national level. This study suggests future research to see how the curriculum may influence teachers’ enactment of RME at classroom level.

  2. Hemomath the mathematics of blood

    CERN Document Server

    Fasano, Antonio

    2017-01-01

    This book illustrates applications of mathematics to various processes (physiological or artificial) involving flowing blood, including hemorheology, microcirculation, coagulation, kidney filtration and dialysis, offering a historical overview of each topic. Mathematical models are used to simulate processes normally occurring in flowing blood and to predict the effects of dysfunctions (e.g. bleeding disorders, renal failure), as well as the effects of therapies with an eye to improving treatments. Most of the models have a completely new approach that makes patient-specific simulations possible. The book is mainly intended for mathematicians interested in medical applications, but it is also useful for clinicians such as hematologists, nephrologists, cardio-surgeons, and bioengineers. Some parts require no specific knowledge of mathematics. The book is a valuable addition to mathematics, medical, biology, and bioengineering libraries.

  3. What Is Mathematical Modelling? Exploring Prospective Teachers' Use of Experiments to Connect Mathematics to the Study of Motion

    Science.gov (United States)

    Carrejo, David J.; Marshall, Jill

    2007-01-01

    This paper focuses on the construction, development, and use of mathematical models by prospective science and mathematics teachers enrolled in a university physics course. By studying their involvement in an inquiry-based, experimental approach to learning kinematics, we address a fundamental question about the meaning and role of abstraction in…

  4. Mathematical stereochemistry

    CERN Document Server

    Fujita, Shinsaku

    2015-01-01

    Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.

  5. Coming to Know and Do Mathematics with Disengaged Students

    Science.gov (United States)

    Marshman, Margaret; Brown, Raymond

    2014-01-01

    This case study explored how students disaffected with their school experience were scaffolded during their participation in a middle-school mathematics classroom. Of particular interest were the level of student engagement in discussion about the mathematics being presented by the teacher and the approach to doing mathematics being displayed by…

  6. Enhancing Teacher Education in Primary Mathematics with Mobile Technologies

    Science.gov (United States)

    Schuck, Sandy

    2016-01-01

    A challenge of teacher education is to produce graduate primary school teachers who are confident and competent teachers of mathematics. Various approaches to primary school teacher education in mathematics have been investigated, but primary teacher education graduates still tend to be diffident in their teaching of mathematics. In an age where…

  7. Mathematical foundations of elasticity

    CERN Document Server

    Marsden, Jerrold E

    1994-01-01

    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  8. Mathematics for sustainability

    CERN Document Server

    Roe, John; Jamshidi, Sara

    2018-01-01

    Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking is at the fore throughout, as students learn to model sustainability on local, regional, and global scales. Exercises emphasize concepts, while projects build and challenge communication skills. With no prerequisites beyond high school algebra, instructors will find this book a rich resource for engaging all majors in the...

  9. Primary Mathematics. A Saxon Teacher's Resource Booklet.

    Science.gov (United States)

    1997

    Saxon's primary mathematics series is a "hands-on," success-oriented program which emphasizes manipulatives and mental math. The series addresses the multisensory approach to teaching. Its use enables all children to develop a solid foundation in the language and basic concepts of mathematics. Concepts are presented in carefully…

  10. Improving of prospective elementary teachers' reasoning: Learning geometry through mathematical investigation

    Science.gov (United States)

    Sumarna, Nana; Sentryo, Izlan

    2017-08-01

    This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.

  11. A Unique Mathematical Derivation of the Fundamental Laws of Nature Based on a New Algebraic-Axiomatic (Matrix Approach

    Directory of Open Access Journals (Sweden)

    Ramin Zahedi

    2017-09-01

    Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.

  12. Chronic Total Occlusion Crossing Approach Based on Plaque Cap Morphology: The CTOP Classification.

    Science.gov (United States)

    Saab, Fadi; Jaff, Michael R; Diaz-Sandoval, Larry J; Engen, Gwennan D; McGoff, Theresa N; Adams, George; Al-Dadah, Ashraf; Goodney, Philip P; Khawaja, Farhan; Mustapha, Jihad A

    2018-02-01

    To present the chronic total occlusion (CTO) crossing approach based on plaque cap morphology (CTOP) classification system and assess its ability to predict successful lesion crossing. A retrospective analysis was conducted of imaging and procedure data from 114 consecutive symptomatic patients (mean age 69±11 years; 84 men) with claudication (Rutherford category 3) or critical limb ischemia (Rutherford category 4-6) who underwent endovascular interventions for 142 CTOs. CTO cap morphology was determined from a review pf angiography and duplex ultrasonography and classified into 4 types (I, II, III, or IV) based on the concave or convex shape of the proximal and distal caps. Statistically significant differences among groups were found in patients with rest pain, lesion length, and severe calcification. CTOP type II CTOs were most common and type III lesions the least common. Type I CTOs were most likely to be crossed antegrade and had a lower incidence of severe calcification. Type IV lesions were more likely to be crossed retrograde from a tibiopedal approach. CTOP type IV was least likely to be crossed in an antegrade fashion. Access conversion, or need for an alternate access, was commonly seen in types II, III, and IV lesions. Distinctive predictors of access conversion were CTO types II and III, lesion length, and severe calcification. CTOP type I lesions were easiest to cross in antegrade fashion and type IV the most difficult. Lesion length >10 cm, severe calcification, and CTO types II, III, and IV benefited from the addition of retrograde tibiopedal access.

  13. Exploring mathematics problem-solving and proof

    CERN Document Server

    Grieser, Daniel

    2018-01-01

    Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is requi...

  14. Developing a Deeper Understanding of "Mathematics Teaching Expertise": An Examination of Three Chinese Mathematics Teachers' Resource Systems as Windows into Their Work and Expertise

    Science.gov (United States)

    Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…

  15. Childhood hydrocephalus – is radiological morphology associated with etiology

    DEFF Research Database (Denmark)

    Foss-Skiftesvik, Jon; Andresen, Morten; Juhler, Marianne

    2013-01-01

    Clinicians use a non-standardized, intuitive approach when correlating radiological morphology and etiology of hydrocephalus.......Clinicians use a non-standardized, intuitive approach when correlating radiological morphology and etiology of hydrocephalus....

  16. Geometrical objects architecture and the mathematical sciences 1400-1800

    CERN Document Server

    2014-01-01

    This volume explores the mathematical character of architectural practice in diverse pre- and early modern contexts. It takes an explicitly interdisciplinary approach, which unites scholarship in early modern architecture with recent work in the history of science, in particular, on the role of practice in the scientific revolution. As a contribution to architectural history, the volume contextualizes design and construction in terms of contemporary mathematical knowledge, attendant forms of mathematical practice, and relevant social distinctions between the mathematical professions. As a contribution to the history of science, the volume presents a series of micro-historical studies that highlight issues of process, materiality, and knowledge production in specific, situated, practical contexts. Our approach sees the designer’s studio, the stone-yard, the drawing floor, and construction site not merely as places where the architectural object takes shape, but where mathematical knowledge itself is depl...

  17. Your move: The effect of chess on mathematics test scores.

    Science.gov (United States)

    Rosholm, Michael; Mikkelsen, Mai Bjørnskov; Gumede, Kamilla

    2017-01-01

    We analyse the effect of substituting a weekly mathematics lesson in primary school grades 1-3 with a lesson in mathematics based on chess instruction. We use data from the City of Aarhus in Denmark, combining test score data with a comprehensive data set obtained from administrative registers. We use two different methodological approaches to identify and estimate treatment effects and we tend to find positive effects, indicating that knowledge acquired through chess play can be transferred to the domain of mathematics. We also find larger impacts for unhappy children and children who are bored in school, perhaps because chess instruction facilitates learning by providing an alternative approach to mathematics for these children. The results are encouraging and suggest that chess may be an important and effective tool for improving mathematical capacity in young students.

  18. Leading Undergraduate Research Projects in Mathematical Modeling

    Science.gov (United States)

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  19. Technology-Enhanced Learning in College Mathematics Remediation

    Science.gov (United States)

    Foshee, Cecile M.; Elliott, Stephen N.; Atkinson, Robert K.

    2016-01-01

    US colleges presently face an academic plight; thousands of high school graduates are performing below the expected ability for college-level mathematics. This paper describes an innovative approach intended to improve the mathematics performance of first-year college students, at a large US university. The innovation involved the integration of…

  20. Analysis of students’ mathematical reasoning

    Science.gov (United States)

    Sukirwan; Darhim; Herman, T.

    2018-01-01

    The reasoning is one of the mathematical abilities that have very complex implications. This complexity causes reasoning including abilities that are not easily attainable by students. Similarly, studies dealing with reason are quite diverse, primarily concerned with the quality of mathematical reasoning. The objective of this study was to determine the quality of mathematical reasoning based perspective Lithner. Lithner looked at how the environment affects the mathematical reasoning. In this regard, Lithner made two perspectives, namely imitative reasoning and creative reasoning. Imitative reasoning can be memorized and algorithmic reasoning. The Result study shows that although the students generally still have problems in reasoning. Students tend to be on imitative reasoning which means that students tend to use a routine procedure when dealing with reasoning. It is also shown that the traditional approach still dominates on the situation of students’ daily learning.

  1. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    Science.gov (United States)

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  2. Market valuation in the framework of modern life insurance mathematics

    Directory of Open Access Journals (Sweden)

    Maja Petrač

    2013-12-01

    Full Text Available In the traditional actuarial life insurance mathematics, liabilities to beneficiaries (technical reserves are calculated based on conservative assumptions of mortality and interest rates. However, this approach was found to be incomplete since it does not contain the market component which has become essential due to the development of the financial market. Since about 80% of total liabilities of life insurance companies are made up of technical reserves, this issue has a major impact on the overall performance of insuran - ce companies. The introduction of financial components into the actuarial valuation resulted in actuarial mathematics using more and more the elements of financial mathematics thus creating new, modern life insurance mathematics. Using a simple example, this paper compares the traditional and market approaches to valuation. For this purpose, one of the principles of modern life insurance mathematics, the principle of equivalence, was observed. The above market approach to valuation, together with operational risk management, forms the basis of Solvency II Directive, the new legislative and regulatory framework for insurance and reinsurance companies in the European Union.

  3. Structured Approach vs. Self-Paced Modular Approach in Teaching Trigonometry

    Directory of Open Access Journals (Sweden)

    Rodin M. Paspasan

    2015-12-01

    Full Text Available The study aimed to determine which approach in the teaching of Mathematics allowed students to achieve a higher mathematical performance and to establish the learning styles of the students to showed greater confidence on a written posttest - the self-paced modular approach or the structured lecture demonstration based approach. The instruments used in the study are Trigonometry Achievement Test (PTAT designed by the researcher and the Grasha - Reichmann Student Learning Style Survey. Hence. the result shows on the test of significant difference on the respondents learning styles and level of performance established independent learning conditions and demonstrate remarkably higher mathematical performance, respectively. In the light of the statistical analysis and the findings of the study, it could be generalized that SPMA made the students learning styles more independent because they prefer to work at their own pace. Hence, SPMA help them also improve their level of performance in relation to plane trigonometry regardless of their mathematical abilities compared to structured approach. Along these lines, the subsequent recommendations are presented for consideration: The teachers should use collective learning style inventories so that students remain interested throughout their mathematics course. And should use SPMA in teaching trigonometry and other disciplines in the field of mathematics.

  4. A course in mathematical methods for physicists

    CERN Document Server

    Herman, Russell L

    2014-01-01

    Based on the author’s junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-up approach that emphasizes physical applications of the mathematics. The book offers: •A quick review of mathematical prerequisites, proceeding to applications of differential equations and linear algebra •Classroom-tested explanations of complex and Fourier analysis for trigonometric and special functions •Coverage of vector analysis and curvilinear coordinates for solving higher dimensional problems •Sections on nonlinear dynamics, variational calculus, numerical solutions of differential equations, and Green's functions

  5. MIPS to the "4", Mathematics Improves Promotes Students. A Program of Mathematics for the Elementary Math Laboratory. Limited Edition.

    Science.gov (United States)

    Wichita Unified School District 259, KS.

    This book is a guide for the reinforcement of the elementary mathematics laboratory program. It uses a hands-on and activity approach with maximum involvement of the students. Reinforcement strategies for the first three phases (concrete, semiconcrete, and semiabstract) of each mathematics concept are suggested. Also included are specific job…

  6. Effect Of Open Ended Teaching Learning Approach On Secondary School Students Mathematics Achievement In Learning Three Dimensional Geometry

    Directory of Open Access Journals (Sweden)

    Chogo C.N.

    2017-12-01

    Full Text Available Mathematics is globally valued for use by an individual and society. It plays a significant role in the development of modern science and technology. Despite its importance students motivation to learn and achievement at national examinations globally and at the KCSE mathematics examination in Kenya particularly has been dismal over the years. The learners low achievement in the subject has been attributed to the didactic teaching methods that the teachers use among other factors. The study of geometry in Mathematics poses a number of difficulties to learners which are different in nature from those of arithmetic and algebra. This is because geometry is primarily abstract in nature. The purpose of this study was to determine the effects of Open Ended Teaching and Learning Approach OETLA on Secondary School students mathematics achievement in learning Three Dimensional Geometry 3DG. The study employed Solomon four non-equivalent control group design. The two experimental groups E1amp E2 received OETLA treatment while the control groups C1ampC2 were taught using the conventional teaching and learning methods. Only E1amp C1 took a pre-test and a post test for all the groups. The target population for this study was form four 17 year old students of secondary schools in Marani Sub County in Kisii County. Purposive sampling was used to obtain the four county mixed-sex secondary schools for the study. A total of 152 students formed the sample size. Students Mathematics Achievement Test SMAT was used to collect data. The instruments were validated by three experts from the department of curriculum and instruction of Egerton University and three Secondary School Mathematics Heads of Department. The reliability of the instruments were established using Cronbachs Alpha. A reliability coefficient of 0.92 was obtained and thus considered acceptable. The SMAT was administered to two groups as a pretest before the treatment and as a posttest to all the four

  7. A mathematical model in cellular manufacturing system considering subcontracting approach under constraints

    Directory of Open Access Journals (Sweden)

    Kamran Forghani

    2012-10-01

    Full Text Available In this paper, a new mathematical model in cellular manufacturing systems (CMSs has been presented. In order to increase the performance of manufacturing system, the production quantity of parts has been considered as a decision variable, i.e. each part can be produced and outsourced, simultaneously. This extension would be minimized the unused capacity of machines. The exceptional elements (EEs are taken into account and would be totally outsourced to the external supplier in order to remove intercellular material handling cost. The problem has been formulated as a mixed-integer programming to minimize the sum of manufacturing variable costs under budget, machines capacity and demand constraints. Also, to evaluate advantages of the model, several illustrative numerical examples have been provided to compare the performance of the proposed model with the available classical approaches in the literature.

  8. Towards a simple mathematical theory of citation distributions.

    Science.gov (United States)

    Katchanov, Yurij L

    2015-01-01

    The paper is written with the assumption that the purpose of a mathematical theory of citation is to explain bibliometric regularities at the level of mathematical formalism. A mathematical formalism is proposed for the appearance of power law distributions in social citation systems. The principal contributions of this paper are an axiomatic characterization of citation distributions in terms of the Ekeland variational principle and a mathematical exploration of the power law nature of citation distributions. Apart from its inherent value in providing a better understanding of the mathematical underpinnings of bibliometric models, such an approach can be used to derive a citation distribution from first principles.

  9. Basic engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    Introductory mathematics written specifically for students new to engineering Now in its sixth edition, Basic Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for introductory level engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae, multiple choice tests, full solutions for all 1,600 further questions contained within the practice exercises, and biographical information on t...

  10. VMEXT: A Visualization Tool for Mathematical Expression Trees

    OpenAIRE

    Schubotz, Moritz; Meuschke, Norman; Hepp, Thomas; Cohl, Howard S.; Gipp, Bela

    2017-01-01

    Mathematical expressions can be represented as a tree consisting of terminal symbols, such as identifiers or numbers (leaf nodes), and functions or operators (non-leaf nodes). Expression trees are an important mechanism for storing and processing mathematical expressions as well as the most frequently used visualization of the structure of mathematical expressions. Typically, researchers and practitioners manually visualize expression trees using general-purpose tools. This approach is labori...

  11. An improved automated procedure for informal and temporary dwellings detection and enumeration, using mathematical morphology operators on VHR satellite data

    Science.gov (United States)

    Jenerowicz, Małgorzata; Kemper, Thomas

    2016-10-01

    Every year thousands of people are displaced by conflicts or natural disasters and often gather in large camps. Knowing how many people have been gathered is crucial for an efficient relief operation. However, it is often difficult to collect exact information on the total number of the population. This paper presents the improved morphological methodology for the estimation of dwellings structures located in several Internally Displaced Persons (IDPs) Camps, based on Very High Resolution (VHR) multispectral satellite imagery with pixel sizes of 1 meter or less including GeoEye-1, WorldView-2, QuickBird-2, Ikonos-2, Pléiades-A and Pléiades-B. The main topic of this paper is the approach enhancement with selection of feature extraction algorithm, the improvement and automation of pre-processing and results verification. For the informal and temporary dwellings extraction purpose the high quality of data has to be ensured. The pre-processing has been extended by including the input data hierarchy level assignment and data fusion method selection and evaluation. The feature extraction algorithm follows the procedure presented in Jenerowicz, M., Kemper, T., 2011. Optical data are analysed in a cyclic approach comprising image segmentation, geometrical, textural and spectral class modeling aiming at camp area identification. The successive steps of morphological processing have been combined in a one stand-alone application for automatic dwellings detection and enumeration. Actively implemented, these approaches can provide a reliable and consistent results, independent of the imaging satellite type and different study sites location, providing decision support in emergency response for the humanitarian community like United Nations, European Union and Non-Governmental relief organizations.

  12. Morphologically occult systemic mastocytosis in bone marrow: clinicopathologic features and an algorithmic approach to diagnosis.

    Science.gov (United States)

    Reichard, Kaaren K; Chen, Dong; Pardanani, Animesh; McClure, Rebecca F; Howard, Matthew T; Kurtin, Paul J; Wood, Adam J; Ketterling, Rhett P; King, Rebecca L; He, Rong; Morice, William G; Hanson, Curtis A

    2015-09-01

    Bone marrow (BM) biopsy specimens involved by systemic mastocytosis (SM) typically show multifocal, compact, dense aggregates of spindled mast cells (MCs). However, some cases lack aggregate formation and fulfill the World Health Organization 2008 criteria for SM, based on minor criteria. We identified 26 BM cases of KIT D816V-mutated, morphologically occult SM in the BM. All patients had some combination of allergic/MC activating symptoms. Peripheral blood counts were generally normal. BM aspirates showed 5% or less MCs, which were only occasionally spindled. BM biopsy specimens showed no morphologic classic MC lesions. Tryptase immunohistochemistry (IHC) demonstrated interstitial, individually distributed MCs (up to 5%) with prominent spindling, lacking aggregate formation. MCs coexpressed CD25 by IHC and/or flow cytometry. Spindled MCs constituted more than 25% of total MCs in all cases and more than 50% in 20 of 26 cases. Morphologically occult involvement of normal-appearing BM by SM will be missed without appropriate clinical suspicion and pathologic evaluation by tryptase and CD25 IHC and KIT D816V mutation analysis. On the basis of these findings, we propose a cost-effective, data-driven, evidence-based algorithmic approach to the workup of these cases. Copyright© by the American Society for Clinical Pathology.

  13. A Mathematical Formalization Proposal for Business Growth

    Directory of Open Access Journals (Sweden)

    Gheorghe BAILESTEANU

    2013-01-01

    Full Text Available Economic sciences have known a spectacular evolution in the last century; beginning to use axiomatic methods, applying mathematical instruments as a decision-making tool. The quest to formalization needs to be addressed from various different angles, reducing entry and operating formal costs, increasing the incentives for firms to operate formally, reducing obstacles to their growth, and searching for inexpensive approaches through which to enforce compliancy with government regulations. This paper proposes a formalized approach to business growth, based on mathematics and logics, taking into consideration the particularities of the economic sector.

  14. Your move: The effect of chess on mathematics test scores

    DEFF Research Database (Denmark)

    Rosholm, Michael; Mikkelsen, Mai Bjørnskov; Gumede, Kamilla Trille

    2017-01-01

    We analyse the effect of substituting a weekly mathematics lesson in primary school grades 1–3 with a lesson in mathematics based on chess instruction. We use data from the City of Aarhus in Denmark, combining test score data with a comprehensive data set obtained from administrative registers. We...... use two different methodological approaches to identify and estimate treatment effects and we tend to find positive effects, indicating that knowledge acquired through chess play can be transferred to the domain of mathematics. We also find larger impacts for unhappy children and children who...... are bored in school, perhaps because chess instruction facilitates learning by providing an alternative approach to mathematics for these children. The results are encouraging and suggest that chess may be an important and effective tool for improving mathematical capacity in young students....

  15. Your move: The effect of chess on mathematics test scores.

    Directory of Open Access Journals (Sweden)

    Michael Rosholm

    Full Text Available We analyse the effect of substituting a weekly mathematics lesson in primary school grades 1-3 with a lesson in mathematics based on chess instruction. We use data from the City of Aarhus in Denmark, combining test score data with a comprehensive data set obtained from administrative registers. We use two different methodological approaches to identify and estimate treatment effects and we tend to find positive effects, indicating that knowledge acquired through chess play can be transferred to the domain of mathematics. We also find larger impacts for unhappy children and children who are bored in school, perhaps because chess instruction facilitates learning by providing an alternative approach to mathematics for these children. The results are encouraging and suggest that chess may be an important and effective tool for improving mathematical capacity in young students.

  16. Advanced Mathematics Communication beyond Modality of Sight

    Science.gov (United States)

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access…

  17. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  18. Mathematics and Social Justice: A Symbiotic Pedagogy

    Science.gov (United States)

    Bond, Gareth; Chernoff, Egan J.

    2015-01-01

    Mathematics can be defined as "the science of pattern and order" (Van de Walle, Folk, Karp, & Bay-Williams, 2009, p. 10). But because there is often a perceived spectrum of approachability to mathematics (based on common misconceptions that envision the subject as a sort of elitist wizardry) it is important to bear in mind different…

  19. Chancroid transmission dynamics: a mathematical modeling approach.

    Science.gov (United States)

    Bhunu, C P; Mushayabasa, S

    2011-12-01

    Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.

  20. Mathematical foundation of computer science

    CERN Document Server

    Singh, YN

    2005-01-01

    The interesting feature of this book is its organization and structure. That consists of systematizing of the definitions, methods, and results that something resembling a theory. Simplicity, clarity, and precision of mathematical language makes theoretical topics more appealing to the readers who are of mathematical or non-mathematical background. For quick references and immediate attentions¾concepts and definitions, methods and theorems, and key notes are presented through highlighted points from beginning to end. Whenever, necessary and probable a visual approach of presentation is used. The amalgamation of text and figures make mathematical rigors easier to understand. Each chapter begins with the detailed contents, which are discussed inside the chapter and conclude with a summary of the material covered in the chapter. Summary provides a brief overview of all the topics covered in the chapter. To demonstrate the principles better, the applicability of the concepts discussed in each topic are illustrat...

  1. High impact polystyrene (HIPS). Predicting its molecular, morphological and mechanical properties

    International Nuclear Information System (INIS)

    Luciani, C; Estenoz, D; Morales, G; Meira, G

    2004-01-01

    A mathematical model that is able to predict the molecular and morphological structure of high impact polystyrene (HIPS) and the Fluidity Index (MFI) is presented. The model is divided into two parts: a) the estimation of the material's molecular and morphological properties, simulating the polymerization process in discontinuous mass based on the recipe and the conditions of synthesis; and b) the prediction of rheological variables (viscosity at low deformation speeds and relaxation time), and of the MFI, based on average molecular and morphological variables. The model also combines with empirical correlations proposed in the literature [1] in order to estimate impact strength (IS). The predictions for a), b) and impact strength were co-validated by independent data and resulted in a good fit (CW)

  2. The Multiple Intelligences Teaching Method and Mathematics ...

    African Journals Online (AJOL)

    The Multiple Intelligences teaching approach has evolved and been embraced widely especially in the United States. The approach has been found to be very effective in changing situations for the better, in the teaching and learning of any subject especially mathematics. Multiple Intelligences teaching approach proposes ...

  3. Examining the Relationship between Secondary Mathematics Teachers' Self-Efficacy, Attitudes, and Use of Technology to Support Communication and Mathematics Literacy

    Science.gov (United States)

    Letwinsky, Karim Medico

    2017-01-01

    The rich language surrounding mathematical concepts often is reduced in many classrooms to a narrow process of memorizing isolated procedures with little context. This approach has proven to be detrimental to students' ability to understand mathematics at deeper levels and remain engaged with this content. The current generation of students values…

  4. Mathematics in computed tomography and related techniques

    International Nuclear Information System (INIS)

    Sawicka, B.

    1992-01-01

    The mathematical basis of computed tomography (CT) was formulated in 1917 by Radon. His theorem states that the 2-D function f(x,y) can be determined at all points from a complete set of its line integrals. Modern methods of image reconstruction include three approaches: algebraic reconstruction techniques with simultaneous iterative reconstruction or simultaneous algebraic reconstruction; convolution back projection; and the Fourier transform method. There is no one best approach. Because the experimental data do not strictly satisfy theoretical models, a number of effects have to be taken into account; in particular, the problems of beam geometry, finite beam dimensions and distribution, beam scattering, and the radiation source spectrum. Tomography with truncated data is of interest, employing mathematical approximations to compensate for the unmeasured projection data. Mathematical techniques in image processing and data analysis are also extensively used. 13 refs

  5. Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course

    Science.gov (United States)

    Ludwig, Patrice; Tongen, Anthony; Walton, Brian

    2018-01-01

    James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…

  6. Development of innovative problem based learning model with PMRI-scientific approach using ICT to increase mathematics literacy and independence-character of junior high school students

    Science.gov (United States)

    Wardono; Waluya, B.; Kartono; Mulyono; Mariani, S.

    2018-03-01

    This research is very urgent in relation to the national issue of human development and the nation's competitiveness because of the ability of Indonesian Junior High School students' mathematics literacy results of the Programme for International Student Assessment (PISA) by OECD field of Mathematics is still very low compared to other countries. Curriculum 2013 launched one of them reflect the results of PISA which is still far from the expectations of the Indonesian nation and to produce a better quality of education, PISA ratings that reflect the nation's better competitiveness need to be developed innovative, interactive learning models such as innovative interactive learning Problem Based Learning (PBL) based on the approach of Indonesian Realistic Mathematics Education (PMRI) and the Scientific approach using Information and Communication Technology (ICT).The research was designed using Research and Development (R&D), research that followed up the development and dissemination of a product/model. The result of the research shows the innovative interactive learning PBL model based on PMRI-Scientific using ICT that developed valid, practical and effective and can improve the ability of mathematics literacy and independence-character of junior high school students. While the quality of innovative interactive learning PBL model based on PMRI-Scientific using ICT meet the good category.

  7. A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.

    Science.gov (United States)

    Araújo, Ricardo de A

    2012-04-01

    Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications

    Science.gov (United States)

    Zollman, Alan

    2009-01-01

    Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…

  9. Effectiveness of constructivist approach on students achievement in mathematics: A case study at primary school in Kuantan, Pahang

    Science.gov (United States)

    Samsudin, Syafiza Saila; Ujang, Suriyati; Sahlan, Nor Fasiha

    2016-06-01

    This study was conducted on students in Year 3 at Sekolah Kebangsaan Air Putih, Kuantan. The study used a constructivism approach in simplest fraction topic in Mathematics. Students were divided into 2 groups; the control group and the experimental group. Experimental group was taught using Constructivist Approach whereas the control group student was taught using the Traditional Approach. This study aimed to determine the effectiveness of constructivist learning approach the topic of Simplest Fraction. It also aimed to compare the student's achievement between the constructivist approach and traditional approach. This study used the instrument in pre-test, post-test, questionnaires and observation. The data were analyzed with SPSS 15.0 for window. The finding shows there is a significant difference between the pre-test and post-test for experimental group after using constructivism approach in learning process. The mean scores (76.39) of the post-test is higher than the mean scores (60.28) for pre-test. It is proved that constructivist approach is more efficient and suitable for teaching and learning in simplest fraction topic in the classroom compared to traditional approaches. The findings also showed interest and the positive perception of this approach.

  10. The mathematics of banking and finance

    CERN Document Server

    Cox, Dennis

    2006-01-01

    Throughout banking, mathematical techniques are used. Some of these are within software products or models; mathematicians use others to analyse data. The current literature on the subject is either very basic or very advanced. The Mathematics of Banking offers an intermediate guide to the various techniques used in the industry, and a consideration of how each one should be approached. Written in a practical style, it will enable readers to quickly appreciate the purpose of the techniques and, through illustrations, see how they can be applied in practice. Coverage is extensive and includes techniques such as VaR analysis, Monte Carlo simulation, extreme value theory, variance and many others.A practical review of mathematical techniques needed in banking which does not expect a high level of mathematical competence from the reader

  11. Mathematical and physical theory of turbulence

    CERN Document Server

    Cannon, John

    2006-01-01

    Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...

  12. Mesopotamian Mathematics, Seen “from the Inside” (by Assyriologists) and “from the Outside” (by Historians of Mathematics)

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    Since the 1950s, “Babylonian mathematics” has often served to open expositions of the general history of mathematics. Since it is written in a language and a script which only specialists understand, it has always been dealt with differently by the “insiders”, the Assyriologists who approached...... the texts where it manifests itself as philologists and historians of Mesopotamian culture, and by “outsiders”, historians of mathematics who had to rely on second-hand understanding of the material (actually, of as much of this material as they wanted to take into account), but who saw it as a constituent...... of the history of mathematics. The article deals with how these different approaches have looked in various periods: pre-decipherment speculations; the early period of deciphering, 1847–1929; the “golden decade”, 1929–1938, where workers with double competence (primarily Neugebauer and Thureau-Dangin) attacked...

  13. A Mathematical Physicist's Approach to Virology

    Science.gov (United States)

    Twarock, Reidun

    2012-02-01

    The following talk has been given in a special session dedicated to Professor Heinz-Dietrich Doebner at QTS in Prague in August 2011 on the occasion of his 80th birthday. It documents my journey from being a PhD student in Mathematical Physics at the Arnold Sommerfeld Institute in Clausthal under his supervision, to becoming a Professor of Mathematical Biology at the University of York in the UK. I am currently heading an interdisciplinary research group of eight PDRAs and PhDs, focussed on investigating the structures of viruses from a symmetry perspective and unravelling the implications of virus structure on how viruses form and infect their hosts. A central element in my research is my fascination with the development and application of symmetry techniques, which stems from my time in Clausthal when working with Professor Doebner and colleagues. I would like to thank Professor Doebner for these important formative years in Clausthal. Der folgende Vortrag war mein Beitrag zu einer Festsitzung fuer Herrn Professor Heinz-Dietrich Doebner auf der Tagung QTS im August 2011 anläßlich seines achzigsten Geburtstags. Dieser Beitrag dokumentiert, wie sich meine Forschungen aus der Zeit als Doktorandin von Herrn Professor Doebner in Mathematischer Physik am Arnold Sommerfeld Institut in Clausthal weiterentwickelt haben, und zu meiner Professur in Mathematischer Biologie an der Universität York geführt haben. Ich leite dort zur Zeit eine interdisziplinäre Forschungsgruppe von acht Postdocs und Doktoranden, die sich mit der Entwicklung und Anwendung von Symmetrie-Techniken in der Virologie beschäftigt, und insbesondere untersucht, wie sich die Symmetrie-Eigenschaften von Viren auf deren Entstehung und Funktionsweise auswirken. Eine wichtige Vorraussetzung für dieses Forschungsprogramm ist meine Faszination für die Modellierung von Symmetrie-Eigenschaften, die ich während meiner Zusammenarbeit mit Herrn Professor Doebner und Kollegen in Clausthal entwickelt habe

  14. What Is the Influence of Morphological Knowledge in the Early Stages of Reading Acquisition Among Low SES Children? A Graphical Modeling Approach

    Directory of Open Access Journals (Sweden)

    Pascale Colé

    2018-04-01

    Full Text Available Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding, before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November. Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer; Lexical Sentence Completion [e.g., Someone who runs is a …? (runner]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1 listening comprehension is at the heart of the reading acquisition process; (2 word reading depends directly on phonemic awareness and

  15. Computer Algebra Recipes for Mathematical Physics

    CERN Document Server

    Enns, Richard H

    2005-01-01

    Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...

  16. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  17. Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling

    Directory of Open Access Journals (Sweden)

    Thomas Heckelei

    2012-05-01

    Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.

  18. Machine Learning via Mathematical Programming

    National Research Council Canada - National Science Library

    Mamgasarian, Olivi

    1999-01-01

    Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...

  19. Mathematical methods for physicists a comprehensive guide

    CERN Document Server

    Arfken, George B; Harris, Frank E

    2012-01-01

    Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus w

  20. Physics and Mathematics as Interwoven Disciplines in Science Education

    Science.gov (United States)

    Galili, Igal

    2018-03-01

    The relationship between physics and mathematics is reviewed upgrading the common in physics classes' perspective of mathematics as a toolkit for physics. The nature of the physics-mathematics relationship is considered along a certain historical path. The triadic hierarchical structure of discipline-culture helps to identify different ways in which mathematics is used in physics and to appreciate its contribution, to recognize the difference between mathematics and physics as disciplines in approaches, values, methods, and forms. We mentioned certain forms of mathematical knowledge important for physics but often missing in school curricula. The geometrical mode of codification of mathematical knowledge is compared with the analytical one in context of teaching school physics and mathematics; their complementarity is exemplified. Teaching may adopt the examples facilitating the claims of the study to reach science literacy and meaningful learning.

  1. High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Xu, J.; Lu, F.; Jia, C.; Hua, Z.

    1991-01-01

    In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly

  2. Engineering students approaching the mathematics textbook as a potential learning tool – opportunities and constraints

    OpenAIRE

    Randahl, Mira

    2016-01-01

    Doktorgradsavhandling It is usually assumed that the students at tertiary level work intensively and individually with the new mathematical concepts (Wood, 2001). In this context the mathematics textbook might be an important learning tool. This thesis addresses the issue of what factors might influence the role of the mathematics textbook as a learning tool. The study is situated in the context of the basic mathematics course taken by first-year engineering students. A b...

  3. Data assimilation a mathematical introduction

    CERN Document Server

    Law, Kody; Zygalakis, Konstantinos

    2015-01-01

    This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a sy...

  4. Antecedents of Teachers' Educational Beliefs about Mathematics and Mathematical Knowledge for Teaching among In-Service Teachers in High Poverty Urban Schools

    Science.gov (United States)

    Corkin, Danya M.; Ekmekci, Adem; Papakonstantinou, Anne

    2015-01-01

    This paper examines the antecedents of three types of educational beliefs about mathematics among 151 teachers predominantly working in high poverty schools. Studies across various countries have found that teachers in high poverty schools are less likely to enact instructional approaches that align with mathematics reform standards set by…

  5. On the Origin of Symbolic Mathematics and Its Significance for Wittgenstein’s Thought

    Directory of Open Access Journals (Sweden)

    Sören Stenlund

    2015-07-01

    However, the nature of symbolic mathematics has been concealed and confused due to the strong influence of the heritage from the Euclidean and Aristotelian traditions. This essay sheds some light on what has been concealed by approaching some of the crucial issues from a historical perspective. Furthermore, I argue that the conception of modern mathematics as symbolic mathematics was essential to Wittgenstein’s approach to the foundations and nature of mathematics. This connection between Wittgenstein’s thought and symbolic mathematics provides the resources for countering the still prevalent view that he defended an uttrely idiosyncratic conception, disconnected from the progress of serious science. Instead, his project can be seen as clarifying ideas that have been crucial to the development of mathematics since early modernity.

  6. Discovery learning with SAVI approach in geometry learning

    Science.gov (United States)

    Sahara, R.; Mardiyana; Saputro, D. R. S.

    2018-05-01

    Geometry is one branch of mathematics that an important role in learning mathematics in the schools. This research aims to find out about Discovery Learning with SAVI approach to achievement of learning geometry. This research was conducted at Junior High School in Surakarta city. Research data were obtained through test and questionnaire. Furthermore, the data was analyzed by using two-way Anova. The results showed that Discovery Learning with SAVI approach gives a positive influence on mathematics learning achievement. Discovery Learning with SAVI approach provides better mathematics learning outcomes than direct learning. In addition, students with high self-efficacy categories have better mathematics learning achievement than those with moderate and low self-efficacy categories, while student with moderate self-efficacy categories are better mathematics learning achievers than students with low self-efficacy categories. There is an interaction between Discovery Learning with SAVI approach and self-efficacy toward student's mathematics learning achievement. Therefore, Discovery Learning with SAVI approach can improve mathematics learning achievement.

  7. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  8. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding.

    Directory of Open Access Journals (Sweden)

    Khan BahadarKhan

    Full Text Available Diabetic Retinopathy (DR harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases along with the ground truth data that has been precisely marked by the experts.

  9. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  10. Context problems in realistic mathematics education: A calculus course as an example

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.; Doorman, L.M.

    1999-01-01

    This article discusses the role of context problems, as they are used in the Dutch approach that is known as realistic mathematics education (RME). In RME, context problems are intended for supporting a reinvention process that enables students to come to grips with formal mathematics. This approach

  11. A Mathematical Modelling Approach to One-Day Cricket Batting Orders

    Science.gov (United States)

    Bukiet, Bruce; Ovens, Matthews

    2006-01-01

    While scoring strategies and player performance in cricket have been studied, there has been little published work about the influence of batting order with respect to One-Day cricket. We apply a mathematical modelling approach to compute efficiently the expected performance (runs distribution) of a cricket batting order in an innings. Among other applications, our method enables one to solve for the probability of one team beating another or to find the optimal batting order for a set of 11 players. The influence of defence and bowling ability can be taken into account in a straightforward manner. In this presentation, we outline how we develop our Markov Chain approach to studying the progress of runs for a batting order of non- identical players along the lines of work in baseball modelling by Bukiet et al., 1997. We describe the issues that arise in applying such methods to cricket, discuss ideas for addressing these difficulties and note limitations on modelling batting order for One-Day cricket. By performing our analysis on a selected subset of the possible batting orders, we apply the model to quantify the influence of batting order in a game of One Day cricket using available real-world data for current players. Key Points Batting order does effect the expected runs distribution in one-day cricket. One-day cricket has fewer data points than baseball, thus extreme values have greater effect on estimated probabilities. Dismissals rare and probabilities very small by comparison to baseball. Probability distribution for lower order batsmen is potentially skewed due to increased risk taking. Full enumeration of all possible line-ups is impractical using a single average computer. PMID:24357943

  12. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  13. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  14. Environmental Degradation: A Review on the Potential Impact of River Morphology

    Directory of Open Access Journals (Sweden)

    Awang Ali Awang Nasrizal

    2017-01-01

    Full Text Available River morphology involves the lateral migration of matters deposited by flowing water in the river channel across its floodplain. This is driven by the erosion along the river banks and point bar deposition over time. This paper presents a review on river morphology studies and its potential impact to the society. The reviewed studies include mathematical models and computer simulation such as FLUVIAL-11 and RVR Meander Package that are significant to illustrate a continuous research development on channel adjustment. The findings also shows that a lot more area can still be explored to aid the fundamental of understanding river morphology and that East Malaysia will provide a good platform for the researchers to investigate the lateral migration of a river due to its diversity environment.

  15. Role of Mathematics Learning Development Centres in HEIs

    Science.gov (United States)

    Nzekwe-Excel, C.

    2010-01-01

    Background and Rationale: Student withdrawal and non-completion in institutions have been an issue of considerable concern. The lack of mathematical ability has been identified as a factor resulting to non-completion in higher institutions. Several students in higher education approach mathematics with a lot of anxiety. This has created the need…

  16. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  17. Designing Differentiated Mathematics Games: "Discarding" the One-Size-Fits-All Approach to Educational Game Play

    Science.gov (United States)

    Trinter, Christine P.; Brighton, Catherine M.; Moon, Tonya R.

    2015-01-01

    Primary grade students enter the mathematics classroom with a range of differences including students' mathematical readiness, mathematical conceptions, interests, and learning profiles. Addressing the learning needs of students is not a trivial task, but accounting for these needs is essential for supporting students as they continually work…

  18. Mathematical Modelling of Involute Spur Gears Manufactured by Rack Cutter

    Directory of Open Access Journals (Sweden)

    Tufan Gürkan YILMAZ

    2016-05-01

    Full Text Available In this study, mathematical modelling of asymmetric involute spur gears was situated in by Litvin approach. In this context, firstly, mathematical expressions of rack cutter which manufacture asymmetric involute spur gear, then mathematical expression of asymmetric involute spur gear were obtained by using differential geometry, coordinate transformation and gear theory. Mathematical expressions were modelled in MATLAB and output files including points of involute spur gear’s teeth were designed automatically thanks to macros.

  19. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance

    Directory of Open Access Journals (Sweden)

    Bashirah Ibrahim

    2017-10-01

    Full Text Available We examine students’ mathematical performance on quantitative “synthesis problems” with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students’ mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students’ formulation and combination of equations. Several reasons may explain this difference, including the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  20. Videogames as an incipient research object inMathematics Education

    Directory of Open Access Journals (Sweden)

    Lluís Albarracín

    2017-01-01

    Full Text Available This article presents a review of research made in the field of mathematics education on the use of video games in the classroom. These investigations have focused on four areas: impact in academic performance focused on mathematical contents, specific mathematical contents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving.  Finally,  we  propose  two  research  new  approaches that  have  not  been  explored  so  far,  like  the  use  of  commercial  videogames  for  mathematical  activities  or  the  use  of  simulation  games  as  environment  to  promote  mathematical modeling.

  1. Mathematics and communication skills using educational software in math classes

    Directory of Open Access Journals (Sweden)

    Marjolis Laffita-Cuza

    2017-04-01

    Full Text Available The current transformations conceive among others, to form in the race of Mathematics-Physics a professor who imparts indistinctly the subjects of Mathematics and Physics in the upper secondary education from the third year of this race which requires putting more emphasis in the orientation of those Subjects to achieve greater professionalism. The present paper approaches from the theoretical aspects the essential aspects in the educational process of the learning of mathematics for the Mathematics-Physics career of the university of pedagogical sciences such as mathematical communicative competences and the use of educational software, all in function of achieving A greater development of student's mathematical logical thinking.

  2. A Professional Experience Model for Primary Pre-Service Teachers Specialising in Mathematics

    Science.gov (United States)

    McMaster, Heather; Cavanagh, Michael

    2016-01-01

    Many primary pre-service teachers (PSTs) who are enthused by tertiary courses that espouse and model a socio-constructivist approach to teaching mathematics, revert to a traditional approach when they encounter mathematics teaching during professional experience. An intervention was designed to translate the initial pedagogical intent of four…

  3. Advanced mathematics communication beyond modality of sight

    Science.gov (United States)

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the 'differences' in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.

  4. How to Introduce Mathematic Modeling in Industrial Design Education

    NARCIS (Netherlands)

    Langereis, G.R.; Hu, J.; Feijs, L.M.G.; Stillmann, G.A.; Kaiser, G.; Blum, W.B.; Brown, J.P.

    2013-01-01

    With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this chapter, a model is proposed where conventional education is seen as a process from mathematics to design, while competency driven approaches

  5. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  6. Sheaves in Elementary Mathematics: The case of positive integer numbers

    OpenAIRE

    Luna-Torres, Joaquin

    2015-01-01

    We aim to use the concept of sheaf to establish a link between certain aspects of the set of positive integers numbers, a topic corresponding to the elementary mathematics, and some fundamental ideas of contemporary mathematics. We hope that this type of approach helps the school students to restate some problems of elementary mathematics in an environment deeper and suitable for its study.

  7. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach

    International Nuclear Information System (INIS)

    Rockne, R; Alvord, E C Jr; Swanson, K R; Rockhill, J K; Kalet, I; Hendrickson, K; Mrugala, M; Spence, A M; Lai, A; Cloughesy, T

    2010-01-01

    Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the subgroups that may have responded to or may have been injured by treatment. Such statistics offer scant reassurance to individual patients who have suffered through these treatments. Furthermore, current imaging-based treatment response metrics in individual patients ignore patient-specific differences in tumor growth kinetics, which have been shown to vary widely across patients even within the same histological diagnosis and, unfortunately, these metrics have shown only minimal success in predicting patient outcome. We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by standard-of-care external beam radiation therapy (XRT). We present and apply a patient-specific, biologically based mathematical model for glioma growth that quantifies response to XRT in individual patients in vivo. The mathematical model uses net rates of proliferation and migration of malignant tumor cells to characterize the tumor's growth and invasion along with the linear-quadratic model for the response to radiation therapy. Using only routinely available pre-treatment MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation response in these patients, quantified by both clinical and model-generated measures, could have been predicted prior to treatment with high accuracy. Specifically, we find that the net proliferation rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a predictive relationship that is tested with a leave-one-out cross-validation technique. This relationship predicts the tumor size post-therapy to within inter

  8. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  9. Mathematical and statistical approaches to AIDS epidemiology

    CERN Document Server

    1989-01-01

    The 18 research articles of this volume discuss the major themes that have emerged from mathematical and statistical research in the epidemiology of HIV. The opening paper reviews important recent contributions. Five sections follow: Statistical Methodology and Forecasting, Infectivity and the HIV, Heterogeneity and HIV Transmission Dynamics, Social Dynamics and AIDS, and The Immune System and The HIV. In each, leading experts in AIDS epidemiology present the recent results. Some address the role of variable infectivity, heterogeneous mixing, and long periods of infectiousness in the dynamics of HIV; others concentrate on parameter estimation and short-term forecasting. The last section looks at the interaction between the HIV and the immune system.

  10. There is More to the Teaching and Learning of Mathematics Than the Use of Local Languages: Mathematics Teacher Practices

    Directory of Open Access Journals (Sweden)

    Nancy Chitera

    2016-11-01

    Full Text Available In this article, we present a discussion about the type of mathematical discourse that is being produced in classrooms where the language of learning and teaching is local languages.  We also further explore the tensions in the mathematical discourse being produced. The study sample was 4 mathematics teachers from a semi-urban primary school in Malawi. The methods of data collection included classroom observations, pre-observation focus group discussions and reflective interviews. The results show that even though both students and teachers were able to communicate freely in local languages in the mathematics classroom, the mathematical discourse that came was distorted. This is mainly caused by lack of a well-developed mathematical discourse in local languages, which in turn takes away the confidence of mathematics teachers in the classroom. As a result, the mathematics classrooms are still being characterized by teachers not being creative, use of word by word from books, focus more on procedural than conceptual and thus teacher centered is still dominant in these classrooms. Furthermore, it is found that there are tensions between the formal and informal mathematical language in local languages. These results in turn have promoted a more in-depth understanding to the teaching and learning of mathematics when local language is the language of learning and teaching. Therefore, this article argues for a well-balanced approach when it comes to teaching and learning of mathematics rather than just focusing on the use of local languages.

  11. Effectiveness of Kem Kembara-i on improving the interests of students in mathematical sciences

    Science.gov (United States)

    Majid, Noriza; Rambely, Azmin Sham; Razman, Nini Nabila bt

    2017-04-01

    Mathematics does not only play an important role in daily life but it is also a compulsory subject that has to be learn from early stage until the highest level of study. However, various issues arise from Mathematic education especially the decline in the interest of students towards Mathematics. This study was carried out to study the level of interest of the students towards Mathematics and the factors that affect the level of their interest. In addition, this study also aims to determine the best approach to help improve students' interest in Mathematics and to study the effectiveness of Kem Kembara-i organized by School of Mathematical Science (PPSM) UKM. A total of 553 respondents from twenty secondary schools around Malaysia attended this camp. Questionnaire has been used as an instrument in this study and Likert scale was used in this questionnaire. The finding shows that most of the students who participated in this camp were interested in Mathematics and the factors that affect their level of interest are such as the parents, peers, teachers and attitude. Recreational approach is the best approach in increasing the interest of students towards Mathematics and the results show that almost all of the activities in this camp, managed to attract the interest of students towards Mathematics. Therefore, it is concluded that this camp is effective in forming positive attitudes toward Mathematics.

  12. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.

    Science.gov (United States)

    Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael

    2016-11-01

    Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.

  13. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  14. A Morphological Approach to the Voxelization of Solids

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Sramek, Milos; Christensen, Niels Jørgen

    2000-01-01

    In this paper we present a new, morphological criterion for determining whether a geometric solid is suitable for voxelization at a given resolution. The criterion embodies two conditions, namely that the curvature of the solid must be bounded and the critical points of the distance field must be...

  15. Assessment Mathematics Teacher's Competencies

    Science.gov (United States)

    Alnoor, A. G.; Yuanxiang, Guo; Abudhuim, F. S.

    2007-01-01

    This paper aimed to identifying the professional efficiencies for the intermediate schools mathematics teachers and tries to know at what level the math teachers experience those competencies. The researcher used a descriptive research approach, the study data collected from specialist educators and teacher's experts and previous studies to…

  16. A Modular Approach to Teaching Mathematical Modeling in Biotechnology in the Undergraduate Curriculum

    Science.gov (United States)

    Larripa, Kamila R.; Mazzag, Borbala

    2016-01-01

    Our paper describes a solution we found to a still existing need to develop mathematical modeling courses for undergraduate biology majors. Some challenges of such courses are: (i) relatively limited exposure of biology students to higher-level mathematical and computational concepts; (ii) availability of texts that can give a flavor of how…

  17. Geometry Report; Cambridge Conference on School Mathematics Feasibility Study No. 39.

    Science.gov (United States)

    Stolzenberg, Gabriel

    These materials were written with the aim of reflecting the thinking of the Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for school mathematics. This report deals with some seventh grade mathematical concepts taught at Cambridge Friends' School. The discovery approach was utilized by the teacher in order to…

  18. "Whys" and "Hows" of Using Philosophy in Mathematics Education

    Science.gov (United States)

    Jankvist, Uffe Thomas; Iversen, Steffen Møllegaard

    2014-01-01

    The article elaborates and exemplifies a potential categorization of the reasons for using philosophy, in particular the philosophy of mathematics, in mathematics education and approaches to doing so-the so-called "whys" and "hows". More precisely, the "whys" are divided into the two categories of "philosophy as…

  19. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  20. Analysis of anatomic variability in children with low mathematical skills

    Science.gov (United States)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  1. Developing a learning environment on realistic mathematics education for Indonesian student teachers

    NARCIS (Netherlands)

    Zulkardi, Z.

    2002-01-01

    The CASCADE-IMEI study was started to explore the role of a learning environment (LE) in assisting mathematics student teachers learning Realistic Mathematics Education (RME) as a new instructional approach in mathematics education in Indonesia. The LE for this study has been developed and evaluated

  2. Wronski's Foundations of Mathematics.

    Science.gov (United States)

    Wagner, Roi

    2016-09-01

    Argument This paper reconstructs Wronski's philosophical foundations of mathematics. It uses his critique of Lagrange's algebraic analysis as a vignette to introduce the problems that he raised, and argues that these problems have not been properly appreciated by his contemporaries and subsequent commentators. The paper goes on to reconstruct Wronski's mathematical law of creation and his notions of theory and techne, in order to put his objections to Lagrange in their philosophical context. Finally, Wronski's proof of his universal law (the expansion of a given function by any series of functions) is reviewed in terms of the above reconstruction. I argue that Wronski's philosophical approach poses an alternative to the views of his contemporary mainstream mathematicians, which brings up the contingency of their choices, and bridges the foundational concerns of early modernity with those of the twentieth-century foundations crisis. I also argue that Wronski's views may be useful to contemporary philosophy of mathematical practice, if they are read against their metaphysical grain.

  3. Second-Degree Price Discrimination: A Graphical and Mathematical Approach

    Science.gov (United States)

    Gotlibovski, Chemi; Kahana, Nava

    2009-01-01

    The authors use a relatively simple diagram accompanied by mathematical analysis to compare two pricing strategies: price-quantity packages and a two-part tariff. This is done both from the monopolist's point of view and from the welfare point of view. The authors show that in the case of two consumer types, the price-quantity packages strategy…

  4. Exploring the affective domain in the teaching of mathematics

    DEFF Research Database (Denmark)

    Schmidt, Maria Christina Secher; Nissen, Stine Karen; Tonnesen, Pia Beck

    2015-01-01

    The paper presents the initial constructs of a study being carried out within the Danish public school (primary education) during the fall of 2015. It is based on a substudy conducted in connection with a study of the Early Mathematics Intervention Program for Marginal Groups in Denmark (TMTM i.e....... The methodology forms the basis for a qualitative approach toward gaining insight into the affective domain, which contributes to a field of research significantly dominated by quantitative approaches........e. Tidlig Matematikindsats Til Marginalgrupper). The 12-week intervention was implemented by 82 mathematics teachers in 41 schools in 31 different Danish municipalities. The presentation focuses on the development of a methodology aimed at capturing young students’ voices and views on mathematics...

  5. Students with ‘Special Rights' for mathematics education

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Gervasoni, Ann

    2011-01-01

    insights and implications from research on the special needs of different "equity groups," illuminating the way in which a "one-size-fits-all" approach tends to limit quality education to only dominant groups. And Section 4 contains lessons learned by researchers and practitioners who attempted to manage......The issues of equity and quality have been central to international debates on mathematics in research, policy, curriculum and teaching. This book covers a wide variety of topics in the research and practice of mathematics education, demonstrating how equity and quality are inherently political...... terms whose political bedrock is obscured by them being taken for granted. Mapping Equity and Quality in Mathematics Education is broken into four parts. Section 1 addresses the constructs of equity and quality from a variety of theoretical perspectives and outlines new directions to approach...

  6. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  7. Conflicting Tendencies in the Historigraphy of Mathematics: M. Cantor and H.G. Zeuthen

    DEFF Research Database (Denmark)

    Lützen, Jesper

    1994-01-01

    A comparison between Cantor's and Zeuthen's approach to the history of mathematics, based on their published works and the polemics between them.......A comparison between Cantor's and Zeuthen's approach to the history of mathematics, based on their published works and the polemics between them....

  8. Improved progressive morphological filter for digital terrain model generation from airborne lidar data.

    Science.gov (United States)

    Hui, Zhenyang; Wu, Beiping; Hu, Youjian; Ziggah, Yao Yevenyo

    2017-12-01

    Obtaining high-precision filtering results from airborne lidar point clouds in complex environments has always been a hot topic. Mathematical morphology was widely used for filtering, owing to its simplicity and high efficiency. However, the morphology-based algorithms are deficient in preserving terrain details. In order to obtain a better filtering effect, this paper proposed an improved progressive morphological filter based on hierarchical radial basis function interpolation (PMHR) to refine the classical progressive morphological filter. PMHR involved two main improvements, namely, automatic setting of self-adaptive thresholds and terrain details preservation, respectively. The performance of PMHR was evaluated using datasets provided by the International Society for Photogrammetry and Remote Sensing. Experimental results show that PMHR achieved good performance under variant terrain features with an average total error of 4.27% and average Kappa coefficient of 84.57%.

  9. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    Science.gov (United States)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  10. On the interplay between mathematics and biology: hallmarks toward a new systems biology.

    Science.gov (United States)

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mathematical modeling of cancer metabolism.

    Science.gov (United States)

    Medina, Miguel Ángel

    2018-04-01

    Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Morphological operation based dense houses extraction from DSM

    OpenAIRE

    Li, Y.; Zhu, L.; Tachibana, K.; Shimamura, H.

    2014-01-01

    This paper presents a method of reshaping and extraction of markers and masks of the dense houses from the DSM based on mathematical morphology (MM). Houses in a digital surface model (DSM) are almost joined together in high-density housing areas, and most segmentation methods cannot completely separate them. We propose to label the markers of the buildings firstly and segment them into masks by watershed then. To avoid detecting more than one marker for a house or no marker at all d...

  13. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  14. History of mathematics and history of science reunited?

    Science.gov (United States)

    Gray, Jeremy

    2011-09-01

    For some years now, the history of modern mathematics and the history of modern science have developed independently. A step toward a reunification that would benefit both disciplines could come about through a revived appreciation of mathematical practice. Detailed studies of what mathematicians actually do, whether local or broadly based, have often led in recent work to examinations of the social, cultural, and national contexts, and more can be done. Another recent approach toward a historical understanding of the abstractness of modern mathematics has been to see it as a species of modernism, and this thesis will be tested by the raft of works on the history of modern applied mathematics currently under way.

  15. New directions for situated cognition in mathematics education

    CERN Document Server

    Winbourne, Peter; Winbourne, Peter

    2008-01-01

    This book draws together a range of papers by experienced writers in mathematics education who have used the concept of situated cognition in their research within recent years. Thus it provides an up-to-date overview of developments and applications to which other researchers can refer and which will inspire future research. It is appropriate to review the field now and collect a range of papers which all relate to situated cognition and show how its application to mathematics education has matured and become usefully embedded in our approach to central issues about learning mathematics.

  16. Review on mathematical basis for thermal conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M

    2007-10-15

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.

  17. Review on mathematical basis for thermal conduction equation

    International Nuclear Information System (INIS)

    Park, D. G.; Kim, H. M.

    2007-10-01

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation

  18. Mathematics education and the dignity of being

    Directory of Open Access Journals (Sweden)

    Paola Valero

    2012-11-01

    Full Text Available On the grounds of our work as researchers, teacher educators and teachers engaging with a socio-political approach in mathematics education in Colombia, we propose to understand democracy in terms of the possibility of constructing a social subjectivity for the dignity of being. We address the dilemma of how the historical insertion of school mathematics in relation to the Colonial project of assimilation of Latin American indigenous peoples into the episteme of the Enlightenment and Modernity is in conflict with the possibility of the promotion of a social subjectivity in mathematics classrooms. We illustrate a pedagogical possibility to move towards a mathematics education for social subjectivity with our work in reassembling the notion of geometrical space in the Colombian secondary school mathematics curriculum with notions of space from critical geography and the problem of territorialisation, and Latin American epistemology with the notion of intimate space as an important element of social subjectivity.

  19. Developing a deeper understanding of mathematics teaching expertise : an examination of three Chinese mathematics teachers’ resource systems as windows into their work and expertise

    NARCIS (Netherlands)

    Pepin, B.E.U.; Xu, B.; Trouche, L.; Wang, C.

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics “expert” teachers. Exploiting the Western and Eastern literature we examine the notion of

  20. A mathematical approach for evaluating nickel-hydrogen cells

    Science.gov (United States)

    Leibecki, H. F.

    1986-01-01

    A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.

  1. PROBLEMS OF MATHEMATICAL MODELING OF THE ENTERPRISES ORGANIZATIONAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    N. V. Andrianov

    2006-01-01

    Full Text Available The analysis of the mathematical models which can be used at optimization of the control system of the enterprise organizational structure is presented. The new approach to the mathematical modeling of the enterprise organizational structure, based on using of temporary characteristics of the control blocks working, is formulated

  2. Effectiveness of Using Games in Tertiary-Level Mathematics Classrooms

    Science.gov (United States)

    Afari, Ernest; Aldridge, Jill M.; Fraser, Barry J.

    2012-01-01

    The primary focus of this study was to investigate the effectiveness of games when used in tertiary-level mathematics classes in the United Arab Emirates. Our study incorporated a mixed-method approach that involved surveys (to assess students' perceptions of the learning environment and attitudes towards mathematics), interviews, observations of…

  3. Exploded view diagrams of mathematical surfaces

    KAUST Repository

    Karpenko, Olga A.; Li, Wilmot; Mitra, Niloy J.; Agrawala, Maneesh

    2010-01-01

    We present a technique for visualizing complicated mathematical surfaces that is inspired by hand-designed topological illustrations. Our approach generates exploded views that expose the internal structure of such a surface by partitioning

  4. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  5. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  6. Foundations of mathematical logic

    CERN Document Server

    Curry, Haskell B

    2010-01-01

    Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.

  7. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  8. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  9. Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics

    Directory of Open Access Journals (Sweden)

    Andreas eWanninger

    2015-05-01

    Full Text Available Morphology, the description and analysis of organismal form, is one of the oldest biological disciplines that has significantly contributed to our understanding as to how animals function and how the overwhelming diversity of phenotypes evolved. The early discovery that comparative studies of morphogenesis add to our understanding of the evolutionary history and interrelationships of organisms led to the formulation of highly influential evolutionary principles, including Haeckel’s theory of recapitulation or Hatschek’s trochozoon-hypothesis, and established the intellectual foundation of a research area today termed EvoDevo. While the rapid integration of molecular techniques into systematics, phylogenetics, and developmental biology from the 1980s onwards made some consider morphology as having little to contribute to evolutionary research, methodological progress together with a revived focus on morphogenesis has resulted in an unexpected renaissance of evolutionary developmental morphology, here termed MorphoEvoDevo. Herein, I briefly summarize some classical landmark contributions and progress achieved by studies using the MorphoEvoDevo approach. I will focus on the role of morphology in modern evolutionary biology, especially with respect to the molecular-driven approaches such as phylogenetics and developmental genetics. I argue that, while MorphoEvoDevo may well survive as an independent field of research, in times of increased competition for funding it will significantly profit from integration of the molecular disciplines into research programs with a strong emphasis on morphology. After all, morphological data are indispensable for reconstruction of phenotypic ground patterns and character evolution, and only a holistic approach incorporating all major subdisciplines of the evolutionary biosciences may ultimately result in a deep understanding, from molecules to ecosystems, of the driving forces that have shaped our organismal

  10. A Case Study on the Impact of Teacher Mathematical Knowledge on Pedagogical Practices

    Science.gov (United States)

    Hughes, Sally

    2016-01-01

    This study explores the implications for mathematical knowledge and pedagogical practices of primary teachers in Papua New Guinea making a shift from a transmission approach to a connectionist approach to teaching mathematics. The research participants were engaged in a professional development program designed to support the teaching and learning…

  11. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  12. Mathematical expeditions chronicles by the explorers

    CERN Document Server

    Laubenbacher, Reinhard

    1999-01-01

    This book contains the stories of five mathematical journeys into new realms, told through the writings of the explorers themselves. Some were guided by mere curiosity and the thrill of adventure, while others had more practical motives. In each case the outcome was a vast expansion of the known mathematical world and the realization that still greater vistas remained to be explored. The authors tell these stories by guiding the reader through the very words of the mathematicians at the heart of these events, and thereby provide insight into the art of approaching mathematical problems. The book can be used in a variety of ways. The five chapters are completely independent, each with varying levels of mathematical sophistication. The book will be enticing to students, to instructors, and to the intellectually curious reader. By working through some of the original sources and supplemental exercises, which discuss and solve - or attempt to solve - a great problem, this book helps the reader discover the roots ...

  13. Rash Decisions: An Approach to Dangerous Rashes Based on Morphology.

    Science.gov (United States)

    Santistevan, Jamie; Long, Brit; Koyfman, Alex

    2017-04-01

    Rash is a common complaint in the emergency department. Many causes of rash are benign; however, some patients may have a life-threatening diagnosis. This review will present an algorithmic approach to rashes, focusing on life-threatening causes of rash in each category. Rash is common, with a wide range of etiologies. The differential is broad, consisting of many conditions that are self-resolving. However, several conditions associated with rash are life threatening. Several keys can be utilized to rapidly diagnose and manage these deadly rashes. Thorough history and physical examination, followed by consideration of red flags, are essential. This review focuses on four broad categories based on visual and tactile characteristic patterns of rashes: petechial/purpuric, erythematous, maculopapular, and vesiculobullous. Rashes in each morphologic group will be further categorized based on clinical features such as the presence or absence of fever and distribution of skin lesions. Rashes can be divided into petechial/purpuric, erythematous, maculopapular, and vesiculobullous. After this differentiation, the presence of fever and systemic signs of illness should be assessed. Through the breakdown of rashes into these classes, emergency providers can ensure deadly conditions are considered. Published by Elsevier Inc.

  14. Fun with maths: exploring implications of mathematical models for malaria eradication.

    Science.gov (United States)

    Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A

    2014-12-11

    Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.

  15. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  16. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  17. Philosophy and foundations of mathematics L. E. J. Brouwer

    CERN Document Server

    Heyting, A

    1974-01-01

    L.E.J. Brouwer: Collected Works, Volume 1: Philosophy and Foundations of Mathematics focuses on the principles, operations, and approaches promoted by Brouwer in studying the philosophy and foundations of mathematics. The publication first ponders on the construction of mathematics. Topics include arithmetic of integers, negative numbers, measurable continuum, irrational numbers, Cartesian geometry, similarity group, characterization of the linear system of the Cartesian or Euclidean and hyperbolic space, and non-Archimedean uniform groups on the one-dimensional continuum. The book then examin

  18. Total Quality Management in the Classroom: Applications to University-Level Mathematics.

    Science.gov (United States)

    Williams, Frank

    1995-01-01

    Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)

  19. 基于数学形态学的快速糖尿病视网膜病变自动检测方法%Method of Fast and Automated Detection of Diabetic Retinopathy Based on Mathematical Morphology

    Institute of Scientific and Technical Information of China (English)

    高玮玮; 沈建新; 王玉亮

    2012-01-01

    基于眼底视网膜图像的糖尿病视网膜病变(糖网)自动检测不仅可使得实施大规模糖网筛查成为可能,也可为糖网早期诊断、及时治疗以及人眼视觉科学研究提供重要依据.为此,提出了基于数学形态学的糖网病灶自动检测算法:首先利用数学形态学结合阈值分割快速提取出视盘,在此基础上得到病灶候选区域;然后利用形态学重建等获取精确的病灶轮廓,从而实现病灶的准确检测.实验结果表明,该算法能够快速,有效地检测出眼底视网膜图像中的糖网病灶.%The technology of automated detection of diabetic retinopathy (DR) on fundus retinal images can not only make mass screening possible, but also offer a powerful adjunct for early diagnosis, treatment of diabetic retinopathy, and scientific research on human vision. For this purpose, an algorithm based on mathematical morphology for automated detection of diabetic retinopathy was proposed. Firstly, the optic disc was segmented by mathematical morphology and threshold in order to find candidate regions possibly containing lesions. Secondly, some methods such as morphological reconstruction were applied to find the exact contours of lesions. Finally, the true lesions were found out exactly. Experimental results showed that the algorithm was fast and effective in detecting diabetic retinopathy of fundus retinal images.

  20. Understanding the whole city as landscape. A multivariate approach to urban landscape morphology

    Directory of Open Access Journals (Sweden)

    Richard Stiles

    2014-05-01

    Full Text Available The European Landscape Convention implies a requirement for signatory states to identify their urban landscapes which goes beyond the traditional focus on individual parks and green spaces and the links between them. Landscape ecological approaches can provide a useful model for identifying urban landscape types across a whole territory, but the variables relevant for urban landscapes are very different to those usually addressing rural areas. This paper presents an approach to classifying the urban landscape of Vienna that was developed in a research project funded by the Austrian Ministry for Transport, Innovation and Technology: ‘Urban Fabric and Microclimate Response’. Nine landscape types and a number of sub-types were defined, using a multivariate statistical approach which takes account of both morphological and urban climate related variables. Although the variables were selected to objectively reflect the factors that could best represent the urban climatic characteristics of the urban landscape, the results also provided a widely plausible representation of the structure of the city’s landscapes. Selected examples of the landscape types that were defined in this way were used both to simulate current microclimatic conditions and also to model the effects of possible climatic amelioration measures. Finally the paper looks forward to developing a more general-purpose urban landscape typology that allows investigating a much broader complex of urban landscape functions.

  1. The thumb carpometacarpal joint: curvature morphology of the articulating surfaces, mathematical description and mechanical functioning.

    Science.gov (United States)

    Dathe, Henning; Dumont, Clemens; Perplies, Rainer; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans; Wachowski, Martin M

    2016-01-01

    The purpose is to present a mathematical model of the function of the thumb carpometacarpal joint (TCMCJ) based on measurements of human joints. In the TCMCJ both articulating surfaces are saddle-shaped. The aim was to geometrically survey the shapes of the articulating surfaces using precise replicas of 28 TCMCJs. None of these 56 articulating surfaces did mathematically extend the differential geometrical neighbourhood around the main saddle point so that each surface could be characterised by three main parameters: the two extreme radii of curvature in the main saddle point and the angle between the saddles' asymptotics (straight lines). The articulating surfaces, when contacting at the respective main saddle points, are incongruent. Hence, the TCMCJ has functionally five kinematical degrees of freedom (DOF); two DOF belong to flexion/extension, two to ab-/adduction. These four DOF are controlled by the muscular apparatus. The fifth DOF, axial rotation, cannot be adjusted but stabilized by the muscular apparatus so that physiologically under compressive load axial rotation does not exceed an angle of approximately ±3°. The TCMCJ can be stimulated by the muscular apparatus to circumduct. The mechanisms are traced back to the curvature incongruity of the saddle surfaces. Hence we mathematically proved that none of the individual saddle surfaces can be described by a quadratic saddle surface as is often assumed in literature. We derived an algebraic formula with which the articulating surfaces in the TCMCJ can be quantitatively described. This formula can be used to shape the articulating surfaces in physiologically equivalent TCMCJ-prostheses.

  2. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  3. ASSESSMENT OF STUDENTS’ PROFESSIONAL COMPETENCIES – THE FUTURE TEACHERS OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Mariya B. Shashkina

    2015-01-01

    Full Text Available The aim of the investigation is to describe the authors’ approach to the assessment of the professional competence of the future teacher of mathematics.Methods. The methods involve comparative analysis of the Professional Standard of the teacher and the Federal State Educational Standards in teacher education, as well as the method of predictive analysis of modern educational situation.Results. Qualimetric approach to the structuring of the professional competencies of students is described; it allows concretizing the assessment object, to select the criteria and levels of its formedness, to trace the dynamics of development in the medium of profile preparation of a bachelor. The methodology of assessment a professional-profile competence of the future mathematics teachers is proposed; examples of the competence-assessment tools are provided.Scientific novelty. The study gives a detailed analysis of developing the innovative approach to competencies assessment as metasubject learning outcomes.Practical significance. The proposed method of competencies assessment can be used in the mathematical preparation of the future mathematics teacher, and can serve as a basis for monitoring the professional competencies of students.

  4. The (Mathematical) Modeling Process in Biosciences.

    Science.gov (United States)

    Torres, Nestor V; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.

  5. A simple approach for synthesis of TiO{sub 2} nanotubes with through-hole morphology

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Krishna; Losic, Dusan [University of South Australia, Ian Wark Research Institute, Mawson lakes, SA (Australia)

    2009-07-15

    The present work reports a simple approach for fabrication of self-standing titania (TiO{sub 2}) nanotube membranes with through-hole morphology. The method is hydrofluoric acid free and the pore opening of TiO{sub 2}nanotubes is performed by electrochemical thinning of the oxide barrier layer. A reduction of anodization voltage was applied at the end of the anodization process to cause a successful removal of the remaining barrier layer from the TiO{sub 2} nanotubes during their detachment from the underlying titanium substrate. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. History, applications, and philosophy in mathematics education

    DEFF Research Database (Denmark)

    Jankvist, Uffe Thomas

    2013-01-01

    on the observation that a use of history, applications, and philosophy as a 'goal' is best realized through a modules approach, the article goes on to discuss how to actually design such teaching modules. It is argued that a use of primary original sources through a so-called guided reading along with a use......The article first investigates the basis for designing teaching activities dealing with aspects of history, applications, and philosophy of mathematics in unison by discussing and analyzing the different 'whys' and 'hows' of including these three dimensions in mathematics education. Based...... of student essay assignments, which are suitable for bringing out relevant meta-issues of mathematics, is a sensible way of realizing a design encompassing the three dimensions. Two concrete teaching modules on aspects of the history, applications, and philosophy of mathematics-HAPh-modules-are outlined...

  7. An Introduction to Equilibrium Thermodynamics: A Rational Approach to Its Teaching. Part 1: Notation and Mathematics.

    Science.gov (United States)

    Williams, Donald F.; Glasser, David

    1991-01-01

    Introduces and develops mathematical notation to assist undergraduate students in overcoming conceptual difficulties involving the underlying mathematics of state functions, which tend to be different from functions encountered by students in previous mathematical courses, because of the need to manipulate special types of partial derivatives and…

  8. Using Assessment for Learning Mathematics with Mobile Tablet Based Solutions

    Directory of Open Access Journals (Sweden)

    Ghislain Maurice Norbert Isabwe

    2014-03-01

    Full Text Available This article discusses assessment for learning in mathematics subjects. Teachers of large classes face the challenge of regularly assessing studentsཿ ongoing mathematical learning achievements. Taking the complexity of assessment and feedback for learning as a background, we have developed a new approach to the assessment for learning mathematics at university level. We devised mobile tablet technology supported assessment processes, and we carried out user studies in both Rwanda and Norway. Results of our study indicated that students found it fruitful to be involved in assessing other studentsཿ mathematics work, i.e. assessing fellow studentsཿ answers to mathematical tasks. By being involved in the assessment process, the students expected mathematical learning gains. Their providing and obtaining of feedback to/from their fellow students using technology supported tools were highly appreciated as regards their own mathematical learning process.

  9. A framework for bootstrapping morphological decomposition

    CSIR Research Space (South Africa)

    Joubert, LJ

    2004-11-01

    Full Text Available The need for a bootstrapping approach to the morphological decomposition of words in agglutinative languages such as isiZulu is motivated, and the complexities of such an approach are described. The authors then introduce a generic framework which...

  10. SOME ASPECTS OF THE USE OF MATHEMATICAL-STATISTICAL METHODS IN THE ANALYSIS OF SOCIO-HUMANISTIC TEXTS Humanities and social text, mathematics, method, statistics, probability

    Directory of Open Access Journals (Sweden)

    Zaira M Alieva

    2016-01-01

    Full Text Available The article analyzes the application of mathematical and statistical methods in the analysis of socio-humanistic texts. The essence of mathematical and statistical methods, presents examples of their use in the study of Humanities and social phenomena. Considers the key issues faced by the expert in the application of mathematical-statistical methods in socio-humanitarian sphere, including the availability of sustainable contrasting socio-humanitarian Sciences and mathematics; the complexity of the allocation of the object that is the bearer of the problem; having the use of a probabilistic approach. The conclusion according to the results of the study.

  11. Engineering Mathematics in Context

    DEFF Research Database (Denmark)

    Ravn, Ole; Henriksen, Lars Bo

    2017-01-01

    A theory-based approach to scientific research has an inherent tendency to become secluded from the ongoing problems and discussions of the surrounding society. A problem-based approach to research immediately involves this context of problems and discussions from the outset. In this article, we ...... argue that education in university engineering mathematics should take its outset in contextual problems in order to provide a foundation for the skills and capabilities engineers need in their future job settings, whether it be research or development activities....

  12. Using fuzzy mathematics for decision making in economics

    Directory of Open Access Journals (Sweden)

    Pavkov Ivan

    2012-01-01

    Full Text Available Traditionally, economic models are based on classical mathematics and Aristotelian two-valued logic. Nevertheless, fuzzy mathematics, as a tool for modeling some types of uncertainties and incomplete phenomena, is a more appropriate framework for modeling in economics. New approach has resulted in approximate reasoning and fuzzy control systems, which proved to be an efficient tool for decision making in fuzzy environment.

  13. Heat of mixing and morphological stability

    Science.gov (United States)

    Nandapurkar, P.; Poirier, D. R.

    1988-01-01

    A mathematical model, which incorporates heat of mixing in the energy balance, has been developed to analyze the morphological stability of a planar solid-liquid interface during the directional solidification of a binary alloy. It is observed that the stability behavior is almost that predicted by the analysis of Mullins and Sekerka (1963) at low growth velocities, while deviations in the critical concentration of about 20-25 percent are observed under rapid solidification conditions for certain systems. The calculations indicate that a positive heat of mixing makes the planar interface more unstable, whereas a negative heat of mixing makes it more stable, in terms of the critical concentration.

  14. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  15. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  16. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  17. A Comparison between a Traditional and an Accelerated, Online, Adaptive Approach to Developmental Mathematics

    Science.gov (United States)

    McGee, Daniel; Vasquez, Pedro; Cajigas, Jesus

    2014-01-01

    The University of Puerto Rico in Mayaguez (UPRM) has found that there are disadvantages to a semester long remedial mathematics course that is administered during the freshmen year to students with mathematics deficiencies in STEM (Science, Technology, Engineering and Math) programs. Correspondingly, the UPRM designed and implemented an…

  18. pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article

    Science.gov (United States)

    Perez Velazquez, Jose Luis

    2005-12-01

    Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.

  19. Cross-Lingual Morphological Tagging for Low-Resource Languages

    OpenAIRE

    Buys, Jan; Botha, Jan A.

    2016-01-01

    Morphologically rich languages often lack the annotated linguistic resources required to develop accurate natural language processing tools. We propose models suitable for training morphological taggers with rich tagsets for low-resource languages without using direct supervision. Our approach extends existing approaches of projecting part-of-speech tags across languages, using bitext to infer constraints on the possible tags for a given word type or token. We propose a tagging model using Ws...

  20. Type classes for mathematics in type theory

    OpenAIRE

    Spitters, Bas; Van der Weegen, Eelis

    2011-01-01

    The introduction of first-class type classes in the Coq system calls for re-examination of the basic interfaces used for mathematical formalization in type theory. We present a new set of type classes for mathematics and take full advantage of their unique features to make practical a particularly flexible approach formerly thought infeasible. Thus, we address both traditional proof engineering challenges as well as new ones resulting from our ambition to build upon this development a library...

  1. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  2. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong

    2015-07-01

    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  3. On Mathematical Naturalism and the Powers of Symbolisms

    Directory of Open Access Journals (Sweden)

    Murray Code

    2005-08-01

    Full Text Available Advances in modern mathematics indicate that progress in this field of knowledge depends mainly on culturally inflected imaginative intuitions, or intuitive imaginings—which mysteriously result in the growth of systems of symbolism that are often efficacious, although fallible and very likely evolutionary. Thus the idea that a trouble-free epistemology can be constructed out of an intuition-free mathematical naturalism would seem to be question begging of a very high order. I illustrate the point by examining Philip Kitcher’s attempt to frame an empiricist philosophy of mathematics, which he calls “mathematical naturalism,” wherein he proposes to explain novelty in mathematics by means of the notion of ‘rational interpractice transitions,’ only to end with an appeal to science to supply a meaning for rationality. A more promising naturalistic approach is adumbrated by Noam Chomsky who begins with a straightforward acceptance of mind and language as ‘natural’ or concrete facts which bespeak the need for a linguistic faculty. This indicates in turn that there may also be a mathematical faculty capable of generating and exploiting the powers of mathematical symbolisms in a manner analogous to the linguistic faculty.

  4. Mathematical physics classical mechanics

    CERN Document Server

    Knauf, Andreas

    2018-01-01

    As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

  5. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  6. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  7. A Mathematical Programming Approach to Brand Efficiency of Smartphones in the US Market

    Directory of Open Access Journals (Sweden)

    Shiu-Wan Hung

    2017-01-01

    Full Text Available This study applied mathematical programming approach to investigate the brand efficiency of smartphone brands by collecting data of 2013–2015 from Consumer Report. The brand efficiency was completed by employing the slack-based measure in data envelopment analysis. The degree of inefficiency of each brand was evaluated, and each brand’s metatechnology ratio was calculated using the metafrontier concept. The results revealed that the sampled smartphone brands reach the highest average brand efficiency in 2013, where Apple exhibited the highest brand efficiency among the sampled brands. The high brand efficiency in 2013 was attributed to the small number of product types at beginning of the growth period of smartphones. Finally, this study examined the efficiency of smartphone brands among four major telecommunications operators in the United States. It was found that Apple demonstrated the highest efficiency with all four operators, while no significant difference was noted among operators and smartphone brands.

  8. Wing pattern morphology of three closely related Melitaea (Lepidoptera, Nymphalidae species reveals highly inaccurate external morphology-based species identification

    Directory of Open Access Journals (Sweden)

    Jure Jugovic

    2014-06-01

    Full Text Available Wing morphology of the three closely related species of Melitaea – M. athalia (Rottemburg, 1775, M. aurelia (Nickerl, 1850 and M. britomartis Assmann, 1847 – co-occurring in the Balkans (SE Europe was investigated in detail through visual inspection, morphometric analysis and multivariate statistical analysis. Results are compared to recent phylogenetic studies, searching for concordant patterns and discrepancies between the two approaches. The morphology of the genitalic structures is also compared with the results of the other two approaches. The main conclusions are as follows: (1 small albeit significant differences in wing morphology exist among the three species and (2 while the structure of male genitalia and phylogenetic position of the three species are concordant, they are (3 in discordance with the wing morphology. The present study represents another example where identification based on external morphology would lead to highly unreliable determinations, hence identification based on phylogenetic studies and/or genitalia is strongly recommended not only for the three studied species but also more broadly within the genus. Furthermore, we show that some of the characters generally used in the identification of these three Melitaea species should be avoided in future.

  9. What Is the Relationship between Technology and Mathematics Teaching Anxiety?

    Science.gov (United States)

    Tatar, Enver; Zengin, Yilmaz; Kagizmanli, Türkan Berrin

    2015-01-01

    The aim of this study is to determine the relationship between pre-service teachers' perceptions regarding technology use in mathematics teaching and their computer literacy levels as well as their mathematics teaching anxiety. The nonexperimental correlational research, which is included in the quantitative research approach, was used in the…

  10. The Importance of Dialogic Processes to Conceptual Development in Mathematics

    Science.gov (United States)

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…

  11. Research Commentary: The Promise of Qualitative Metasynthesis for Mathematics Education

    Science.gov (United States)

    Thunder, Kateri; Berry, Robert Q., III.

    2016-01-01

    Mathematics education has benefited from qualitative methodological approaches over the past 40 years across diverse topics. Although the number, type, and quality of qualitative research studies in mathematics education has changed, little is known about how a collective body of qualitative research findings contributes to our understanding of a…

  12. Improving the Computational Morphological Analysis of a Swahili ...

    African Journals Online (AJOL)

    approach to the morphological analysis of Swahili. We particularly focus our discussion on its ability to retrieve lemmas for word forms and evaluate it as a tool for corpus-based dictionary compilation. Keywords: LEXICOGRAPHY, MORPHOLOGY, CORPUS ANNOTATION, LEMMATIZATION, MACHINE LEARNING, SWAHILI ...

  13. Mathematical methods of classical physics

    CERN Document Server

    Cortés, Vicente

    2017-01-01

    This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

  14. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  15. Emotions in the mathematics knowledge’s desertion

    Directory of Open Access Journals (Sweden)

    Alfonso Jiménez Espinosa,

    2010-01-01

    Full Text Available The natural wearing out of students has become one of the most worrying problems for universities, but underlies another, dropping out of mathematical knowledge, which is one of the causes of the first. The mathematics learning occurs mainly in class and there is where the concept interstructuring, the network of relationships, emotions, attitudes and beliefs among the known and the new, acquire a meaning and where the student learns. This research investigates the relationship between emotions and mathematics’ learning in students at the Geological Engineering Program of the UPTC. Through the case study and the “Theoretically informed” approach is shown the intricate relationship between emotionality and the construction of mathematical structures. Weconclude that emotions, especially negative ones arise because of the inability to achieve a cognitive balance, leading the student to change his action domain, preventing the construction of mathematical knowledge. It is emphasized that these negative emotions have different origin, especially those generated by beliefs about mathematics and the unfortunate attitude of teachers.

  16. Three-dimensional computer graphic animations for studying social approach behaviour in medaka fish: Effects of systematic manipulation of morphological and motion cues.

    Science.gov (United States)

    Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji

    2017-01-01

    We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.

  17. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  18. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  19. Taking the mystery out of mathematical model applications to karst aquifers—A primer

    Science.gov (United States)

    Kuniansky, Eve L.

    2014-01-01

    Advances in mathematical model applications toward the understanding of the complex flow, characterization, and water-supply management issues for karst aquifers have occurred in recent years. Different types of mathematical models can be applied successfully if appropriate information is available and the problems are adequately identified. The mathematical approaches discussed in this paper are divided into three major categories: 1) distributed parameter models, 2) lumped parameter models, and 3) fitting models. The modeling approaches are described conceptually with examples (but without equations) to help non-mathematicians understand the applications.

  20. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…