WorldWideScience

Sample records for mathematical models develop

  1. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  2. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    Science.gov (United States)

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  3. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  4. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  5. Mathematical modeling for novel cancer drug discovery and development.

    Science.gov (United States)

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  6. Application of a neurofuzzy mathematical model in the development ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... This paper presents a contribution on the development of a neurofuzzy mathematical model that aids in capturing and analyzing the various parameters in ... The neurofuzzy methodology was used to regulate the oven baking temperatures to acceptable standards.

  7. Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2016-01-01

    This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…

  8. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  9. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  10. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering

    2007-07-01

    Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.

  11. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  12. Development of a revised mathematical model of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Barker, A.

    1991-01-01

    The objectives of this research are as follows. First, to incorporate new biological data into a revised mathematical adult gastrointestinal tract model that includes: ingestion in both liquid and solid forms; consideration of absorption in the stomach, small intestine, ascending colon, transverse colon or not at all; gender and age of the adult; and whether the adult is a smoker or not. Next, to create a computer program in basic language for calculating residence times in each anatomical section of the GI tract for commonly used radionuclides. Also, to compare and contrast the new model with the ICRP 30 GI tract model in terms of physiological concepts, mathematical concepts, and revised residence times for several commonly used radionuclides. Finally, to determine whether the new model is sufficiently better than the current model to warrant its use as a replacement for the Eve model

  13. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  14. Pre-Service Teachers' Developing Conceptions about the Nature and Pedagogy of Mathematical Modeling in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc

    2016-01-01

    Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…

  15. Developing a model of pedagogical content knowledge for secondary and post-secondary mathematics instruction

    Directory of Open Access Journals (Sweden)

    Shandy Hauk

    2014-07-01

    Full Text Available The accepted framing of mathematics pedagogical content knowledge (PCK as part of mathematical knowledge for teaching has centered on the question: What mathematical reasoning, insight, understanding, and skills are required for a person to teach elementary mathematics? Many have worked to address this question in K-8 teaching. Yet, there remains a call for examples and theory in the context of teachers with greater mathematical preparation and older students with varied and complex experiences in learning mathematics. In this theory development report we offer background and examples for an extended model of PCK – as the interplay among conceptually-rich mathematical understandings, experience in and of teaching, and multiple culturally-mediated classroom interactions.

  16. Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, Elvis

    2015-01-01

    The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…

  17. Developing calculus textbook model that supported with GeoGebra to enhancing students’ mathematical problem solving and mathematical representation

    Science.gov (United States)

    Dewi, N. R.; Arini, F. Y.

    2018-03-01

    The main purpose of this research is developing and produces a Calculus textbook model that supported with GeoGebra. This book was designed to enhancing students’ mathematical problem solving and mathematical representation. There were three stages in this research i.e. define, design, and develop. The textbooks consisted of 6 chapters which each chapter contains introduction, core materials and include examples and exercises. The textbook developed phase begins with the early stages of designed the book (draft 1) which then validated by experts. Revision of draft 1 produced draft 2. The data were analyzed with descriptive statistics. The analysis showed that the Calculus textbook model that supported with GeoGebra, valid and fill up the criteria of practicality.

  18. Development of mathematical models for predicting the iron ...

    African Journals Online (AJOL)

    Facing the increase of surface water samples contaminated by ETMs, usually from the geochemical background, the emergence of new human diseases is worrying. To solve this problem, we have developed several models based on different learning algorithms qualified by high performance, using different transfer ...

  19. Some Instructional Implications from a Mathematical Model of Cognitive Development.

    Science.gov (United States)

    Mierkiewicz, Diane B.

    Cognitive development and various educational implications are discussed in terms of Donald Saari's model of the interaction of a learner and the enviroment and the constraints imposed by the inefficiency of the learner's cognitive system. Saari proposed a hierarchical system of cognitive structures such that the relationships between structures…

  20. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    OpenAIRE

    M. V. Shaptala; D. E. Shaptala

    2014-01-01

    Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The m...

  1. A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes

    Science.gov (United States)

    Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.

    2018-04-01

    Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.

  2. Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development

    Directory of Open Access Journals (Sweden)

    Nenad Stojanović

    2011-10-01

    Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.

  3. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  4. Development of mathematical model to predict the mechanical properties of friction stir

    Directory of Open Access Journals (Sweden)

    R. Palanivel

    2011-01-01

    Full Text Available This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength,yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft anddefense Industries by incorporating (FSW friction stir welding process parameter such as tool rotational speed, weldingspeed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design withfull replications technique. Response surface methodology (RSM is employed to develop the mathematical model. Analysisof variance (ANOVA Technique is used to check the adequacy of the developed mathematical model. The developedmathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanicalproperties of AA6351 aluminum alloy has been analyzed in detail.

  5. Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach.

    Science.gov (United States)

    Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M

    2018-04-24

    Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.

  6. Development of syntax of intuition-based learning model in solving mathematics problems

    Science.gov (United States)

    Yeni Heryaningsih, Nok; Khusna, Hikmatul

    2018-01-01

    The aim of the research was to produce syntax of Intuition Based Learning (IBL) model in solving mathematics problem for improving mathematics students’ achievement that valid, practical and effective. The subject of the research were 2 classes in grade XI students of SMAN 2 Sragen, Central Java. The type of the research was a Research and Development (R&D). Development process adopted Plomp and Borg & Gall development model, they were preliminary investigation step, design step, realization step, evaluation and revision step. Development steps were as follow: (1) Collected the information and studied of theories in Preliminary Investigation step, studied about intuition, learning model development, students condition, and topic analysis, (2) Designed syntax that could bring up intuition in solving mathematics problem and then designed research instruments. They were several phases that could bring up intuition, Preparation phase, Incubation phase, Illumination phase and Verification phase, (3) Realized syntax of Intuition Based Learning model that has been designed to be the first draft, (4) Did validation of the first draft to the validator, (5) Tested the syntax of Intuition Based Learning model in the classrooms to know the effectiveness of the syntax, (6) Conducted Focus Group Discussion (FGD) to evaluate the result of syntax model testing in the classrooms, and then did the revision on syntax IBL model. The results of the research were produced syntax of IBL model in solving mathematics problems that valid, practical and effective. The syntax of IBL model in the classroom were, (1) Opening with apperception, motivations and build students’ positive perceptions, (2) Teacher explains the material generally, (3) Group discussion about the material, (4) Teacher gives students mathematics problems, (5) Doing exercises individually to solve mathematics problems with steps that could bring up students’ intuition: Preparations, Incubation, Illumination, and

  7. Mathematical Modeling Using MATLAB

    National Research Council Canada - National Science Library

    Phillips, Donovan

    1998-01-01

    .... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...

  8. Developing the Mathematics Learning Management Model for Improving Creative Thinking in Thailand

    Science.gov (United States)

    Sriwongchai, Arunee; Jantharajit, Nirat; Chookhampaeng, Sumalee

    2015-01-01

    The study purposes were: 1) To study current states and problems of relevant secondary students in developing mathematics learning management model for improving creative thinking, 2) To evaluate the effectiveness of model about: a) efficiency of learning process, b) comparisons of pretest and posttest on creative thinking and achievement of…

  9. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  10. Mathematical models of hysteresis

    International Nuclear Information System (INIS)

    1998-01-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above

  11. Mathematical models of hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  12. Development of a mathematical model of a packed column for benzene removal from salt solutions

    International Nuclear Information System (INIS)

    Georgeton, G.K.

    1989-01-01

    A mathematical model of a packed column was developed to describe the removal of benzene from radioactive salt solutions at the Savannah River Site. The model was developed from existing, generalized mass transfer correlations for randomly dumped packing, and the correlations were adapted for structured packing. Thermophysical data specific to the solutions of interest were incorporated into the model. Verification of the code was completed using operating data from stripping columns at other locations

  13. The Development of the Assessment for Learning Model of Mathematics for Rajamangala University of Technology Rattanakosin

    Directory of Open Access Journals (Sweden)

    Wannaree Pansiri

    2016-12-01

    Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.

  14. DEVELOPING A MATHEMATICAL MODEL FOR THE PROCESS OF DEVELOPING A MATHEMATICAL MODEL FOR THE PROCESS OF SEDIMENTARY TANKS

    Directory of Open Access Journals (Sweden)

    Valeria Victoria IOVANOV

    2013-05-01

    Full Text Available The model is reformulated by means of stochastic differential equations, and the parametersare estimated by a maximum likelihood method.VESILIND (1968; 1979 proposed a sludge settling velocity model of exponential form. During recent years,several refinements to the original model have been proposed, see e.g. GRIJSPEERDT et al. (1995; DUPONTand DAHL (1995 EKAMA et al. (1997. In the proposed models several layers in the settling tank areincorporated to permit the calculation of SS profiles over the tank depth and predict the SS concentrations in thereturn sludge and in the effluent from the clarifier.Here, the original VESILIND model combined with a simple suction depth model is used to enable predictionof the SS concentration in the effluent from the tank. In order to make the model applicable for real time controlpurposes, only two layers of variable height in the tank are considered

  15. The development of mathematics

    CERN Document Server

    Bell, Eric Temple

    1945-01-01

    ""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from

  16. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    Science.gov (United States)

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  17. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  18. Using an Empowerment Professional Development Model to Support Beginning Primary Mathematics Teachers

    Science.gov (United States)

    Sparrow, Len; Frid, Sandra

    2003-01-01

    This is a case study report from a larger study that focused on how an empowerment professional development model influenced the mathematics pedagogical practices and beliefs of Australian primary school teachers during their first year of teaching. The research used an interpretive approach for analysis of data from interviews, observations,…

  19. Professional Development for Secondary School Mathematics Teachers: A Peer Mentoring Model

    Science.gov (United States)

    Kensington-Miller, Barbara

    2012-01-01

    Professional development is important for all teachers, and in low socio-economic schools where the challenges of teaching are greater this need is crucial. A model involving a combination of one-on-one peer mentoring integrated with group peer mentoring was piloted with experienced mathematics teachers of senior students in low socio-economic…

  20. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  1. New Challenges for the Management of the Development of Information Systems Based on Complex Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    2002-01-01

    has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information......The advancements in complexity and sophistication of mathematical models for manufacturing scheduling and control and the increase of the ratio power/cost of computers are beginning to provide the manufacturing industry with new software tools to improve production. A Danish action research project...... systems development. In a presented case the indications of the model are compared with the decisions taken during the development. The results highlight discrepancies between the structure and predictions of the model and the case observations, especially with regard to the importance given to the users...

  2. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  3. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  4. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  5. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    Science.gov (United States)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  6. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed

  7. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed

  8. Long-term development of how students interpret a model; Complementarity of contexts and mathematics

    NARCIS (Netherlands)

    Vos, Pauline; Roorda, Gerrit; Stillman, Gloria Ann; Blum, Werner; Kaiser, Gabriele

    2017-01-01

    When students engage in rich mathematical modelling tasks, they have to handle real-world contexts and mathematics in chorus. This is not easy. In this chapter, contexts and mathematics are perceived as complementary, which means they can be integrated. Based on four types of approaches to modelling

  9. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    Directory of Open Access Journals (Sweden)

    M. V. Shaptala

    2014-12-01

    Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.

  10. Development and Validation of a Mathematical Model for Olive Oil Oxidation

    Science.gov (United States)

    Rahmouni, K.; Bouhafa, H.; Hamdi, S.

    2009-03-01

    A mathematical model describing the stability or the susceptibility to oxidation of extra virgin olive oil has been developed. The model has been resolved by an iterative method using differential finite method. It was validated by experimental data of extra virgin olive oil (EVOO) oxidation. EVOO stability was tested by using a Rancimat at four different temperatures 60, 70, 80 and 90° C until peroxide accumulation reached 20 [meq/kg]. Peroxide formation is speed relatively slow; fits zero order reaction with linear regression coefficients varying from 0, 98 to 0, 99. The mathematical model was used to predict the shelf life of bulk conditioned olive oil. This model described peroxide accumulation inside a container in excess of oxygen as a function of time at various positions from the interface air/oil. Good correlations were obtained between theoretical and experimental values.

  11. Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2009-09-01

    Full Text Available The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF and extinction (EXT of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT and log(TOF growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF and log(EXT, growth rates, and time to reach change points showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent

  12. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  13. Developing Students’ Reflections about the Function and Status of Mathematical Modeling in Different Scientific Practices

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    position held by the modeler(s) and the practitioners in the extra-mathematical domain. For students to experience the significance of different scientific practices and cultures for the function and status of mathematical modeling in other sciences, students need to be placed in didactical situations......Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical...... where such differences are exposed and made into explicit objects of their reflections. It can be difficult to create such situations in the teaching of contemporary science in which modeling is part of the culture. In this paper we show how history can serve as a means for students to be engaged...

  14. Mathematical modeling and GEOGEBRA in the development of competences in young researchers

    Directory of Open Access Journals (Sweden)

    Pabón Gómez, Jorge Angelmiro

    2015-12-01

    Full Text Available The present article aims to analyze the competences of young researchers using Geogebra software; Allows to know the shared experience from a quasi-experimental research, in a sample of 27 students of the tenth grade of the educational institution José María Córdoba, 7 of whom were researchers of the proposal "Mathematics Divertida" of the research group "The Pythagoreans" Enrolled in the Swarm project led by the CUN, the purpose was to show the importance of introducing the student in the management of GEOGEBRA as a facilitating tool for the development of mathematical competences as it allows him to visualize and simulate real situations in a dynamic and interactive way; And in turn of the necessity of its incorporation to the curricular plans for the teaching of the mathematics. Results: The referent of the research proposal was the modeling of functions by means of which the student learned to represent mathematically the processes to follow in order to find solutions to a real life problem, besides acquiring the skill to represent the results obtained for A later interpretation and analysis of the results. Conclusion: The student acquired strengths and also detected weaknesses, improved the ability to face new educational realities.

  15. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  16. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  17. Mathematic model of regional economy development by the final result of labor resources

    Science.gov (United States)

    Zaitseva, Irina; Malafeev, Oleg; Strekopytov, Sergei; Bondarenko, Galina; Lovyannikov, Denis

    2018-04-01

    This article presents the mathematic model of regional economy development based on the result of labor resources. The solution of a region development-planning problem is considered for the period of long-lasting planning taking into account the beginning and the end of the planned period. The challenge is to find the distribution of investments in the main and additional branches of the regional economy, which will provide simultaneous transaction of all major sectors of the regional economy from the given condition to the predetermined final state.

  18. THE INFLUENCE OF A MATHEMATICAL MODEL IN PRODUCTION STRATEGY: CONCEPTUAL DEVELOPMENT AND EMPIRICAL TEST

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Chagas Rodrigues

    2012-07-01

    Full Text Available Acquire and produce what is strictly necessary are the goals of the organizations, since they aim companies more competitive and thereby reducing production costs. The research method is applied in nature, with a qualitative and quantitative approach, in which the objective of the research will be: exploratory and descriptive, with technical procedures, divided into: bibliographic, documentary, survey and concluding with a case study. On this assumption the main objective of this research is to develop and analyze a mathematical model that minimizes costs and maximizes the postponement of stocks in a company in the pulp, paper and paper products. Having been found only four papers, two articles and two theses that deal with the issue of demand management, supply chain and inventory postponement. These studies address the issue by modeling the productive time of the supply chain. For production segments this research may enable development of management practices demand and production strategy, allowing cost reductions and productivity gains possible. With the development of the mathematical model could ever analyze the behavior of demand and its influence on the productive strategy, strategy formulation regarding the purchase of raw materials and finished product storage in the last four years the company's results for the proposed model.

  19. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  20. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development.

    Directory of Open Access Journals (Sweden)

    Morten Andersen

    Full Text Available The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.

  1. Real-time control data wrangling for development of mathematical control models of technological processes

    Science.gov (United States)

    Vasilyeva, N. V.; Koteleva, N. I.; Fedorova, E. R.

    2018-05-01

    The relevance of the research is due to the need to stabilize the composition of the melting products of copper-nickel sulfide raw materials in the Vanyukov furnace. The goal of this research is to identify the most suitable methods for the aggregation of the real time data for the development of a mathematical model for control of the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace. Statistical methods of analyzing the historical data of the real technological object and the correlation analysis of process parameters are described. Factors that exert the greatest influence on the main output parameter (copper content in matte) and ensure the physical-chemical transformations are revealed. An approach to the processing of the real time data for the development of a mathematical model for control of the melting process is proposed. The stages of processing the real time information are considered. The adopted methodology for the aggregation of data suitable for the development of a control model for the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace allows us to interpret the obtained results for their further practical application.

  2. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Science.gov (United States)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  3. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  4. Exploring Yellowstone National Park with Mathematical Modeling

    Science.gov (United States)

    Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia

    2017-01-01

    Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…

  5. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-09-01

    Full Text Available Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.

  6. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the

  7. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  8. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  9. DEVELOPMENT OF MATHEMATICAL MODELS FOR OPTIMAL PREVENTIVE MAINTENANCE POLICY IN A STEEL INDUSTRY : SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    N. V. R. Naidu

    2011-09-01

    Full Text Available This paper deals with a critical evaluation of the Preventive Maintenance system in steel industry. This study helps in implementing Six Sigma solutions to reduce the down time of two critical machines i.e., Electric Arc Furnace (EAF and Billet Casting Machine (BCM. It is clear from the analysis of EAF and BCM respectively that, variations in output are quite possible because the machines output not only depend on maintenance time but also on several other variables. Further, the objective is to design a preventive maintenance programme on the same equipment situated in the plant using Six Sigma. The breakdown of these equipments could very well affect the production rate. For this, the mathematical models have been developed and these models are used to obtain the optimum preventive maintenance frequency for minimizing the down time and maximizing the profits.

  10. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  11. Mathematical models in radiogeochronology

    International Nuclear Information System (INIS)

    Abril, J.M.; Garcia Leon, M.

    1991-01-01

    The study of activity vs. depth profiles in sediment cores of some man-made and natural ocurring radionuclides have shown to be a poweful tool for dating purposes. Nevertheless, in most cases, an adecuate interpretation of such profiles requires mathematical models. In this paper, by considering the sediment as a continuum, a general equation for diffusion of radionuclides through it is obtained. Consequentely, some previously published dating models are found to be particular solutions of such general advenction-diffusion problem. Special emphasis is given to the mathematical treatment of compactation effect and time dependent problems. (author)

  12. Concepts of mathematical modeling

    CERN Document Server

    Meyer, Walter J

    2004-01-01

    Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec

  13. Development of computer program for simulation of an ice bank system operation, Part I: Mathematical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2009-09-15

    Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)

  14. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    Science.gov (United States)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  15. Mathematical Modeling: A Structured Process

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  16. Developing My Mathematics Identity

    Science.gov (United States)

    Gonzalez, Lidia

    2016-01-01

    Assuming the role of storyteller, the author uses her experiences as a graduate student and beginning teacher to reflect critically on issues related to mathematics, mathematics education, gender, and diversity.

  17. Development of a mathematical model to study the radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    Living organisms are composed of millions of cells that together perform tasks of great complexity. Although every cell has an internal structure that obeys the laws of chemistry and biochemistry, it is the interactions between cells that generate a range of different phenomena. Until the 1990s it was believed that the DNA was the single molecule affected by radiation, the so-called theory of the single target. But some observations began to challenge this theory; in 1992 the bystander effect was described by Nagasawa and Little. This effect is responsible for a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. Understanding the bystander effect may have important consequences for therapy and studies of low-dose risk. In this work, we have developed a computational model to study the bystander effect. This computational model is a two-dimensional cellular automata, consisting of two overlapping networks, where the first represents the cell culture, and the second one, the medium in which cells are embedded. The computational model allows the establishment of curves to describe the behavior of the effect for different levels of signals released in the irradiated medium by the irradiated cells or by the bystander cells when a second order effect is considered. The percentage of cell survival obtained from the mathematical model showed to be in good agreement with experimental data available in the literature. (author)

  18. Development of a mathematical model to study the radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.

    2011-01-01

    Living organisms are composed of millions of cells that together perform tasks of great complexity. Although every cell has an internal structure that obeys the laws of chemistry and biochemistry, it is the interactions between cells that generate a range of different phenomena. Until the 1990s it was believed that the DNA was the single molecule affected by radiation, the so-called theory of the single target. But some observations began to challenge this theory; in 1992 the bystander effect was described by Nagasawa and Little. This effect is responsible for a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. Understanding the bystander effect may have important consequences for therapy and studies of low-dose risk. In this work, we have developed a computational model to study the bystander effect. This computational model is a two-dimensional cellular automata, consisting of two overlapping networks, where the first represents the cell culture, and the second one, the medium in which cells are embedded. The computational model allows the establishment of curves to describe the behavior of the effect for different levels of signals released in the irradiated medium by the irradiated cells or by the bystander cells when a second order effect is considered. The percentage of cell survival obtained from the mathematical model showed to be in good agreement with experimental data available in the literature. (author)

  19. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature.

    Science.gov (United States)

    McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J

    2012-10-01

    Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced

  20. Development and validation of a mathematical model for growth of pathogens in cut melons.

    Science.gov (United States)

    Li, Di; Friedrich, Loretta M; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2013-06-01

    Many outbreaks of foodborne illness associated with the consumption of fresh-cut melons have been reported. The objective of our research was to develop a mathematical model that predicts the growth rate of Salmonella on fresh-cut cantaloupe over a range of storage temperatures and to validate that model by using Salmonella and Escherichia coli O157:H7 on cantaloupe, honeydew, and watermelon, using both new data and data from the published studies. The growth of Salmonella on honeydew and watermelon and E. coli O157:H7 on cantaloupe, honeydew, and watermelon was monitored at temperatures of 4 to 25°C. The Ratkowsky (or square-root model) was used to describe Salmonella growth on cantaloupe as a function of storage temperature. Our results show that the levels of Salmonella on fresh-cut cantaloupe with an initial load of 3 log CFU/g can reach over 7 log CFU/g at 25°C within 24 h. No growth was observed at 4°C. A linear correlation was observed between the square root of Salmonella growth rate and temperature, such that √growth rate = 0.026 × (T - 5.613), R(2) = 0.9779. The model was generally suitable for predicting the growth of both Salmonella and E. coli O157:H7 on cantaloupe, honeydew, and watermelon, for both new data and data from the published literature. When compared with existing models for growth of Salmonella, the new model predicts a theoretic minimum growth temperature similar to the ComBase Predictive Models and Pathogen Modeling Program models but lower than other food-specific models. The ComBase Prediction Models results are very similar to the model developed in this study. Our research confirms that Salmonella can grow quickly and reach high concentrations when cut cantaloupe is stored at ambient temperatures, without visual signs of spoilage. Our model provides a fast and cost-effective method to estimate the effects of storage temperature on fresh-cut melon safety and could also be used in subsequent quantitative microbial risk

  1. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  2. Development of mathematical model for estimation of entrance surface dose in mammography

    International Nuclear Information System (INIS)

    Abdelgani, Yassir Mohammed Tahir

    2013-05-01

    Computer simulation is a convenient and frequently used tool in the study of x-ray mammography, for the design of novel detector systems, the evaluation of dose deposition, x-ray technique optimization, and other applications. An important component in the simulation process is the accurate computer generation of x-ray spectra. A computer model for the generation of x-ray spectra in the mammographic energy rang from 18 keV to 40 ke V has been developed by Boone et al. Due to the lack of QC and dose measurement tools, in addition to unavailability of medical physics, a mathematical tool was developed for estimation of patient exposure and entrance dose. The proposed model require no assumptions concerning the physics of x-ray production in an x-ray tube, but rather makes use of x-ray spectra recently measured experimentally by John M Boone (Department of Radiology, University of California). Using experimental dose measurements for specific tube voltage and tube current the generated x-ray spectra were calibrated. The spectrum calibration factors show a tube voltage dependency. From the calibrated x-ray spectrum, the exposure and entrance dose were estimated for different k Vp and m A. Results show good agreement between the measured and estimated values for tube voltage between 18 to 45 k Vp with a good correlation of nearly 1 and equal slope. The maximum estimated different between the measured and the simulated dose is approximately equal to 0.07%.(Author)

  3. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  4. Modeling Mathematical Ideas: Developing Strategic Competence in Elementary and Middle School

    Science.gov (United States)

    Suh, Jennifer M.; Seshaiyer, Padmanabhan

    2016-01-01

    "Modeling Mathematical Ideas" combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students' common misconceptions in investigating and…

  5. Mathematical modeling courses for Media technology students

    DEFF Research Database (Denmark)

    Timcenko, Olga

    2009-01-01

    This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...

  6. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development

    DEFF Research Database (Denmark)

    Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K.

    2017-01-01

    The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs.......The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks...... or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal...

  7. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  8. The Development Of Mathematical Model For Automated Fingerprint Identification Systems Analysis

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2001-01-01

    Fingerprint has a strong oriented and periodic structure composed of dark lines of raised skin (ridges) and clear lines of lowered skin (furrows)that twist to form a distinct pattern. Although the manner in which the ridges flow is distinctive, other characteristics of the fingerprint called m inutiae a re what are most unique to the individual. These features are particular patterns consisting of terminations or bifurcations of the ridges. To assert if two fingerprints are from the same finger or not, experts detect those minutiae. AFIS (Automated Fingerprint Identification Systems) extract and compare these features for determining a match. The classic methods of fingerprints recognition are not suitable for direct implementation in form of computer algorithms. The creation of a finger's model was however the necessity of development of new, better algorithms of analysis. This paper presents a new numerical methods of fingerprints' simulation based on mathematical model of arrangement of dermatoglyphics and creation of minutiae. This paper describes also the design and implementation of an automated fingerprint identification systems which operates in two stages: minutiae extraction and minutiae matching

  9. Mathematical Optimal Sequence Model Development to Process Planes and Other Interconnected Surfaces of Complex Body Parts

    Directory of Open Access Journals (Sweden)

    I. I. Kravchenko

    2016-01-01

    Full Text Available Experience in application of multi-operational machines CNC (MOM CNC shows that they are efficient only in case of significantly increasing productivity and dramatically reducing time-to-market cycle of new products. Most full technological MOM capabilities are revealed when processing the complex body parts. The more complex is a part design and the more is its number of machined surfaces, the more tools are necessary for its processing and positioning, the more is an efficiency of their application. At the same time, the case history of using these machines in industry shows that MOM CNC are, virtually, used mostly for technological processes of universal equipment, which is absolutely unacceptable. One way to improve the processing performance on MOM CNC is to reduce nonproductive machine time through reducing the mutual idle movements of the working machine. This problem is solved using dynamic programming methods, one of which is the solution of the traveling salesman problem (Bellman's method. With a known plan for treatment of all elementary surfaces of the body part, i.e. the known number of performed transitions, each transition is represented as a vertex of some graph, while technological links between the vertices are its edges. A mathematical model is developed on the Bellman principle, which is adapted to technological tasks to minimize the idle time of mutual idle movements of the working machine to perform all transitions in the optimal sequence. The initial data to fill matrix of time expenditures are time consumed by the hardware after executing the i-th transition, and necessary to complete the j-transition. The programmer fills in matrix cells according to known routing body part taking into account the time for part and table positioning, tool exchange, spindle and table approach to the working zone, and the time of table rotation, etc. The mathematical model was tested when machining the body part with 36 transitions on the

  10. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-01-01

    This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

  11. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  12. A Primer for Mathematical Modeling

    Science.gov (United States)

    Sole, Marla

    2013-01-01

    With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…

  13. A QFD-Based Mathematical Model for New Product Development Considering the Target Market Segment

    OpenAIRE

    Chen, Liang-Hsuan; Chen, Cheng-Nien

    2014-01-01

    Responding to customer needs is important for business success. Quality function deployment provides systematic procedures for converting customer needs into technical requirements to ensure maximum customer satisfaction. The existing literature mainly focuses on the achievement of maximum customer satisfaction under a budgetary limit via mathematical models. The market goal of the new product for the target market segment is usually ignored. In this study, the proposed approach thus consider...

  14. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  15. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  16. A mathematical model

    International Nuclear Information System (INIS)

    Castillo M, J.A.; Pimentel P, A.E.

    2000-01-01

    This work presents the results to define the adult egg viability behavior (VHA) of two species, Drosophila melanogaster and D. simulans obtained with the mathematical model proposed, as well as the respective curves. The data are the VHA result of both species coming from the vicinity of the Laguna Verde Nuclear Power plant (CNLV) comprise a 10 years collect period starting from 1987 until 1997. Each collect includes four series of data which are the VHA result obtained after treatment with 0, 4, 6 and 8 Gy of gamma rays. (Author)

  17. Development of a mathematical model for physical disintegration of flushable consumer products in wastewater systems.

    Science.gov (United States)

    Karadagli, Fatih; McAvoy, Drew C; Rittmann, Bruce E

    2009-05-01

    The processes that flushable solid products may undergo after discharge to wastewater systems are (1) physical disintegration of solids resulting from turbulence, (2) direct dissolution of water-soluble components, (3) hydrolysis of solids to form soluble components, and (4) biodegradation of soluble and insoluble components. We develop a mathematical model for physical disintegration of flushable solid consumer products and test it with two different flushable products--product A, which has 40% water soluble-content, and product B, which has no water-soluble components. We present our modeling analysis of experimental results, from which we computed disintegration rate constants and fractional distribution coefficients for the disintegration of larger solids. The rate constants for solids of product A in units of (hour(-1)) are 0.45 for > 8-mm, 2.25 x 10(-2) for 4- to 8-mm, 0.9 x 10(-2) for 2- to 4-mm, and 1.26 x 10(-2) for 1- to 2-mm solids. The rate constants for solids of product B in units of hour(-1) are 1.8 for > 8-mm, 1.8 for 4- to 8-mm, 3.6 x 10(-1) for 2- to 4-mm, and 2.25 x 10(-3) for 1- to 2-mm solids. As indicated by the rate constants, larger solids disintegrate at a faster rate than smaller solids. In addition, product B disintegrated much faster and went mostly to the smallest size range, while product A disintegrated more slowly and was transferred to a range of intermediate solid sizes.

  18. Modeling interdisciplinary activities involving Mathematics

    DEFF Research Database (Denmark)

    Iversen, Steffen Møllegaard

    2006-01-01

    In this paper a didactical model is presented. The goal of the model is to work as a didactical tool, or conceptual frame, for developing, carrying through and evaluating interdisciplinary activities involving the subject of mathematics and philosophy in the high schools. Through the terms...... of Horizontal Intertwining, Vertical Structuring and Horizontal Propagation the model consists of three phases, each considering different aspects of the nature of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the students abilities to concept formation in expanded...... domains (Michelsen, 2001, 2005a, 2005b). Furthermore the theoretical description rest on a series of qualitative interviews with teachers from the Danish high school (grades 9-11) conducted recently. The special case of concrete interdisciplinary activities between mathematics and philosophy is also...

  19. Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling

    Directory of Open Access Journals (Sweden)

    Thomas Heckelei

    2012-05-01

    Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.

  20. Mathematical modeling with multidisciplinary applications

    CERN Document Server

    Yang, Xin-She

    2013-01-01

    Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the

  1. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  2. Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model.

    NARCIS (Netherlands)

    Tefera shibeshe, N.; Tefera, N.; Weickert, G.; Westerterp, K.R.

    1997-01-01

    In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical

  3. The prediction of epidemics through mathematical modeling.

    Science.gov (United States)

    Schaus, Catherine

    2014-01-01

    Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.

  4. A mathematical model for iodine kinetics

    International Nuclear Information System (INIS)

    Silva, E.A.T. da.

    1976-01-01

    A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt

  5. DEVELOPMENT OF MAPLE IN TRAINING HIGHER MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Volodymyr M. Mykhalevych

    2011-03-01

    Full Text Available The relevance of the material presented in this paper due to the need to develop and implement new information technologies in teaching higher mathematics with the use of systems of symbolic mathematics. Brief analysis of the Maple and Mathematica is given. The basic results of authors on working out of a training complex on higher mathematics are given. The complex was created in an environment of symbolic mathematics Maple. Procedure simulators, which give the whole process of model solutions of mathematical problems are a major element of the complex. The results of such procedures for typical problems from different sections of higher mathematics in accordance with the program for technical universities are represented. Questions the benefits and methods of using such programs, in particular those related to deficits of licensed copies of Maple was touched.

  6. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  7. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  8. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  9. Mathematical Modelling of Predatory Prokaryotes

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2006-01-01

    Predator–prey models have a long history in mathematical modelling of ecosystem dynamics and evolution. In this chapter an introduction to the methodology of mathematical modelling is given, with emphasis on microbial predator–prey systems, followed by a description of variants of the basic

  10. Multiple Perspective Approach for the Development of Information Systems Based on Advanced Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    through negotiation and democratic decision making will it be possible for the team members to have their current weltanschauung represented in decision making. Thirdly, geographical distribution and loose coupling foster individualist rather than group behavior. The more the social tissue is disconnected...... to the customers of the system. The use of democratic decision making that brings together the team members on regular basis contributes to both the reconstruction of the social tissue and to the satisfaction of the development team as customer of the project. Fourth, the novelty of the technology created problems......This dissertation presents the results of a three-year long case study of an information systems development project where a scheduling and control system was developed for a manufacturing company. The project goal was to test the feasibility of a new technology called advanced mathematical...

  11. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  12. A QFD-Based Mathematical Model for New Product Development Considering the Target Market Segment

    Directory of Open Access Journals (Sweden)

    Liang-Hsuan Chen

    2014-01-01

    Full Text Available Responding to customer needs is important for business success. Quality function deployment provides systematic procedures for converting customer needs into technical requirements to ensure maximum customer satisfaction. The existing literature mainly focuses on the achievement of maximum customer satisfaction under a budgetary limit via mathematical models. The market goal of the new product for the target market segment is usually ignored. In this study, the proposed approach thus considers the target customer satisfaction degree for the target market segment in the model by formulating the overall customer satisfaction as a function of the quality level. In addition, the proposed approach emphasizes the cost-effectiveness concept in the design stage via the achievement of the target customer satisfaction degree using the minimal total cost. A numerical example is used to demonstrate the applicability of the proposed approach and its characteristics are discussed.

  13. Development and evaluation of mathematical model to predict disintegration time of fast disintegrating tablets using powder characteristics.

    Science.gov (United States)

    Goel, H; Arora, A; Tiwary, A K; Rana, V

    2011-02-01

    The objective of the study was to develop a mathematical model for predicting the disintegration time of fast disintegrating tablets (FDTs) by estimating the powder characteristics of powder blend prior to compression. A combination of chitosan-alginate complex and glycine in the ratio of 50:50 was used for preparing FDTs. The developed mathematical model allowed water sorption time (WST), effective pore radius (R(eff.p)) and swelling Index (SI) of powder mixture as well as tablet crushing strength to be successfully correlated with disintegration time (DT) of FDTs. The predicted model showed that disintegration time of FDTs to be directly correlated with powder characteristics and inversely correlated with tablet crushing strength. Furthermore, a correlation of 0.97 was obtained when DT of FDTs was compared with SI/(WST * R(eff.p)). This correlation was not affected by inclusion of water soluble (ondansetron hydrochloride or metaclopramide hydrochloride) or water insoluble (domperidone) drugs in the powder blend or FDTs. These observations indicated the versatility of the mathematical model in predicting the disintegration time of FDTs by evaluating the selected characteristics of the powder blends without actually preparing the FDTs.

  14. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

    Science.gov (United States)

    Risnawati; Khairinnisa, S.; Darwis, A. H.

    2018-01-01

    The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

  15. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  16. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  17. Mathematical Modeling and Computational Thinking

    Science.gov (United States)

    Sanford, John F.; Naidu, Jaideep T.

    2017-01-01

    The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

  18. Explorations in Elementary Mathematical Modeling

    Science.gov (United States)

    Shahin, Mazen

    2010-01-01

    In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…

  19. Trade-offs mathematical modelling of 3DCE in new product development: real three dimensions and directions for development

    Science.gov (United States)

    Ilhami, M. A.; Subagyo; Masruroh, N. A.

    2018-04-01

    In the last two decades, coordinating product, process, and supply chain has become the main focus in recent years as a growing body of research, which mathematical modelling is leading technique used in the early phase design. In this paper, we aim to conduct a comprehensive literature review of published paper and propose directions for future research, especially in mathematical modelling. Our findings exhibit fact that evidently there are only a few papers coordinate “real three dimensions”. The other papers, in fact, show simply two dimensions. Finally, some suggestions are proposed such as paying more attention to “real three dimensions” research-based and more focus on minimizing time to market, product life cycle consideration, and product rollover.

  20. Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat

    2017-01-01

    This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…

  1. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.

    2013-01-01

    methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more

  2. Meta-hierarchical-heuristic-mathematical- model of loading problems in flexible manufacturing system for development of an intelligent approach

    Directory of Open Access Journals (Sweden)

    Ranbir Singh

    2016-04-01

    Full Text Available Flexible manufacturing system (FMS promises a wide range of manufacturing benefits in terms of flexibility and productivity. These benefits are targeted by efficient production planning. Part type selection, machine grouping, deciding production ratio, resource allocation and machine loading are five identified production planning problems. Machine loading is the most identified complex problem solved with aid of computers. System up gradation and newer technology adoption are the primary needs of efficient FMS generating new scopes of research in the field. The literature review is carried and the critical analysis is being executed in the present work. This paper presents the outcomes of the mathematical modelling techniques for loading of machines in FMS’s. It was also analysed that the mathematical modelling is necessary for accurate and reliable analysis for practical applications. However, excessive computations need to be avoided and heuristics have to be used for real-world problems. This paper presents the heuristics-mathematical modelling of loading problem with machine processing time as primary input. The aim of the present work is to solve a real-world machine loading problem with an objective of balancing the workload of the FMS with decreased computational time. A Matlab code is developed for the solution and the results are found most accurate and reliable as presented in the paper.

  3. А mathematical model study of suspended monorail

    OpenAIRE

    Viktor GUTAREVYCH

    2012-01-01

    The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  4. А mathematical model study of suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2012-01-01

    Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  5. Mathematical Modeling of Circadian/Performance Countermeasures

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...

  6. short communication mathematical modelling for magnetite

    African Journals Online (AJOL)

    Preferred Customer

    The present research focuses to develop mathematical model for the ..... Staler, M.J. The Principle of Ion Exchange Technology, Butterworth-Heinemann: Boston; ... Don, W.G. Perry's Chemical Engineering Hand Book, 7th ed., McGraw-Hill:.

  7. Development of a Mathematical Model for Multivariate Process by Balanced Six Sigma

    Directory of Open Access Journals (Sweden)

    Díaz-Castellanos Elizabeth Eugenia

    2015-07-01

    Full Text Available The Six Sigma methodology is widely used in business to improve quality, increase productivity and lower costs, impacting on business improvement. However, today the challenge is to use those tools for improvements that will have a direct impact on the differentiation of value, which requires the alignment of Six Sigma with the competitive strategies of the organization.Hence the importance of a strategic management system to measure, analyze, improve and control corporate performance, while setting out responsibilities of leadership and commitment. The specific purpose of this research is to provide a mathematical model through the alignment of strategic objectives (Balanced Scorecard and tools for productivity improvement (Six Sigma for processes with multiple answers, which is sufficiently robust so that it can serve as basis for application in manufacturing and thus effectively link strategy performance and customer satisfaction. Specifically we worked with a case study: Córdoba, Ver. The model proposes that is the strategy, performance and customer satisfaction are aligned, the organization will benefit from the intense relationship between process performance and strategic initiatives. These changes can be measured by productivity and process metrics such as cycle time, production rates, production efficiency and percentage of reprocessing, among others.

  8. THE MATHEMATICAL MODEL DEVELOPMENT OF THE ETHYLBENZENE DEHYDROGENATION PROCESS KINETICS IN A TWO-STAGE ADIABATIC CONTINUOUS REACTOR

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.

  9. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    Science.gov (United States)

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  11. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  12. Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling

    Science.gov (United States)

    Karali, Diren; Durmus, Soner

    2015-01-01

    The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…

  13. Development of Mathematical Model for Lifecycle Management Process of New Type of Multirip Saw Machine

    Directory of Open Access Journals (Sweden)

    B. V. Phung

    2017-01-01

    Full Text Available The subject of research is a new type of the multirip saw machine with circular reciprocating saw blades. This machine has a number of advantages in comparison with other machines of similar purpose. The paper presents an overview of different types of saw equipment and describes basic characteristics of the machine under investigation.Using the concept of lifecycle management of the considered machine in a unified information space is necessary to improve quality and competitiveness in the current production environment. In this lifecycle all the members, namely designers, technologists, customers, etc., have a philosophy to tend to optimize the overall machine design as much as possible. However, it is not always possible to achieve. Conversely, at the boundary between the phases there are several mismatching situations, if not even conflicting inconsistencies. For example, improvement of mass characteristics can lead to poor stability and rigidity of the saw blade. Machine output improvement through increasing frequency of the machine motor rotation, on the other side, results in reducing stable ability of the saw blades and so on.In order to provide a coherent framework for the collaborative environment between the members of the life cycle, the article presents a technique to construct a mathematical model that allows combining all different members’ requirements in the unified information model. The article also gives analysis of kinematic and dynamic behavior and technological characteristics of the machine. Describes in detail all the controlled parameters, functional constraints, and quality criteria of the machine under consideration. Depending on the controlled parameters, the analytical relationships formulate functional constraints and quality criteria of the machine. The proposed algorithm allows fast and exact calculation of all the functional constraints and quality criteria of the machine for a given vector of the control

  14. Effect of Pressure on the Uniformity of Nozzles Transverse Distribution and Mathematical Model Development

    Directory of Open Access Journals (Sweden)

    Vladimir Višacki

    2017-01-01

    Full Text Available Timely and high-quality application of pesticides contributes to environmental protection, economical production and production of healthy food. The efficacy of pesticide application depends not only on the quality of pesticides but also the quality of the application. One of the factor that most influences the quality of applications, from the standpoint of mechanization, are nozzles. They working liquid applied on the surface the plant resulting in the same volume of pesticide is applied to the entire surface of the plants. To achieve this goal, nozzles must be performed uniform application of working liquid per unit area, or tractor sprayer working width. The variable factor in the application of pesticides may be nozzle and operating pressure. With increasing working pressure obtained smaller droplets. The paper presents test of three different nozzles. Each nozzle is characterized by a flat jet with an angle of 110° and a flow rate of 1.6 l∙min−1 at a pressure of 3 bar. Differ from each other are by the way of disintegration of the jet. Exactly this characteristic causes that with pressure change coming to changes in the uniformity of nozzles transverse distribution. So the best distribution has nozzle with a flat jet. The coefficient of variation is between roughly from 4 to 6 % at the pressure application of 2 to 4 bar. Obtained mathematical model that describes changes in the coefficient of variation depending on pressure applications can be a good basis for easy harmonization parameters in the pesticide application.

  15. Mathematical modeling and validation of growth of Salmonella Enteritidis and background microorganisms in potato salad – one-step kinetic analysis and model development

    Science.gov (United States)

    This study was conducted to examine the growth of Salmonella Enteritidis (SE) in potato salad caused by cross-contamination and temperature abuse, and develop mathematical models to predict its growth. The growth of SE was investigated under constant temperature conditions (8, 10, 15, 20, 25, 30, a...

  16. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  17. Development of a mathematical model simulating the multiply connected automatic control system of a coal-fired power unit equipped with a direct-injection dust feed system

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Shorokhov; A.P. Smol' nikov; D.A. Kurochkin; N.N. Komarova; A.S. Mar' yasov; A.R. Gudovich; S.N. Bartosh [ZAO SibKOTES, Krasnoyarsk (Russian Federation)

    2009-07-01

    Matters relating to development and identification of a mathematical model for simulating a power unit and its individual systems are discussed. Results obtained from a large series of the active experiments on an operating power unit are presented.

  18. The Development of a Model of Culturally Responsive Science and Mathematics Teaching

    Science.gov (United States)

    Hernandez, Cecilia M.; Morales, Amanda R.; Shroyer, M. Gail

    2013-01-01

    This qualitative theoretical study was conducted in response to the current need for an inclusive and comprehensive model to guide the preparation and assessment of teacher candidates for culturally responsive teaching. The process of developing a model of culturally responsive teaching involved three steps: a comprehensive review of the…

  19. The Prediction of the Students' Academic Underachievement in Mathematics Using the DEA Model: A Developing Country Case Study

    Science.gov (United States)

    Moradi, Fatemeh; Amiripour, Parvaneh

    2017-01-01

    In this study, an attempt was made to predict the students' mathematical academic underachievement at the Islamic Azad University-Yadegare-Imam branch and the appropriate strategies in mathematical academic achievement to be applied using the Data Envelopment Analysis (DEA) model. Survey research methods were used to select 91 students from the…

  20. Building Mathematical Models of Simple Harmonic and Damped Motion.

    Science.gov (United States)

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  1. The development and validation of a mathematical model for the design of protection barriers for nuclear powered ships. Report for 10 June 1976--31 March 1978

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1978-03-01

    A mathematical model for the analysis and design of protection barrier structures is developed. The analysis procedure is based on the collapse theorems, i.e., the Upper Bound Theorem and the Lower Bound Theorem. The collision protection barrier is analyzed by a finite element program with capabilities of nonlinear and elastoplastic analysis. The results obtained from the mathematical model are compared with those obtained from the collision model tests

  2. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    are reported in manners suitable for internet publication for colleagues. The reports and the related discussions reveal interesting dilemmas concerning the teaching of mathematical modelling and how to cope with these through “setting the scene” for the students modelling projects and through dialogues......The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...

  3. The Spectrum of Mathematical Models.

    Science.gov (United States)

    Karplus, Walter J.

    1983-01-01

    Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…

  4. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-06-01

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  5. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  6. Mathematical Modeling Approaches in Plant Metabolomics.

    Science.gov (United States)

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  7. Dynamics of resistance development to imatinib under increasing selection pressure: a combination of mathematical models and in vitro data.

    Directory of Open Access Journals (Sweden)

    Benjamin Werner

    Full Text Available In the last decade, cancer research has been a highly active and rapidly evolving scientific area. The ultimate goal of all efforts is a better understanding of the mechanisms that discriminate malignant from normal cell biology in order to allow the design of molecular targeted treatment strategies. In individual cases of malignant model diseases addicted to a specific, ideally single oncogene, e.g. Chronic myeloid leukemia (CML, specific tyrosine kinase inhibitors (TKI have indeed been able to convert the disease from a ultimately life-threatening into a chronic disease with individual patients staying in remission even without treatment suggestive of operational cure. These developments have been raising hopes to transfer this concept to other cancer types. Unfortunately, cancer cells tend to develop both primary and secondary resistance to targeted drugs in a substantially higher frequency often leading to a failure of treatment clinically. Therefore, a detailed understanding of how cells can bypass targeted inhibition of signaling cascades crucial for malignant growths is necessary. Here, we have performed an in vitro experiment that investigates kinetics and mechanisms underlying resistance development in former drug sensitive cancer cells over time in vitro. We show that the dynamics observed in these experiments can be described by a simple mathematical model. By comparing these experimental data with the mathematical model, important parameters such as mutation rates, cellular fitness and the impact of individual drugs on these processes can be assessed. Excitingly, the experiment and the model suggest two fundamentally different ways of resistance evolution, i.e. acquisition of mutations and phenotype switching, each subject to different parameters. Most importantly, this complementary approach allows to assess the risk of resistance development in the different phases of treatment and thus helps to identify the critical periods where

  8. MATHEMATICAL MODEL OF AUTOMATED REHABILITATION SYSTEM WITH BIOLOGICAL FEEDBACK FOR REHABILITATION AND DEVELOPMENT OF MUSCULOSKELETAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Kirill A. Kalyashin

    2013-01-01

    Full Text Available In order to increase the efficiency and safety of rehabilitation of musculoskeletal system, the model and the algorithm for patient interaction with automated rehabilitation system with biological feedback was developed, based on registration and management of the second functional parameter, which prevents risks of overwork while intensive exercises.

  9. Cognitive predictors of children's development in mathematics achievement : A latent growth modeling approach

    NARCIS (Netherlands)

    Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M

    2018-01-01

    Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change

  10. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    Science.gov (United States)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  11. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-01-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99m Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  12. Mathematical study of mixing models

    International Nuclear Information System (INIS)

    Lagoutiere, F.; Despres, B.

    1999-01-01

    considered: the postulate of the existence of a temperature and of an entropy for the global fluid, verifying an equation identical to that of the classical model. From this equation will be derived a whole class of models (chapter 4), while developing a thermodynamic for several-temperature systems. Chapter 5 presents the already mentioned degeneration. Chapter 6 examines the mathematical properties of the models of the class. A large number of models having good properties, it is not possible to make a choice for now, and it will be necessary to wait for numerical results to determine the best options [fr

  13. Update on mathematical modeling research to support the development of automated insulin delivery systems.

    Science.gov (United States)

    Steil, Garry M; Hipszer, Brian; Reifman, Jaques

    2010-05-01

    One year after its initial meeting, the Glycemia Modeling Working Group reconvened during the 2009 Diabetes Technology Meeting in San Francisco, CA. The discussion, involving 39 scientists, again focused on the need for individual investigators to have access to the clinical data required to develop and refine models of glucose metabolism, the need to understand the differences among the distinct models and control algorithms, and the significance of day-to-day subject variability. The key conclusion was that model-based comparisons of different control algorithms, or the models themselves, are limited by the inability to access individual model-patient parameters. It was widely agreed that these parameters, as opposed to the average parameters that are typically reported, are necessary to perform such comparisons. However, the prevailing view was that, if investigators were to make the parameters available, it would limit their ability (and that of their institution) to benefit from the invested work in developing their models. A general agreement was reached regarding the importance of each model having an insulin pharmacokinetic/pharmacodynamic profile that is not different from profiles reported in the literature (88% of the respondents agreed that the model should have similar curves or be analyzed separately) and the importance of capturing intraday variance in insulin sensitivity (91% of the respondents indicated that this could result in changes in fasting glucose of >or=15%, with 52% of the respondents believing that the variability could effect changes of >or=30%). Seventy-six percent of the participants indicated that high-fat meals were thought to effect changes in other model parameters in addition to gastric emptying. There was also widespread consensus as to how a closed-loop controller should respond to day-to-day changes in model parameters (with 76% of the participants indicating that fasting glucose should be within 15% of target, with 30% of the

  14. Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics

    Science.gov (United States)

    Wickstrom, Megan H.

    2017-01-01

    This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…

  15. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    Science.gov (United States)

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  16. APPLICATION OF METHODS OF MATHEMATICAL MODELING IN THE FORECAST OF DEVELOPMENT OF ADVERSE CURRENT OF ARTERIAL HYPERTENSION IN WOMEN

    Directory of Open Access Journals (Sweden)

    Roman Anatolyevich Yaskevich

    2017-12-01

    Full Text Available The purpose of the study. Studying the possibility of using mathematical modeling methods for predicting the clinical course of arterial hypertension in women. Materials and methods. 84 women aged 20–60 years (mean age 45,3 years were examined. The survey included clinical, instrumental and laboratory methods of investigation. As a mathematical basis, we used a technique for structuring and analyzing heterogeneous statistical data under conditions of nonparametric uncertainty. Results. In the course of the conducted research on the results of mathematical modeling, using the pattern recognition technique, an individual set of signs (risk factors was formed from the list of indicators that predetermined the risk of development of the predicted state (complicated course of hypertension, which made it possible to construct forecast nomograms, medium and high risk of adverse course of AH in women, which will not only allow us to calculate the degree of risk, but also to determine the parameters of the required change of the level of managed risk factors that determine the presence in a high-risk zone, and, by influencing them to carry out preventive measures. It was found that the clinical course of hypertension in women is influenced by an increase in insulinemia, fasting and postprandial glycemia, BMI, OXC, and blood pressure, that is, a simtomocomplex of the metabolic syndrome. The conclusion. The use of the method of restructuring and analysis of heterogeneous statistical data in conditions of non-parametric uncertainty makes it possible to predict and evaluate the severity of the clinical course of AH in women. The most significant factors affecting the severity of the clinical course of hypertension in men are the indicators of insulinemia, glycemia, BMI, OXC, blood pressure levels.

  17. A mathematical model for postirradiation immunity

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1988-01-01

    A mathematical model of autoimmune processes in exposed mammals was developed. In terms of this model a study was made of the dependence of the autoimmunity kinetics on radiation dose and radiosensitivity of autologous tissues. The model simulates the experimentally observed dynamics of autoimmune diseases

  18. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  19. Development of the Mathematical Model of Integrated Management System for an Airline

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2016-12-01

    Full Text Available At the present stage of airline development the most effective way to increase safety is to introduce a systematic approach to the management of the organization. The creation of a single integrated management system including the combination of resources will make it possible to maintain the necessary level of quality of aviation services with safety as a key indicator. The article offers a model of such an integrated management system for medium level airlines.

  20. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

    Science.gov (United States)

    Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

    2015-04-01

    Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  1. Surface EXAFS - A mathematical model

    International Nuclear Information System (INIS)

    Bateman, J.E.

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study

  2. Using Covariation Reasoning to Support Mathematical Modeling

    Science.gov (United States)

    Jacobson, Erik

    2014-01-01

    For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…

  3. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  5. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  6. The 24-Hour Mathematical Modeling Challenge

    Science.gov (United States)

    Galluzzo, Benjamin J.; Wendt, Theodore J.

    2015-01-01

    Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…

  7. Mathematical Modeling: A Bridge to STEM Education

    Science.gov (United States)

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…

  8. Mathematical models in biology bringing mathematics to life

    CERN Document Server

    Ferraro, Maria; Guarracino, Mario

    2015-01-01

    This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy.  The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...

  9. Mathematical model of a phantom developed for use in calculations of radiation dose to the body and major internal organs of a Japanese adult

    International Nuclear Information System (INIS)

    Kerr, G.D.; Hwang, J.M.; Jones, R.M.

    1976-05-01

    A mathematical model of a phantom simulating the body and major internal organs of a Japanese adult has been developed for use in computer calculations of radiation dose. The total body height of the mathematical phantom is 162 cm, and the total body mass is 55 kg based on densities of 0.3, 1.4, and 1.0 g/cm 3 for the lung, skeleton, and bulk tissues of the body, respectively

  10. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  11. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  12. Development of a mathematical model describing hydrolysis and co-fermentation of C6 and C5 sugars

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gernaey, Krist; Meyer, Anne S.

    2010-01-01

    saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Model construction has been carried out by combining existing mathematical models for enzymatic hydrolysis on the one hand and co-fermentation on the other hand. An inhibition of ethanol on cellulose conversion was introduced in order to increase...

  13. Description of a comprehensive mathematical model

    DEFF Research Database (Denmark)

    Li, Xiyan; Yin, Chungen

    2017-01-01

    Biomass gasification is still a promising technology after over 30 years’ research and development and has success only in a few niche markets. In this paper, a comprehensive mathematical model for biomass particle gasification is developed within a generic particle framework, assuming the feed...

  14. Development of a mathematical model for a single alkaline membrane fuel cell (AMFC) with fixed volume and general square section

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Elise Meister; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Setor de Tecnologia], Email: jvargas@demec.ufpr.br; Martins, Lauber de Souza; Ordonez, Juan Carlos [Florida State University, Tallahasse, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], Emails: martins@caps.fsu.edu, ordonez@eng.fsu.edu

    2010-07-01

    The Alkaline Membrane Fuel Cell (AMFC) is a recently developed fuel cell type, which has shown good experimental results in the laboratory. This paper introduces a mathematical model for the single AMFC with fixed volume and general square section. The main objective is to produce a reliable model (and computationally fast) to predict the response of the single AMFC according to variations of the physical properties of manufacturing materials and operating and design parameters. The model is based on mass, momentum, energy and species conservation, and electrochemical principles, and takes into account pressure drops in the gas channels and temperature gradients with respect to space in the flow direction. The simulation results comprise the AMFC temperature distribution, net power and polarization curves. It is shown that temperature spatial gradients and gas channels pressure drops significantly affect fuel cell performance. Such effects are not usually investigated in the models available in the literature, with most of them assuming uniform pressure and temperature operation. Therefore, the model is expected to be a useful tool for AMFC design and optimization. (author)

  15. Development of a new mathematical model of an adult man head for using in internal dose calculation

    International Nuclear Information System (INIS)

    Facioli, L.M.; Deus, S.F.

    1986-01-01

    A new mathematical model representing the head region of the adult man had been developed in a more realistic fashion than the existing models in order to achieve an improvement in the accuracy of the internal dose calculations. The specific absorbed fractions had been obtained by program 'ALGAM: a computer program for estimating internal dose from gamma-ray sources in a man phantom', which had been modified to include the model proposed in this work. The new program had been processed for two source organs: thyroid and brain and for 12 incident photon energies ranging from 0,010 to 4,0 MeV. The obtained results, when compared with the Snyder's one, show that the ratio of the specific absorbed fractions in the common organs of the model proposed in this work relative to the Snyder's model, ranged from 0,0543 to 13,2 for the two source organs considered; the ratio distribution along this interval is practically uniform between the above values. (Author) [pt

  16. Mathematical model on Alzheimer's disease.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-11-18

    Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

  17. Mathematical Modeling in the Undergraduate Curriculum

    Science.gov (United States)

    Toews, Carl

    2012-01-01

    Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…

  18. Teachers' Conceptions of Mathematical Modeling

    Science.gov (United States)

    Gould, Heather

    2013-01-01

    The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…

  19. Mathematical modelling in economic processes.

    Directory of Open Access Journals (Sweden)

    L.V. Kravtsova

    2008-06-01

    Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.

  20. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.

  1. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  2. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  3. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  4. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  5. Mathematical model of compact type evaporator

    Science.gov (United States)

    Borovička, Martin; Hyhlík, Tomáš

    2018-06-01

    In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.

  6. Developing Students' Reflections on the Function and Status of Mathematical Modeling in Different Scientific Practices: History as a Provider of Cases

    Science.gov (United States)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical position held by the modeler(s) and the…

  7. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  8. Strategies to Support Students' Mathematical Modeling

    Science.gov (United States)

    Jung, Hyunyi

    2015-01-01

    An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…

  9. Mathematical Modeling in the High School Curriculum

    Science.gov (United States)

    Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary

    2016-01-01

    In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…

  10. Development of mathematical models for automation of strength calculation during plastic deformation processing

    Science.gov (United States)

    Steposhina, S. V.; Fedonin, O. N.

    2018-03-01

    Dependencies that make it possible to automate the force calculation during surface plastic deformation (SPD) processing and, thus, to shorten the time for technological preparation of production have been developed.

  11. Modeling life the mathematics of biological systems

    CERN Document Server

    Garfinkel, Alan; Guo, Yina

    2017-01-01

    From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...

  12. SYMBIOSIS: Development, Implementation, and Assessment of a Model Curriculum across Biology and Mathematics at the Introductory Level

    Science.gov (United States)

    Depelteau, Audrey M.; Joplin, Karl H.; Govett, Aimee; Miller, Hugh A., III; Seier, Edith

    2010-01-01

    With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18…

  13. Preparatory selection of sterilization regime for canned Natural Atlantic Mackerel with oil based on developed mathematical models of the process

    Directory of Open Access Journals (Sweden)

    Maslov A. A.

    2016-12-01

    Full Text Available Definition of preparatory parameters for sterilization regime of canned "Natural Atlantic Mackerel with Oil" is the aim of current study. PRSC software developed at the department of automation and computer engineering is used for preparatory selection. To determine the parameters of process model, in laboratory autoclave AVK-30M the pre-trial process of sterilization and cooling in water with backpressure of canned "Natural Atlantic Mackerel with Oil" in can N 3 has been performed. Gathering information about the temperature in the autoclave sterilization chamber and the can with product has been carried out using Ellab TrackSense PRO loggers. Due to the obtained information three transfer functions for the product model have been identified: in the least heated area of autoclave, the average heated and the most heated. In PRSC programme temporary temperature dependences in the sterilization chamber have been built using this information. The model of sterilization process of canned "Natural Atlantic Mackerel with Oil" has been received after the pre-trial process. Then in the automatic mode the sterilization regime of canned "Natural Atlantic Mackerel with Oil" has been selected using the value of actual effect close to normative sterilizing effect (5.9 conditional minutes. Furthermore, in this study step-mode sterilization of canned "Natural Atlantic Mackerel with Oil" has been selected. Utilization of step-mode sterilization with the maximum temperature equal to 125 °C in the sterilization chamber allows reduce process duration by 10 %. However, the application of this regime in practice requires additional research. Using the described approach based on the developed mathematical models of the process allows receive optimal step and variable canned food sterilization regimes with high energy efficiency and product quality.

  14. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  15. On the mathematical modeling of aeolian saltation

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Sørensen, Michael

    1983-01-01

    The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...... on aeolian saltation. This comparison points out the necessity of discriminating between pure and real saltation. -Authors...

  16. Lines of experimental research in developing mathematical models for estimating internal radiation

    International Nuclear Information System (INIS)

    Bad'in, V.I.; Ermilov, A.P.; Margulis, U.Ya.; Khrushch, V.T.

    The report presents material involved with the statistical approach to the problem of modeling internal radiation and the trend of experimental research dictated by that approach. The content of a radioactive isotope in an organ must be viewed as a random function for which the ratio of two independent incorporations, on the average by probability, corresponds to the ratio of the corresponding amounts of the isotope that have accumulated in the organism. This tenet determines the principle of similarity. Specifically, it follows from it that the distribution of the arbitrary amount in the organism with multiple repetition of the experiment will be subordinate to a log-normal law. Second, the vital condition for creating the quantitative statistical model of the metabolism is a large volume of experimental data. This requires perfection of the unified rapid methods of research

  17. Mathematical Model of Age Aggression

    OpenAIRE

    Golovinski, P. A.

    2013-01-01

    We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...

  18. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  19. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  20. Mathematical modeling of cancer metabolism.

    Science.gov (United States)

    Medina, Miguel Ángel

    2018-04-01

    Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  2. Development of innovative problem based learning model with PMRI-scientific approach using ICT to increase mathematics literacy and independence-character of junior high school students

    Science.gov (United States)

    Wardono; Waluya, B.; Kartono; Mulyono; Mariani, S.

    2018-03-01

    This research is very urgent in relation to the national issue of human development and the nation's competitiveness because of the ability of Indonesian Junior High School students' mathematics literacy results of the Programme for International Student Assessment (PISA) by OECD field of Mathematics is still very low compared to other countries. Curriculum 2013 launched one of them reflect the results of PISA which is still far from the expectations of the Indonesian nation and to produce a better quality of education, PISA ratings that reflect the nation's better competitiveness need to be developed innovative, interactive learning models such as innovative interactive learning Problem Based Learning (PBL) based on the approach of Indonesian Realistic Mathematics Education (PMRI) and the Scientific approach using Information and Communication Technology (ICT).The research was designed using Research and Development (R&D), research that followed up the development and dissemination of a product/model. The result of the research shows the innovative interactive learning PBL model based on PMRI-Scientific using ICT that developed valid, practical and effective and can improve the ability of mathematics literacy and independence-character of junior high school students. While the quality of innovative interactive learning PBL model based on PMRI-Scientific using ICT meet the good category.

  3. Summer Camp of Mathematical Modeling in China

    Science.gov (United States)

    Tian, Xiaoxi; Xie, Jinxing

    2013-01-01

    The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…

  4. Mathematical modelling a case studies approach

    CERN Document Server

    Illner, Reinhard; McCollum, Samantha; Roode, Thea van

    2004-01-01

    Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...

  5. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  6. The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilized by Pofa-Opc Additive for the Use in Unpaved Road Design

    Science.gov (United States)

    Gamil, Y. M. R.; Bakar, I. H.

    2016-07-01

    Resilient Modulus (Mr) is considered one of the most important parameters in the design of road structure. This paper describes the development of the mathematical model to predict resilient modulus of organic soil stabilized by the mix of Palm Oil Fuel Ash - Ordinary Portland Cement (POFA-OPC) soil stabilization additives. It aims to optimize the use of the use of POFA in soil stabilization. The optimization models enable to eliminate the arbitrary selection and its associated disadvantages in determination of the optimum additive proportion. The model was developed based on Scheffe regression theory. The mix proportions of the samples in the experiment were adopted from similar studies reported in the literature Twenty five samples were designed, prepared and then characterized for each mix proportion based on the MR in 28 days curing. The results are used to develop the mathematical prediction model. The model was statistically analyzed and verified for its adequacy and validity using F-test.

  7. Mathematical modelling of active safety system functions as tools for development of driverless vehicles

    Science.gov (United States)

    Ryazantsev, V.; Mezentsev, N.; Zakharov, A.

    2018-02-01

    This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the

  8. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  9. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  10. Mathematics education, democracy and development: Exploring connections

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2012-12-01

    Full Text Available Mathematics education and its links to democracy and development are explored in this article, with specific reference to the case of South Africa. This is done by engaging four key questions. Firstly, the question of whether mathematics education can be a preparation for democracy and include a concern for development, is discussed by drawing on conceptual tools of critical mathematics education and allied areas in a development context. Secondly, the question of how mathematics education is distributed in society and participates in shaping educational possibilities in addressing its development needs and goals is used to examine the issues emerging from mathematics performance in international studies and the national Grade 12 examination; the latter is explored specifically in respect of the South African mathematics curriculum reforms and teacher education challenges. Thirdly, the question of whether a mathematics classroom can be a space for democratic living and learning that equally recognises the importance of issues of development in contexts like South Africa, as a post-conflict society still healing from its apartheid wounds, continuing inequality and poverty, is explored through pedagogies of conflict, dialogue and forgiveness. Finally the question of whether democracy and development can have anything to do with mathematics content matters, is discussed by appropriating, as a metaphor, South Africa’s Truth and Reconciliation Commission’s framework of multiple ‘truths’, to seek links within and across the various forms and movements in mathematics and mathematics education that have emerged in the past few decades.

  11. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  12. mathematical models for estimating radio channels utilization

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.

  13. Mathematical models in medicine: Diseases and epidemics

    International Nuclear Information System (INIS)

    Witten, M.

    1987-01-01

    This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling

  14. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  15. Mathematical modeling of reciprocating pump

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Jung, Jun Ki; Chai, Jang Bom; Lee, Jin Woo

    2015-01-01

    A new mathematical model is presented for the analysis and diagnosis of a high-pressure reciprocating pump system with three cylinders. The kinematic and hydrodynamic behaviors of the pump system are represented by the piston displacements, volume flow rates and pressures in its components, which are expressed as functions of the crankshaft angle. The flow interaction among the three cylinders, which was overlooked in the previous models, is considered in this model and its effect on the cylinder pressure profiles is investigated. The tuning parameters in the mathematical model are selected, and their values are adjusted to match the simulated and measured cylinder pressure profiles in each cylinder in a normal state. The damage parameter is selected in an abnormal state, and its value is adjusted to match the simulated and ensured pressure profiles under the condition of leakage in a valve. The value of the damage parameter over 300 cycles is calculated, and its probability density function is obtained for diagnosis and prognosis on the basis of the probabilistic feature of valve leakage.

  16. Explorations in Elementary Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Mazen Shahin

    2010-06-01

    Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.

  17. Development of a new mathematical model representing the head region of the adult human for use in internal dose calculations

    International Nuclear Information System (INIS)

    Facioli, L.M.

    1984-01-01

    It is presented a new mathematical model to determine the spatial distribution of the scattered radiation, or specific absorbed fractions, in the head of the adult man. The ALGAM computer code which calculates the internal dose from gamma-ray sources in a man phanton, was modified to include the model proposed. The new program was processed for two source organs: thyroid and brain for 12 incident photon energies ranging from 0.010 to 4.0 MeV. (M.C.K.) [pt

  18. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  19. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  20. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

    1996-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  1. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)

    1997-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  2. Development of Mathematical Model and Analysis Code for Estimating Drop Behavior of the Control Rod Assembly in the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Oh, Se-Hong; Kang, SeungHoon; Choi, Choengryul; Yoon, Kyung Ho; Cheon, Jin Sik

    2016-01-01

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. There are three typical ways to estimate the drop behavior of the control rod assembly in scram action: Experimental, numerical and theoretical methods. But experimental and numerical(CFD) method require a lot of cost and time. Thus, these methods are difficult to apply to the initial design process. In this study, mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. Mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. A simplified control rod assembly model is considered to minimize the uncertainty in the development process. And the hydraulic circuit analysis technique is adopted to evaluate the internal/external flow distribution of the control rod assembly. Finally, the theoretical analysis code(named as HEXCON) has been developed based on the mathematical model. To verify the reliability of the developed code, CFD analysis has been conducted. And a calculation using the developed analysis code was carried out under the same condition, and both results were compared

  3. Reflexion and control mathematical models

    CERN Document Server

    Novikov, Dmitry A

    2014-01-01

    This book is dedicated to modern approaches to mathematical modeling of reflexive processes in control. The authors consider reflexive games that describe the gametheoretical interaction of agents making decisions based on a hierarchy of beliefs regarding (1) essential parameters (informational reflexion), (2) decision principles used by opponents (strategic reflexion), (3) beliefs about beliefs, and so on. Informational and reflexive equilibria in reflexive games generalize a series of well-known equilibrium concepts in noncooperative games and models of collective behavior. These models allow posing and solving the problems of informational and reflexive control in organizational, economic, social and other systems, in military applications, etc. (the interested reader will find in the book over 30 examples of possible applications in these fields) and describing uniformly many psychological/sociological phenomena connected with reflexion, viz., implicit control, informational control via the mass media, re...

  4. Development of a mathematical model of the heating phase of rubber mixture and development of the synthesis of the heating control algorithm using the Pontryagin maximum principle

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2017-01-01

    Full Text Available The article is devoted to the development of the algorithm of the heating phase control of a rubber compound for CJSC “Voronezh tyre plant”. The algorithm is designed for implementation on basis of controller Siemens S-300 to control the RS-270 mixer. To compile the algorithm a systematic analysis of the heating process has been performed as a control object, also the mathematical model of the heating phase has been developed on the basis of the heat balance equation, which describes the process of heating of a heat-transfer agent in the heat exchanger and further heating of the mixture in the mixer. The dynamic characteristics of temperature of the heat exchanger and the rubber mixer have been obtained. Taking into account the complexity and nonlinearity of the control object – a rubber mixer, as well as the availability of methods and great experience in managing this machine in an industrial environment, the algorithm has been implemented using the Pontryagin maximum principle. The optimization problem is reduced to determining the optimal control (heating steam supply and the optimal path of the object’s output coordinates (the temperature of the mixture which ensure the least flow of steam while heating a rubber compound in a limited time. To do this, the mathematical model of the heating phase has been written in matrix form. Coefficients matrices for each state of the control, control and disturbance vectors have been created, the Hamilton function has been obtained and time switching points have been found for constructing an optimal control and escape path of the object. Analysis of the model experiments and practical research results in the process of programming of the controller have showed a decrease in the heating steam consumption by 24.4% during the heating phase of the rubber compound.

  5. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  6. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  7. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  8. Developing Digital Technologies for Undergraduate University Mathematics

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    Our research effort presented in this paper relates with developing digital tools for mathematics education at undergraduate university level. It focuses specifically on studies where mathematics is not a core subject but it is very important in order to cope with core subjects. For our design, we...... requirements for the development of digital tools that support mathematics teaching and learning at university level....... during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student feedback inspire the next round of design...

  9. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  10. Specific Type of Knowledge Map: Mathematical Model

    OpenAIRE

    Milan, Houška; Martina, Beránková

    2005-01-01

    The article deals with relationships between mathematical models and knowledge maps. The goal of the article is to suggest how to use the mathematical model as a knowledge map and/or as a part (esp. the inference mechanism) of the knowledge system. The results are demonstrated on the case study, when the knowledge from a story is expressed by mathematical model. The model is used for both knowledge warehousing and inferencing new artificially derived knowledge.

  11. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    Science.gov (United States)

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  12. Missing the Promise of Mathematical Modeling

    Science.gov (United States)

    Meyer, Dan

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…

  13. Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity

    Science.gov (United States)

    Stohlmann, Micah S.

    2017-01-01

    Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…

  14. iSTEM: Promoting Fifth Graders' Mathematical Modeling

    Science.gov (United States)

    Yanik, H. Bahadir; Karabas, Celil

    2014-01-01

    Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…

  15. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  16. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  17. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Directory of Open Access Journals (Sweden)

    Jones Anne E

    2011-02-01

    Full Text Available Abstract Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive

  18. SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    O. M. Klyuchko

    2018-02-01

    Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.

  19. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  20. Mathematical models of human behavior

    DEFF Research Database (Denmark)

    Møllgaard, Anders Edsberg

    at the Technical University of Denmark. The data set includes face-to-face interaction (Bluetooth), communication (calls and texts), mobility (GPS), social network (Facebook), and general background information including a psychological profile (questionnaire). This thesis presents my work on the Social Fabric...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived....... Evidence is provided, which implies that the asymmetry is caused by a self-enhancement in the initiation dynamics. These results have implications for the formation of social networks and the dynamics of the links. It is shown that the Big Five Inventory (BFI) representing a psychological profile only...

  1. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  2. The Development of the Mathematical Mind.

    Science.gov (United States)

    Scott, Judith

    1995-01-01

    Draws parallels between Montessori's mathematical curriculum and the evolution of numbers and counting. Suggests that children share with ancient Sumerians a basic human tendency to develop "the mathematical mind." Argues that children do not need to be surrounded by math; rather, the classroom must supply them with the means to explore…

  3. Developing Mathematical Practices through Reflection Cycles

    Science.gov (United States)

    Reinholz, Daniel L.

    2016-01-01

    This paper focuses on reflection in learning mathematical practices. While there is a long history of research on reflection in mathematics, it has focused primarily on the development of conceptual understanding. Building on notion of learning as participation in social practices, this paper broadens the theory of reflection in mathematics…

  4. The Development of Learning Model Based on Problem Solving to Construct High-Order Thinking Skill on the Learning Mathematics of 11th Grade in SMA/MA

    Science.gov (United States)

    Syahputra, Edi; Surya, Edy

    2017-01-01

    This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…

  5. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  6. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    Science.gov (United States)

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  7. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  8. Using the method of mathematical-logical modeling in compiling an engineering plan for development of a mine

    Energy Technology Data Exchange (ETDEWEB)

    Fajkos, A.; Klimek, M.

    1980-01-01

    A possibility of using a mathematical-logical modeling to improve the quality of mine shaft operation planning in Czechloslovakia based on the example of the Sverma mine in Ostrova with complex mining-geological conditions is studied. For the basic criteria we assumed: extraction plant, number of shifts in the long walls, time period for beginning and ending long wall operation, processing of reserves with consideration of existing conditions, output and dip angle of a formation, quality of extracted coal, and also: time intervals for processing separate formations, limitation of extraction load in a long wall in connection with gas emission, timbering, the necessity of insuring normal operating conditions, concentration of extraction, time relationship of preparatory and extraction operations.

  9. DEVELOPING AND THE ANALYSIS OF MATHEMATICAL MODELS OF GENERATORS OF LINEAR AND RECIPROCATING TYPES WITH ELECTROMAGNETIC EXCITATION

    Directory of Open Access Journals (Sweden)

    A. B. Menzhinski

    2018-01-01

    Full Text Available The mathematical modeling of generators of linear and reciprocating types with electromagnetic excitation resulted in obtaining the equivalent electrical circuit and diagrams of magnetic circuit of generators as well as the expressions that describe the electromagnetic processes in generators of linear and reciprocating types with electromagnetic excitation is presented in the article. Mathematical models of generators of linear and reciprocating types with electromagnetic excitation take into account the geometrical parameters of the magnetic system of generators, effect of the armature reaction, the unequal distribution of the magnetic field in the magnetic system of the generators and the dependence of the scattering coefficient and the fringe effect (in linear generators and buckling (in the reciprocating electric generators on the coordinates of the movement. An evaluation of the effectiveness of the generators of linear and reciprocating types with electromagnetic excitation was performed that demonstrated that the efficiency of the reciprocating generator with electromagnetic excitation is limited to the amount of movement of the moving part of the generator that can be considered as a drawback of this type of generators. Therefore, the reciprocating generator with electromagnetic excitation is more effective to be used in a small value of the working stroke of the movable part of it or in conjunction with a linear generator as a compensator of the end effect in reciprocating motion. In the linear generator the rate of change of inductance and mutual inductance throughout the movement of the moving part is practically constant. So if an increase of the magnitude of the working stroke of the movable part takes place the benefits of the linear generator are undeniable. However, it should be noted that a reduction of the stroke magnitude of the movable part of the linear generator is limited by constructional dimensions of the magnetic

  10. Leading Undergraduate Research Projects in Mathematical Modeling

    Science.gov (United States)

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  11. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  12. Modelling and Optimizing Mathematics Learning in Children

    Science.gov (United States)

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  13. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  14. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies.

    Science.gov (United States)

    Gahlawat, Geeta; Srivastava, Ashok K

    2013-06-01

    In the present investigation, batch cultivation of Azohydromonas australica DSM 1124 was carried out in a bioreactor for growth associated PHB production. The observed batch PHB production kinetics data was then used for the development of a mathematical model which adequately described the substrate limitation and inhibition during the cultivation. The statistical validity test demonstrated that the proposed mathematical model predictions were significant at 99% confidence level. The model was thereafter extrapolated to fed-batch to identify various nutrients feeding regimes during the bioreactor cultivation to improve the PHB accumulation. The distinct capability of the mathematical model to predict highly dynamic fed-batch cultivation strategies was demonstrated by experimental implementation of two fed-batch cultivation strategies. A significantly high PHB concentration of 22.65 g/L & an overall PHB content of 76% was achieved during constant feed rate fed-batch cultivation which is the highest PHB content reported so far using A. australica. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. DEVELOPMENT OF MATHEMATICAL MODEL OF PROCESS OF BLACK CURRANT BERRIES DRYING IN VACUUMDEVICE WITH THE MICROWAVE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. The mathematical model allowed to reproduce and study at qualitative level the change of berries form and the structure of the berries layer in the course of drying. The separate berry in the course of drying loses gradually its elasticity, decreases in volume, the peel gathers in folds, there appear internal emptiness. In the course of drying the berries layer decreases in thickness, contacting berries stick strongly with each other due to the coordinated folds of peel appearing, the layer is condensed due to penetration of the berries which have lost elasticity into emptiness between them. The model with high specification describes black currant drying process and therefore has a large number of the parameters available to change. Among them three most important technological parameters, influencing productivity and the drying quality are chosen: the power of microwave radiation P, thickness of the berries layer h, environmental pressure p. From output indicators of the model the most important are three functions from time: dependence of average humidity of the layer on time Wcp (t, dependence of the speed of change of average humidity on time dWcp (t/dt, dependence of the layer average temperature on time Tср (t. On the standard models classification the offered model is algorithmic, but not analytical. It means that output characteristics of model are calculated with the entrance ones, not by analytical transformations (it is impossible principally for the modeled process, but by means of spatial and temporary sampling and the corresponding calculation algorithm. Detailed research of the microwave drying process by means of the model allows to allocate the following stages: fast heating, the fast dehydration, the slowed-down dehydration, consolidation of a layer of a product, final drying, heating after dehydration.

  16. Rival approaches to mathematical modelling in immunology

    Science.gov (United States)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  17. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  18. Mathematics of epidemics on networks from exact to approximate models

    CERN Document Server

    Kiss, István Z; Simon, Péter L

    2017-01-01

    This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...

  19. Mathematical Modeling Applied to Maritime Security

    OpenAIRE

    Center for Homeland Defense and Security

    2010-01-01

    Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Layered Defense: Modeling Terrorist Transfer Threat Networks and Optimizing Network Risk Reduction” Students in Ted Lewis’ Critical Infrastructure Protection course are taught how mathematic modeling can provide...

  20. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  1. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  2. Mathematical models of thermohydraulic disturbance sources in the NPP circuits

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.

    1999-01-01

    Methods and means of diagnostics of equipment and processes at NPPs allowing one to substantially increase safety and economic efficiency of nuclear power plant operation are considered. Development of mathematical models, describing the occurrence and propagation of violations is conducted

  3. SYMBIOSIS: development, implementation, and assessment of a model curriculum across biology and mathematics at the introductory level.

    Science.gov (United States)

    Depelteau, Audrey M; Joplin, Karl H; Govett, Aimee; Miller, Hugh A; Seier, Edith

    2010-01-01

    "It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power." Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum.

  4. Mathematical model of gluconic acid fermentation by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, T.; Shioya, S.; Furuya, T.

    1981-11-01

    A mathematical model for the study of gluconic acid fermentation by Aspergillus niger has been developed. The model has been deduced from the basic biological concept of multicellular filamentous microorganisms, i.e. cell population balance. It can be used to explain the behaviour of both batch and continuous cultures, even when in a lag phase. A new characteristic, involving the existence of dual equilibrium stages during fermentation, has been predicted using this mathematical model. (Refs. 6).

  5. A Mathematical Model, Implementation and Study of a Swarm System

    OpenAIRE

    Varghese, Blesson; McKee, Gerard

    2013-01-01

    The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...

  6. Mathematical manipulative models: in defense of "beanbag biology".

    Science.gov (United States)

    Jungck, John R; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.

  7. Mathematical modelling of scour: A review

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2007-01-01

    A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers....../piles and pipelines, respectively, the two benchmark cases, while the third section deals with the mathematical modelling of scour around other structures such as groins, breakwaters and sea walls. A section is also added to discuss potential future research areas. Over one hundred references are included...

  8. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  9. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  10. Mathematical modeling of the Phoenix Rising pathway.

    Directory of Open Access Journals (Sweden)

    Chad Liu

    2014-02-01

    Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.

  11. Developing Mathematics Problems Based on Pisa Level

    Directory of Open Access Journals (Sweden)

    Shahibul Ahyan

    2014-01-01

    Full Text Available This research aims to produce mathematics problems based on PISA level with valid and practical content of change and relationships and has potential effect for Junior High School students. A development research method developed by Akker, Gravemeijer, McKenney and Nieveen is used this research. In the first stage, the researcher analyzed students, algebra material in school-based curricula (KTSP and mathematics problems of PISA 2003 of change and relationships content. The second stage, the researcher designed 13 problems with content of change and relationships. The last, the researcher used formative evaluation design developed by Tessmer which includes self evaluation, one-to-one, expert review, small group, and field test. The data collect by walk through, interview, and questionnaire. The result of this research indicated that 12 mathematical problems based on PISA level of change and relationships content that developed have validity, practically, and potential effects for Junior High School students.

  12. The language of mathematics: investigating the ways language counts for children's mathematical development.

    Science.gov (United States)

    Vukovic, Rose K; Lesaux, Nonie K

    2013-06-01

    This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.

  13. Educational Development and Developmental Research in Mathematics Education

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.

    1994-01-01

    In light of anticipated changes in mathematics education, an alternative for the well- known "research-development-diffusion" model is presented. It is based on an integration of curriculum research and design embedded in "educational development." In this context curriculum development is described

  14. Mathematical modeling of a thermovoltaic cell

    Science.gov (United States)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  15. Mathematical Models and Methods for Living Systems

    CERN Document Server

    Chaplain, Mark; Pugliese, Andrea

    2016-01-01

    The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods. Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.

  16. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  17. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  18. Cooking Potatoes: Experimentation and Mathematical Modeling.

    Science.gov (United States)

    Chen, Xiao Dong

    2002-01-01

    Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)

  19. Mathematical modeling of infectious disease dynamics

    Science.gov (United States)

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  20. Mathematical modeling of tornadoes and squall storms

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsen’yev

    2011-04-01

    Full Text Available Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running perturbation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton; which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.

  1. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  2. A mathematical model for maximizing the value of phase 3 drug development portfolios incorporating budget constraints and risk.

    Science.gov (United States)

    Patel, Nitin R; Ankolekar, Suresh; Antonijevic, Zoran; Rajicic, Natasa

    2013-05-10

    We describe a value-driven approach to optimizing pharmaceutical portfolios. Our approach incorporates inputs from research and development and commercial functions by simultaneously addressing internal and external factors. This approach differentiates itself from current practices in that it recognizes the impact of study design parameters, sample size in particular, on the portfolio value. We develop an integer programming (IP) model as the basis for Bayesian decision analysis to optimize phase 3 development portfolios using expected net present value as the criterion. We show how this framework can be used to determine optimal sample sizes and trial schedules to maximize the value of a portfolio under budget constraints. We then illustrate the remarkable flexibility of the IP model to answer a variety of 'what-if' questions that reflect situations that arise in practice. We extend the IP model to a stochastic IP model to incorporate uncertainty in the availability of drugs from earlier development phases for phase 3 development in the future. We show how to use stochastic IP to re-optimize the portfolio development strategy over time as new information accumulates and budget changes occur. Copyright © 2013 John Wiley & Sons, Ltd.

  3. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  4. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2001-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  5. Description of mathematical models and computer programs

    International Nuclear Information System (INIS)

    1977-01-01

    The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

  6. Analysis of mathematical modelling on potentiometric biosensors.

    Science.gov (United States)

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  7. A mathematical model for camera calibration based on straight lines

    Directory of Open Access Journals (Sweden)

    Antonio M. G. Tommaselli

    2005-12-01

    Full Text Available In other to facilitate the automation of camera calibration process, a mathematical model using straight lines was developed, which is based on the equivalent planes mathematical model. Parameter estimation of the developed model is achieved by the Least Squares Method with Conditions and Observations. The same method of adjustment was used to implement camera calibration with bundles, which is based on points. Experiments using simulated and real data have shown that the developed model based on straight lines gives results comparable to the conventional method with points. Details concerning the mathematical development of the model and experiments with simulated and real data will be presented and the results with both methods of camera calibration, with straight lines and with points, will be compared.

  8. Developing a Structural Model on the Relationship among Motivational Beliefs, Self-Regulated Learning Strategies, and Achievement in Mathematics

    Science.gov (United States)

    Fadlelmula, Fatma Kayan; Cakiroglu, Erdinc; Sungur, Semra

    2015-01-01

    This study examines the interrelationships among students' motivational beliefs (i.e. achievement goal orientations, perception of classroom goal structure, and self-efficacy), use of self-regulated learning strategies (i.e. elaboration, organization, and metacognitive self-regulation strategies), and achievement in mathematics, by proposing and…

  9. The Interconnected Model of Professional Growth as a means to assess the development of a mathematics teacher

    NARCIS (Netherlands)

    Witterholt, Martha; Goedhart, Martin; Suhre, Cor; van Streun, Anno

    In this qualitative study we used a case study approach to observe and analyse a mathematics teacher who was challenged to redesign her lessons during network meetings with colleagues. Changes in practical knowledge are described by means of concept maps and semi-structured interviews. We applied

  10. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  11. Mathematical modeling of acid-base physiology.

    Science.gov (United States)

    Occhipinti, Rossana; Boron, Walter F

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS

    Directory of Open Access Journals (Sweden)

    Aleksander Grm

    2017-01-01

    Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.

  13. Changing the attitudes and practices of professional developers through a constructivist model: The Technical Assistance Academy for Mathematics and Science Services

    Science.gov (United States)

    Charles, Karen Jungblut

    For much of this century, mathematics and science have been taught in a didactic manner that is characterized by a passive student and a lecturing teacher. Since the late eighties national standards have encouraged professional developers specializing in mathematics and science education to deliver the messages of inquiry-based learning, active student engagement, and learner-constructed knowledge to the teachers they support. Follow-up studies of professional development programs, however, found that telling teachers was no more effective than telling students. Information transmitted in a passive setting was not transferring into effective classroom practices. This phenomenological case study was conducted to determine the effects of a constructivist-oriented professional development experience, the Technical Assistance Academy, in changing the practices and attitudes of mathematics and science professional developers regarding the use of constructivist strategies in workshop design. This study focused on 45 professional developers who participated in the Technical Assistance Academy. Data from a 2 1/2 year period were collected from session evaluations, journal reflections, a follow-up interview, and site visits that included observations and collaborative planning. Content analysis procedures were used to find common themes among the data. Use of new skills developed as a result of participation in the Technical Assistance Academy was determined using the Concerns-Based Adoption Model Levels of Use framework (Hall & Hord, 1987). Changes in attitude were determined by examining participants' journal reflections related to common constructivist themes such as those discussed by Fosnot (1996c): learning is developmental, disequilibrium and reflection facilitate learning, and the construction of "big ideas" results from the opportunity to struggle with new information. Results verified that all 45 participants demonstrated some level of use, and that most were in

  14. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    Science.gov (United States)

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  15. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  16. Beyond Motivation: Exploring Mathematical Modeling as a Context for Deepening Students' Understandings of Curricular Mathematics

    Science.gov (United States)

    Zbiek, Rose Mary; Conner, Annamarie

    2006-01-01

    Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…

  17. Developing a Mathematics Education Quality Scale

    Science.gov (United States)

    Ciftci, S. Koza; Karadag, Engin

    2016-01-01

    The aim of this study was to evaluate students' perceptions of the quality of mathematics education and to develop a reliable and valid measurement tool. The research was conducted with 638 (first study) and 407 (second study) secondary school students in Eskisehir, Turkey. Item discrimination, structural validity (exploratory factor analysis and…

  18. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    processes has been obtained in the paper. The equation contains both continuous and discrete components, which characterize an amplitude signal modulation. An equation for probability density of phase coordinate distribution in the system has been developed on the basis of a mathematical model for a hybrid system.

  19. Mathematical model of three winding auto transformer

    International Nuclear Information System (INIS)

    Volcko, V.; Eleschova, Z.; Belan, A.; Janiga, P.

    2012-01-01

    This article deals with the design of mathematical model of three-winding auto transformer for steady state analyses. The article is focused on model simplicity for the purposes of the use in complex transmission systems and authenticity of the model taking into account different types of step-voltage regulator. (Authors)

  20. Potential of mathematical modeling in fruit quality

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... successful mathematical model, the modeler needs to chose what .... equations. In the SUCROS models, the rate of CO2 assimilation is .... insect ecology. ... García y García A, Ingram KT, Hatch U, Hoogenboom G, Jones JW,.

  1. State and Trait Effects on Individual Differences in Children's Mathematical Development

    Science.gov (United States)

    Bailey, Drew H.; Watts, Tyler W.; Littlefield, Andrew K.; Geary, David C.

    2015-01-01

    Substantial longitudinal relations between children's early mathematics achievement and their much later mathematics achievement are firmly established. These findings are seemingly at odds with studies showing that early educational interventions have diminishing effects on children's mathematics achievement across time. We hypothesized that individual differences in children's later mathematical knowledge are more an indicator of stable, underlying characteristics related to mathematics learning throughout development than of direct effects of early mathematical competency on later mathematical competency. We tested this hypothesis in two longitudinal data sets, by simultaneously modeling effects of latent traits (stable characteristics that influence learning across time) and states (e.g., prior knowledge) on children's mathematics achievement over time. Latent trait effects on children's mathematical development were substantially larger than state effects. Approximately 60% of the variance in trait mathematics achievement was accounted for by commonly used control variables, such as working memory, but residual trait effects remained larger than state effects. Implications for research and practice are discussed. PMID:25231900

  2. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  3. Mathematical models and accuracy of radioisotope gauges

    International Nuclear Information System (INIS)

    Urbanski, P.

    1989-01-01

    Mathematical expressions relating the variance and mean value of the intrinsic error with the parameters of one and multi-dimensional mathematical models of radioisotope gauges are given. Variance of the intrinsic error at the model's output is considered as a sum of the variances of the random error which is created in the first stages of the measuring chain and the random error of calibration procedure. The mean value of the intrinsic error (systematic error) appears always for nonlinear models. It was found that the optimal model of calibration procedure not always corresponds to the minimal value of the intrinsic error. The derived expressions are applied for the assessment of the mathematical models of some of the existing gauges (radioisotope belt weigher, XRF analyzer and coating thickness gauge). 7 refs., 5 figs., 1 tab. (author)

  4. Development of a mathematical model for sugar cane borer population, Diatrea sacharalis (Fabr., 1794) and simulation of the Sterile Insect Technique (SIT)

    International Nuclear Information System (INIS)

    Sgrillo, R.B.

    1979-08-01

    The determination of the theoretical possibility of applying the Sterile Insect Technique (SIT) to control sugar cane borer, Diatraea saccharalis (Fabricius, 1794), population in the State of Sao Paulo was aimed at. This has been achieved with the development of a mathematical model of the insect population dynamics after simulation of the SIT. The model was constructed based on a field survey made in 1976 in four sugar cane regions of the State. With the surveys, data relative to insect population density of larvae and pupae was obtained. Data regarding fluctuation of adults and of some predators population were obtained using light traps. Through mathematical analysis of the data from the surveys it was noted that diapause occurred in large larvae. The percentage of larvae in diapause showed correlation with photoperiod and temperature. It was established that the number of degree days necessary for the insect to complement a generation is 954. A method was proposed to utilize the thermic constant concept equally for diapause conditions. A laboratory experiment showed that male adults irradiated at 50 krad gamma radiation ( 60 Co) produced a non-viable generation. Monthly mortality in each stage was estimated. From these data, sub-models were developed, correlating mortality with climatic and biological variables. The sub-models when grouped formed a model that permitted the simulation of the SIT. It was concluded that release of sterile insects in a number equal to those existing in the field, during the first three generations, would be an efficient method to control insect populations. Theoretically, a profit would be obtained if the cost for application of the method was up to Cr$ 1,355 per hectare. Release of sterile insects in a number nine times larger than those existing in the field during the first generation, would be equally efficient and a profit would be obtained if the cost for application of the method was Cr$ 975 per hectare. (Author) [pt

  5. The possibilities of a modelling perspective for school mathematics

    Directory of Open Access Journals (Sweden)

    Dirk Wessels

    2009-09-01

    Full Text Available The findings of the international TIMSS investigations of a few years ago into the position and application of problem solving strategies in school mathematics in about 50 countries caused serious concern globally. During each survey South Africa was found to be among the poorest performers of the participating countries. The main problem was that the majority of school learners in South Africa do not have the ability to solve mathematical problems; in fact, it would appear that they lack the total spectrum of mathematical problem solving competencies. The present school system does not develop their mathematical abilities or competencies. While Outcomes-based education, which became very popular in the Western world, has the ability to improve participants’ affective values of mathematics, it proved to be inadequate in improving the quality of their mathematical performances. Mathematics teachers are unsuccessful in teaching in a manner that will make a difference with respect to the way learners do, learn or perform in mathematics. The pedagogical and mathematics content knowledge of the teachers are lacking in conceptual depth, clarity and connectedness (integration. The language proficiency of the learners is poor, which means that they do not understand what they should do with a problem and how to interpret, present and verify their findings. Learners still do not know how to handle mathematics and how to utilise mathematics in order to solve problems. They seriously lack the ability to approach problems in a meaningful and constructive way. Real-life and open-ended problems are being perceived as huge obstacles to most learners. Teachers are not trained and educated to assist their learners in bridging this gap. The teaching methodology that will make a difference in the classroom falls in the broad category of problem solving. The day-to-day teaching method should be the problem-centred teaching and learning approach. This rather

  6. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  7. Mathematical Models of Issue Voting

    OpenAIRE

    小林, 良彰

    2009-01-01

    1. Introduction2. An Examination of the Expected Utility Model3. An Examination of the Minimax Regret Model4. An Examination of the Diametros Model5. An Examination of the Revised Diametros Model6. An Examination of the Party Coalition Model7. The Construction and Examination of the Diametros ll Model8. Conclusion

  8. Development of Mathematics Learning Strategy Module, Based on Higher Order Thinking Skill (Hots) To Improve Mathematic Communication And Self Efficacy On Students Mathematics Department

    Science.gov (United States)

    Andriani, Ade; Dewi, Izwita; Halomoan, Budi

    2018-03-01

    In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.

  9. Mathematical Models of Tuberculosis Reactivation and Relapse

    Directory of Open Access Journals (Sweden)

    Robert Steven Wallis

    2016-05-01

    Full Text Available The natural history of human infection with Mycobacterium tuberculosis (Mtb is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiology of tuberculosis in patients treated with tumor necrosis factor antagonists, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic.

  10. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  11. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  12. Mathematical modelling of two-phase flows

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Stoop, P.M.

    1992-11-01

    A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs

  13. Mathematical model in economic environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)

    1996-12-31

    The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.

  14. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    Science.gov (United States)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  15. A marriage of continuance: professional development for mathematics lecturers

    Science.gov (United States)

    Barton, Bill; Oates, Greg; Paterson, Judy; Thomas, Mike

    2015-06-01

    In a 2-year project, we developed and trialled a mode of lecturing professional development amongst staff in our department of mathematics. Theoretically grounded in Schoenfeld's resources, orientations, and goals (ROG) model of teacher action, a group met regularly to discuss both the video excerpts of themselves lecturing along with written pre- and post-lecture statements of their "ROGs". We found evidence of improved teaching performance but more interestingly, identified key aspects of our practice and of undergraduate mathematics that received repeated attention and developed further theoretical insight into lecturer behaviour in mathematics. The trial has been successful enough to be expanded into further groups that now constitute a professional development culture within our department.

  16. Mathematical modeling of alcohol distillation columns

    Directory of Open Access Journals (Sweden)

    Ones Osney Pérez

    2011-04-01

    Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.

  17. Mathematical Modeling of the Origins of Life

    Science.gov (United States)

    Pohorille, Andrew

    2006-01-01

    The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.

  18. The Incidence Patterns Model to Estimate the Distribution of New HIV Infections in Sub-Saharan Africa: Development and Validation of a Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Annick Bórquez

    2016-09-01

    Full Text Available Programmatic planning in HIV requires estimates of the distribution of new HIV infections according to identifiable characteristics of individuals. In sub-Saharan Africa, robust routine data sources and historical epidemiological observations are available to inform and validate such estimates.We developed a predictive model, the Incidence Patterns Model (IPM, representing populations according to factors that have been demonstrated to be strongly associated with HIV acquisition risk: gender, marital/sexual activity status, geographic location, "key populations" based on risk behaviours (sex work, injecting drug use, and male-to-male sex, HIV and ART status within married or cohabiting unions, and circumcision status. The IPM estimates the distribution of new infections acquired by group based on these factors within a Bayesian framework accounting for regional prior information on demographic and epidemiological characteristics from trials or observational studies. We validated and trained the model against direct observations of HIV incidence by group in seven rounds of cohort data from four studies ("sites" conducted in Manicaland, Zimbabwe; Rakai, Uganda; Karonga, Malawi; and Kisesa, Tanzania. The IPM performed well, with the projections' credible intervals for the proportion of new infections per group overlapping the data's confidence intervals for all groups in all rounds of data. In terms of geographical distribution, the projections' credible intervals overlapped the confidence intervals for four out of seven rounds, which were used as proxies for administrative divisions in a country. We assessed model performance after internal training (within one site and external training (between sites by comparing mean posterior log-likelihoods and used the best model to estimate the distribution of HIV incidence in six countries (Gabon, Kenya, Malawi, Rwanda, Swaziland, and Zambia in the region. We subsequently inferred the potential

  19. The Incidence Patterns Model to Estimate the Distribution of New HIV Infections in Sub-Saharan Africa: Development and Validation of a Mathematical Model.

    Science.gov (United States)

    Bórquez, Annick; Cori, Anne; Pufall, Erica L; Kasule, Jingo; Slaymaker, Emma; Price, Alison; Elmes, Jocelyn; Zaba, Basia; Crampin, Amelia C; Kagaayi, Joseph; Lutalo, Tom; Urassa, Mark; Gregson, Simon; Hallett, Timothy B

    2016-09-01

    Programmatic planning in HIV requires estimates of the distribution of new HIV infections according to identifiable characteristics of individuals. In sub-Saharan Africa, robust routine data sources and historical epidemiological observations are available to inform and validate such estimates. We developed a predictive model, the Incidence Patterns Model (IPM), representing populations according to factors that have been demonstrated to be strongly associated with HIV acquisition risk: gender, marital/sexual activity status, geographic location, "key populations" based on risk behaviours (sex work, injecting drug use, and male-to-male sex), HIV and ART status within married or cohabiting unions, and circumcision status. The IPM estimates the distribution of new infections acquired by group based on these factors within a Bayesian framework accounting for regional prior information on demographic and epidemiological characteristics from trials or observational studies. We validated and trained the model against direct observations of HIV incidence by group in seven rounds of cohort data from four studies ("sites") conducted in Manicaland, Zimbabwe; Rakai, Uganda; Karonga, Malawi; and Kisesa, Tanzania. The IPM performed well, with the projections' credible intervals for the proportion of new infections per group overlapping the data's confidence intervals for all groups in all rounds of data. In terms of geographical distribution, the projections' credible intervals overlapped the confidence intervals for four out of seven rounds, which were used as proxies for administrative divisions in a country. We assessed model performance after internal training (within one site) and external training (between sites) by comparing mean posterior log-likelihoods and used the best model to estimate the distribution of HIV incidence in six countries (Gabon, Kenya, Malawi, Rwanda, Swaziland, and Zambia) in the region. We subsequently inferred the potential contribution of each

  20. Cocaine addiction and personality: a mathematical model.

    Science.gov (United States)

    Caselles, Antonio; Micó, Joan C; Amigó, Salvador

    2010-05-01

    The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.

  1. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    Science.gov (United States)

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  2. Mathematical modelling and numerical simulation of forces in milling process

    Science.gov (United States)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  3. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  4. Mathematical Modeling: Are Prior Experiences Important?

    Science.gov (United States)

    Czocher, Jennifer A.; Moss, Diana L.

    2017-01-01

    Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…

  5. Uncertainty and Complexity in Mathematical Modeling

    Science.gov (United States)

    Cannon, Susan O.; Sanders, Mark

    2017-01-01

    Modeling is an effective tool to help students access mathematical concepts. Finding a math teacher who has not drawn a fraction bar or pie chart on the board would be difficult, as would finding students who have not been asked to draw models and represent numbers in different ways. In this article, the authors will discuss: (1) the properties of…

  6. Parallel Boltzmann machines : a mathematical model

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.

    1991-01-01

    A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a

  7. A mathematical model of embodied consciousness

    NARCIS (Netherlands)

    Rudrauf, D.; Bennequin, D.; Granic, I.; Landini, G.; Friston, K.; Williford, K.

    2017-01-01

    We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM

  8. A mathematical model of forgetting and amnesia

    NARCIS (Netherlands)

    Murre, J.M.J.; Chessa, A.G.; Meeter, M.

    2013-01-01

    We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in

  9. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  10. Mathematical foundations of the dendritic growth models.

    Science.gov (United States)

    Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos

    2007-11-01

    At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.

  11. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  12. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  13. The development of macros program-based cognitive evaluation model via e-learning course mathematics in senior high school based on curriculum 2013

    Directory of Open Access Journals (Sweden)

    Djoko Purnomo

    2017-02-01

    Full Text Available The specific purpose of this research is: The implementation of the application of the learning tool with a form cognitive learning evaluation model based macros program via E-learning at High School grade X at july-december based on 2013 curriculum. The method used in this research followed the procedures is research and development by Borg and Gall [2]. In second year, population analysis has conducted at several universities in Semarang. The results of the research and application development of macro program-based cognitive evaluation model is effective which can be seen from (1 the student learning result is over KKM, (2 The student independency affects learning result positively, (3 the student learning a result by using macros program-based cognitive evaluation model is better than students class control. Based on the results above, the development of macros program-based cognitive evaluation model that have been tested have met quality standards according to Akker (1999. Large-scale testing includes operational phase of field testing and final product revision, i.e trials in the wider class that includes students in mathematics education major in several universities, they are the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang. The positive responses is given by students at the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang.

  14. Developing Mathematical Resilience of Prospective Math Teachers

    Science.gov (United States)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  15. Development of mathematical model and optimal control system of internal temperatures of hot-blast stove process in staggered parallel operation; Netsufuro sushiki model to parallel sofu ni okeru ronai ondo saiteki seigyo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matoba, Y. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Otsuka, K.

    1998-07-01

    A mathematical model and an optimal control system of hot-blast stove process are described. A precise mathematical simulation model of the hot-blast stove was developed and the accuracy of the model has been confirmed. An optimal control system of the thermal conditions of the hot-blast stoves in staggered parallel operation was also developed. By the use of the multivariable optimal regulator and the feedforward compensations for the change of the aimed blast temperature and blast volume, the system is able to control the hot blast temperature and the brick temperature efficiently. The system has been applied to Kashima works. The variations of the blast temperature and the silica brick temperature have been decreased. The ultimate low heat level operations have been realized and the thermal efficiency furthermore has been raised by about 1%. 8 refs., 14 figs., 1 tab.

  16. Developing a Mathematical Model for Scheduling and Determining Success Probability of Research Projects Considering Complex-Fuzzy Networks

    Directory of Open Access Journals (Sweden)

    Gholamreza Norouzi

    2015-01-01

    Full Text Available In project management context, time management is one of the most important factors affecting project success. This paper proposes a new method to solve research project scheduling problems (RPSP containing Fuzzy Graphical Evaluation and Review Technique (FGERT networks. Through the deliverables of this method, a proper estimation of project completion time (PCT and success probability can be achieved. So algorithms were developed to cover all features of the problem based on three main parameters “duration, occurrence probability, and success probability.” These developed algorithms were known as PR-FGERT (Parallel and Reversible-Fuzzy GERT networks. The main provided framework includes simplifying the network of project and taking regular steps to determine PCT and success probability. Simplifications include (1 equivalent making of parallel and series branches in fuzzy network considering the concepts of probabilistic nodes, (2 equivalent making of delay or reversible-to-itself branches and impact of changing the parameters of time and probability based on removing related branches, (3 equivalent making of simple and complex loops, and (4 an algorithm that was provided to resolve no-loop fuzzy network, after equivalent making. Finally, the performance of models was compared with existing methods. The results showed proper and real performance of models in comparison with existing methods.

  17. Information Technology, Mathematics Achievement and Educational Equity in Developed Economies

    Science.gov (United States)

    Tan, Cheng Yong; Hew, Khe Foon

    2017-01-01

    The present study examined how access to home and school IT resources impacted student mathematics achievement. Data comprised 144,395 secondary school students from 7,308 schools in 22 developed economies who participated in the Programme for International Student Assessment (PISA) 2012. Results of hierarchical linear modelling showed that after…

  18. Mathematical model for temperature change of a journal bearing

    Directory of Open Access Journals (Sweden)

    Antunović Ranko

    2018-01-01

    Full Text Available In this work, a representative mathematical model has been developed, which reliably describes the heating and cooling of a journal bearing as a result of its malfunctioning, and the model has been further confirmed on a test bench. The bearing model was validated by using analytical modeling methods, i. e. the experimental results were compared to the data obtained by analytical calculations. The regression and variance analysis techniques were applied to process the recorded data, to test the mathematical model and to define mathematical functions for the heating/cooling of the journal bearing. This investigation shows that a representative model may reliably indicate the change in the thermal field, which may be a consequence of journal bearing damage.

  19. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  20. Mathematical models of information and stochastic systems

    CERN Document Server

    Kornreich, Philipp

    2008-01-01

    From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t

  1. On the mathematical modeling of memristors

    KAUST Repository

    Radwan, Ahmed G.

    2012-10-06

    Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.

  2. Dynamics of mathematical models in biology bringing mathematics to life

    CERN Document Server

    Zazzu, Valeria; Guarracino, Mario

    2016-01-01

    This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters i...

  3. FEMME, a flexible environment for mathematically modelling the environment

    NARCIS (Netherlands)

    Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.

    2002-01-01

    A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model

  4. A Brief Historical Development of Classical Mathematics before the Renaissance

    Science.gov (United States)

    Debnath, Lokenath

    2011-01-01

    This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems,…

  5. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  6. Modelling and applications in mathematics education the 14th ICMI study

    CERN Document Server

    Galbraith, Peter L; Niss, Mogens

    2007-01-01

    The book aims at showing the state-of-the-art in the field of modeling and applications in mathematics education. This is the first volume to do this. The book deals with the question of how key competencies of applications and modeling at the heart of mathematical literacy may be developed; with the roles that applications and modeling may play in mathematics teaching, making mathematics more relevant for students.

  7. Building an Economic and Mathematical Model of Influence of Integration Processes Upon Development of Tourism in Ukraine

    Directory of Open Access Journals (Sweden)

    Yemets Mariya S.

    2013-12-01

    Full Text Available Today Ukraine actively searches for its own way in the world integration processes, demonstrates a multi-vector foreign economic policy and carries out movement in the direction of integration with the EU and CIS countries. Taking into account establishment of international tourist relations, the main task of Ukraine is getting a bigger share of the world tourist arrivals. That is why, in order to study influence of integration processes upon development of tourism in the country, the author offers the following model: building regression equations of the share of export of tourist services of Ukraine for CIS and EU countries with the aim of the further comparative analysis. The conducted analysis allows making a conclusion that integration factors influence development of international tourism, however it is proved that this influence is not unequivocal and in some cases even inconsistent. Identification of directions of such an inter-dependency allows building an efficient tourist policy by means of selection of adaptive directions of integration.

  8. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    African Journals Online (AJOL)

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  9. The Interval Market Model in Mathematical Finance : Game Theoretic Methods

    NARCIS (Netherlands)

    Bernhard, P.; Engwerda, J.C.; Roorda, B.; Schumacher, J.M.; Kolokoltsov, V.; Saint-Pierre, P.; Aubin, J.P.

    2013-01-01

    Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous

  10. Mathematical Model for Prediction of Flexural Strength of Mound ...

    African Journals Online (AJOL)

    The mound soil-cement blended proportions were mathematically optimized by using scheffe's approach and the optimization model developed. A computer program predicting the mix proportion for the model was written. The optimal proportion by the program was used prepare beam samples measuring 150mm x 150mm ...

  11. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  12. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  13. A Mathematical Model for Analysis on Ships Collision Avoidance ...

    African Journals Online (AJOL)

    This study develops a mathematical model for analysis on collision avoidance of ships. The obtained model provides information on the quantitative effect of the ship's engine's response and the applied reversing force on separation distance and stopping abilities of the ships. Appropriate evasive maneuvers require the ...

  14. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The (Mathematical) Modeling Process in Biosciences.

    Science.gov (United States)

    Torres, Nestor V; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.

  16. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    OpenAIRE

    Edwin Musdi

    2016-01-01

    This research aims to develop a mathematics instructional model based realistic mathematics education (RME) to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characterist...

  17. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  18. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  19. MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-03-01

    Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes

  20. Mathematical and physical models and radiobiology

    International Nuclear Information System (INIS)

    Lokajicek, M.

    1980-01-01

    The hit theory of the mechanism of biological radiation effects in the cell is discussed with respect to radiotherapy. The mechanisms of biological effects and of intracellular recovery, the cumulative radiation effect and the cumulative biological effect in fractionated irradiation are described. The benefit is shown of consistent application of mathematical and physical models in radiobiology and radiotherapy. (J.P.)

  1. Mathematical Modeling Projects: Success for All Students

    Science.gov (United States)

    Shelton, Therese

    2018-01-01

    Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…

  2. ECONOMIC AND MATHEMATICAL MODELING INNOVATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    D.V. Makarov

    2014-06-01

    Full Text Available The paper presents one of the mathematical tools for modeling innovation processes. With the help of Kondratieff long waves can define innovation cycles. However, complexity of the innovation system implies a qualitative description. The article describes the problems of this area of research.

  3. Mathematical modeling of optical glazing performance

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.

    1994-01-01

    Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like

  4. Introduction to mathematical models and methods

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, A. H.; Manchanda, P. [Gautam Budha University, Gautam Budh Nagar-201310 (India); Department of Mathematics, Guru Nanak Dev University, Amritsar (India)

    2012-07-17

    Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.

  5. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    Science.gov (United States)

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mathematical modeling models, analysis and applications

    CERN Document Server

    Banerjee, Sandip

    2014-01-01

    ""…the reader may find quite a few interesting examples illustrating several important methods used in applied mathematics. … it may be well used as a valuable source of interesting examples as well as complementary reading in a number of courses.""-Svitlana P. Rogovchenko, Zentralblatt MATH 1298

  7. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  8. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  9. What Is Mathematical Modelling? Exploring Prospective Teachers' Use of Experiments to Connect Mathematics to the Study of Motion

    Science.gov (United States)

    Carrejo, David J.; Marshall, Jill

    2007-01-01

    This paper focuses on the construction, development, and use of mathematical models by prospective science and mathematics teachers enrolled in a university physics course. By studying their involvement in an inquiry-based, experimental approach to learning kinematics, we address a fundamental question about the meaning and role of abstraction in…

  10. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.

    1984-04-01

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  11. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  12. An upper limb mathematical model of an oil palm harvester

    Science.gov (United States)

    Tumit, N. P.; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh, Y. M.; Arumugam, Manohar; Ismail, I. A.; Abdul Hafiz A., R.

    2014-09-01

    The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. In this paper, a 2-D closed-kinematic biomechanical model that represents a harvesting movement is developed. The model of six segments consisted of upper right arm, right forearm, harvesting equipment, left forearm, upper left arm, and upper part of trunk. Finally, the inverse dynamic equations are represented in matrix form.

  13. DEVELOPING EVALUATION INSTRUMENT FOR MATHEMATICS EDUCATIONAL SOFTWARE

    Directory of Open Access Journals (Sweden)

    Wahyu Setyaningrum

    2012-02-01

    Full Text Available The rapid increase and availability of mathematics software, either for classroom or individual learning activities, presents a challenge for teachers. It has been argued that many products are limited in quality. Some of the more commonly used software products have been criticized for poor content, activities which fail to address some learning issues, poor graphics presentation, inadequate documentation, and other technical problems. The challenge for schools is to ensure that the educational software used in classrooms is appropriate and effective in supporting intended outcomes and goals. This paper aimed to develop instrument for evaluating mathematics educational software in order to help teachers in selecting the appropriate software. The instrument considers the notion of educational including content, teaching and learning skill, interaction, and feedback and error correction; and technical aspects of educational software including design, clarity, assessment and documentation, cost and hardware and software interdependence. The instrument use a checklist approach, the easier and effective methods in assessing the quality of educational software, thus the user needs to put tick in each criteria. The criteria in this instrument are adapted and extended from standard evaluation instrument in several references.   Keywords: mathematics educational software, educational aspect, technical aspect.

  14. Recent developments of mathematical fluid mechanics

    CERN Document Server

    Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao

    2016-01-01

    The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered:   1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics.   For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations.      There are 24...

  15. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  16. Mathematical Models of Breast and Ovarian Cancers

    Science.gov (United States)

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-01-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061

  17. IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2017-12-01

    Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity

  18. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  19. Development of Mathematics Competences in Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Anda Zeidmane

    2013-03-01

    Full Text Available The changes in society require revision of the content of higher education. Mathematics as a classical subject has played an important part in higher education until now, especially in engineering education. The introduction of mathematics IT programmes  (MathCad, MathLab, Matematica, Maple… in labour market caused the reduction of the practical application of the classical mathematics, therefore it is important to draw attention to the development of mathematical competences. The theoretical part of the paper deals with the notion of competence, its aspects and types, considers the question of the essence of  mathematics, examines general competences driven teaching of mathematics, describes organisational model underlying the curriculum in mathematics that is based on the division of the content of mathematics into levels. The paper describes the main issues of the development of teaching of mathematics discussed by European mathematicians (SEFI Math Working Group.  The paper presents the results of the ERDF project “Cross-border network for adapting mathematical competences in the socio-economic development (MatNet”, which

  20. Development of criteria for an ecotoxicological examination procedure by differentially high integrated parts of aquatic model ecosystems and mathematical models. Final report

    International Nuclear Information System (INIS)

    Huber, W.; Zieris, F.J.; Lay, J.P.; Weiss, K.; Brueggemann, R.; Benz, J.

    1994-01-01

    It is difficult to assess the risks of environmental toxicants, especially when they have to be extrapolated from laboratory datas. Therefore efforts are made to determine the potential hazards of chemicals with the help of artificial ecosystems or parts of them. These kinds of test systems are similar to the structure and function of natural ecosystems and therefore allow to make representative extrapolations to real nature. As a disadvantage they are expensive and not yet standardized. To be accepted for the risk assessment of chemicals it was attempted to standardize artificial aquatic ecosystems in this project. It was tried to minimize the costs of the testing procedures by using a mathematical model simulating artificial littoral ecosystems. With increasing complexity of the system a better description of expected effects caused by a substance in environment can be given. With the help of outdoor ecosystems the threshold concentration of a chemical could be determined that is not likely to affect an aquatic ecosystem. Further we succeeded in providing a prototype modeling the effects in the microcosms used in our experiments. This model is able to approximately describe the behavior of macrophytes, algae, and secondary consumers in uncontaminated and contaminated systems (with the test chemical atrazine). (orig.) [de

  1. Dealing with dissatisfaction in mathematical modelling to integrate QFD and Kano’s model

    Science.gov (United States)

    Retno Sari Dewi, Dian; Debora, Joana; Edy Sianto, Martinus

    2017-12-01

    The purpose of the study is to implement the integration of Quality Function Deployment (QFD) and Kano’s Model into mathematical model. Voice of customer data in QFD was collected using questionnaire and the questionnaire was developed based on Kano’s model. Then the operational research methodology was applied to build the objective function and constraints in the mathematical model. The relationship between voice of customer and engineering characteristics was modelled using linier regression model. Output of the mathematical model would be detail of engineering characteristics. The objective function of this model is to maximize satisfaction and minimize dissatisfaction as well. Result of this model is 62% .The major contribution of this research is to implement the existing mathematical model to integrate QFD and Kano’s Model in the case study of shoe cabinet.

  2. Constraint theory multidimensional mathematical model management

    CERN Document Server

    Friedman, George J

    2017-01-01

    Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...

  3. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  4. PENGEMBANGAN MODEL COMPREHENSIVE MATHEMATICS INSTRUCTION (CMI DALAM MEMBANGUN KEMAMPUAN MATHEMATICAL THINKING SISWA

    Directory of Open Access Journals (Sweden)

    Nita Delima

    2017-03-01

    Full Text Available Kesetaraan dalam pendidikan merupakan elemen penting dari beberapa standar visi NCTM dalam pendidikan matematika. Kesetaraan yang dimaksud, tidak berarti bahwa setiap siswa harus menerima pembelajaran yang identik dari guru; sebaliknya, menuntut sebuah pembelajaran yang mengakomodasi sebuah akses dalam mencapai kemampuan setiap siswa. Selain itu, NCTM juga mengemukakan bahwa dalam pembelajaran matematika terdapat lima standar proses yang harus terpenuhi, yakni problem solving, reasoning and proof, connections, communication, dan representation. Sementara itu, kemampuan problem solving yang dimiliki oleh seseorang akan mempengaruhi pada fleksibilitas proses berpikir mereka. Proses berpikir yang dimaksud dapat berupa proses dinamik yang memuat kompleksitas ide–ide matematik yang dimiliki serta dapat mengekspansi pemahaman tentang matematika yang disebut sebagai mathematical thinking. Dengan demikian, diperlukan sebuah model pembelajaran yang dapat berfungsi sebagai alat pedagogis guru, baik sebelum, selama dan setelah pembelajaran, terutama dalam membangun mathematical thinking siswa. Kerangka Comprehensive Mathematics Instruction (CMI merupakan sebuah kerangka prinsip – prinsip praktek pembelajaran yang bertujuan untuk menciptakan pengalaman matematika yang seimbang, sehingga siswa dapat memiliki pemikiran dan pemahaman matematika secara mendalam, kerangka CMI memiliki semua kriteria sebuah model pembelajaran. Adapun syntax untuk model CMI terdiri dari develop, solidify dan practice. Dalam penerapannya, setiap syntax tersebut meliputi tiga tahapan, yakni tujuan (purpose, peran guru (teacher role dan peran siswa (student role. Berdasarkan hasil analisis eksploratif yang telah dilakukan, dapat disimpulkan bahwa model pembelajaran CMI ini dapat menjadi sebuah alat pedagogis yang baru bagi guru yang dapat digunakan, baik sebelum, selama dan setelah pembelajaran dalam membangun kemampuan mathematical thinking siswa.    Kata Kunci: Comprehensive

  5. Causal Bayes Model of Mathematical Competence in Kindergarten

    Directory of Open Access Journals (Sweden)

    Božidar Tepeš

    2016-06-01

    Full Text Available In this paper authors define mathematical competences in the kindergarten. The basic objective was to measure the mathematical competences or mathematical knowledge, skills and abilities in mathematical education. Mathematical competences were grouped in the following areas: Arithmetic and Geometry. Statistical set consisted of 59 children, 65 to 85 months of age, from the Kindergarten Milan Sachs from Zagreb. The authors describe 13 variables for measuring mathematical competences. Five measuring variables were described for the geometry, and eight measuring variables for the arithmetic. Measuring variables are tasks which children solved with the evaluated results. By measuring mathematical competences the authors make causal Bayes model using free software Tetrad 5.2.1-3. Software makes many causal Bayes models and authors as experts chose the model of the mathematical competences in the kindergarten. Causal Bayes model describes five levels for mathematical competences. At the end of the modeling authors use Bayes estimator. In the results, authors describe by causal Bayes model of mathematical competences, causal effect mathematical competences or how intervention on some competences cause other competences. Authors measure mathematical competences with their expectation as random variables. When expectation of competences was greater, competences improved. Mathematical competences can be improved with intervention on causal competences. Levels of mathematical competences and the result of intervention on mathematical competences can help mathematical teachers.

  6. Mathematical model of transmission network static state estimation

    Directory of Open Access Journals (Sweden)

    Ivanov Aleksandar

    2012-01-01

    Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.

  7. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  8. Mathematical Modeling of Tuberculosis Granuloma Activation

    Directory of Open Access Journals (Sweden)

    Steve M. Ruggiero

    2017-12-01

    Full Text Available Tuberculosis (TB is one of the most common infectious diseases worldwide. It is estimated that one-third of the world’s population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb. Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1 has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.

  9. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  10. Aspects of Mathematical Modelling Applications in Science, Medicine, Economics and Management

    CERN Document Server

    Hosking, Roger J

    2008-01-01

    The construction of mathematical models is an essential scientific activity. Mathematics has long been associated with developments in the exact sciences and engineering, but more recently mathematical modelling has been used to investigate complex systems that arise in many other fields. The contributors to this book demonstrate the application of mathematics to modern research topics in ecology and environmental science, health and medicine, phylogenetics and neural networks, theoretical chemistry, economics and management.

  11. A model of professional competences in mathematics to update mathematical and didactic knowledge of teachers

    Science.gov (United States)

    Díaz, Verónica; Poblete, Alvaro

    2017-07-01

    This paper describes part of a research and development project carried out in public elementary schools. Its objective was to update the mathematical and didactic knowledge of teachers in two consecutive levels in urban and rural public schools of Region de Los Lagos and Region de Los Rios of southern Chile. To that effect, and by means of an advanced training project based on a professional competences model, didactic interventions based on types of problems and types of mathematical competences with analysis of contents and learning assessment were designed. The teachers' competence regarding the didactic strategy used and its results, as well as the students' learning achievements are specified. The project made possible to validate a strategy of lifelong improvement in mathematics, based on the professional competences of teachers and their didactic transposition in the classroom, as an alternative to consolidate learning in areas considered vulnerable in two regions of the country.

  12. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  13. Mathematical models of natural gas consumption

    International Nuclear Information System (INIS)

    Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana

    2011-01-01

    In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.

  14. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  15. Mathematical modeling of biomass fuels formation process

    International Nuclear Information System (INIS)

    Gaska, Krzysztof; Wandrasz, Andrzej J.

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task

  16. A stream-based mathematical model for distributed information processing systems - SysLab system model

    OpenAIRE

    Klein, Cornel; Rumpe, Bernhard; Broy, Manfred

    2014-01-01

    In the SysLab project we develop a software engineering method based on a mathematical foundation. The SysLab system model serves as an abstract mathematical model for information systems and their components. It is used to formalize the semantics of all used description techniques such as object diagrams state automata sequence charts or data-flow diagrams. Based on the requirements for such a reference model, we define the system model including its different views and their relationships.

  17. Delivering Online Professional Development in Mathematics to Rural Educators

    Science.gov (United States)

    Cady, Jo; Rearden, Kristin

    2009-01-01

    Rural school districts struggle to attract, retain, and support highly qualified mathematics teachers. A series of four online professional development courses in the form of integrated mathematics content and pedagogy courses was designed to meet the professional development needs of rural middle school mathematics teachers. Changes in teachers'…

  18. Standards for Reporting Mathematics Professional Development in Research Studies

    Science.gov (United States)

    Sztajn, Paola

    2011-01-01

    This Research Commentary addresses the need for standards for describing mathematics professional development in mathematics education research reports. Considering that mathematics professional development is an emerging research field, it is timely to set expectations for what constitutes high-quality reporting in this field. (Contains 2 tables.)

  19. A Theory of Developing Competence with Written Mathematical Symbols.

    Science.gov (United States)

    Hiebert, James

    1988-01-01

    Presented is a theory of how competence with written mathematical symbols develops, tracing a succession of cognitive processes that cumulate to yield competence. Arguments supporting the theory are drawn from the history, philosophy, and psychology of mathematics. (MNS)

  20. MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-07-01

    Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.

  1. Investigation of radiopharmaceuticals from cyclotron produced radionuclides and development of mathematical models. Part of a coordinated programme on production of radiopharmaceuticals from accelerator-produced isotopes

    International Nuclear Information System (INIS)

    Slaus, I.

    1983-04-01

    Several radioisotopes for diagnostic uses in nuclear medicine studies are produced using the internal 15 MeV (30 MeV alphas) deuteron beam of the ''Ruder Boskovic'' Institute in Zagreb, Yugoslavia. Some of the most important radioisotopes produced during the last few years are: Gallium-67 (d, xn reaction on a Cu/Ni/Zn target) with yield of 7.6 MBq/uAh, 81 Rb-sup(81m)Kr generator (α, 2n reaction on a Cu/Cu 2 Br 2 target) with a yield of 99 MBq/uAh, Iodine-123 (α, 2n reaction on a Cu/Ag/Sb target) with a yield of 6.3 MBq/uAh, and Indium-111 (α, 2n reaction on a Cu/Cu/Ag target) with a yield of 7.2 MBq/uAh. In addition, a simple mathematical lung model for regional ventilation measurements was developed and used for ventilation studies on normal subjects and subjects with various lung diseases. Based on these studies, a more sophisticated and quantitative lung ventilation model for radioactive tracer tidal breathing was further developed. In this new model, the periodicity of breathing is completely taken into account, and it makes possible to actually determine lung ventilation and volume parameters. The model is experimentally verified on healthy subjects, and the value of the effective specific ventilation obtained is in agreement with comparable parameters in the literature. sup(81m)Kr from a generator was used to perform these experimental studies

  2. Mathematical modelling of ultrasound propagation in multi-phase flow

    DEFF Research Database (Denmark)

    Simurda, Matej

    violates the repeatability of the measurements and thus impairs the device accuracy. Development of new flow meter designs for these conditions based on a purely experimental approach is expensive both in terms of time and economy. An attractive alternative is the employment of a mathematical model...

  3. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available A mathematical model was developed that accurately predicts the performance of an optically pumped HBr laser. Relatively high conversion efficiency was achieved. Tm pumped Ho:YLF is a viable source for pumping HBr laser, while HBr can be scaled...

  4. Mathematical models for prediction of safety factors for a simply ...

    African Journals Online (AJOL)

    From the results obtained, mathematical prediction models were developed using a least square regression analysis for bending, shear and deflection modes of failure considered in the study. The results showed that the safety factors for material, dead and live load are not unique, but they are influenced by safety index ...

  5. Mathematical modeling of dissolved oxygen in fish ponds

    African Journals Online (AJOL)

    TUOYO

    A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide .... chlorophyll, the energy obtained splits water, and oxygen ... is a function of temperature T, light L, substrate, and pH as shown in ..... plants and its relation to the concentration of carbon dioxide and.

  6. Сontrol systems using mathematical models of technological objects ...

    African Journals Online (AJOL)

    Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...

  7. Vibratory gyroscopes : identification of mathematical model from test data

    CSIR Research Space (South Africa)

    Shatalov, MY

    2007-05-01

    Full Text Available Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model...

  8. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary

  9. Mathematical Model of Piston Ring Sealing in Combustion Engine

    Directory of Open Access Journals (Sweden)

    Koszałka Grzegorz

    2015-01-01

    Full Text Available This paper presents a mathematical model of piston-rings-cylinder sealing (TPC of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.

  10. Roles of a Teacher and Researcher during in Situ Professional Development around the Implementation of Mathematical Modeling Tasks

    Science.gov (United States)

    Jung, Hyunyi; Brady, Corey

    2016-01-01

    Partnership with teachers for professional development has been considered beneficial because of the potential of collaborative work in the teacher's own classroom to be relevant to practice. From this perspective, both teachers and researchers can draw on their own expertise and work as authentic partners. In this study, we address the need for…

  11. Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process

    Science.gov (United States)

    Bal, Aytgen Pinar; Doganay, Ahmet

    2014-01-01

    The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…

  12. The Implications of American Mathematics Graduates’ Career Development on the Career Planning of Chinese Mathematics Graduates

    Directory of Open Access Journals (Sweden)

    Zhang Shuntao

    2015-01-01

    Full Text Available This article starts with an careful analysis of the factors that cause Chinese mathematics graduate’s heavy pressure in job hunting and career development, followed by a detailed introduction of American mathematics graduates’ positive employment potential and their benign career development prospect. Finally the author puts forward that mathematics majors should plan their curriculum study in relation to their future career development, with the help of systematic, professional career development consultancy and guidance. Suggestions on how to improve mathematics majors employment competitiveness are also provided in this article.

  13. MATHEMATICAL MODEL OF WEAR CHARACTER FAILURE IN AIRCRAFT OPERATION

    OpenAIRE

    Радько, Олег Віталійович; Молдован, Володимир Дмитрович

    2016-01-01

    In this paper the mathematical model of failures associated with wear during aircraft exploitationis developed. Тhe calculations of the distribution function, distribution density and failurerate gamma distribution at low coefficients of variation and the relatively low value of averagewear rate for the current time, which varies quite widely. The results coincide well with thephysical concepts and can be used to build different models of aircraft. Gamma distribution is apretty good model for...

  14. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  15. Science Thought and Practices: A Professional Development Workshop on Teaching Scientific Reasoning, Mathematical Modeling and Data Analysis

    Science.gov (United States)

    Robbins, Dennis; Ford, K. E. Saavik

    2018-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York and the American Museum of Natural History (AMNH), has developed and offers hands-on workshops to undergraduate faculty on teaching science thought and practices. These professional development workshops emphasize a curriculum and pedagogical strategies that uses computers and other digital devices in a laboratory environment to teach students fundamental topics, including: proportional reasoning, control of variables thinking, experimental design, hypothesis testing, reasoning with data, and drawing conclusions from graphical displays. Topics addressed here are rarely taught in-depth during the formal undergraduate years and are frequently learned only after several apprenticeship research experiences. The goal of these workshops is to provide working and future faculty with an interactive experience in science learning and teaching using modern technological tools.

  16. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  17. Development and use of mathematical models and software frameworks for integrated analysis of agricultural systems and associated water use impacts

    Science.gov (United States)

    Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.

    2016-01-01

    The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.

  18. Nonconvex Model of Material Growth: Mathematical Theory

    Science.gov (United States)

    Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J.

    2018-06-01

    The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.

  19. The influence of mathematics learning using SAVI approach on junior high school students’ mathematical modelling ability

    Science.gov (United States)

    Khusna, H.; Heryaningsih, N. Y.

    2018-01-01

    The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.

  20. Mathematical modelling of the laser processing of compose materials

    International Nuclear Information System (INIS)

    Gromyko, G.F.; Matsuka, N.P.

    2009-01-01

    Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)

  1. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev

    2016-01-01

    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  2. The many faces of the mathematical modeling cycle

    NARCIS (Netherlands)

    Perrenet, J.C.; Zwaneveld, B.

    2012-01-01

    In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven University of Technology, after having completed a series of mathematical modeling projects, have been

  3. Simple mathematical models of symmetry breaking. Application to particle physics

    International Nuclear Information System (INIS)

    Michel, L.

    1976-01-01

    Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)

  4. Mathematical modeling of a convective textile drying process

    Directory of Open Access Journals (Sweden)

    G. Johann

    2014-12-01

    Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.

  5. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Science.gov (United States)

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  6. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  7. Development and Validation of the Mathematical Resilience Scale

    Science.gov (United States)

    Kooken, Janice; Welsh, Megan E.; McCoach, D. Betsy; Johnston-Wilder, Sue; Lee, Clare

    2016-01-01

    The Mathematical Resilience Scale measures students' attitudes toward studying mathematics, using three correlated factors: Value, Struggle, and Growth. The Mathematical Resilience Scale was developed and validated using exploratory and confirmatory factor analyses across three samples. Results provide a new approach to gauge the likelihood of…

  8. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  9. Mathematical modelling of the process of quality control of construction products

    Directory of Open Access Journals (Sweden)

    Pogorelov Vadim

    2017-01-01

    Full Text Available The study presents the results of years of research in the field of quality management of industrial production construction production, based on mathematical modelling techniques, process and results of implementing the developed programme of monitoring and quality control in the production process of the enterprise. The aim of this work is the presentation of scientific community of the practical results of mathematical modelling in application programs. In the course of the research addressed the description of the applied mathematical models, views, practical results of its application in the applied field to assess quality control. The authors used this mathematical model in practice. The article presents the results of applying this model. The authors developed the experimental software management and quality assessment by using mathematical modeling methods. The authors continue research in this direction to improve the diagnostic systems and quality management systems based on mathematical modeling methods prognostic and diagnostic processes.

  10. Thermoregulation in premature infants: A mathematical model.

    Science.gov (United States)

    Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-12-01

    In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  12. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2003-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  13. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  14. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  15. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  16. Mathematical methods and models in composites

    CERN Document Server

    Mantic, Vladislav

    2014-01-01

    This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

  17. A mathematical model of 'Pride and Prejudice'.

    Science.gov (United States)

    Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro

    2014-04-01

    A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.

  18. Chancroid transmission dynamics: a mathematical modeling approach.

    Science.gov (United States)

    Bhunu, C P; Mushayabasa, S

    2011-12-01

    Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.

  19. Development of rubber mixing process mathematical model and synthesis of control correction algorithm by process temperature mode using an artificial neural network

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The article is devoted to the development of a correction control algorithm by temperature mode of a periodic rubber mixing process for JSC "Voronezh tire plant". The algorithm is designed to perform in the main controller a section of rubber mixing Siemens S7 CPU319F-3 PN/DP, which forms tasks for the local temperature controllers HESCH HE086 and Jumo dTRON304, operating by tempering stations. To compile the algorithm was performed a systematic analysis of rubber mixing process as an object of control and was developed a mathematical model of the process based on the heat balance equations describing the processes of heat transfer through the walls of technological devices, the change of coolant temperature and the temperature of the rubber compound mixing until discharge from the mixer chamber. Due to the complexity and nonlinearity of the control object – Rubber mixers and the availability of methods and a wide experience of this device control in an industrial environment, a correction algorithm is implemented on the basis of an artificial single-layer neural network and it provides the correction of tasks for local controllers on the cooling water temperature and air temperature in the workshop, which may vary considerably depending on the time of the year, and during prolonged operation of the equipment or its downtime. Tempering stations control is carried out by changing the flow of cold water from the cooler and on/off control of the heating elements. The analysis of the model experiments results and practical research at the main controller programming in the STEP 7 environment at the enterprise showed a decrease in the mixing time for different types of rubbers by reducing of heat transfer process control error.

  20. An introduction to mathematical modeling of infectious diseases

    CERN Document Server

    Li, Michael Y

    2018-01-01

    This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies.  The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis.  Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases.  Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.

  1. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  2. Fermentation process diagnosis using a mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, L; Volesky, B; Votruba, J

    1988-09-01

    Intriguing physiology of a solvent-producing strain of Clostridium acetobutylicum led to the synthesis of a mathematical model of the acetone-butanol fermentation process. The model presented is capable of describing the process dynamics and the culture behavior during a standard and a substandard acetone-butanol fermentation. In addition to the process kinetic parameters, the model includes the culture physiological parameters, such as the cellular membrane permeability and the number of membrane sites for active transport of sugar. Computer process simulation studies for different culture conditions used the model, and quantitatively pointed out the importance of selected culture parameters that characterize the cell membrane behaviour and play an important role in the control of solvent synthesis by the cell. The theoretical predictions by the new model were confirmed by experimental determination of the cellular membrane permeability.

  3. A mathematical model on Acquired Immunodeficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Buddhadeo Mahato

    2014-10-01

    Full Text Available A mathematical model SEIA (susceptible-exposed-infectious-AIDS infected with vertical transmission of AIDS epidemic is formulated. AIDS is one of the largest health problems, the world is currently facing. Even with anti-retroviral therapies (ART, many resource-constrained countries are unable to meet the treatment needs of their infected populations. We consider a function of number of AIDS cases in a community with an inverse relation. A stated theorem with proof and an example to illustrate it, is given to find the equilibrium points of the model. The disease-free equilibrium of the model is investigated by finding next generation matrix and basic reproduction number R0 of the model. The disease-free equilibrium of the AIDS model system is locally asymptotically stable if R0⩽1 and unstable if R0>1. Finally, numerical simulations are presented to illustrate the results.

  4. Exploring the Relationship between Mathematical Modelling and Classroom Discourse

    Science.gov (United States)

    Redmond, Trevor; Sheehy, Joanne; Brown, Raymond

    2010-01-01

    This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…

  5. Mathematical Model for the Control of measles 1*PETER, OJ ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-16

    Apr 16, 2018 ... 5Department of Mathematics/Statistics, Federal University of Technology, Minna, Nigeria ... ABSTRACT: We proposed a mathematical model of measles disease dynamics with vaccination by ...... Equation with application.

  6. Mathematical Modeling in Population Dynamics: The Case of Single ...

    African Journals Online (AJOL)

    kofimereku

    Department of Mathematics, Kwame Nkrumah University of Science and Technology,. Kumasi, Ghana ... The trust of this paper is the application of mathematical models in helping to ..... Statistics and Computing, New York: Wiley. Cox, C.B and ...

  7. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  8. Mathematical Modelling of Involute Spur Gears Manufactured by Rack Cutter

    Directory of Open Access Journals (Sweden)

    Tufan Gürkan YILMAZ

    2016-05-01

    Full Text Available In this study, mathematical modelling of asymmetric involute spur gears was situated in by Litvin approach. In this context, firstly, mathematical expressions of rack cutter which manufacture asymmetric involute spur gear, then mathematical expression of asymmetric involute spur gear were obtained by using differential geometry, coordinate transformation and gear theory. Mathematical expressions were modelled in MATLAB and output files including points of involute spur gear’s teeth were designed automatically thanks to macros.

  9. Mathematical Modeling of Extinction of Inhomogeneous Populations

    Science.gov (United States)

    Karev, G.P.; Kareva, I.

    2016-01-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  10. A Mathematical Model of Cardiovascular Response to Dynamic Exercise

    National Research Council Canada - National Science Library

    Magosso, E

    2001-01-01

    A mathematical model of cardiovascular response to dynamic exercise is presented, The model includes the pulsating heart, the systemic and pulmonary, circulation, a functional description of muscle...

  11. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  12. Mathematical modeling for prediction and optimization of TIG welding pool geometry

    Directory of Open Access Journals (Sweden)

    U. Esme

    2009-04-01

    Full Text Available In this work, nonlinear and multi-objective mathematical models were developed to determine the process parameters corresponding to optimum weld pool geometry. The objectives of the developed mathematical models are to maximize tensile load (TL, penetration (P, area of penetration (AP and/or minimize heat affected zone (HAZ, upper width (UW and upper height (UH depending upon the requirements.

  13. Biological-Mathematical Modeling of Chronic Toxicity.

    Science.gov (United States)

    1981-07-22

    34Mathematical Model of Uptake and Distribution," Uptake and Distribution of Anesthetic Agents, E. M. Papper and R. J. Kitz (Editors, McGraw-Hill Book Co., Inc...distribution, In: Papper , E.M. and Kltz, R.J.(eds.) Uptake and distribution of anesthetic agents, McGraw- Hill, New York, p. 72 3. Plpleson, W.W...1963) Quantitative prediction of anesthetic concentrations. In: Papper , E.M. and Kitz, R.J. (eds.) Uptake and distribution of anesthetic agents, McGraw

  14. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  15. A mathematical model of Chagas disease transmission

    Science.gov (United States)

    Hidayat, Dayat; Nugraha, Edwin Setiawan; Nuraini, Nuning

    2018-03-01

    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America. A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.

  16. Mathematical modelling in radionuclide diagnosis of physiologic systems state

    International Nuclear Information System (INIS)

    Narkevich, B.Ya.

    1981-01-01

    It is shown that the development of software for radionuclide functional diagnostics should be carried out in two directions: 1) increasing the accuracy of radiographic measurements proper; 2) increasing clinical and diagnostic informativeness in the interpretation of the results of measurements. The realization of the first problem is reduced to a mathematical model of the measurement process and the computerized selection of optimum radiography parameters and regimes. The second problem is not solved in the general form, as the interpretation of measurement results depends on the specific clinical and diagnostic aim of investigation, indicator type and the way of its administration in the organism, etc. The lecture gives the classification of the mathematical models of indicator transport, techniques of identification of model parameters. Methods promoting the increase in the accuracy of model identification are presented [ru

  17. Physical and mathematical modeling of antimicrobial photodynamic therapy

    Science.gov (United States)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  18. Comparison of Different Mathematical Models of Cavitation

    Directory of Open Access Journals (Sweden)

    Dorota HOMA

    2014-12-01

    Full Text Available Cavitation occurs during the flow when local pressure drops to the saturation pressure according to the temperature of the flow. It includes both evaporation and condensation of the vapor bubbles, which occur alternately with high frequency. Cavitation can be very dangerous, especially for pumps, because it leads to break of flow continuity, noise, vibration, erosion of blades and change in pump’s characteristics. Therefore it is very important for pump designers and users to avoid working in cavitation conditions. Simulation of flow can be very useful in that and can indicate if there is risk of cavitating flow occurrence. As this is a multiphase flow and quite complicated phenomena, there are a few mathematical models describing it. The aim of this paper is to make a short review of them and describe their approach to model cavitation. It is desirable to know differences between them to model this phenomenon properly.

  19. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    Science.gov (United States)

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of

  20. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  1. The Relationship between Big Data and Mathematical Modeling: A Discussion in a Mathematical Education Scenario

    Science.gov (United States)

    Dalla Vecchia, Rodrigo

    2015-01-01

    This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…

  2. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  3. Mathematical and computational modeling with applications in natural and social sciences, engineering, and the arts

    CERN Document Server

    Melnik, Roderick

    2015-01-01

    Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas,

  4. Modelling as a foundation for academic forming in mathematics education

    NARCIS (Netherlands)

    Perrenet, J.C.; Morsche, ter H.G.

    2004-01-01

    The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students

  5. Game Design and Development as Mathematical Activities

    DEFF Research Database (Denmark)

    Jensen, Erik Ottar; Hanghøj, Thorkild; Misfeldt, Morten

    2016-01-01

    education which have mostly been tied to students making learning games involving specific mathematical content. Game design activities are reported to have a motivational pull for students. A challenge seems to be that the students are mostly motivated by the game design or the programming activities...... between user and goal through the computational artifacts being used. The framework serves as a lens for making sense of computer game design as a context for learning mathematics....

  6. The mathematical cell model reconstructed from interference microscopy data

    Science.gov (United States)

    Rogotnev, A. A.; Nikitiuk, A. S.; Naimark, O. B.; Nebogatikov, V. O.; Grishko, V. V.

    2017-09-01

    The mathematical model of cell dynamics is developed to link the dynamics of the phase cell thickness with the signs of the oncological pathology. The measurements of irregular oscillations of cancer cells phase thickness were made with laser interference microscope MIM-340 in order to substantiate this model. These data related to the dynamics of phase thickness for different cross-sections of cells (nuclei, nucleolus, and cytoplasm) allow the reconstruction of the attractor of dynamic system. The attractor can be associated with specific types of collective modes of phase thickness responsible for the normal and cancerous cell dynamics. Specific type of evolution operator was determined using an algorithm of designing of the mathematical cell model and temporal phase thickness data for cancerous and normal cells. Qualitative correspondence of attractor types to the cell states was analyzed in terms of morphological signs associated with maximum value of mean square irregular oscillations of phase thickness dynamics.

  7. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  8. Mathematical Model of Cytomegalovirus (CMV) Disease

    Science.gov (United States)

    Sriningsih, R.; Subhan, M.; Nasution, M. L.

    2018-04-01

    The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.

  9. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  10. Mathematics Teacher Education: A Model from Crimea.

    Science.gov (United States)

    Ferrucci, Beverly J.; Evans, Richard C.

    1993-01-01

    Reports on the mathematics teacher preparation program at Simferopol State University, the largest institution of higher education in the Crimea. The article notes the value of investigating what other countries consider essential in mathematics teacher education to improve the mathematical competence of students in the United States. (SM)

  11. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  12. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  13. Qualitative mathematics for the social sciences mathematical models for research on cultural dynamics

    CERN Document Server

    Rudolph, Lee

    2012-01-01

    In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in

  14. A new mathematical model for coal flotation kinetics

    OpenAIRE

    Guerrero-Pérez, Juan Sebastián; Barraza-Burgos, Juan Manuel

    2017-01-01

    Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents do...

  15. Engaging Elementary Students in the Creative Process of Mathematizing Their World through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Jennifer M. Suh

    2017-06-01

    Full Text Available This paper examines the experiences of two elementary teachers’ implementation of mathematical modeling in their classrooms and how the enactment by the teachers and the engagement by students exhibited their creativity, critical thinking, collaboration and communication skills. In particular, we explore the questions: (1 How can phases of mathematical modeling as a process serve as a venue for exhibiting students’ critical 21st century skills? (2 What were some effective pedagogical practices teachers used as they implemented mathematical modeling with elementary students and how did these promote students’ 21st century skills? We propose that mathematical modeling provides space for teachers and students to have a collective experience through the iterative process of making sense of and building knowledge of important mathematical ideas while engaging in the critical 21st century skills necessary in our complex modern world.

  16. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  17. Development of mathematics curriculum for Medialogy studentsat Aalborg University

    DEFF Research Database (Denmark)

    Timcenko, Olga

    Abstract This paper addresses mathematics curriculum development for Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised tree times. Some of the reasoning...... behind curriculum development, lessons learned and remaining issues are presented and discussed....

  18. Developing Mathematical Fluency: Comparing Exercises and Rich Tasks

    Science.gov (United States)

    Foster, Colin

    2018-01-01

    Achieving fluency in important mathematical procedures is fundamental to students' mathematical development. The usual way to develop procedural fluency is to practise repetitive exercises, but is this the only effective way? This paper reports three quasi-experimental studies carried out in a total of 11 secondary schools involving altogether 528…

  19. Mechanical-mathematical modeling for landslide process

    Science.gov (United States)

    Svalova, V.

    2009-04-01

    500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.

  20. Mathematical problems in modeling artificial heart

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    1995-01-01

    Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.

  1. Characterizing the Development of Specialized Mathematical Content Knowledge for Teaching in Algebraic Reasoning and Number Theory

    Science.gov (United States)

    Bair, Sherry L.; Rich, Beverly S.

    2011-01-01

    This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…

  2. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  3. Modelling the Intention to Use Technology for Teaching Mathematics among Pre-Service Teachers in Serbia

    Science.gov (United States)

    Teo, Timothy; Milutinovic, Verica

    2015-01-01

    This study aims to examine the variables that influence Serbian pre-service teachers' intention to use technology to teach mathematics. Using the technology acceptance model (TAM) as the framework, we developed a research model to include subjective norm, knowledge of mathematics, and facilitating conditions as external variables to the TAM. In…

  4. Modeling Clinic for Industrial Mathematics: A Collaborative Project Under Erasmus+ Program

    DEFF Research Database (Denmark)

    Jurlewicz, Agnieszka; Nunes, Claudia; Russo, Giovanni

    2018-01-01

    Modeling Clinic for Industrial Mathematics (MODCLIM) is a Strategic Partnership for the Development of Training Workshops and Modeling Clinic for Industrial Mathematics, funded through the European Commission under the Erasmus Plus Program, Key Action 2: Cooperation for innovation and the exchang...

  5. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  6. Mathematical modeling of diphtheria transmission in Thailand.

    Science.gov (United States)

    Sornbundit, Kan; Triampo, Wannapong; Modchang, Charin

    2017-08-01

    In this work, a mathematical model for describing diphtheria transmission in Thailand is proposed. Based on the course of diphtheria infection, the population is divided into 8 epidemiological classes, namely, susceptible, symptomatic infectious, asymptomatic infectious, carrier with full natural-acquired immunity, carrier with partial natural-acquired immunity, individual with full vaccine-induced immunity, and individual with partial vaccine-induced immunity. Parameter values in the model were either directly obtained from the literature, estimated from available data, or estimated by means of sensitivity analysis. Numerical solutions show that our model can correctly describe the decreasing trend of diphtheria cases in Thailand during the years 1977-2014. Furthermore, despite Thailand having high DTP vaccine coverage, our model predicts that there will be diphtheria outbreaks after the year 2014 due to waning immunity. Our model also suggests that providing booster doses to some susceptible individuals and those with partial immunity every 10 years is a potential way to inhibit future diphtheria outbreaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mathematical models for indoor radon prediction

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1995-01-01

    It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model

  8. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  9. Spherical Detector Device Mathematical Modelling with Taking into Account Detector Module Symmetry

    International Nuclear Information System (INIS)

    Batyj, V.G.; Fedorchenko, D.V.; Prokopets, S.I.; Prokopets, I.M.; Kazhmuradov, M.A.

    2005-01-01

    Mathematical Model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurement procedure with multiple radiation sources is developed. Modelling results are shown to have perfect agreement with calibration measurements

  10. Prognosis of Cs 137 dynamics in Pripyat river using mathematical modeling

    International Nuclear Information System (INIS)

    Ris, T.V.

    2010-01-01

    The analysis of measured and predicted data of Cs 137 dynamics in the water of Pripyat River are given using mathematical models developed by J. Smith (AQUASCOPE), L. Hakanson, and proposed transport model. (authors)

  11. Mathematical analysis of partial differential equations modeling electrostatic MEMS

    CERN Document Server

    Esposito, Pierpaolo; Guo, Yujin

    2010-01-01

    Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing "electrostatically actuated" MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems-where the stationary MEMS models fit-are a well-developed

  12. Mathematical modeling in mechanics of heterogeneous media

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Fomin, V.M.

    1991-01-01

    The paper reviews the work carried out at the Department of Multi-Phase Media Mechanics of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the USSR Academy of Sciences. It deals with mathematical models for the flow of gas mixtures and solid particles that account for phase transitions and chemical reactions. This work is concerned with the problems of construction of laws of conservation, determination of the type of equations of heterogeneous media mechanics, structure of shock waves, and combined discontinuities in mixtures. The theory of ideal and nonideal detonation in suspension of matter in gases is discussed. Self-similar flows of gas mixtures and responding particles, as well as the problem of breakup of discontinuity for suspension of matter in gases, is studied. 42 refs

  13. Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors

    Science.gov (United States)

    Rash, Agnes M.; Zurbach, E. Peter

    2004-01-01

    The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…

  14. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    Science.gov (United States)

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  15. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  16. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  17. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  18. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)

    1997-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  19. Experimentally supported mathematical modeling of continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette

    and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing......The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and mass transfer in a butter cookie product, and evaluation of quality assessment methods. The pilot plant oven is a special batch oven designed to emulate continuous convection tunnel oven baking. The design, construction, and validation of the oven has been part of the project and is described...

  20. Noise in restaurants: levels and mathematical model.

    Science.gov (United States)

    To, Wai Ming; Chung, Andy

    2014-01-01

    Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.