WorldWideScience

Sample records for mathematical design methodology

  1. Methodological Approaches to Experimental Teaching of Mathematics to University Students

    Directory of Open Access Journals (Sweden)

    Nikolay I.

    2018-03-01

    Full Text Available Introduction: the article imparts authors’ thoughtson a new teaching methodology for mathematical education in universities. The aim of the study is to substantiate the efficiency of the comprehensive usage of mathematical electronic courses, computer tests, original textbooks and methodologies when teaching mathematics to future agrarian engineers. The authors consider this implementation a unified educational process. Materials and Methods: the synthesis of international and domestic pedagogical experience of teaching students in university and the following methods of empirical research were used: pedagogical experiment, pedagogical measurementsand experimental teaching of mathematics. The authors applied the methodology of revealing interdisciplinary links on the continuum of mathematical problems using the key examples and exercises. Results: the online course “Mathematics” was designed and developed on the platform of Learning Management System Moodle. The article presents the results of test assignments assessing students’ intellectual abilities and analysis of solutions of various types of mathematical problems by students. The pedagogical experiment substantiated the integrated selection of textbooks, online course and online tests using the methodology of determination of the key examples and exercises. Discussion and Conclusions: the analysis of the experimental work suggested that the new methodology is able to have positive effect on the learning process. The learning programme determined the problem points for each student. The findings of this study have a number of important implications for future educational practice.

  2. CULTUROLOGICAL APPROACH AS METHODOLOGICAL BASIS OF MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Ye. A. Perminov

    2017-01-01

    Full Text Available Introduction. Today, in the era of a mathematization of science and total expansion of digital technologies, mass mathematical education becomes a necessary part of culture of every person. However, there are some serious obstacles to formation and development of general mathematical culture: insufficient understanding of its importance by society and the state; fragmentary-clipconsciousness, emerging among representatives of the younger generation under the influence of the Internet, and preventing formation of a complete picture of the modern world; traditional system of disjointed subjects and courses in school, secondary vocational and high school mathematics education; non-cognitive (automatic transferring of the approaches, principles, technologies and techniques into training which are not specific in order to master a course. Development of sociological, axiological and especially culturological aspects of mathematical methodology is required for the solution of the urgent problems of methodology in mathematical education.The aim of the publication is to discuss methodological aspects of culturological approach realization in mathematical education.Methodology and research methods. The theoretical scientific methods of the present article involve analysis and synthesis of the content of philosophical, mathematical, pedagogical, methodological literature and normative documents; comparative, culturological and logical types of analysis of mathematical education; systematic, competence-based, practice-oriented and personal-activity metho-dological approaches were used to understand the concept of mathematical education.Results and scientific novelty. The practicability and leading role of culturological approach to promoting mathematical knowledge is proved from historical, philosophical and pedagogical positions. It is stated that objective conceptualization of progressive ideas and new methods of mathematical science and mathematical

  3. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  4. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  5. Approaches to qualitative research in mathematics education examples of methodology and methods

    CERN Document Server

    Bikner-Ahsbahs, Angelika; Presmeg, Norma

    2014-01-01

    This volume documents a range of qualitative research approaches emerged within mathematics education over the last three decades, whilst at the same time revealing their underlying methodologies. Continuing the discussion as begun in the two 2003 ZDM issues dedicated to qualitative empirical methods, this book presents astate of the art overview on qualitative research in mathematics education and beyond. The structure of the book allows the reader to use it as an actual guide for the selection of an appropriate methodology, on a basis of both theoretical depth and practical implications. The methods and examples illustrate how different methodologies come to life when applied to a specific question in a specific context. Many of the methodologies described are also applicable outside mathematics education, but the examples provided are chosen so as to situate the approach in a mathematical context.

  6. Design Methodology - Design Synthesis

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    2003-01-01

    Design Methodology is part of our practice and our knowledge about designing, and it has been strongly supported by the establishing and work of a design research community. The aim of this article is to broaden the reader¿s view of designing and Design Methodology. This is done by sketching...... the development of Design Methodology through time and sketching some important approaches and methods. The development is mainly forced by changing industrial condition, by the growth of IT support for designing, but also by the growth of insight into designing created by design researchers.......ABSTRACT Design Methodology shall be seen as our understanding of how to design; it is an early (emerging late 60ies) and original articulation of teachable and learnable methodics. The insight is based upon two sources: the nature of the designed artefacts and the nature of human designing. Today...

  7. An intelligent design methodology for nuclear power systems

    International Nuclear Information System (INIS)

    Nassersharif, B.; Martin, R.P.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The goal of this investigation is to research possible methodologies into automating the design of, specifically, nuclear power facilities; however, it is relevant to all thermal power systems. The strategy of this research has been to concentrate on individual areas of the thermal design process, investigate procedures performed, develop methodology to emulate that behavior, and prototype it in the form of a computer program. The design process has been generalized as follows: problem definition, design definition, component selection procedure, optimization and engineering analysis, testing and final design with the problem definition defining constraints that will be applied to the selection procedure as well as design definition. The result of this research is a prototype computer program applying an original procedure for the selection of the best set of real components that would be used in constructing a system with desired performance characteristics. The mathematical model used for the selection procedure is possibility theory

  8. Using Delphi Methodology to Design Assessments of Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Manizade, Agida Gabil; Mason, Marguerite M.

    2011-01-01

    Descriptions of methodologies that can be used to create items for assessing teachers' "professionally situated" knowledge are lacking in mathematics education research literature. In this study, researchers described and used the Delphi method to design an instrument to measure teachers' pedagogical content knowledge. The instrument focused on a…

  9. Persisting mathematics and science high school teachers: A Q-methodology study

    Science.gov (United States)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  10. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    International Nuclear Information System (INIS)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun

    2013-01-01

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena

  11. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.

  12. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation

    Directory of Open Access Journals (Sweden)

    Claudio Passalía

    2017-06-01

    Full Text Available An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.

  13. Life-cycle energy optimisation : A proposed methodology for integrating environmental considerations early in the vehicle engineering design process

    OpenAIRE

    O'Reilly, Ciarán J.; Göransson, Peter; Funazaki, Atsushi; Suzuki, Tetsuya; Edlund, Stefan; Gunnarsson, Cecilia; Lundow, Jan-Olov; Cerin, Pontus; Cameron, Christopher J.; Wennhage, Per; Potting, José

    2016-01-01

    To enable the consideration of life cycle environmental impacts in the early stages of vehicle design, a methodology using the proxy of life cycle energy is proposed in this paper. The trade-offs in energy between vehicle production, operational performance and end-of-life are formulated as a mathematical problem, and simultaneously balanced with other transport-related functionalities, and may be optimised. The methodology is illustrated through an example design study, which is deliberately...

  14. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  15. System Design as a Creative Mathematical Activity

    NARCIS (Netherlands)

    Wupper, Hanno; Mader, Angelika H.

    1999-01-01

    This paper contributes to the understanding of rational systems design and verification. We give evidence that the rôle of mathematics in development and verification is not limited to useful calculations: Ideally, designing is a creative mathematical activity, which comprises finding a theorem, if

  16. ABOUT THE RELEVANCE AND METHODOLOGY ASPECTS OF TEACHING THE MATHEMATICAL MODELING TO PEDAGOGICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2014-01-01

    Full Text Available The paper substantiates the need for profile training in mathematical modeling for pedagogical students, caused by the total penetration of mathematics into different sciences, including the humanities; fast development of the information communications technologies; and growing importance of mathematical modeling, combining the informal scientific and formal mathematical languages with the unique opportunities of computer programming. The author singles out the reasons for mastering and using the mathematical apparatus by teaches in every discipline. Indeed, among all the modern mathematical methods and ideas, mathematical modeling retains its priority in all professional spheres. Therefore, the discipline of “Mathematical Modeling” can play an important role in integrating different components of specialists training in various profiles. By mastering the basics of mathematical modeling, students acquire skills of methodological thinking; learn the principles of analysis, synthesis, generalization of ideas and methods in different disciplines and scientific spheres; and achieve general culture competences. In conclusion, the author recommends incorporating the “Methods of Profile Training in Mathematical Modeling” into the pedagogical magistracy curricula. 

  17. New design methods for computer aided architecturald design methodology teaching

    NARCIS (Netherlands)

    Achten, H.H.

    2003-01-01

    Architects and architectural students are exploring new ways of design using Computer Aided Architectural Design software. This exploration is seldom backed up from a design methodological viewpoint. In this paper, a design methodological framework for reflection on innovate design processes by

  18. Game Design and Development as Mathematical Activities

    DEFF Research Database (Denmark)

    Jensen, Erik Ottar; Hanghøj, Thorkild; Misfeldt, Morten

    2016-01-01

    education which have mostly been tied to students making learning games involving specific mathematical content. Game design activities are reported to have a motivational pull for students. A challenge seems to be that the students are mostly motivated by the game design or the programming activities...... between user and goal through the computational artifacts being used. The framework serves as a lens for making sense of computer game design as a context for learning mathematics....

  19. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  20. Reflections on Design Methodology Research

    DEFF Research Database (Denmark)

    2011-01-01

    We shall reflect on the results of Design Methodology research and their impact on design practice. In the past 50 years the number of researchers in the field has expanded enormously – as has the number of publications. During the same period design practice and its products have changed...... and produced are also now far more complex and distributed, putting designers under ever increasing pressure. We shall address the question: Are the results of Design Methodology research appropriate and are they delivering the expected results in design practice? In our attempt to answer this question we...

  1. Unattended Monitoring System Design Methodology

    International Nuclear Information System (INIS)

    Drayer, D.D.; DeLand, S.M.; Harmon, C.D.; Matter, J.C.; Martinez, R.L.; Smith, J.D.

    1999-01-01

    A methodology for designing Unattended Monitoring Systems starting at a systems level has been developed at Sandia National Laboratories. This proven methodology provides a template that describes the process for selecting and applying appropriate technologies to meet unattended system requirements, as well as providing a framework for development of both training courses and workshops associated with unattended monitoring. The design and implementation of unattended monitoring systems is generally intended to respond to some form of policy based requirements resulting from international agreements or domestic regulations. Once the monitoring requirements are established, a review of the associated process and its related facilities enables identification of strategic monitoring locations and development of a conceptual system design. The detailed design effort results in the definition of detection components as well as the supporting communications network and data management scheme. The data analyses then enables a coherent display of the knowledge generated during the monitoring effort. The resultant knowledge is then compared to the original system objectives to ensure that the design adequately addresses the fundamental principles stated in the policy agreements. Implementation of this design methodology will ensure that comprehensive unattended monitoring system designs provide appropriate answers to those critical questions imposed by specific agreements or regulations. This paper describes the main features of the methodology and discusses how it can be applied in real world situations

  2. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  3. Analysis and design of the SI-simulator software system for the VHTR-SI process by using the object-oriented analysis and object-oriented design methodology

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2008-01-01

    The SI-simulator is an application software system that simulates the dynamic behavior of the VHTR-SI process by the use of mathematical models. Object-oriented analysis (OOA) and object-oriented design (OOD) methodologies were employed for the SI simulator system development. OOA is concerned with developing software engineering requirements and specifications that are expressed as a system's object model (which is composed of a population of interacting objects), as opposed to the traditional data or functional views of systems. OOD techniques are useful for the development of large complex systems. Also, OOA/OOD methodology is usually employed to maximize the reusability and extensibility of a software system. In this paper, we present a design feature for the SI simulator software system by the using methodologies of OOA and OOD

  4. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy

  5. Designing Prediction Tasks in a Mathematics Software Environment

    Science.gov (United States)

    Brunström, Mats; Fahlgren, Maria

    2015-01-01

    There is a recognised need in mathematics teaching for new kinds of tasks which exploit the affordances provided by new technology. This paper focuses on the design of prediction tasks to foster student reasoning about exponential functions in a mathematics software environment. It draws on the first iteration of a design based research study…

  6. A Design Science Research Methodology for Expert Systems Development

    Directory of Open Access Journals (Sweden)

    Shah Jahan Miah

    2016-11-01

    Full Text Available The knowledge of design science research (DSR can have applications for improving expert systems (ES development research. Although significant progress of utilising DSR has been observed in particular information systems design – such as decision support systems (DSS studies – only rare attempts can be found in the ES design literature. Therefore, the aim of this study is to investigate the use of DSR for ES design. First, we explore the ES development literature to reveal the presence of DSR as a research methodology. For this, we select relevant literature criteria and apply a qualitative content analysis in order to generate themes inductively to match the DSR components. Second, utilising the findings of the comparison, we determine a new DSR approach for designing a specific ES that is guided by another result – the findings of a content analysis of examination scripts in Mathematics. The specific ES artefact for a case demonstration is designed for addressing the requirement of a ‘wicked’ problem in that the key purpose is to assist human assessors when evaluating multi-step question (MSQ solutions. It is anticipated that the proposed design knowledge, in terms of both problem class and functions of ES artefacts, will help ES designers and researchers to address similar issues for designing information system solutions.

  7. Design Methodologies: Industrial and Educational Applications

    NARCIS (Netherlands)

    Tomiyama, T.; Gul, P.; Jin, Y.; Lutters, Diederick; Kind, Ch.; Kimura, F.

    2009-01-01

    The field of Design Theory and Methodology has a rich collection of research results that has been taught at educational institutions as well as applied to design practices. First, this keynote paper describes some methods to classify them. It then illustrates individual theories and methodologies

  8. The Importance of Theoretical Frameworks and Mathematical Constructs in Designing Digital Tools

    Science.gov (United States)

    Trinter, Christine

    2016-01-01

    The increase in availability of educational technologies over the past few decades has not only led to new practice in teaching mathematics but also to new perspectives in research, methodologies, and theoretical frameworks within mathematics education. Hence, the amalgamation of theoretical and pragmatic considerations in digital tool design…

  9. Design methodology of Dutch banknotes

    Science.gov (United States)

    de Heij, Hans A. M.

    2000-04-01

    Since the introduction of a design methodology for Dutch banknotes, the quality of Dutch paper currency has improved in more than one way. The methodology is question provides for (i) a design policy, which helps fix clear objectives; (ii) design management, to ensure a smooth cooperation between the graphic designer, printer, papermaker an central bank, (iii) a program of requirements, a banknote development guideline for all parties involved. This systematic approach enables an objective selection of design proposals, including security features. Furthermore, the project manager obtains regular feedback from the public by conducting market surveys. Each new design of a Netherlands Guilder banknote issued by the Nederlandsche Bank of the past 50 years has been an improvement on its predecessor in terms of value recognition, security and durability.

  10. Research on Mathematics Teachers as Partners in Task Design

    Science.gov (United States)

    Jones, Keith; Pepin, Birgit

    2016-01-01

    Mathematical tasks and tools, including tasks in the form of digital tools, are key resources in mathematics teaching and in mathematics teacher education. Even so, the "design" of mathematical tasks is perceived in different ways: sometimes seen as something distinct from the teaching and learning process, and sometimes as integral to…

  11. A design methodology for unattended monitoring systems

    International Nuclear Information System (INIS)

    SMITH, JAMES D.; DELAND, SHARON M.

    2000-01-01

    The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem

  12. The Mathematics of Symmetrical Factorial Designs

    Indian Academy of Sciences (India)

    The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.

  13. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  14. Didactital design of mathematics teaching in primary school

    Science.gov (United States)

    Nur’aeni, E.; Muharram, M. R. W.

    2018-05-01

    The fact that the low ability of geometrical understanding of primary school students is what triggers this study to be conducted. Thus, this research aimed to find out how to create a didactical design of students' mathematical understanding, particularly on one of geometry materials that is unit of length. A qualitative approach promoting Didactical Design Research (DDR) was administered in this study. Participants of the study were primary school students in Tasikmalaya, an city in West Java Province, Indonesia. The results show that there was a learning design based on learning obstacles found in the mathematics teaching and learning processes. The learning obstacles comprised students' difficulties in memorizing, relating, and operating the standards of unit of lengths. It has been proven that the most influential factor in the success of mathematics teaching and learning processes is the use of creative media.

  15. Influence of mathematical models in design of PV-Diesel systems

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.

    2008-01-01

    This paper presents a study of the influence of mathematical models in the optimal design of PV-Diesel systems. For this purpose, a design tool developed by the authors, which allows obtaining the most cost effective design of a PV-Diesel system through the genetic algorithm technique, has been used. The mathematical models of some elements of the hybrid system have been improved in comparison to those usually employed in hybrid systems design programs. Furthermore, a more complete general control strategy has been developed, one that also takes into account more characteristics than those usually considered in this kind of design. Several designs have been made, evaluating the effect on the results of the different mathematical models and the novel strategy that can be considered

  16. Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design

    Science.gov (United States)

    2017-09-01

    MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES TO RECOMMEND AN EXISTING CVL DESIGN by William H. Ehlies September 2017 Thesis Advisor...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE USING MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES

  17. Prescriptive Training Courseware: IS-Design Methodology

    Directory of Open Access Journals (Sweden)

    Elspeth McKay

    2018-03-01

    Full Text Available Information systems (IS research is found in many diverse communities. This paper explores the human-dimension of human-computer interaction (HCI to present IS-design practice in the light of courseware development. Assumptions are made that online courseware provides the perfect solution for maintaining a knowledgeable, well skilled workforce. However, empirical investigations into the effectiveness of information technology (IT-induced training solutions are scarce. Contemporary research concentrates on information communications technology (ICT training tools without considering their effectiveness. This paper offers a prescriptive IS-design methodology for managing the requirements for efficient and effective courseware development. To develop the methodology, we examined the main instructional design (ID factors that affect the design of IT-induced training programs. We also examined the tension between maintaining a well-skilled workforce and effective instructional systems design (ISD practice by probing the current ID models used by courseware developers since 1990. An empirical research project, which utilized this IS-design methodology investigated the effectiveness of using IT to train government employees in introductory ethics; this was a study that operationalized the interactive effect of cognitive preference and instructional format on training performance outcomes. The data was analysed using Rasch item response theory (IRT that models the discrimination of people’s performance relative to each other’s performance and the test-items’ difficulty relative to each test-item on the same logit scale. The findings revealed that IS training solutions developed using this IS-design methodology can be adapted to provide trainees with their preferred instructional mode and facilitate cost effective eTraining outcomes.

  18. An LWR design decision Methodology

    International Nuclear Information System (INIS)

    Leahy, T.J.; Rees, D.C.; Young, J.

    1982-01-01

    While all parties involved in nuclear plant regulation endeavor to make decisions which optimize the considerations of plant safety and financial impacts, these decisions are generally made without the benefit of a systematic and rigorous approach to the questions confronting the decision makers. A Design Decision Methodology has been developed which provides such a systematic approach. By employing this methodology, which makes use of currently accepted probabilistic risk assessment techniques and cost estimation, informed decisions may be made against a background of comparisons between the relative levels of safety and costs associated with various design alternatives

  19. Waste Package Component Design Methodology Report

    International Nuclear Information System (INIS)

    D.C. Mecham

    2004-01-01

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  20. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  1. Refining teacher design capacity: mathematics teachers' interactions with digital curriculum resources

    NARCIS (Netherlands)

    Pepin, B.; Gueudet, G.; Trouche, L.

    2017-01-01

    The goal of this conceptual paper is to develop enhanced understandings of mathematics teacher design and design capacity when interacting with digital curriculum resources. We argue that digital resources in particular offer incentives and increasing opportunities for mathematics teachers’ design,

  2. Using mathematical software to design power electronic converters

    Science.gov (United States)

    Hinov, Nikolay; Hranov, Tsveti

    2017-12-01

    In the paper is presented mathematical software, which was used for design of power electronic devices. Examined to different example, which are applied to designing electronic converters. In this way, it is possible to play different combinations of the circuit elements by simple means, thus optimizing according to certain criteria and limitations. Free software with a simple and intuitive interface is selected. No special user training is required to work with it and no further training is required. The use of mathematical software greatly facilitates the design, assists and makes it attractive and accessible to a wider range of students and specialists in power electronics training.

  3. Development of risk-informed assessment (RIA) design methodology

    International Nuclear Information System (INIS)

    Ji, S. K.; Park, S. J.; Park, B. R.; Kim, M. R.; Choi, C. J.

    2001-01-01

    It has been assessed that the capital cost for future nuclear power plants needs to be reduced on the order of 35% to 40% for Advanced Light Water Reactors such as KNGR and System 80+. Such reduction in the capital cost will require a fundamental re-evaluation of the industry standards and regulatory basis under which nuclear plants are designed and licensed. The objective of this study is to develop the risk-informed assessment (RIA) design methodology for future nuclear power plants. In order to meet this objective, the design simplification method is developed and RIA design methodology exercised for conceptual system. For the methodology verification, simplified conceptual ECCS and feedwater system are developed, then LOCA sensitivity analyses and agressive secondary cooldown analyses for these systems are performed. In addition, the probability safety assessment (PSA) model for LOCA is developed and the validation of RIA design methodology is demonstrated

  4. DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    Berzan V.

    2012-04-01

    Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.

  5. Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students

    Science.gov (United States)

    Remijan, Kelly W.

    2017-01-01

    This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…

  6. Design and analysis of sustainable computer mouse using design for disassembly methodology

    Science.gov (United States)

    Roni Sahroni, Taufik; Fitri Sukarman, Ahmad; Agung Mahardini, Karunia

    2017-12-01

    This paper presents the design and analysis of computer mouse using Design for Disassembly methodology. Basically, the existing computer mouse model consist a number of unnecessary part that cause the assembly and disassembly time in production. The objective of this project is to design a new computer mouse based on Design for Disassembly (DFD) methodology. The main methodology of this paper was proposed from sketch generation, concept selection, and concept scoring. Based on the design screening, design concept B was selected for further analysis. New design of computer mouse is proposed using fastening system. Furthermore, three materials of ABS, Polycarbonate, and PE high density were prepared to determine the environmental impact category. Sustainable analysis was conducted using software SolidWorks. As a result, PE High Density gives the lowers amount in the environmental category with great maximum stress value.

  7. Design methodology for wing trailing edge device mechanisms

    OpenAIRE

    Martins Pires, Rui Miguel

    2007-01-01

    Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current f...

  8. Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation

    Directory of Open Access Journals (Sweden)

    M. F. Gayol

    2017-06-01

    Full Text Available A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.

  9. Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation

    International Nuclear Information System (INIS)

    Gayol, M.F.; Pramparo, M.C.; Miró Erdmann, S.M.

    2017-01-01

    A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD) of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method. [es

  10. Integrating rock mechanics issues with repository design through design process principles and methodology

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.

    1996-01-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as open-quotes design for manufactureclose quotes or open-quotes concurrent engineeringclose quotes are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of open-quotes Design for Constructibility and Performanceclose quotes is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance

  11. How to Introduce Mathematic Modeling in Industrial Design Education

    NARCIS (Netherlands)

    Langereis, G.R.; Hu, J.; Feijs, L.M.G.; Stillmann, G.A.; Kaiser, G.; Blum, W.B.; Brown, J.P.

    2013-01-01

    With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this chapter, a model is proposed where conventional education is seen as a process from mathematics to design, while competency driven approaches

  12. The Mathematical Theory of Multifocal Lenses

    Institute of Scientific and Technical Information of China (English)

    Jacob RUBINSTEIN

    2017-01-01

    This paper presents the fundamental optical concepts of designing multifocal ophthalmic lenses and the mathematical methods associated with them.In particular,it is shown that the design methodology is heavily based on differential geometric ideas such as Willmore surfaces.A key role is played by Hamilton's eikonal functions.It is shown that these functions capture all the information on the local blur and distortion created by the lenses.Along the way,formulas for computing the eikonal functions are derived.Finally,the author lists a few intriguing mathematical problems and novel concepts in optics as future projects.

  13. Matematica 3. Livro do Aluno (Mathematics 3. Student Book).

    Science.gov (United States)

    D'Alu, Maria Jose Miranda de Sousa

    This mathematics textbook, written in Portuguese, is the third book of a Mathematics Program in Portuguese. It is designed for third graders. It closely follows the objectives and methodology of the major curricula used throughout the schools in the United States. The 11 chapters deal with: numeration (0-999,999); addition with and without…

  14. A Rigorous Methodology for Analyzing and Designing Plug-Ins

    DEFF Research Database (Denmark)

    Fasie, Marieta V.; Haxthausen, Anne Elisabeth; Kiniry, Joseph

    2013-01-01

    . This paper addresses these problems by describing a rigorous methodology for analyzing and designing plug-ins. The methodology is grounded in the Extended Business Object Notation (EBON) and covers informal analysis and design of features, GUI, actions, and scenarios, formal architecture design, including...... behavioral semantics, and validation. The methodology is illustrated via a case study whose focus is an Eclipse environment for the RAISE formal method's tool suite....

  15. Islamic design a mathematical approach

    CERN Document Server

    Wichmann, Brian

    2017-01-01

    This book deals with the genre of geometric design in the Islamic sphere. Part I presents an overview of Islamic history, its extraordinary spread from the Atlantic to the borders of China in its first century, its adoption of the cultural outlook of the older civilisations that it conquered (in the Middle East, Persia and Central Asia), including their philosophical and scientific achievements - from which it came to express its own unique and highly distinctive artistic and architectural forms. Part II represents the mathematical analysis of Islamic geometric designs.  The presentation offers unlimited precision that allows software to reconstruct the design vision of the original artist. This book will be of interest to Islamic academics, mathematicians as well as to artists & art students.

  16. Designing a Mathematics Curriculum

    Directory of Open Access Journals (Sweden)

    Lee Peng Yee

    2010-07-01

    Full Text Available A decade of PMRI saw the changes in the classroom in some of the primary schools in Indonesia. Based on observation, we can say that though the mathematics syllabus in Indonesia did not change, its curriculum has changed under the movement of PMRI. In this article, we put in writing some of the experience gained through the involvement in designing curricula since 1971. Hopefully, some of the observations made may be of use to the colleagues in Indonesia. The discussion below will cover some deciding factors in designing a curriculum, some practices, and the latest trends. For convenience, we keep the discussion general, and do not refer to a specific syllabus. Also, in many cases, we refer mainly to secondary schools, that is, Grade 7 to Grade 10.

  17. SHIPBUILDING PRODUCTION PROCESS DESIGN METHODOLOGY USING COMPUTER SIMULATION

    OpenAIRE

    Marko Hadjina; Nikša Fafandjel; Tin Matulja

    2015-01-01

    In this research a shipbuilding production process design methodology, using computer simulation, is suggested. It is expected from suggested methodology to give better and more efficient tool for complex shipbuilding production processes design procedure. Within the first part of this research existing practice for production process design in shipbuilding was discussed, its shortcomings and problem were emphasized. In continuing, discrete event simulation modelling method, as basis of sugge...

  18. Methodology for the conceptual design of solar kitchens

    International Nuclear Information System (INIS)

    Macia G, A F; Estrada V, D A; Chejne J, F; Velasquez, H I; Rengifo, R

    2005-01-01

    A detailed description of the methodology for the conceptual design of solar kitchens has appeared, which allows its detailed design. The methodology is based on three main phases that natural and has been very intuitively identified given to the characteristics and conditions of the project: conceptual phase, detail phase and execution phase

  19. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. “How many sums can I do”? : Performative strategies and diffractive thinking as methodological tools for rethinking mathematical subjectivity

    OpenAIRE

    Palmer, Anna

    2011-01-01

    The aim of this article is to illustrate how the understanding of mathematical subjectivity changes when transiting theoretically and methodologically from a discursive and performative thinking, as suggested by Judith Butler (1990, 1993, 1997), to an agential realist and diffractive thinking, inspired by Karen Barad’s theories (2007, 2008). To show this I have examined narrative memory stories about mathematics written by students participating in Teacher Education maths courses. I pro...

  1. LWR design decision methodology. Phase III. Final report

    International Nuclear Information System (INIS)

    Bertucio, R.; Held, J.; Lainoff, S.; Leahy, T.; Prather, W.; Rees, D.; Young, J.

    1982-01-01

    Traditionally, management decisions regarding design options have been made using quantitative cost information and qualitative safety information. A Design Decision Methodology, which utilizes probabilistic risk assessment techniques, including event trees and fault trees, along with systems engineering and standard cost estimation methods, has been developed so that a quantitative safety measure may be obtained as well. The report documents the development of this Design Decision Methodology, a demonstration of the methodology on a current licensing issue with the cooperation of the Washington Public Power Supply System (WPPSS), and a discussion of how the results of the demonstration may be used addressing the various issues associated with a licensing position on the issue

  2. Nondestructive Semistatic Testing Methodology for Assessing Fish Textural Characteristics via Closed-Form Mathematical Expressions

    Directory of Open Access Journals (Sweden)

    D. Dimogianopoulos

    2017-01-01

    Full Text Available This paper presents a novel methodology based on semistatic nondestructive testing of fish for the analytical computation of its textural characteristics via closed-form mathematical expressions. The novelty is that, unlike alternatives, explicit values for both stiffness and viscoelastic textural attributes may be computed, even if fish of different size/weight are tested. Furthermore, the testing procedure may be adapted to the specifications (sampling rate and accuracy of the available equipment. The experimental testing involves a fish placed on the pan of a digital weigh scale, which is subsequently tested with a ramp-like load profile in a custom-made installation. The ramp slope is (to some extent adjustable according to the specification (sampling rate and accuracy of the equipment. The scale’s reaction to fish loading, namely, the reactive force, is collected throughout time and is shown to depend on the fish textural attributes according to a closed-form mathematical formula. The latter is subsequently used along with collected data in order to compute these attributes rapidly and effectively. Four whole raw sea bass (Dicentrarchus labrax of various sizes and textures were tested. Changes in texture, related to different viscoelastic characteristics among the four fish, were correctly detected and quantified using the proposed methodology.

  3. The epistemology of mathematical and statistical modeling: a quiet methodological revolution.

    Science.gov (United States)

    Rodgers, Joseph Lee

    2010-01-01

    A quiet methodological revolution, a modeling revolution, has occurred over the past several decades, almost without discussion. In contrast, the 20th century ended with contentious argument over the utility of null hypothesis significance testing (NHST). The NHST controversy may have been at least partially irrelevant, because in certain ways the modeling revolution obviated the NHST argument. I begin with a history of NHST and modeling and their relation to one another. Next, I define and illustrate principles involved in developing and evaluating mathematical models. Following, I discuss the difference between using statistical procedures within a rule-based framework and building mathematical models from a scientific epistemology. Only the former is treated carefully in most psychology graduate training. The pedagogical implications of this imbalance and the revised pedagogy required to account for the modeling revolution are described. To conclude, I discuss how attention to modeling implies shifting statistical practice in certain progressive ways. The epistemological basis of statistics has moved away from being a set of procedures, applied mechanistically, and moved toward building and evaluating statistical and scientific models. Copyrigiht 2009 APA, all rights reserved.

  4. The comprehension of mathematic problems in primary school

    Directory of Open Access Journals (Sweden)

    Karel Pérez Ariza

    2015-05-01

    Full Text Available The paper describes the result of the research project “A study of causes of difficulties in learning comprehension from an interdisciplinary perspective in Camagüey. The main objective of that study is to propose a methodology for the comprehension of mathematic problems in primary school. In designing the methodology, the characteristics of this text variety, basic principle of the theory of reading comprehension and problem solving were taking into account. In this research work several theoretical methods were used —analysis-synthesis, historical-logical, inductive-deductive— to elaborate the theoretical framework, while modeling and system approach in the methodology construction. Additionally, empirical methods were used in order to assess the knowledge about comprehension of mathematic problems; among them observation and analysis of the activity results.

  5. Critical Race Design: An Emerging Methodological Approach to Anti-Racist Design and Implementation Research

    Science.gov (United States)

    Khalil, Deena; Kier, Meredith

    2017-01-01

    This article is about introducing Critical Race Design (CRD), a research methodology that centers race and equity at the nucleus of educational opportunities by design. First, the authors define design-based implementation research (DBIR; Penuel, Fishman, Cheng, & Sabelli, 2011) as an equity-oriented education research methodology where…

  6. Mathematics interventions for children and adolescents with Down syndrome: a research synthesis.

    Science.gov (United States)

    Lemons, C J; Powell, S R; King, S A; Davidson, K A

    2015-08-01

    Many children and adolescents with Down syndrome fail to achieve proficiency in mathematics. Researchers have suggested that tailoring interventions based on the behavioural phenotype may enhance efficacy. The research questions that guided this review were (1) what types of mathematics interventions have been empirically evaluated with children and adolescents with Down syndrome?; (2) do the studies demonstrate sufficient methodological rigor?; (3) is there evidence of efficacy for the evaluated mathematics interventions?; and (4) to what extent have researchers considered aspects of the behavioural phenotype in selecting, designing and/or implementing mathematics interventions for children and adolescents with Down syndrome? Nine studies published between 1989 and 2012 were identified for inclusion. Interventions predominantly focused on early mathematics skills and reported positive outcomes. However, no study met criteria for methodological rigor. Further, no authors explicitly considered the behavioural phenotype. Additional research using rigorous experimental designs is needed to evaluate the efficacy of mathematics interventions for children and adolescents with Down syndrome. Suggestions for considering the behavioural phenotype in future research are provided. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  7. The Experiment Check of the Efficiency of the Historical Component Formation in Teacher's Mathematical Methodological Culture

    Science.gov (United States)

    Gilmullin, Mansur Fajzrahmanovich

    2015-01-01

    When teachers do not know the history of science well, when they misunderstand and underestimate its educational importance, it becomes a serious obstacle for the improvement of their methodological skills. This paper has a goal to describe author's method how to teach the history of mathematics. This method is aimed at training math teacher's…

  8. Mathematical statistics essays on history and methodology

    CERN Document Server

    Pfanzagl, Johann

    2017-01-01

    This book presents a detailed description of the development of statistical theory. In the mid twentieth century, the development of mathematical statistics underwent an enduring change, due to the advent of more refined mathematical tools. New concepts like sufficiency, superefficiency, adaptivity etc. motivated scholars to reflect upon the interpretation of mathematical concepts in terms of their real-world relevance. Questions concerning the optimality of estimators, for instance, had remained unanswered for decades, because a meaningful concept of optimality (based on the regularity of the estimators, the representation of their limit distribution and assertions about their concentration by means of Anderson’s Theorem) was not yet available. The rapidly developing asymptotic theory provided approximate answers to questions for which non-asymptotic theory had found no satisfying solutions. In four engaging essays, this book presents a detailed description of how the use of mathematical methods stimulated...

  9. Design based Investigation on Construction of Mathematical Modelling Problems: Example of Financial Content

    Directory of Open Access Journals (Sweden)

    Melike TURAL SÖNMEZ

    2017-12-01

    Full Text Available The purpose of this study is to examine the construction of mathematical modelling problems process in the content of financial literacy. It is also aimed to create design proposals for construction of mathematical modelling problems. A design based research method was used in this study. The participants were three seventh grade students, six finance experts and nine mathematics education experts. Data collection tools were transcription of video and tapes group discussions, presentations and worksheets during mathematical modelling activities, and participant experts’ feedback form about mathematical modelling problems. There were three stages in this study. First stage was application of preliminary study. This stage gave information about convenience of problems to grade level, students’ timing for solution of problems, clarity of problems and students’ background about content. In second stage, finance experts commented on convenience of mathematical modelling problems to financial literacy standards. In third stage, mathematics education experts commented on convenience of problems to students’ grade level, mathematical modelling principles and seventh grade mathematics lesson objectives. They also gave suggestion on progress. The frequency value of theme in feedback forms was calculated and experts’ expressions were given as citation. It was given suggestion about stages and application of the design guide

  10. Towards a Methodology for the Design of Multimedia Public Access Interfaces.

    Science.gov (United States)

    Rowley, Jennifer

    1998-01-01

    Discussion of information systems methodologies that can contribute to interface design for public access systems covers: the systems life cycle; advantages of adopting information systems methodologies; soft systems methodologies; task-oriented approaches to user interface design; holistic design, the Star model, and prototyping; the…

  11. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, S.; Wallace, K.M.

    2007-01-01

    This paper describes a six-stage methodology for developing ontologies for engineering design, together with the research methods and evaluation of each stage. The methodology focuses upon understanding a user's domain models through empirical research. A case study of an ontology for searching......, indexing, and retrieving engineering knowledge is described. The root concepts of the ontology were elicited from engineering designers. Relationships between concepts are extracted as the ontology is populated. The contribution of this research is a methodology to allow researchers. and industry to create...... ontologies for their particular purpose and a thesaurus for the terms within the ontology....

  12. Experimental Design: Utilizing Microsoft Mathematics in Teaching and Learning Calculus

    Science.gov (United States)

    Oktaviyanthi, Rina; Supriani, Yani

    2015-01-01

    The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…

  13. BEEHIVE: Sustainable Methodology for Fashion Design

    OpenAIRE

    Morais, C.; Carvalho, C.; Broega, A. C.

    2014-01-01

    The proposal methodology tends to close the “product fashion cycle”, defending the existence of a good waste management policy, so that the clothing are thrown away can be reused or recycled to come back again as material to produce yarn, fabric or knit. Subsequently these materials should be include in the production of sustainable apparel, whose design methodologies should be concerned in providing more durable garments and being possible to transform according to the occasion and the user....

  14. Topics in expert system design methodologies and tools

    CERN Document Server

    Tasso, C

    1989-01-01

    Expert Systems are so far the most promising achievement of artificial intelligence research. Decision making, planning, design, control, supervision and diagnosis are areas where they are showing great potential. However, the establishment of expert system technology and its actual industrial impact are still limited by the lack of a sound, general and reliable design and construction methodology.This book has a dual purpose: to offer concrete guidelines and tools to the designers of expert systems, and to promote basic and applied research on methodologies and tools. It is a coordinated coll

  15. INTERSUBJECT CONNECTIONS OF COURSE OF MATHEMATICAL LOGIC AND OTHER MATHEMATICAL COURSES AT PREPARATION OF FUTURE TEACHER OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Yu.I. Sinko

    2012-03-01

    Full Text Available In this article the interconnections of course of mathematical logic with other mathematical courses – geometry, algebra and theory of numbers, mathematical analysis, and also with the courses of mathematics teaching methodology, history of mathematics in the system of preparation of teachers of mathematics in pedagogical Institute of higher education are analyzed. The presence of connections between the elements of the system and their quality is the important description of the pedagogical system.

  16. Technical report on LWR design decision methodology. Phase I

    International Nuclear Information System (INIS)

    1980-03-01

    Energy Incorporated (EI) was selected by Sandia Laboratories to develop and test on LWR design decision methodology. Contract Number 42-4229 provided funding for Phase I of this work. This technical report on LWR design decision methodology documents the activities performed under that contract. Phase I was a short-term effort to thoroughly review the curret LWR design decision process to assure complete understanding of current practices and to establish a well defined interface for development of initial quantitative design guidelines

  17. Nuclear power plant system environmental design and decision methodology

    International Nuclear Information System (INIS)

    Zendehrouh, Z.; Shinozuka, M.; Schauer, F.P.

    1975-01-01

    The methodology described is concerned with a system reliability analysis by which the correlation among the level of design for the environmental and natural phenomena (earthquake, flood, tornado, etc.), reasonable practical measure of safety (such as conventional safety factor), and damage (radioactivity release) probability are established. In fact, the methodology indicates how the risk of environmental and natural hazard is combined with a specific design in order to evaluate damage probability associated with the design. This leads to the optimum design decision when combined further with the cost considerations involving the radioactivity release. This fundamental approach is essential in the design of nuclear plant structures, because, unlike the convential structures, the architectural considerations and structural analysis requirements alone cannot, by themselves, result in a balanced design in the framework of social requirements. The proposed methodology incorporates the different methods of environmental load determinations with their respective probabilistic formulations as well as detailed and advanced multi-discipline (structural, mechanical, soil, nuclear physics, biology, etc.) theoretical and empirical analysis including the effect of probabilistic nature of design variables, to establish a sound and reasonable design decision model for nuclear power plants. The information required for the analysis is also described and the areas for which further research is desirable are pointed out. Furthermore, the proposed methodology can very well be utilized to determine the requirements of standardized plants to facilitate the speed of their design and review process

  18. A systematic methodology for design of tailor-made blended products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti; Gernaey, Krist; Woodley, John

    2014-01-01

    A systematic methodology for design of tailor-made blended products has been developed. In tailor-made blended products, one identifies the product needs and matches them by blending different chemicals. The systematic methodology has four main tasks. First, the design problem is defined: the pro......, the methodology is highlighted through two case studies involving gasoline blends and lubricant base oils....

  19. Teaching mathematical word problem solving: the quality of evidence for strategy instruction priming the problem structure.

    Science.gov (United States)

    Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.

  20. Optimal Design of Gravity Pipeline Systems Using Genetic Algorithm and Mathematical Optimization

    Directory of Open Access Journals (Sweden)

    maryam rohani

    2015-03-01

    Full Text Available In recent years, the optimal design of pipeline systems has become increasingly important in the water industry. In this study, the two methods of genetic algorithm and mathematical optimization were employed for the optimal design of pipeline systems with the objective of avoiding the water hammer effect caused by valve closure. The problem of optimal design of a pipeline system is a constrained one which should be converted to an unconstrained optimization problem using an external penalty function approach in the mathematical programming method. The quality of the optimal solution greatly depends on the value of the penalty factor that is calculated by the iterative method during the optimization procedure such that the computational effort is simultaneously minimized. The results obtained were used to compare the GA and mathematical optimization methods employed to determine their efficiency and capabilities for the problem under consideration. It was found that the mathematical optimization method exhibited a slightly better performance compared to the GA method.

  1. Participant observation, anthropology methodology and design anthropology research inquiry

    DEFF Research Database (Denmark)

    Gunn, Wendy; Buch Løgstrup, Louise

    2014-01-01

    of practice. They do so by combining participant observation, anthropology methodology and design anthropology research inquiry engaging with practice based explorations to understand if methods and methodologies, understood as being central to anthropological inquiry, can be taught to interaction design...... engineering students studying in an engineering faculty and engineers working in an energy company. They ask how do you generate anthropological capacities with interaction design engineering students engaged in engineering design processes and employees of an energy company setting out to reframe...... their relation with the private end user? What kind of ways can engaging within collaborative processes of designing offer opportunities for both designing and anthropological research inquiry simultaneously?...

  2. Ship design methodologies of preliminary design

    CERN Document Server

    Papanikolaou, Apostolos

    2014-01-01

    This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form  from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E).  The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of rel...

  3. Gear shift map design methodology for automotive transmissions

    NARCIS (Netherlands)

    Ngo, Viet Dac; Hofman, Theo; Steinbuch, Maarten; Serrarens, Alex

    In this paper, a design methodology is developed to condtruct the gear shift map for the automotive transmissions used in conventional and hybrid electric vehicles. The methodology utilizes an optimal gear shift strategy to derive the optimal gear shift patterns over a wide range of driving

  4. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  5. Design of an Integrated Methodology for Analytical Design of Complex Supply Chains

    Directory of Open Access Journals (Sweden)

    Shahid Rashid

    2012-01-01

    Full Text Available A literature review and gap analysis indentifies key limitations of industry best practice when modelling of supply chains. To address these limitations the paper reports on the conception and development of an integrated modelling methodology designed to underpin the analytical design of complex supply chains. The methodology is based upon a systematic deployment of EM, CLD, and SM techniques; the integration of which is achieved via common modelling concepts and decomposition principles. Thereby the methodology facilitates: (i graphical representation and description of key “processing”, “resourcing” and “work flow” properties of supply chain configurations; (ii behavioural exploration of currently configured supply chains, to facilitate reasoning about uncertain demand impacts on supply, make, delivery, and return processes; (iii predictive quantification about relative performances of alternative complex supply chain configurations, including risk assessments. Guidelines for the application of each step of the methodology are described. Also described are recommended data collection methods and expected modelling outcomes for each step. The methodology is being extensively case tested to quantify potential benefits & costs relative to current best industry practice. The paper reflects on preliminary benefits gained during industry based case study modelling and identifies areas of potential improvement.

  6. MATHEMATICS COURSES AND NEW EMERGING DESIGN TOOL AN OVERVIEW OF ARCHITECTURAL EDUCATION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Aswin Indraprastha

    2008-01-01

    Full Text Available Since the beginning, mathematics courses are inherent within architecture education. In Indonesia, the legacy from Dutch education system has influenced most of the architectural schools and this courses stand as one of basic engineering courses for architecture education system. This situation has been remaining well adopted until recently, some of architectural schools are tailoring mathematics to shape with contemporary challenges particularly regards to the digital tools. This paper aims to present brief information about mathematics courses in architectural schools in Indonesia, the importance of mathematics in learning digital design tools and propose thoughts to upgrade mathematics content in architectural education towards new emerging design tools.

  7. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  8. Feferman on foundations logic, mathematics, philosophy

    CERN Document Server

    Sieg, Wilfried

    2017-01-01

    This volume honours the life and work of Solomon Feferman, one of the most prominent mathematical logicians of the latter half of the 20th century. In the collection of essays presented here, researchers examine Feferman’s work on mathematical as well as specific methodological and philosophical issues that tie into mathematics. Feferman’s work was largely based in mathematical logic (namely model theory, set theory, proof theory and computability theory), but also branched out into methodological and philosophical issues, making it well known beyond the borders of the mathematics community. With regard to methodological issues, Feferman supported concrete projects. On the one hand, these projects calibrate the proof theoretic strength of subsystems of analysis and set theory and provide ways of overcoming the limitations imposed by Gödel’s incompleteness theorems through appropriate conceptual expansions. On the other, they seek to identify novel axiomatic foundations for mathematical practice, truth ...

  9. Designing Opportunities to Learn Mathematics Theory-Building Practices

    Science.gov (United States)

    Bass, Hyman

    2017-01-01

    Mathematicians commonly distinguish two modes of work in the discipline: "Problem solving," and "theory building." Mathematics education offers many opportunities to learn problem solving. This paper explores the possibility, and value, of designing instructional activities that provide supported opportunities for students to…

  10. System-level design methodologies for telecommunication

    CERN Document Server

    Sklavos, Nicolas; Goehringer, Diana; Kitsos, Paris

    2013-01-01

    This book provides a comprehensive overview of modern networks design, from specifications and modeling to implementations and test procedures, including the design and implementation of modern networks on chip, in both wireless and mobile applications.  Topical coverage includes algorithms and methodologies, telecommunications, hardware (including networks on chip), security and privacy, wireless and mobile networks and a variety of modern applications, such as VoLTE and the internet of things.

  11. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  12. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  13. N queens on an fpga: mathematics,programming, or both?

    NARCIS (Netherlands)

    Kuper, Jan; Wester, Rinse

    2014-01-01

    This paper presents a design methodology for deriving an FPGA implementation directly from a mathematical specification, thus avoiding the switch in semantic perspective as is present in widely applied methods which include an imperative implementation as an intermediate step. The first step in the

  14. User-inspired design methodology using Affordance Structure Matrix (ASM for construction projects

    Directory of Open Access Journals (Sweden)

    Maheswari J. Uma

    2017-01-01

    Full Text Available Traditionally, design phase of construction projects is often performed with incomplete and inaccurate user preferences. This is due to inefficiencies in the methodologies used for capturing the user requirements that can subsequently lead to inconsistencies and result in non-optimised end-result. Iterations and subsequent reworks due to such design inefficiencies is one of the major reasons for unsuccessful project delivery as they impact project performance measures such as time and cost among others. The existing design theories and practice are primarily based on functional requirements. Function-based design deals with design of artifact alone, which may yield favourable or unfavourable consequences with the design artifact. However, incorporating other interactions such as interactions between user & designer is necessary for optimised end-result. Hence, the objective of this research work is to devise a systematic design methodology considering all the three interactions among users, designers and artefacts for improved design efficiency. In this study, it has been attempted to apply the theory of affordances in a case project that involves the design of an offshore facility. A step-by-step methodology for developing Affordance Structure Matrix (ASM, which integrates House of Quality (HOQ and Design Structure Matrix (DSM, is proposed that can effectively capture the user requirements. HOQ is a popular quality management tool for capturing client requirements and DSM is a matrix-based tool that can capture the interdependency among the design entities. The proposed methodology utilises the strengths of both the tools, as DSM compliments HOQ in the process. In this methodology, different affordances such as AUA (Artifact-User-Affordance, AAA (Artifact-Artifact-Affordance and DDA (Designer-Designer-Affordance are captured systematically. Affordance is considered to be user-driven in this context that is in contrast to prevailing design

  15. Mathematical-programming approaches to test item pool design

    NARCIS (Netherlands)

    Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.

    2002-01-01

    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

  16. Evaluation of Mathematical Game Design Skills of Pre-Service Classroom Teachers

    Science.gov (United States)

    Pilten, Pusat; Pilten, Gülhiz; Divrik, Ramazan; Divrik, Fatma

    2017-01-01

    The purpose of the research is to evaluate the games prepared by pre-service classroom teachers within the scope of "Mathematics Teaching 1" and "Mathematics Teaching 2" courses, which are included in the undergraduate classroom teaching programs in Turkey, and to make predictions on the game design skills of pre-service…

  17. Establishing Equivalence: Methodological Progress in Group-Matching Design and Analysis

    Science.gov (United States)

    Kover, Sara T.; Atwood, Amy K.

    2013-01-01

    This methodological review draws attention to the challenges faced by intellectual and developmental disabilities researchers in the appropriate design and analysis of group comparison studies. We provide a brief overview of matching methodologies in the field, emphasizing group-matching designs used in behavioral research on cognition and…

  18. Integral Design methodology for Industrial Collaboration Design of Sustainable Industrial Flexible Demountable buildings

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Bauer, M.; Lima, C.

    2007-01-01

    Starting in 1998 from developing and designing their own office Kropman, a major Dutch Building Services contractor, developed a new methodology for structuring and documenting integral design processes. Integral design is meant to integrate the different disciplines involved in the building design

  19. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  20. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  1. Actualizacion Matematica, AM-1 (Modernizing Mathematics, AM-1).

    Science.gov (United States)

    Parot, Jean Jacques

    This document, based on mathematical research conducted by the Instituto Colombiano de Pedagogia, is the first in a series of scheduled publications designed to report recent findings to teachers and to offer new methodological guidelines in teaching math. This document suggests elementary-level learning activities for helping the students develop…

  2. Soft robot design methodology for `push-button' manufacturing

    Science.gov (United States)

    Paik, Jamie

    2018-06-01

    `Push-button' or fully automated manufacturing would enable the production of robots with zero intervention from human hands. Realizing this utopia requires a fundamental shift from a sequential (design-materials-manufacturing) to a concurrent design methodology.

  3. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Mehmet Polat Saka

    2013-01-01

    Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

  4. Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle System

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights......-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification. The methodology makes use of thermodynamic-process insights and the reverse design approach to arrive at the final process-controller design decisions. The developed methodology is illustrated through...

  5. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  6. Computer Mathematics Games and Conditions for Enhancing Young Children's Learning of Number Sense

    Science.gov (United States)

    Kermani, Hengameh

    2017-01-01

    Purpose: The present study was designed to examine whether mathematics computer games improved young children's learning of number sense under three different conditions: when used individually, with a peer, and with teacher facilitation. Methodology: This study utilized a mixed methodology, collecting both quantitative and qualitative data. A…

  7. The mathematical theory of signal processing and compression-designs

    Science.gov (United States)

    Feria, Erlan H.

    2006-05-01

    The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.

  8. Design of Sustainable Blended Products using an Integrated Methodology

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti; Gernaey, Krist; Woodley, John

    2013-01-01

    This paper presents a systematic methodology for designing blended products consisting of three stages; product design, process identification and experimental verification. The product design stage is considered in this paper. The objective of this stage is to screen and select suitable chemicals...... to be used as building blocks in the mixture design, and then to propose the blend formulations that fulfill the desired product attributes. The result is a set of blends that match the constraints, the compositions, values of the target properties and information about their miscibility. The methodology has...... been applied to design several blended products. A case study on design of blended lubricants is highlighted. The objective is to identify blended products that satisfy the product attributes with at least similar or better performance compared to conventional products....

  9. Methodology for Designing Fault-Protection Software

    Science.gov (United States)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  10. Hypothetical learning trajectory design on the history of Indonesian independence struggle in Mathematics logic instruction

    Directory of Open Access Journals (Sweden)

    Dra Nurjanah

    2017-12-01

    Full Text Available The research was aimed at developing learning resources for mathematics logic using the hypothetical learning trajectory designed through reflection on the history of Indonesian independence struggle. The study was carried out at the Department of Mathematics Education of the Faculty of Teacher Training and Educational Sciences Nusantara Islamic University (Uninus. The study used design research consisted of three stages: preparing the experiments, design the experiments, and retrospective analysis. Preparing the experiments stage has been completed and design the experiments stage is currently under preparation. The main activities accomplished in preparing the experiments stage consisted of: studies of Indonesian independence struggle, curriculum analysis, literature review, and early prototype design. Design the experiments phase has enabled the development of the research instruments. The learning trajectory which has been designed in the first stage involved: reflections on the history of Indonesian independence struggle; implication and bi-implication; implication, bi-implication and their truth in the context of the history of the Indonesian independence struggle; and implication, bi-implication and their truth in the context of mathematics. Based on the results of discussions with colleagues, the students’ ability in mathematical thinking can be developed by using the history of Indonesian independence struggle as the context of learning in a mathematics logics course.

  11. Interaction between core analysis methodology and nuclear design: some PWR examples

    International Nuclear Information System (INIS)

    Rothleder, B.M.; Eich, W.J.

    1982-01-01

    The interaction between core analysis methodology and nuclear design is exemplified by PSEUDAX, a major improvement related to the Advanced Recycle methodology program (ARMP) computer code system, still undergoing development by the Electric Power Research Institute. The mechanism of this interaction is explored by relating several specific nulcear design changes to the demands placed by these changes on the ARMP system, and by examining the meeting of these demands, first within the standard ARMP methodology and then through augmentation of the standard methodology by development of PSEUDAX

  12. Examining the design features of a communication-rich, problem-centred mathematics professional development

    Science.gov (United States)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-04-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.

  13. Adapting the Mathematical Task Framework to Design Online Didactic Objects

    Science.gov (United States)

    Bowers, Janet; Bezuk, Nadine; Aguilar, Karen

    2011-01-01

    Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…

  14. Scalable Multi-core Architectures Design Methodologies and Tools

    CERN Document Server

    Jantsch, Axel

    2012-01-01

    As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallalization of the computation and 3D integration technologies lead to distributed memory architectures. This book provides a current snapshot of industrial and academic research, conducted as part of the European FP7 MOSART project, addressing urgent challenges in many-core architectures and application mapping.  It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies. Describes trends towards distributed memory architectures and distributed power management; Integrates Network on Chip with distributed, shared memory architectures; Demonstrates novel design methodologies and frameworks for multi-core design space exploration; Shows how midll...

  15. A game-based decision support methodology for competitive systems design

    Science.gov (United States)

    Briceno, Simon Ignacio

    This dissertation describes the development of a game-based methodology that facilitates the exploration and selection of research and development (R&D) projects under uncertain competitive scenarios. The proposed method provides an approach that analyzes competitor positioning and formulates response strategies to forecast the impact of technical design choices on a project's market performance. A critical decision in the conceptual design phase of propulsion systems is the selection of the best architecture, centerline, core size, and technology portfolio. This selection can be challenging when considering evolving requirements from both the airframe manufacturing company and the airlines in the market. Furthermore, the exceedingly high cost of core architecture development and its associated risk makes this strategic architecture decision the most important one for an engine company. Traditional conceptual design processes emphasize performance and affordability as their main objectives. These areas alone however, do not provide decision-makers with enough information as to how successful their engine will be in a competitive market. A key objective of this research is to examine how firm characteristics such as their relative differences in completing R&D projects, differences in the degree of substitutability between different project types, and first/second-mover advantages affect their product development strategies. Several quantitative methods are investigated that analyze business and engineering strategies concurrently. In particular, formulations based on the well-established mathematical field of game theory are introduced to obtain insights into the project selection problem. The use of game theory is explored in this research as a method to assist the selection process of R&D projects in the presence of imperfect market information. The proposed methodology focuses on two influential factors: the schedule uncertainty of project completion times and

  16. An Integrated Methodology for Emulsified Formulated Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele

    are mixed together to determine the desired emulsified product. They are still mainly designed and analysed through trial - and - error based exper- imental techniques, therefore a systematic approach , integrating model-based as well a s experiment - based techniques, for design of these products could......The consumer oriented chemical based products are used every day by millions of people. They are structured products constituted of numerous chemicals, and many of them, especially household and personal care products, are emulsions where active ingredients, solvents, additives and surfactants...... significantly reduce both time and cost connected to product development by doing only the necessary experi- ments , and ensuring chances for innovation . The main contribution of this project i s the development of an integrated methodology for the design of emulsified formulated products. The methodology...

  17. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  18. Waste Package Design Methodology Report

    International Nuclear Information System (INIS)

    D.A. Brownson

    2001-01-01

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report

  19. Value and Vision-based Methodology in Integrated Design

    DEFF Research Database (Denmark)

    Tollestrup, Christian

    on empirical data from workshop where the Value and Vision-based methodology has been taught. The research approach chosen for this investigation is Action Research, where the researcher plays an active role in generating the data and gains a deeper understanding of the investigated phenomena. The result...... of this thesis is the value transformation from an explicit set of values to a product concept using a vision based concept development methodology based on the Pyramid Model (Lerdahl, 2001) in a design team context. The aim of this thesis is to examine how the process of value transformation is occurring within...... is divided in three; the systemic unfolding of the Value and Vision-based methodology, the structured presentation of practical implementation of the methodology and finally the analysis and conclusion regarding the value transformation, phenomena and learning aspects of the methodology....

  20. Matematica 2. Livro do Aluno (Mathematics 2. Student Workbook).

    Science.gov (United States)

    D'Alu, Maria Jose Miranda de Sousa

    This mathematics textbook, written in Portuguese, is designed for second graders. Developed from objectives set forth by the National Portuguese Materials Development Center, it follows closely the objectives and methodology of major curricula used in schools of the United States. The thirteen chapters deal with: numeration (0-999); addition with…

  1. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  2. Methodology for Design and Analysis of Reactive Distillation Involving Multielement Systems

    DEFF Research Database (Denmark)

    Jantharasuk, Amnart; Gani, Rafiqul; Górak, Andrzej

    2011-01-01

    A new methodology for design and analysis of reactive distillation has been developed. In this work, the elementbased approach, coupled with a driving force diagram, has been extended and applied to the design of a reactive distillation column involving multielement (multicomponent) systems...... consisting of two components. Based on this methodology, an optimal design configuration is identified using the equivalent binary-element-driving force diagram. Two case studies of methyl acetate (MeOAc) synthesis and methyl-tert-butyl ether (MTBE) synthesis have been considered to demonstrate...... the successful applications of the methodology. Moreover, energy requirements for various column configurations corresponding to different feed locatio...

  3. A design methodology for materials control and accounting information systems

    International Nuclear Information System (INIS)

    Helman, P.; Strittmatter, R.B.

    1987-01-01

    Modern approaches to nuclear materials safeguards have significantly increased the data processing needs of safeguards information systems. Implementing these approaches will require developing efficient, cost-effective designs. Guided by database design research, we are developing a design methodology for distributed materials control and accounting (MCandA) information systems. The methodology considers four design parameters: network topology, allocation of data to nodes, high-level global processing strategy, and local file structures to optimize system performance. Characteristics of system performance that are optimized are response time for an operation, timeliness of data, validity of data, and reliability. The ultimate goal of the research is to develop a comprehensive computerized design tool specifically tailored to the design of MCandA systems

  4. Methodology of Neural Design: Applications in Microwave Engineering

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-06-01

    Full Text Available In the paper, an original methodology for the automatic creation of neural models of microwave structures is proposed and verified. Following the methodology, neural models of the prescribed accuracy are built within the minimum CPU time. Validity of the proposed methodology is verified by developing neural models of selected microwave structures. Functionality of neural models is verified in a design - a neural model is joined with a genetic algorithm to find a global minimum of a formulated objective function. The objective function is minimized using different versions of genetic algorithms, and their mutual combinations. The verified methodology of the automated creation of accurate neural models of microwave structures, and their association with global optimization routines are the most important original features of the paper.

  5. Methodological pluralism in the teaching of Astronomy

    Science.gov (United States)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-04-01

    This paper discusses the feasibility of using a teaching strategy called methodological pluralism, consisting of the use of various methodological resources in order to provide a meaningful learning. It is part of a doctoral thesis, which aims to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. It was offered an extension course at the "Federal Institution of Education, Science and Technology" in the North of Minas Gerais (FINMG), Campus Januaria, for thirty-two students of licentiate courses in Physics, Mathematics and Biological Sciences, involving themes of Astronomy, in order to search and contribute to improving the training of future teachers. The following aspects are used: the mixed methodology, with pre-experimental design, combined with content analysis. The results indicate the rates of students' prior knowledge in relation to Astronomy was low; meaningful learning indications of concepts related to Astronomy, and the feasibility of using digital resources Involving technologies, articulated with traditional materials in the teaching of Astronomy. This research sought to contribute to the initial teacher training, especially in relation to Astronomy Teaching, proposing new alternatives to promote the teaching of this area of knowledge, extending the methodological options of future teachers.

  6. A top-down design methodology and its implementation for VCSEL-based optical links design

    Science.gov (United States)

    Li, Jiguang; Cao, Mingcui; Cai, Zilong

    2005-01-01

    In order to find the optimal design for a given specification of an optical communication link, an integrated simulation of electronic, optoelectronic, and optical components of a complete system is required. It is very important to be able to simulate at both system level and detailed model level. This kind of model is feasible due to the high potential of Verilog-AMS language. In this paper, we propose an effective top-down design methodology and employ it in the development of a complete VCSEL-based optical links simulation. The principle of top-down methodology is that the development would proceed from the system to device level. To design a hierarchical model for VCSEL based optical links, the design framework is organized in three levels of hierarchy. The models are developed, and implemented in Verilog-AMS. Therefore, the model parameters are fitted to measured data. A sample transient simulation demonstrates the functioning of our implementation. Suggestions for future directions in top-down methodology used for optoelectronic systems technology are also presented.

  7. Methodology for designing aircraft having optimal sound signatures

    NARCIS (Netherlands)

    Sahai, A.K.; Simons, D.G.

    2017-01-01

    This paper presents a methodology with which aircraft designs can be modified such that they produce optimal sound signatures on the ground. With optimal sound it is implied in this case sounds that are perceived as less annoying by residents living near airport vicinities. A novel design and

  8. Using proliferation assessment methodologies for Safeguards-by-Design

    International Nuclear Information System (INIS)

    Van der Meer, K.; Rossa, R.; Turcanu, C.; Borella, A.

    2013-01-01

    MYRRHA, an accelerator driven system (ADS) is designed as a proton accelerator coupled to a liquid Pb-Bi spallation target, surrounded by a Pb-Bi cooled sub-critical neutron multiplying medium in a pool type configuration. An assessment based on three methodologies was made of the proliferation risks of the MYRRHA ADS in comparison with the BR2 MTR, an existing research reactor at the Belgian Nuclear Research Centre SCK-CEN. The used methodologies were the TOPS (Technical Opportunities to Increase the Proliferation Resistance of Nuclear Power Systems), the PR-PP and the INPRO methodologies. The various features of the methodologies are described and the results of the assessments are given and discussed. It is concluded that it would be useful to define one single methodology with two options to perform a quick and a more detailed assessment. The paper is followed by the slides of the presentation

  9. Developing Instructional Design to Improve Mathematical Higher Order Thinking Skills of Students

    Science.gov (United States)

    Apino, E.; Retnawati, H.

    2017-02-01

    This study aimed to describe the instructional design to improve the Higher Order Thinking Skills (HOTS) of students in learning mathematics. This research is design research involving teachers and students of class X MIPA 1 MAN Yigyakarta III, Special Region of Yogyakarta, Indonesia. Data collected through focus group discussions and tests. Data analyzed by quantitative descriptive. The results showed that the instructional design developed is effective to improving students’ HOTS in learning mathematics. Instructional design developed generally include three main components: (1) involve students in the activities non-routine problem solving; (2) facilitating students to develop the ability to analyze and evaluate (critical thinking) and the ability to create (creative thinking); and (3) encourage students to construct their own knowledge.

  10. Methodologies for Root Locus and Loop Shaping Control Design with Comparisons

    Science.gov (United States)

    Kopasakis, George

    2017-01-01

    This paper describes some basics for the root locus controls design method as well as for loop shaping, and establishes approaches to expedite the application of these two design methodologies to easily obtain control designs that meet requirements with superior performance. The two design approaches are compared for their ability to meet control design specifications and for ease of application using control design examples. These approaches are also compared with traditional Proportional Integral Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these designs is covered as it pertains to these control methodologies and for the example problems.

  11. Parental modelling of mathematical affect: self-efficacy and emotional arousal

    Science.gov (United States)

    Bartley, Sarah R.; Ingram, Naomi

    2017-12-01

    This study explored the relationship between parents' mathematics self-efficacy and emotional arousal to mathematics and their 12- and 13-year-old children's mathematics self-efficacy and emotional arousal to mathematics. Parental modelling of affective relationships during homework was a focus. Eighty-four parent and child pairings from seven schools in New Zealand were examined using embedded design methodology. No significant correlations were found when the parents' mathematics self-efficacy and emotional arousal to mathematics were compared with the children's mathematics self-efficacy and emotional arousal to mathematics. However, the parents' level of emotional arousal to mathematics was found to have affected their willingness to assist with mathematics homework. For those parents who assisted, a significant positive correlation was found between their mathematics self-efficacy and their children's emotional arousal to mathematics. Parents who did assist were generally reported as being calm, and used techniques associated with positive engagement. Fathers were calmer and more likely to express readiness to assist with mathematics homework than mothers. A further significant positive correlation was found between fathers' emotional arousal to mathematics and children's mathematics self-efficacy. Implications from the study suggest directions for future research.

  12. Design methodology to enhance high impedance surfaces performances

    Directory of Open Access Journals (Sweden)

    M. Grelier

    2014-04-01

    Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.

  13. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight...

  14. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  15. USING OF OBJECT-ORIENTED DESIGN PRINCIPLES IN ELECTRIC MACHINES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zablodskii

    2016-03-01

    Full Text Available Purpose. To develop the theoretical basis of electrical machines object-oriented design, mathematical models and software to improve their design synthesis, analysis and optimization. Methodology. We have applied object-oriented design theory in electric machines optimal design and mathematical modelling of electromagnetic transients and electromagnetic field distribution. We have correlated the simulated results with the experimental data obtained by means of the double-stator screw dryer with an external solid rotor, brushless turbo-generator exciter and induction motor with squirrel cage rotor. Results. We have developed object-oriented design methodology, transient mathematical modelling and electromagnetic field equations templates for cylindrical electrical machines, improved and remade Cartesian product and genetic optimization algorithms. This allows to develop electrical machines classifications models, included not only structure development but also parallel synthesis of mathematical models and design software, to improve electric machines efficiency and technical performance. Originality. For the first time, we have applied a new way of design and modelling of electrical machines, which is based on the basic concepts of the object-oriented analysis. For the first time is suggested to use a single class template for structural and system organization of electrical machines, invariant to their specific variety. Practical value. We have manufactured screw dryer for coil dust drying and mixing based on the performed object-oriented theory. We have developed object-oriented software for design and optimization of induction motor with squirrel cage rotor of AIR series and brushless turbo-generator exciter. The experimental studies have confirmed the adequacy of the developed object-oriented design methodology.

  16. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  17. ''Training plan optimized design'' methodology application to IBERDROLA - Power generation

    International Nuclear Information System (INIS)

    Gil, S.; Mendizabal, J.L.

    1996-01-01

    The trend in both Europe and the United States, towards the understanding that no training plan may be considered suitable if not backed by the results of application of the S.A.T. (Systematic Approach to Training) methodology, led TECNATOM, S.A. to apply thy methodology through development of an application specific to the conditions of the Spanish working system. The requirement that design of the training be coherent with the realities of the working environment is met by systematic application of the SAT methodology as part of the work analysis and job-based task analysis processes, this serving as a basis for design of the training plans

  18. Improved FTA methodology and application to subsea pipeline reliability design.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.

  19. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  20. Concept Generation for Design Creativity A Systematized Theory and Methodology

    CERN Document Server

    Taura, Toshiharu

    2013-01-01

    The concept generation process seems like an intuitional thought: difficult to capture and perform, although everyone is capable of it. It is not an analytical process but a synthetic process which has yet to be clarified. Furthermore, new research methods for investigating the concept generation process—a very difficult task since the concept generation process is driven by inner feelings deeply etched in the mind—are necessary to establish its theory and methodology.  Concept Generation for Design Creativity—A Systematized Theory and Methodology presents the concept generation process both theoretically and methodologically. Theoretically, the concept generation process is discussed by comparing metaphor, abduction, and General Design Theory from the perspective of similarities and dissimilarities. Property mapping, concept blending, and concept integration in thematic relation have been explained methodologically. So far, these theories and methods have been discussed independently, and the relation...

  1. Model-based Organization Manning, Strategy, and Structure Design via Team Optimal Design (TOD) Methodology

    National Research Council Canada - National Science Library

    Levchuk, Georgiy; Chopra, Kari; Paley, Michael; Levchuk, Yuri; Clark, David

    2005-01-01

    This paper describes a quantitative Team Optimal Design (TOD) methodology and its application to the design of optimized manning for E-10 Multi-sensor Command and Control Aircraft. The E-10 (USAF, 2002...

  2. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    Science.gov (United States)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  3. An investigation into creative design methodologies for textiles and fashion

    Science.gov (United States)

    Gault, Alison

    2017-10-01

    Understanding market intelligence, trends, influences and personal approaches are essential tools for design students to develop their ideas in textiles and fashion. Identifying different personal approaches including, visual, process-led or concept by employing creative methodologies are key to developing a brief. A series of ideas or themes start to emerge and through the design process serve to underpin and inform an entire collection. These investigations ensure that the design collections are able to produce a diverse range of outcomes. Following key structures and coherent stages in the design process creates authentic collections in textiles and fashion. A range of undergraduate students presented their design portfolios (180) and the methodologies employed were mapped against success at module level, industry response and graduate employment.

  4. Developing a Design Methodology for Web 2.0 Mediated Learning

    DEFF Research Database (Denmark)

    Buus, Lillian; Georgsen, Marianne; Ryberg, Thomas

    In this paper we discuss the notion of a learning methodology and situate this within the wider frame of learning design or ?Designing for Learning?. We discuss existing work within this broad area by trying to categorize different approaches and interpretations and we present our development...... of particular ?mediating design artefacts?. We discuss what can be viewed as a lack of attention paid to integrating the preferred teaching styles and learning philosophies of practitioners into design tools, and present a particular method for learning design; the COllaborative E-learning Design method (Co......Ed). We describe how this method has been adopted as part of a learning methodology building on concepts and models presented in the other symposium papers, in particular those of active, problem based learning and web 2.0-technologies. The challenge of designing on the basis of an explicit learning...

  5. Developing a Design Methodology for Web 2.0 Mediated Learning

    DEFF Research Database (Denmark)

    Buus, Lillian; Georgsen, Marianne; Ryberg, Thomas

    2017-01-01

    In this paper we discuss the notion of a learning methodology and situate this within the wider frame of learning design or ?Designing for Learning?. We discuss existing work within this broad area by trying to categorize different approaches and interpretations and we present our development...... of particular ?mediating design artefacts?. We discuss what can be viewed as a lack of attention paid to integrating the preferred teaching styles and learning philosophies of practitioners into design tools, and present a particular method for learning design; the COllaborative E-learning Design method (Co......Ed). We describe how this method has been adopted as part of a learning methodology building on concepts and models presented in the other symposium papers, in particular those of active, problem based learning and web 2.0-technologies. The challenge of designing on the basis of an explicit learning...

  6. A methodological approach to designing sewer system control

    DEFF Research Database (Denmark)

    Mollerup, Ane Loft

    for this thesis was therefore the wish for a methodological approach to sewer system control design. Using a case study the following research hypothesis was tested in this thesis: Using classical and modern control theory, a methodological approach can be derived for designing sewer system control. This can aid....... This was not unexpected, since the true potential of having optimisation arises, when a system has many control loops with limit-ing constraints and/or changing prioritisation between them. The results showed that for small sewer systems, where the complexity is limited, it is not necessarily the best option to implement...... generate control systems of the future that are more robust, more structured, have a better performance and are easi-er to maintain....

  7. Computer Aided Methodology for Simultaneous Synthesis, Design & Analysis of Chemical Products-Processes

    DEFF Research Database (Denmark)

    d'Anterroches, Loïc; Gani, Rafiqul

    2006-01-01

    A new combined methodology for computer aided molecular design and process flowsheet design is presented. The methodology is based on the group contribution approach for prediction of molecular properties and design of molecules. Using the same principles, process groups have been developed...... a wide range of problems. In this paper, only the computer aided flowsheet design related features are presented....... together with their corresponding flowsheet property models. To represent the process flowsheets in the same way as molecules, a unique but simple notation system has been developed. The methodology has been converted into a prototype software, which has been tested with several case studies covering...

  8. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Science.gov (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  10. A framework for using simulation methodology in ergonomics interventions in design projects

    DEFF Research Database (Denmark)

    Broberg, Ole; Duarte, Francisco; Andersen, Simone Nyholm

    2014-01-01

    The aim of this paper is to outline a framework of simulation methodology in design processes from an ergonomics perspective......The aim of this paper is to outline a framework of simulation methodology in design processes from an ergonomics perspective...

  11. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  12. Sociocultural context as a facilitator of student learning of function concepts in mathematics

    Directory of Open Access Journals (Sweden)

    Evangelina Díaz Obando

    2016-03-01

    Full Text Available In Costa Rica, many secondary students have serious difficulties to establish relationships between mathematics and real-life contexts. They question the utilitarian role of the school mathematics. This fact motivated the research object of this report which evidences the need to overcome methodologies unrelated to students’ reality, toward new didactical options that help students to value mathematics, reasoning and its  applications, connecting it with their socio-cultural context. The research used a case study as a qualitative methodology and the social constructivism as an educational paradigm in which the knowledge is built by the student; as a product of his social interactions. A collection of learning situations was designed, validated, and implemented. It allowed establishing relationships between mathematical concepts and the socio-cultural context of participants. It analyzed the impact of students’socio-cultural context in their mathematics learning of basic concepts of real variable functions, consistent with the Ministry of Education (MEP Official Program.  Among the results, it was found that using students’sociocultural context improved their motivational processes, mathematics sense making, and promoted cooperative social interactions. It was evidenced that contextualized learning situations favored concepts comprehension that allow students to see mathematics as a discipline closely related with their every-day life.

  13. Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology

    DEFF Research Database (Denmark)

    Mattei, Michele; Hill, Michael; Kontogeorgis, Georgios

    2013-01-01

    An extended systematic methodology for the design of emulsion-based Chemical products is presented. The methodology consists of a model-based framework involving seven sequential hierarchical steps: starting with the identification of the needs to be satisfied by the product and then adding one-b...... to obtain one or more candidate formulations. A conceptual casestudy representing a personal detergent is presented to highlight the methodology....

  14. Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology

    DEFF Research Database (Denmark)

    Mattei, Michele; Hill, Michael; Kontogeorgis, Georgios

    2013-01-01

    An extended systematic methodology for the design of emulsion-based Chemical products is presented. The methodology consists of a model-based framework involving seven sequential hierarchical steps: starting with the identification of the needs to be satisfied by the product and then adding one...... to obtain one or more candidate formulations. A conceptual casestudy representing a personal detergent is presented to highlight the methodology....

  15. Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul

    2015-01-01

    This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....

  16. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong; Iloeje, Chukwunwike O.; Chen, Tianjiao; Ghoniem, Ahmed F.

    2014-01-01

    of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters

  17. Design of formulated products: a systematic methodology

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Ng, K.M.

    2011-01-01

    /or verifies a specified set through a sequence of predefined activities (work-flow). Stage-2 and stage-3 (not presented here) deal with the planning and execution of experiments, for product validation. Four case studies have been developed to test the methodology. The computer-aided design (stage-1...

  18. Tornado missile simulation and design methodology. Volume 2: model verification and data base updates. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments

  19. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul

    2004-01-01

    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...

  20. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    Science.gov (United States)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  1. Methodological Issues in Questionnaire Design.

    Science.gov (United States)

    Song, Youngshin; Son, Youn Jung; Oh, Doonam

    2015-06-01

    The process of designing a questionnaire is complicated. Many questionnaires on nursing phenomena have been developed and used by nursing researchers. The purpose of this paper was to discuss questionnaire design and factors that should be considered when using existing scales. Methodological issues were discussed, such as factors in the design of questions, steps in developing questionnaires, wording and formatting methods for items, and administrations methods. How to use existing scales, how to facilitate cultural adaptation, and how to prevent socially desirable responding were discussed. Moreover, the triangulation method in questionnaire development was introduced. Steps were recommended for designing questions such as appropriately operationalizing key concepts for the target population, clearly formatting response options, generating items and confirming final items through face or content validity, sufficiently piloting the questionnaire using item analysis, demonstrating reliability and validity, finalizing the scale, and training the administrator. Psychometric properties and cultural equivalence should be evaluated prior to administration when using an existing questionnaire and performing cultural adaptation. In the context of well-defined nursing phenomena, logical and systematic methods will contribute to the development of simple and precise questionnaires.

  2. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  3. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  4. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  6. Development of Design Methodology for a Small Solar-Powered Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2018-01-01

    Full Text Available Existing mathematical design models for small solar-powered electric unmanned aerial vehicles (UAVs only focus on mass, performance, and aerodynamic analyses. Presently, UAV designs have low endurance. The current study aims to improve the shortcomings of existing UAV design models. Three new design aspects (i.e., electric propulsion, sensitivity, and trend analysis, three improved design properties (i.e., mass, aerodynamics, and mission profile, and a design feature (i.e., solar irradiance are incorporated to enhance the existing small solar UAV design model. A design validation experiment established that the use of the proposed mathematical design model may at least improve power consumption-to-take-off mass ratio by 25% than that of previously designed UAVs. UAVs powered by solar (solar and battery and nonsolar (battery-only energy were also compared, showing that nonsolar UAVs can generally carry more payloads at a particular time and place than solar UAVs with sufficient endurance requirement. The investigation also identified that the payload results in the highest effect on the maximum take-off weight, followed by the battery, structure, and propulsion weight with the three new design aspects (i.e., electric propulsion, sensitivity, and trend analysis for sizing consideration to optimize UAV designs.

  7. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  8. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  9. CAGE IIIA Distributed Simulation Design Methodology

    Science.gov (United States)

    2014-05-01

    2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this

  10. Assessment in the Context of Mathematics Instruction Reform: The Design of Assessment in the QUASAR Project.

    Science.gov (United States)

    Silver, Edward A.; Lane, Suzanne

    Recent reports on mathematics education reform have focused the attention of educational practitioners and policymakers on new goals for mathematics education and new descriptions of mathematical proficiency. QUASAR is a national project (Quantitative Understanding: Amplifying Student Achievement and Reasoning) designed to improve the mathematics…

  11. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review.

    Science.gov (United States)

    Herzog, Sereina A; Blaizot, Stéphanie; Hens, Niel

    2017-12-18

    Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.

  12. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  13. QUALITY IMPROVEMENT IN MULTIRESPONSE EXPERIMENTS THROUGH ROBUST DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    M. Shilpa

    2012-06-01

    Full Text Available Robust design methodology aims at reducing the variability in the product performance in the presence of noise factors. Experiments involving simultaneous optimization of more than one quality characteristic are known as multiresponse experiments which are used in the development and improvement of industrial processes and products. In this paper, robust design methodology is applied to optimize the process parameters during a particular operation of rotary driving shaft manufacturing process. The three important quality characteristics of the shaft considered here are of type Nominal-the-best, Smaller-the-better and Fraction defective. Simultaneous optimization of these responses is carried out by identifying the control parameters and conducting the experimentation using L9 orthogonal array.

  14. Analytical and empirical mathematics with computers

    International Nuclear Information System (INIS)

    Wolfram, S.

    1986-01-01

    In this presentation, some of the practical methodological and theoretical implications of computation for the mathematical sciences are discussed. Computers are becoming an increasingly significant tool for research in the mathematical sciences. This paper discusses some of the fundamental ways in which computers have and can be used to do mathematics

  15. Methodologies for evaluating long-term stabilization designs of uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Nelson, J.D.; Abt, S.R.; Volpe, R.L.; Van Zye, D.; Hinkle, N.E.; Staub, W.P.

    1986-06-01

    Uranium mill tailings impoundments require long-term (200 to 1000 years) stabilization. This report reviews currently available methodologies for evaluating factors that can have a significant influence on tailings stabilization and develops methodologies in technical areas where none presently exist. Mill operators can use these methodologies to assist with (1) the selection of sites for mill tailings impoundments, (2) the design of stable impoundments, and (3) the development of reclamation plans for existing impoundments. These methodologies would also be useful for regulatory agency evaluations of proposals in permit or license applications. Methodologies were reviewed or developed in the following technical areas: (1) prediction of the Probable Maximum Precipitation (PMP) and an accompanying Probable Maximum Flood (PMF); (2) prediction of the stability of local and regional fluvial systems; (3) design of impoundment surfaces resistant to gully erosion; (4) evaluation of the potential for surface sheet erosion; (5) design of riprap for protecting embankments from channel flood flow and overland flow; (6) selection of riprap with appropriate durability for its intended use; and (7) evaluation of oversizing required for marginal quality riprap

  16. Methodological Considerations in Designing and Evaluating Animal-Assisted Interventions.

    Science.gov (United States)

    Stern, Cindy; Chur-Hansen, Anna

    2013-02-27

    This paper presents a discussion of the literature on animal-assisted interventions and describes limitations surrounding current methodological quality. Benefits to human physical, psychological and social health cannot be empirically confirmed due to the methodological limitations of the existing body of research, and comparisons cannot validly be made across different studies. Without a solid research base animal-assisted interventions will not receive recognition and acceptance as a credible alternative health care treatment. The paper draws on the work of four systematic reviews conducted over April-May 2009, with no date restrictions, focusing exclusively on the use of canine-assisted interventions for older people residing in long-term care. The reviews revealed a lack of good quality studies. Although the literature base has grown in volume since its inception, it predominantly consists of anecdotal accounts and reports. Experimental studies undertaken are often flawed in aspects of design, conduct and reporting. There are few qualitative studies available leading to the inability to draw definitive conclusions. It is clear that due to the complexities associated with these interventions not all weaknesses can be eliminated. However, there are basic methodological weaknesses that can be addressed in future studies in the area. Checklists for quantitative and qualitative research designs to guide future research are offered to help address methodological rigour.

  17. A Case Study on Pre-Service Secondary School Mathematics Teachers' Cognitive-Metacognitive Behaviours in Mathematical Modelling Process

    Science.gov (United States)

    Sagirli, Meryem Özturan

    2016-01-01

    The aim of the present study is to investigate pre-service secondary mathematics teachers' cognitive-metacognitive behaviours during the mathematical problem-solving process considering class level. The study, in which the case study methodology was employed, was carried out with eight pre-service mathematics teachers, enrolled at a university in…

  18. Optimal Design of Pumped Pipeline Systems Using Genetic Algorithm and Mathematical Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadhadi Afshar

    2007-12-01

    Full Text Available In recent years, much attention has been paid to the optimal design of pipeline systems. In this study, the problem of pipeline system optimal design has been solved through genetic algorithm and mathematical optimization. Pipe diameters and their thicknesses are considered as decision variables to be designed in a manner that water column separation and excessive pressures are avoided in the event of pump failure. Capabilities of the genetic algorithm and the mathematical programming method are compared for the problem under consideration. For simulation of transient streams, explicit characteristic method is used in which devices such as pumps are defined as boundary conditions of the equations defining the hydraulic behavior of pipe segments. The problem of optimal design of pipeline systems is a constrained problem which is converted to an unconstrained optimization problem using an external penalty function approach. The efficiency of the proposed approaches is verified in one example and the results are presented.

  19. [Strengthening the methodology of study designs in scientific researches].

    Science.gov (United States)

    Ren, Ze-qin

    2010-06-01

    Many problems in study designs have affected the validity of scientific researches seriously. We must understand the methodology of research, especially clinical epidemiology and biostatistics, and recognize the urgency in selection and implement of right study design. Thereafter we can promote the research capability and improve the overall quality of scientific researches.

  20. Methodology for cloud-based design of robots

    Science.gov (United States)

    Ogorodnikova, O. M.; Vaganov, K. A.; Putimtsev, I. D.

    2017-09-01

    This paper presents some important results for cloud-based designing a robot arm by a group of students. Methodology for the cloud-based design was developed and used to initiate interdisciplinary project about research and development of a specific manipulator. The whole project data files were hosted by Ural Federal University data center. The 3D (three-dimensional) model of the robot arm was created using Siemens PLM software (Product Lifecycle Management) and structured as a complex mechatronics product by means of Siemens Teamcenter thin client; all processes were performed in the clouds. The robot arm was designed in purpose to load blanks up to 1 kg into the work space of the milling machine for performing student's researches.

  1. Methodology of Computer-Aided Design of Variable Guide Vanes of Aircraft Engines

    Science.gov (United States)

    Falaleev, Sergei V.; Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2016-01-01

    The paper presents a methodology which helps to avoid a great amount of costly experimental research. This methodology includes thermo-gas dynamic design of an engine and its mounts, the profiling of compressor flow path and cascade design of guide vanes. Employing a method elaborated by Howell, we provide a theoretical solution to the task of…

  2. Correct-by-construction approaches for SoC design

    CERN Document Server

    Sinha, Roopak; Basu, Samik

    2013-01-01

    This book describes an approach for designing Systems-on-Chip such that the system meets precise mathematical requirements. The methodologies presented enable embedded systems designers to reuse intellectual property (IP) blocks from existing designs in an efficient, reliable manner, automatically generating correct SoCs from multiple, possibly mismatching, components.

  3. Integrated cost estimation methodology to support high-performance building design

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Prasad; Greden, Lara; Eijadi, David; McDougall, Tom [The Weidt Group, Minnetonka (United States); Cole, Ray [Axiom Engineers, Monterey (United States)

    2007-07-01

    Design teams evaluating the performance of energy conservation measures (ECMs) calculate energy savings rigorously with established modelling protocols, accounting for the interaction between various measures. However, incremental cost calculations do not have a similar rigor. Often there is no recognition of cost reductions with integrated design, nor is there assessment of cost interactions amongst measures. This lack of rigor feeds the notion that high-performance buildings cost more, creating a barrier for design teams pursuing aggressive high-performance outcomes. This study proposes an alternative integrated methodology to arrive at a lower perceived incremental cost for improved energy performance. The methodology is based on the use of energy simulations as means towards integrated design and cost estimation. Various points along the spectrum of integration are identified and characterized by the amount of design effort invested, the scheduling of effort, and relative energy performance of the resultant design. It includes a study of the interactions between building system parameters as they relate to capital costs. Several cost interactions amongst energy measures are found to be significant.The value of this approach is demonstrated with alternatives in a case study that shows the differences between perceived costs for energy measures along various points on the integration spectrum. These alternatives show design tradeoffs and identify how decisions would have been different with a standard costing approach. Areas of further research to make the methodology more robust are identified. Policy measures to encourage the integrated approach and reduce the barriers towards improved energy performance are discussed.

  4. Mathematical Modelling of Predatory Prokaryotes

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2006-01-01

    Predator–prey models have a long history in mathematical modelling of ecosystem dynamics and evolution. In this chapter an introduction to the methodology of mathematical modelling is given, with emphasis on microbial predator–prey systems, followed by a description of variants of the basic

  5. Implementasi Seo Web Design Methodology Pada Official Homepage Pondok Pesantren Qodratullah

    OpenAIRE

    Ependi, Usman

    2013-01-01

    Homepage or website for an organization is a way to deliver information to the public. Now the number of homepage or website of the day is always increasing both personal or owned by the organization. To communicate or disseminate information homepage/ website Islamic Boarding School of Qodratullah need a surefire way to use the Search Engine Optimization Web Design Methodology. Conducted with the implementation of the Search Engine Optimization Web Design Methodology on the homepage/ website...

  6. When Playing Meets Learning: Methodological Framework for Designing Educational Games

    Science.gov (United States)

    Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich

    Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.

  7. A design methodology to reduce waste in the construction process

    Institute of Scientific and Technical Information of China (English)

    AndrewN.BALDWIN; SimonA.AUSTIN; AndrewKEYS

    2003-01-01

    This paper describes a conceptual tool to enable construction professional to identify where waste is generated during the construction of buildings and address how it can be reduced. It allows an improvement in the waste management practices on site by forecasting future waste types and volumes. It will reduce waste volumes on site through identification of wasteful design practices. The tool contributes to all stages of design and construction. At the Concept Stage of Design the proposed methodology provides a framework for reducing waste through better informed decisions. At the Detailed Design Stage it gives a methodology to address the areas of concern and provide focused information to aid the reduction of waste through informed design decisions. During construction it provides a tool to predict waste types arising on site thus allowing a system of proaclive waste management that will aid skip segregation strategies leading to improved waste recycling and waste reuse.

  8. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  9. Perception-oriented methodology for robust motion estimation design

    NARCIS (Netherlands)

    Heinrich, A.; Vleuten, van der R.J.; Haan, de G.

    2014-01-01

    Optimizing a motion estimator (ME) for picture rate conversion is challenging. This is because there are many types of MEs and, within each type, many parameters, which makes subjective assessment of all the alternatives impractical. To solve this problem, we propose an automatic design methodology

  10. Methodology is more than research design and technology.

    Science.gov (United States)

    Proctor, Robert W

    2005-05-01

    The Society for Computers in Psychology has been at the forefront of disseminating information about advances in computer technology and their applications for psychologists. Although technological advances, as well as clean research designs, are key contributors to progress in psychological research, the justification of methodological rules for interpreting data and making theory choices is at least as important. Historically, methodological beliefs and practices have been justified through intuition and logic, an approach known as foundationism. However, naturalism, a modern approach in the philosophy of science inspired by the work of Thomas S. Kuhn, indicates that all aspects of scientific practice, including its methodology, should be evaluated empirically. This article examines implications of the naturalistic approach for psychological research methods in general and for the current debate that is often framed as one of qualitative versus quantitative methods.

  11. Design Research with a Focus on Learning Processes: An Overview on Achievements and Challenges

    Science.gov (United States)

    Prediger, Susanne; Gravemeijer, Koeno; Confrey, Jere

    2015-01-01

    Design research continues to gain prominence as a significant methodology in the mathematics education research community. This overview summarizes the origins and the current state of design research practices focusing on methodological requirements and processes of theorizing. While recognizing the rich variations in the foci and scale of design…

  12. On-chip high-voltage generator design design methodology for charge pumps

    CERN Document Server

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  13. Snapshots of mathematics teacher noticing during task design

    Science.gov (United States)

    Choy, Ban Heng

    2016-09-01

    Designing a mathematically worthwhile task is critical for promoting students' reasoning. To improve task design skills, teachers often engage in collaborative lesson planning activities such as lesson study. However, to learn from the process of lesson study, it is important for teachers to notice productively the concepts, students' confusion and the design of the task. But what researchers mean by productive noticing varies. In this article, I present the FOCUS Framework which highlights two characteristics of productive noticing: having an explicit focus for noticing and focusing noticing through pedagogical reasoning. Using these two characteristics, I develop snapshots of noticing as a representation of practice to present a fine-grained analysis of teacher noticing. Through vignettes of teachers discussing the design of a task to teach fractions, I illustrate how two teachers' noticing can be analysed and represented using snapshots of noticing. To conclude, I highlight what snapshots of noticing tell us about a teacher's noticing and suggest ways to use these snapshots in future studies of noticing.

  14. Methodology for object-oriented real-time systems analysis and design: Software engineering

    Science.gov (United States)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  15. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  16. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  17. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  18. System-Level Design Methodologies for Networked Multiprocessor Systems-on-Chip

    DEFF Research Database (Denmark)

    Virk, Kashif Munir

    2008-01-01

    is the first such attempt in the published literature. The second part of the thesis deals with the issues related to the development of system-level design methodologies for networked multiprocessor systems-on-chip at various levels of design abstraction with special focus on the modeling and design...... at the system-level. The multiprocessor modeling framework is then extended to include models of networked multiprocessor systems-on-chip which is then employed to model wireless sensor networks both at the sensor node level as well as the wireless network level. In the third and the final part, the thesis...... to the transaction-level model. The thesis, as a whole makes contributions by describing a design methodology for networked multiprocessor embedded systems at three layers of abstraction from system-level through transaction-level to the cycle accurate level as well as demonstrating it practically by implementing...

  19. Methodology for Designing Operational Banking Risks Monitoring System

    Science.gov (United States)

    Kostjunina, T. N.

    2018-05-01

    The research looks at principles of designing an information system for monitoring operational banking risks. A proposed design methodology enables one to automate processes of collecting data on information security incidents in the banking network, serving as the basis for an integrated approach to the creation of an operational risk management system. The system can operate remotely ensuring tracking and forecasting of various operational events in the bank network. A structure of a content management system is described.

  20. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  1. A study on the advanced statistical core thermal design methodology

    International Nuclear Information System (INIS)

    Lee, Seung Hyuk

    1992-02-01

    A statistical core thermal design methodology for generating the limit DNBR and the nominal DNBR is proposed and used in assessing the best-estimate thermal margin in a reactor core. Firstly, the Latin Hypercube Sampling Method instead of the conventional Experimental Design Technique is utilized as an input sampling method for a regression analysis to evaluate its sampling efficiency. Secondly and as a main topic, the Modified Latin Hypercube Sampling and the Hypothesis Test Statistics method is proposed as a substitute for the current statistical core thermal design method. This new methodology adopts 'a Modified Latin Hypercube Sampling Method' which uses the mean values of each interval of input variables instead of random values to avoid the extreme cases that arise in the tail areas of some parameters. Next, the independence between the input variables is verified through 'Correlation Coefficient Test' for statistical treatment of their uncertainties. And the distribution type of DNBR response is determined though 'Goodness of Fit Test'. Finally, the limit DNBR with one-sided 95% probability and 95% confidence level, DNBR 95/95 ' is estimated. The advantage of this methodology over the conventional statistical method using Response Surface and Monte Carlo simulation technique lies in its simplicity of the analysis procedure, while maintaining the same level of confidence in the limit DNBR result. This methodology is applied to the two cases of DNBR margin calculation. The first case is the application to the determination of the limit DNBR where the DNBR margin is determined by the difference between the nominal DNBR and the limit DNBR. The second case is the application to the determination of the nominal DNBR where the DNBR margin is determined by the difference between the lower limit value of the nominal DNBR and the CHF correlation limit being used. From this study, it is deduced that the proposed methodology gives a good agreement in the DNBR results

  2. MATHEMATICAL AND INFORMATION SUPPORT FOR CALCULATION AND DESIGN OF TUBE GAS HEATERS LOCATED IN STRUCTURES

    Directory of Open Access Journals (Sweden)

    CHORNOMORETS H. Y.

    2016-02-01

    Full Text Available Raising of problem. For the design and construction of tube gas heaters in building structures to need solve the problems of analysis and synthesis of such heating system. The mathematical model of this system is consists of: mathematical model of the tube gas heater, mathematical model of heat distribution in the building structure and corresponding boundary conditions. To solve the tasks of analysis and synthesis must be appropriate mathematical and information support. Purpose. The purpose of this paper is to describe the developed mathematical and information support that solve the problems of analysis and synthesis of heating systems with gas tube heaters, located in building constructions.Conclusion. Mathematical support includes the development of algorithms and software for the numerical solution of problems analysis and synthesis heating system. Information support includes all the necessary parameters characterizing the thermal properties of materials which used in the heating system, and the parameters characterizing the heat exchange between the coolant and components of the heating system. It was developed algorithms for solving problems of analysis and synthesis heating system with tube gas heater located in structures to use evolutionary search algorithm and software. It was made experimental study and was obtained results allow to calculate the heat transfer from the gas-air mixture to the boundary surface of the building structure. This results and computation will provide full information support for solving problems of analysis and synthesis of the heating system. Was developed mathematical and software support, which allows to solve the problems of analysis and synthesis heating systems with gas tube heaters, located in building structures. Tube gas heaters located in the building structures allows with small capital expenditures to provide space heating. Is necessary to solve the problems of analysis (calculation and

  3. Alternative methodology for using Eureka software in the teaching-learning process

    Directory of Open Access Journals (Sweden)

    Yudeisy Cudina-Guerrero

    2017-03-01

    Full Text Available In order to fulfill one of the aspects that characterized the curriculum for the training of ordinary skill in the Technical and Vocational Education which states: increase student learning in mathematics in particular, where teachers use the computer effectively as a teaching, and thus eliminate academic failure, an alternative methodology was developed to use the Eureka software, which was presented to teachers and provincial methodologists of mathematics, as well as students of Accounting, it helped to further learning students at Work with Variables. The proposal was designed to achieve a formative learning accordingly to the objectives of the program it requires Mathematics. The relevance of the alternative was assessed by consulting specialists, where they corroborated that can be educational practice.

  4. A Further Study of Productive Failure in Mathematical Problem Solving: Unpacking the Design Components

    Science.gov (United States)

    Kapur, Manu

    2011-01-01

    This paper replicates and extends my earlier work on productive failure in mathematical problem solving (Kapur, doi:10.1007/s11251-009-9093-x, 2009). One hundred and nine, seventh-grade mathematics students taught by the same teacher from a Singapore school experienced one of three learning designs: (a) traditional lecture and practice (LP), (b)…

  5. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  6. Evaluation methodology of a manipulator actuator for the dismantling process during nuclear decommissioning

    International Nuclear Information System (INIS)

    Park, Jongwon; Kim, Chang-Hoi; Jeong, Kyung-min; Choi, Byung-Seon; Moon, Jeikwon

    2016-01-01

    Highlights: • A methodology to evaluate actuators of a dismantling manipulator. • Evaluation criteria for choosing the most suitable actuator type. • A mathematical evaluation model for evaluation. • The evaluation method is expected to be used for determining other manipulators. - Abstract: This paper presents a methodology to evaluate actuators of a manipulator for dismantling nuclear power plants. Actuators are the most dominant components because a dismantling manipulator relies heavily on the actuator type used. To select the most suitable actuator, evaluation criteria are presented in four categories based on the nuclear dismantling environment. A mathematical model is presented and evaluation results are calculated with weights and scores for each criterion. The proposed evaluation method is expected to be used for determining other aspects of the design of dismantling manipulators.

  7. CONTEXT AND EMPIRICAL APPROACH TO FORMATION OF MATHEMATICAL COMPETENCE IN STUDENTS OF HUMANITARIAN TRAINING DIRECTIONS AT UNIVERSITY

    Directory of Open Access Journals (Sweden)

    S V Shcherbatykh

    2016-12-01

    Full Text Available The article deals with the formation of students’ mathematical competence in higher humanitarian education. The scientific literature analysis and pedagogical experience has shown that in spite of the numerous studies conducted in this area, the idea of coupling mathematical education of the humanitarians with their cultural, methodological and professional training remains. In our opinion, the design of mathematical training of the humanitarians must rely on the theory of activity, which brings together the main statements of methodology, pedagogy, psychology, such as the principles and methods of teaching, the problems of the peculiarities of students’ thinking, the increase of the level of their cognitive activity, the person’s education as a whole.The article presents the components of mathematical competence, criteria indicators, stages and levels of its formation. For the formation of mathematical competence it is proposed to apply context- empirical approach and developed on the basis of its organizational and pedagogical model (the main elements of this model are described in the article. In conclusion the pedagogical conditions of effective formation of mathematical competence in students in the system profile of humanitarian education are highlighted and revealed.

  8. Mathematical concepts for mechanical engineering design

    CERN Document Server

    Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli

    2013-01-01

    PrefaceIntroductionHeat Flow: From Theory to PracticeDispersed Fluid and Ideal Fluid MechanicsModeling for Pressure Wave into Water PipelineHeat Transfer and Vapor BubbleMathematical Concepts and Computational Approaches on Hydrodynamics InstabilityMathematical Concepts and Dynamic ModelingModeling for Predictions of Air Entrance into Water PipelineIndex

  9. A design and experimental verification methodology for an energy harvester skin structure

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D.

    2011-05-01

    This paper presents a design and experimental verification methodology for energy harvesting (EH) skin, which opens up a practical and compact piezoelectric energy harvesting concept. In the past, EH research has primarily focused on the design improvement of a cantilever-type EH device. However, such EH devices require additional space for proof mass and fixture and sometimes result in significant energy loss as the clamping condition becomes loose. Unlike the cantilever-type device, the proposed design is simply implemented by laminating a thin piezoelectric patch onto a vibrating structure. The design methodology proposed, which determines a highly efficient piezoelectric material distribution, is composed of two tasks: (i) topology optimization and (ii) shape optimization of the EH material. An outdoor condensing unit is chosen as a case study among many engineered systems with harmonic vibrating configuration. The proposed design methodology determined an optimal PZT material configuration on the outdoor unit skin structure. The designed EH skin was carefully prototyped to demonstrate that it can generate power up to 3.7 mW, which is sustainable for operating wireless sensor units for structural health monitoring and/or building automation.

  10. A design and experimental verification methodology for an energy harvester skin structure

    International Nuclear Information System (INIS)

    Lee, Soobum; Youn, Byeng D

    2011-01-01

    This paper presents a design and experimental verification methodology for energy harvesting (EH) skin, which opens up a practical and compact piezoelectric energy harvesting concept. In the past, EH research has primarily focused on the design improvement of a cantilever-type EH device. However, such EH devices require additional space for proof mass and fixture and sometimes result in significant energy loss as the clamping condition becomes loose. Unlike the cantilever-type device, the proposed design is simply implemented by laminating a thin piezoelectric patch onto a vibrating structure. The design methodology proposed, which determines a highly efficient piezoelectric material distribution, is composed of two tasks: (i) topology optimization and (ii) shape optimization of the EH material. An outdoor condensing unit is chosen as a case study among many engineered systems with harmonic vibrating configuration. The proposed design methodology determined an optimal PZT material configuration on the outdoor unit skin structure. The designed EH skin was carefully prototyped to demonstrate that it can generate power up to 3.7 mW, which is sustainable for operating wireless sensor units for structural health monitoring and/or building automation. (technical note)

  11. Direct numerical methods of mathematical modeling in mechanical structural design

    International Nuclear Information System (INIS)

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  12. Core design methodology and software for Temelin NPP

    International Nuclear Information System (INIS)

    Havluj, F; Hejzlar, J.; Klouzal, J.; Stary, V.; Vocka, R.

    2011-01-01

    In the frame of the process of fuel vendor change at Temelin NPP in the Czech Republic, where, starting since 2010, TVEL TVSA-T fuel is loaded instead of Westinghouse VVANTAGE-6 fuel, new methodologies for core design and core reload safety evaluation have been developed. These documents are based on the methodologies delivered by TVEL within the fuel contract, and they were further adapted according to Temelin NPP operational needs and according to the current practice at NPP. Along with the methodology development the 3D core analysis code ANDREA, licensed for core reload safety evaluation in 2010, have been upgraded in order to optimize the safety evaluation process. New sequences of calculations were implemented in order to simplify the evaluation of different limiting parameters and output visualization tools were developed to make the verification process user friendly. Interfaces to the fuel performance code TRANSURANUS and sub-channel analysis code SUBCAL were developed as well. (authors)

  13. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    Science.gov (United States)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  14. Nuclear reactor conceptual design: methodology for cost-effective internalisation of nuclear safety

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2002-01-01

    A novel and promising methodology to perform nuclear reactor design is presented in this work. It achieves to balance efficiently safety and economics at the conceptual engineering stage. The key to this integral approach is to take into account safety aspects in a design optimisation process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behaviour during accidents and from its probabilistic safety assessment -safety performance indicators-, are synthesised on Safety Design Maps. These maps allow one to compare these indicators with limit values, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimisation process, by means of additional rules to the neutronic, thermal-hydraulic and mechanical calculations. This methodology turns out to be promising to balance and optimise reactor and safety system design in an early engineering stage, in order to internalise cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels. Furthermore, through this methodology, a simplified design can be obtained, compared to the resultant complexity when these concepts are introduced in a later engineering stage. (author)

  15. Novice Mathematics Teachers Create Themselves

    Science.gov (United States)

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  16. An automated methodology development. [software design for combat simulation

    Science.gov (United States)

    Hawley, L. R.

    1985-01-01

    The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.

  17. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  18. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  19. A cost-effective methodology to internalize nuclear safety in nuclear reactor conceptual design

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2003-01-01

    A new methodology to perform nuclear reactor design, balancing safety and economics at the conceptual engineering stage, is presented in this work. The goal of this integral methodology is to take into account safety aspects in an optimization design process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behavior during accidents (safety performance indicators), are synthesized on Design Maps. These maps allow one to compare the safety indicator with limits, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimization process, by means of additional rules to the neutronic, thermal-hydraulic, and mechanical calculations. An application of the methodology, implemented in Integrated Reactor Evaluation Program 3 (IREP3) code, to optimize safety systems of CAREM prototype is presented. It consists in balancing the designs of the Emergency Injection System (EIS), the Residual Heat Removal System (RHRS), the primary circuit water inventory and the containment height, to cope with loss of coolant and loss of heat sink (LOHS) accidental sequences, taking into account cost and reactor performance. This methodology turns out to be promising to internalize cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels

  20. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  1. Explorations in Elementary Mathematical Modeling

    Science.gov (United States)

    Shahin, Mazen

    2010-01-01

    In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…

  2. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  3. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  4. Thin Film Heat Flux Sensors: Design and Methodology

    Science.gov (United States)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  5. Development of a novel set of criteria to select methodology for designing product service systems

    Directory of Open Access Journals (Sweden)

    Tuananh Tran

    2016-04-01

    Full Text Available This paper proposes eight groups of twenty nine scoring criteria that can help designers and practitioners to compare and select an appropriate methodology for a certain problem in designing product service system (PSS. PSS has been researched for more than a decade and is now becoming more and more popular in academia as well as industry. Despite that fact, the adoption of PSS is still limited for its potential. One of the main reasons is that designing PSS itself is a challenge. Designers and developers face difficulties in choosing appropriate PSS design methodologies for their projects so that they can design effective PSS offerings. By proposing eight groups of twenty nine scoring criteria, this paper enables a “step by step” process to identify the most appropriate design methodology for a company’s PSS problem. An example is also introduced to illustrate the use of the proposed scoring criteria and provide a clear picture of how different design methodologies can be utilized at their best in terms of application.

  6. PROGRAMMING FUNDAMENTALS TEACHING TO THE STUDENTS OF PHYSICO-MATHEMATICAL PROFILE

    Directory of Open Access Journals (Sweden)

    Vdovychyn Tatiana

    2017-05-01

    Full Text Available The article provides methodical recommendations on studying of the discipline "Informatics" for the specialists preparation of the first (Bachelor level of higher education of the field of knowledge 01 "Education" of the specialty 014.04 "Secondary education (mathematics", 014.08 "Secondary education (physics". This discipline plays a particularly important role in the higher education establishments physical and mathematical field specialists training, since it combines both the fundamental concepts and principles of various mathematical and informatics disciplines, as well as applied models and algorithms for their application. The methodological aspects of the discipline "Informatics" study include the pedagogical feasibility of the forms, methods and means of training for students who are qualified as a teacher of mathematics and a physics teacher respectively. The discipline program includes issues on informatics theoretical foundations, applied software, and the basics of programming. Students are encouraged to consider the basics of programming in the C ++ environment. Basic C ++ language designs have a convenient, professional programming toolkit. Integrated C ++ environment is characterized by speed, convenience in debugging and compiling of the program. Therefore, the article focuses on the practical skills formation in the C ++ environment for the students of the physical and mathematical profile and highlights the methodological aspects of the C ++ programming language use in the course of the discipline "Informatics" teaching. The formation of practical skills takes place during the performance of laboratory works, namely: the original problem setting, the construction of an algorithm for its solution, analysis of the received results.

  7. Design methodology for flexible energy conversion systems accounting for dynamic performance

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Casati, Emiliano; Casella, Francesco

    2014-01-01

    This article presents a methodology to help in the definition of the optimal design of power generation systems. The innovative element is the integration of requirements on dynamic performance into the system design procedure. Operational flexibility is an increasingly important specification...

  8. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  9. Hipatia: a hypermedia learning environment in mathematics

    Directory of Open Access Journals (Sweden)

    Marisol Cueli

    2016-01-01

    Full Text Available Literature revealed the benefits of different instruments for the development of mathematical competence, problem solving, self-regulated learning, affective-motivational aspects and intervention in students with specific difficulties in mathematics. However, no one tool combined all these variables. The aim of this study is to present and describe the design and development of a hypermedia tool, Hipatia. Hypermedia environments are, by definición, adaptive learning systems, which are usually a web-based application program that provide a personalized learning environment. This paper describes the principles on which Hipatia is based as well as a review of available technologies developed in different academic subjects. Hipatia was created to boost self-regulated learning, develop specific math skills, and promote effective problem solving. It was targeted toward fifth and sixth grade students with and without learning difficulties in mathematics. After the development of the tool, we concluded that it aligned well with the logic underlying the principles of self-regulated learning. Future research is needed to test the efficacy of Hipatia with an empirical methodology.

  10. Exploring grade 3 teachers' resistance to `take up' progressive mathematics teaching roles

    Science.gov (United States)

    Westaway, Lise; Graven, Mellony

    2018-03-01

    This article addresses the question: Why teachers of mathematics have yet to `take up' progressive roles? Drawing on the philosophy of critical realism and its methodological equivalent, social realism, we analyse interview and observation data of four grade 3 teachers, with the view to identifying the mechanisms conditioning the expression of teachers' identities. In so doing, we show how post-apartheid changes in systemic roles of teachers create contradictory tensions for teachers as these bring their own mathematical learning and teaching experiences into contradiction with the new post-apartheid roles they are mandated to enact. We examine how this contradiction, together with beliefs about mathematics, pedagogy and learners, is expressed in the teaching of grade 3 mathematics. We maintain that the complementarity between teachers' beliefs and old systemic roles provides an explanation for why teachers of grade 3 mathematics have yet to `take-up' progressive roles. The implications point to the need for teacher development that creates enablers that lead to changes in classroom practices that align with policy-designated, progressive roles in teaching mathematics.

  11. Ecological impact study methodology for hydrotechnical projects

    International Nuclear Information System (INIS)

    Manoliu, Mihai; Toculescu, Razvan

    1993-01-01

    Besides the expected benefits, hydrotechnical projects may entail unfavorable effects on the hydrological regime, environment, health and living conditions of the population. Rational water resource management should take into consideration both the favorable and unfavorable effects. This implies the assessment of socio-economic and environmental impacts of the changes of the hydrological regime. The paper proposes a methodology for carrying out impact studies of hydrotechnical projects. The results of the work are presented graphically on the basis of composite programing. A summary of mathematical methods involved in impact study design is also presented. (authors)

  12. Prepare 2 Learn: A mathematics intervention program for students at risk in Years 3 to 6 designed to help them reach expected level and become confident, responsible, independent mathematics learners

    OpenAIRE

    BERNADETTE MARY LONG

    2017-01-01

    This study reports on an intervention, Prepare 2 Learn, designed taking into account research literature and components of other successful mathematics programs. The research targeted students approximately 6 months behind the expected mathematics level for their year. The intervention consisted of four key components: building prerequisite knowledge of mathematical language, concepts, and skills to prepare students for their classroom mathematics; increasing fluency with mental computation; ...

  13. KALIMER database development (database configuration and design methodology)

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kwon, Young Min; Lee, Young Bum; Chang, Won Pyo; Hahn, Do Hee

    2001-10-01

    KALIMER Database is an advanced database to utilize the integration management for Liquid Metal Reactor Design Technology Development using Web Applicatins. KALIMER Design database consists of Results Database, Inter-Office Communication (IOC), and 3D CAD database, Team Cooperation system, and Reserved Documents, Results Database is a research results database during phase II for Liquid Metal Reactor Design Technology Develpment of mid-term and long-term nuclear R and D. IOC is a linkage control system inter sub project to share and integrate the research results for KALIMER. 3D CAD Database is s schematic design overview for KALIMER. Team Cooperation System is to inform team member of research cooperation and meetings. Finally, KALIMER Reserved Documents is developed to manage collected data and several documents since project accomplishment. This report describes the features of Hardware and Software and the Database Design Methodology for KALIMER

  14. A methodology for system-of-systems design in support of the engineering team

    Science.gov (United States)

    Ridolfi, G.; Mooij, E.; Cardile, D.; Corpino, S.; Ferrari, G.

    2012-04-01

    Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness information. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEPS. STEPS—Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research

  15. A Human-Centered Design Methodology to Enhance the Usability, Human Factors, and User Experience of Connected Health Systems: A Three-Phase Methodology

    Science.gov (United States)

    Harte, Richard; Glynn, Liam; Rodríguez-Molinero, Alejandro; Baker, Paul MA; Scharf, Thomas; ÓLaighin, Gearóid

    2017-01-01

    Background Design processes such as human-centered design, which involve the end user throughout the product development and testing process, can be crucial in ensuring that the product meets the needs and capabilities of the user, particularly in terms of safety and user experience. The structured and iterative nature of human-centered design can often present a challenge when design teams are faced with the necessary, rapid, product development life cycles associated with the competitive connected health industry. Objective We wanted to derive a structured methodology that followed the principles of human-centered design that would allow designers and developers to ensure that the needs of the user are taken into account throughout the design process, while maintaining a rapid pace of development. In this paper, we present the methodology and its rationale before outlining how it was applied to assess and enhance the usability, human factors, and user experience of a connected health system known as the Wireless Insole for Independent and Safe Elderly Living (WIISEL) system, a system designed to continuously assess fall risk by measuring gait and balance parameters associated with fall risk. Methods We derived a three-phase methodology. In Phase 1 we emphasized the construction of a use case document. This document can be used to detail the context of use of the system by utilizing storyboarding, paper prototypes, and mock-ups in conjunction with user interviews to gather insightful user feedback on different proposed concepts. In Phase 2 we emphasized the use of expert usability inspections such as heuristic evaluations and cognitive walkthroughs with small multidisciplinary groups to review the prototypes born out of the Phase 1 feedback. Finally, in Phase 3 we emphasized classical user testing with target end users, using various metrics to measure the user experience and improve the final prototypes. Results We report a successful implementation of the

  16. Design process dynamics in an experience-based context : a design methodological analysis of the Brabantia corkscrew development

    NARCIS (Netherlands)

    Vries, de M.J.

    1994-01-01

    In design methodology, the influence of various factors on design processes is studied. In this article the design of the Brabantia corkscrew is presented as a case study in which these factors are analysed. The aim of the analysis is to gain insight into the way Brabantia took these factors into

  17. Progressive design methodology for complex engineering systems based on multiobjective genetic algorithms and linguistic decision making

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    This work focuses on a design methodology that aids in design and development of complex engineering systems. This design methodology consists of simulation, optimization and decision making. Within this work a framework is presented in which modelling, multi-objective optimization and multi

  18. Mathematical models in medicine: Diseases and epidemics

    International Nuclear Information System (INIS)

    Witten, M.

    1987-01-01

    This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling

  19. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  20. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  1. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  2. Development of mathematical model to predict the mechanical properties of friction stir

    Directory of Open Access Journals (Sweden)

    R. Palanivel

    2011-01-01

    Full Text Available This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength,yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft anddefense Industries by incorporating (FSW friction stir welding process parameter such as tool rotational speed, weldingspeed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design withfull replications technique. Response surface methodology (RSM is employed to develop the mathematical model. Analysisof variance (ANOVA Technique is used to check the adequacy of the developed mathematical model. The developedmathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanicalproperties of AA6351 aluminum alloy has been analyzed in detail.

  3. Methodology for fire PSA during design process

    International Nuclear Information System (INIS)

    Kollasko, Heiko; Blombach, Joerg

    2009-01-01

    Fire PSA is an essential part of a full scope level 1 PSA. Cable fires play an important role in fire PSA. Usually, cable routing is therefore modeled in detail. During the design of new nuclear power plants the information on cable routing is not yet available. However, for the use of probabilistic safety insights during the design and for licensing purposes a fire PSA may be requested. Therefore a methodology has been developed which makes use of the strictly divisional separation of redundancies in the design of modern nuclear power plants: cable routing is not needed within one division but replaced by the conservative assumption that all equipment fails due to a fire in the concerned division; critical fire areas are defined where components belonging to different divisions may be affected by a fire. For the determination of fire frequencies a component based approach is proposed. The resulting core damage frequencies due to fire are conservative. (orig.)

  4. Information System Design Methodology Based on PERT/CPM Networking and Optimization Techniques.

    Science.gov (United States)

    Bose, Anindya

    The dissertation attempts to demonstrate that the program evaluation and review technique (PERT)/Critical Path Method (CPM) or some modified version thereof can be developed into an information system design methodology. The methodology utilizes PERT/CPM which isolates the basic functional units of a system and sets them in a dynamic time/cost…

  5. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  6. Design of a Mathematical Unit in FPGA for the Implementation of the Control of a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Juan José Raygoza-Panduro

    2008-01-01

    Full Text Available This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex operations such as mathematical functions including sine and cosine, among others. The proposed unit is used to synthesize a sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level of mathematical calculations in small time periods. The core is designed to calculate trigonometric and arithmetic operations in such a way that each function is performed in a clock cycle. In this paper, the results of the mathematical core are shown in terms of implementation, utilization, and application to control a magnetic levitation system.

  7. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  8. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Directory of Open Access Journals (Sweden)

    João Raposo

    2015-05-01

    Full Text Available This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city’s urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE’s characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  9. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Science.gov (United States)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  10. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization......, especially chemical conversion, processes. To achieve this, a generic methodology has been developed, which adopts a three-stage approach consisting in (i) process synthesis, (ii) process design, and (iii) innovative and sustainable design [3]. This methodology, with the individual steps and associated...... methods and tools, has been developed and applied to carbon dioxide utilization networks. This work will focus on the first stage, process synthesis, of this three-stage methodology; process synthesis is important in determining the appropriate processing route to produce products from a selection...

  11. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    OpenAIRE

    Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...

  12. A Human-Centered Design Methodology to Enhance the Usability, Human Factors, and User Experience of Connected Health Systems: A Three-Phase Methodology.

    Science.gov (United States)

    Harte, Richard; Glynn, Liam; Rodríguez-Molinero, Alejandro; Baker, Paul Ma; Scharf, Thomas; Quinlan, Leo R; ÓLaighin, Gearóid

    2017-03-16

    Design processes such as human-centered design, which involve the end user throughout the product development and testing process, can be crucial in ensuring that the product meets the needs and capabilities of the user, particularly in terms of safety and user experience. The structured and iterative nature of human-centered design can often present a challenge when design teams are faced with the necessary, rapid, product development life cycles associated with the competitive connected health industry. We wanted to derive a structured methodology that followed the principles of human-centered design that would allow designers and developers to ensure that the needs of the user are taken into account throughout the design process, while maintaining a rapid pace of development. In this paper, we present the methodology and its rationale before outlining how it was applied to assess and enhance the usability, human factors, and user experience of a connected health system known as the Wireless Insole for Independent and Safe Elderly Living (WIISEL) system, a system designed to continuously assess fall risk by measuring gait and balance parameters associated with fall risk. We derived a three-phase methodology. In Phase 1 we emphasized the construction of a use case document. This document can be used to detail the context of use of the system by utilizing storyboarding, paper prototypes, and mock-ups in conjunction with user interviews to gather insightful user feedback on different proposed concepts. In Phase 2 we emphasized the use of expert usability inspections such as heuristic evaluations and cognitive walkthroughs with small multidisciplinary groups to review the prototypes born out of the Phase 1 feedback. Finally, in Phase 3 we emphasized classical user testing with target end users, using various metrics to measure the user experience and improve the final prototypes. We report a successful implementation of the methodology for the design and development

  13. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  14. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    Science.gov (United States)

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  15. Methodology applied in Cuba for siting, designing, and building a radioactive waste repository under safety conditions

    International Nuclear Information System (INIS)

    Orbera, L.; Peralta, J.L.; Franklin, R.; Gil, R.; Chales, G.; Rodriguez, A.

    1993-01-01

    The work presents the methodology used in Cuba for siting, designing, and building a radioactive waste repository safely. This methodology covers both the technical and socio-economic factors, as well as those of design and construction so as to have a safe siting for this kind of repository under Cuba especial condition. Applying this methodology will results in a safe repository

  16. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanopa, Amornchai; Gani, Rafiqul

    2013-01-01

    A systematic design methodology is developed for producing multiple main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data........ Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  17. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.

  18. Systemic design methodologies for electrical energy systems analysis, synthesis and management

    CERN Document Server

    Roboam, Xavier

    2012-01-01

    This book proposes systemic design methodologies applied to electrical energy systems, in particular analysis and system management, modeling and sizing tools. It includes 8 chapters: after an introduction to the systemic approach (history, basics & fundamental issues, index terms) for designing energy systems, this book presents two different graphical formalisms especially dedicated to multidisciplinary devices modeling, synthesis and analysis: Bond Graph and COG/EMR. Other systemic analysis approaches for quality and stability of systems, as well as for safety and robustness analysis tools are also proposed. One chapter is dedicated to energy management and another is focused on Monte Carlo algorithms for electrical systems and networks sizing. The aim of this book is to summarize design methodologies based in particular on a systemic viewpoint, by considering the system as a whole. These methods and tools are proposed by the most important French research laboratories, which have many scientific partn...

  19. Three-dimensional design methodologies for tree-based FPGA architecture

    CERN Document Server

    Pangracious, Vinod; Mehrez, Habib

    2015-01-01

    This book focuses on the development of 3D design and implementation methodologies for Tree-based FPGA architecture. It also stresses the needs for new and augmented 3D CAD tools to support designs such as, the design for 3D, to manufacture high performance 3D integrated circuits and reconfigurable FPGA-based systems. This book was written as a text that covers the foundations of 3D integrated system design and FPGA architecture design. It was written for the use in an elective or core course at the graduate level in field of Electrical Engineering, Computer Engineering and Doctoral Research programs. No previous background on 3D integration is required, nevertheless fundamental understanding of 2D CMOS VLSI design is required. It is assumed that reader has taken the core curriculum in Electrical Engineering or Computer Engineering, with courses like CMOS VLSI design, Digital System Design and Microelectronics Circuits being the most important. It is accessible for self-study by both senior students and profe...

  20. A methodology for extracting the electrical properties of human skin

    International Nuclear Information System (INIS)

    Birgersson, Ulrik; Nicander, Ingrid; Ollmar, Stig; Birgersson, Erik

    2013-01-01

    A methodology to determine dielectrical properties of human skin is presented and analyzed. In short, it is based on a mathematical model that considers the local transport of charge in the various layers of the skin, which is coupled with impedance measurements of both stripped and intact skin, an automated code generator, and an optimization algorithm. New resistivity and permittivity values for the stratum corneum soaked with physiological saline solution for 1 min and the viable skin beneath are obtained and expressed as easily accessible functions. The methodology can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation. (paper)

  1. Design-Based Research: Is This a Suitable Methodology for Short-Term Projects?

    Science.gov (United States)

    Pool, Jessica; Laubscher, Dorothy

    2016-01-01

    This article reports on a design-based methodology of a thesis in which a fully face-to-face contact module was converted into a blended learning course. The purpose of the article is to report on how design-based phases, in the form of micro-, meso- and macro-cycles were applied to improve practice and to generate design principles. Design-based…

  2. Explorations in Elementary Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Mazen Shahin

    2010-06-01

    Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.

  3. Foreword to the Special Focus on Mathematics, Data and Knowledge

    KAUST Repository

    Chen, Xiaoyu

    2013-12-01

    There is a growing interest in applying mathematical theories and methods from topology, computational geometry, differential equations, fluid dynamics, quantum statistics, etc. to describe and to analyze scientific regularities of diverse, massive, complex, nonlinear, and fast changing data accumulated continuously around the world and in discovering and revealing valid, insightful, and valuable knowledge that data imply. With increasingly solid mathematical foundations, various methods and techniques have been studied and developed for data mining, modeling, and processing, and knowledge representation, organization, and verification; different systems and mechanisms have been designed to perform data-intensive tasks in many application fields for classification, predication, recommendation, ranking, filtering, etc. This special focus of Mathematics in Computer Science is organized to stimulate original research on the interaction of mathematics with data and knowledge, in particular the exploration of new mathematical theories and methodologies for data modeling and analysis and knowledge discovery and management, the study of mathematical models of big data and complex knowledge, and the development of novel solutions and strategies to enhance the performance of existing systems and mechanisms for data and knowledge processing. The present foreword provides a short review of some key ideas and techniques on how mathematics interacts with data and knowledge, together with a few selected research directions and problems and a brief introduction to the four papers published in the focus. © 2013 Springer Basel.

  4. A methodological approach to the design of optimising control strategies for sewer systems

    DEFF Research Database (Denmark)

    Mollerup, Ane Loft; Mikkelsen, Peter Steen; Sin, Gürkan

    2016-01-01

    This study focuses on designing an optimisation based control for sewer system in a methodological way and linking itto a regulatory control. Optimisation based design is found to depend on proper choice of a model, formulation of objective function and tuning of optimisation parameters. Accordin......This study focuses on designing an optimisation based control for sewer system in a methodological way and linking itto a regulatory control. Optimisation based design is found to depend on proper choice of a model, formulation of objective function and tuning of optimisation parameters....... Accordingly, two novel optimisation configurations are developed, where the optimisation either acts on the actuators or acts on the regulatory control layer. These two optimisation designs are evaluated on a sub-catchment of the sewer system in Copenhagen, and found to perform better than the existing...

  5. Designing food supply chains- a structured methodology: a case on novel protein foods

    OpenAIRE

    Apaiah, R.K.

    2006-01-01

    This thesis proposes and implements a structured methodology to aid in chain design and the evaluation and decision making processes that accompany it.It focusesonhow to design the entire chain from start to finish, so that the consumer gets a product that he/she wants, i.e.concentrating on product attributes rather than on the delivery of the product. The novel protein food (NPF) case from the PROFETAS program was used to develop the methodology. Two attributes of quality were investigated w...

  6. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  7. An introduction to mathematical modeling of infectious diseases

    CERN Document Server

    Li, Michael Y

    2018-01-01

    This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies.  The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis.  Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases.  Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.

  8. IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2017-12-01

    Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity

  9. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  10. Wind farm design in complex terrain: the FarmOpt methodology

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Hansen, Kurt Schaldemose

    layout optimization algorithms. Various constraints are also modelled and considered in the design optimization problem for maximizing the annual energy production (AEP). A case study is presented to illustrate the effectiveness of the methodology. Further developments of the FarmOpt tool are also...

  11. Design Methodology of a Sensor Network Architecture Supporting Urgent Information and Its Evaluation

    Science.gov (United States)

    Kawai, Tetsuya; Wakamiya, Naoki; Murata, Masayuki

    Wireless sensor networks are expected to become an important social infrastructure which helps our life to be safe, secure, and comfortable. In this paper, we propose design methodology of an architecture for fast and reliable transmission of urgent information in wireless sensor networks. In this methodology, instead of establishing single complicated monolithic mechanism, several simple and fully-distributed control mechanisms which function in different spatial and temporal levels are incorporated on each node. These mechanisms work autonomously and independently responding to the surrounding situation. We also show an example of a network architecture designed following the methodology. We evaluated the performance of the architecture by extensive simulation and practical experiments and our claim was supported by the results of these experiments.

  12. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Price, Joseph Daniel [Idaho National Laboratory; Anderson, Robert Stephen [Idaho National Laboratory

    2015-06-01

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operation can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.

  13. Systematic Methodology for Design of Tailor-Made Blended Products: Fuels and Other Blended Products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti

    property values are verified by means of rigorous models for the properties and the mixtures. Besides the methodology, as the main contribution, specific supporting tools that were developed to perform each task are also important contributions of this research work. The applicability of the developed...... important in daily life, since they not only keep people moving around, but also guarantee that machines and equipment work smoothly. The objective of this work is to tackle the blending problems using computer-aided tools for the initial stage of the product design. A systematic methodology for design...... methodology and tools was tested through two case studies. In the first case study, two different gasoline blend problems have been solved. In the second case study, four different lubricant design problems have been solved....

  14. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanop, Amornchai; Gani, Rafiqul

    2012-01-01

    A systematic design methodology is developed for producing two main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data. The ....... Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  15. Construction of mathematical knowledge using graphic calculators (CAS) in the mathematics classroom

    Science.gov (United States)

    Hitt, Fernando

    2011-09-01

    Mathematics education researchers are asking themselves about why technology has impacted heavily on the social environment and not in the mathematics classroom. The use of technology in the mathematics classroom has not had the expected impact, as it has been its use in everyday life (i.e. cell phone). What about teachers' opinions? Mathematics teachers can be divided into three categories: those with a boundless overflow (enthusiasm) who want to use the technology without worrying much about the construction of mathematical concepts, those who reject outright the use of technology because they think that their use inhibits the development of mathematical skills and others that reflect on the balance that must exist between paper-pencil activities and use of technology. The mathematics teacher, by not having clear examples that support this last option about the balance of paper-pencil activities and technology, opt for one of the extreme positions outlined above. In this article, we show the results of research on a methodology based on collaborative learning (ACODESA) in the training of mathematics teachers in secondary schools and implementation of activities in an environment of paper-pencil and CAS in the mathematics classroom. We also note that with the development of technology on the use of electronic tablets and interactive whiteboards, these activities will take on greater momentum in the near future.

  16. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures

    DEFF Research Database (Denmark)

    Karunanithi, A.T.; Achenie, L.E.K.; Gani, Rafiqul

    2005-01-01

    This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective is to be optim......This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective...... is to be optimized subject to structural, property, and process constraints. The general molecular/mixture design problem is divided into two parts. For optimal single-compound design, the first part is solved. For mixture design, the single-compound design is first carried out to identify candidates...... and then the second part is solved to determine the optimal mixture. The decomposition of the CAMD MINLP model into relatively easy to solve subproblems is essentially a partitioning of the constraints from the original set. This approach is illustrated through two case studies. The first case study involves...

  17. Methodological design of the National Health and Nutrition Survey 2016

    OpenAIRE

    Martín Romero-Martínez; Teresa Shamah-Levy; Lucia Cuevas-Nasu; Ignacio Méndez Gómez-Humarán; Elsa Berenice Gaona-Pineda; Luz María Gómez-Acosta; Juan Ángel Rivera-Dommarco; Mauricio Hernández-Ávila

    2017-01-01

    Objective. Describe the design methodology of the halfway health and nutrition national survey (Ensanut-MC) 2016. Materials and methods. The Ensanut-MC is a national probabilistic survey whose objective population are the in­habitants of private households in Mexico. The sample size was determined to make inferences on the urban and rural areas in four regions. Describes main design elements: target population, topics of study, sampling procedure, measurement procedure and logistics organizat...

  18. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  19. Top-down design and verification methodology for analog mixed-signal integrated circuits

    NARCIS (Netherlands)

    Beviz, P.

    2016-01-01

    The current report contains the introduction of a novel Top-Down Design and Verification methodology for AMS integrated circuits. With the introduction of new design and verification flow, more reliable and efficient development of AMS ICs is possible. The assignment incorporated the research on the

  20. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    Science.gov (United States)

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  1. Unpacking the Male Superiority Myth and Masculinization of Mathematics at the Intersections: A Review of Research on Gender in Mathematics Education

    Science.gov (United States)

    Leyva, Luis A.

    2017-01-01

    Gender research in mathematics education has experienced methodological and theoretical shifts over the past 45 years. Although achievement studies have used assessment tools to explore and subsequently challenge the assumption of male superiority on mathematics assessments, research on participation has unpacked these studies' sex-based…

  2. Communicating embedded systems software and design

    CERN Document Server

    Jard, Claude

    2013-01-01

    The increased complexity of embedded systems coupled with quick design cycles to accommodate faster time-to-market requires increased system design productivity that involves both model-based design and tool-supported methodologies. Formal methods are mathematically-based techniques and provide a clean framework in which to express requirements and models of the systems, taking into account discrete, stochastic and continuous (timed or hybrid) parameters with increasingly efficient tools. This book deals with these formal methods applied to communicating embedded systems by presenting the

  3. Rating the methodological quality of single-subject designs and n-of-1 trials: introducing the Single-Case Experimental Design (SCED) Scale.

    Science.gov (United States)

    Tate, Robyn L; McDonald, Skye; Perdices, Michael; Togher, Leanne; Schultz, Regina; Savage, Sharon

    2008-08-01

    Rating scales that assess methodological quality of clinical trials provide a means to critically appraise the literature. Scales are currently available to rate randomised and non-randomised controlled trials, but there are none that assess single-subject designs. The Single-Case Experimental Design (SCED) Scale was developed for this purpose and evaluated for reliability. Six clinical researchers who were trained and experienced in rating methodological quality of clinical trials developed the scale and participated in reliability studies. The SCED Scale is an 11-item rating scale for single-subject designs, of which 10 items are used to assess methodological quality and use of statistical analysis. The scale was developed and refined over a 3-year period. Content validity was addressed by identifying items to reduce the main sources of bias in single-case methodology as stipulated by authorities in the field, which were empirically tested against 85 published reports. Inter-rater reliability was assessed using a random sample of 20/312 single-subject reports archived in the Psychological Database of Brain Impairment Treatment Efficacy (PsycBITE). Inter-rater reliability for the total score was excellent, both for individual raters (overall ICC = 0.84; 95% confidence interval 0.73-0.92) and for consensus ratings between pairs of raters (overall ICC = 0.88; 95% confidence interval 0.78-0.95). Item reliability was fair to excellent for consensus ratings between pairs of raters (range k = 0.48 to 1.00). The results were replicated with two independent novice raters who were trained in the use of the scale (ICC = 0.88, 95% confidence interval 0.73-0.95). The SCED Scale thus provides a brief and valid evaluation of methodological quality of single-subject designs, with the total score demonstrating excellent inter-rater reliability using both individual and consensus ratings. Items from the scale can also be used as a checklist in the design, reporting and critical

  4. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    Science.gov (United States)

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  5. [Comparative analysis of the efficacy of a playful-narrative program to teach mathematics at pre-school level].

    Science.gov (United States)

    Gil Llario, M D; Vicent Catalá, Consuelo

    2009-02-01

    Comparative analysis of the efficacy of a playful-narrative program to teach mathematics at pre-school level. In this paper, the effectiveness of a programme comprising several components that are meant to consolidate mathematical concepts and abilities at the pre-school level is analyzed. The instructional methodology of this programme is compared to other methodologies. One-hundred 5-6 year-old children made up the sample that was distributed in the following conditions: (1) traditional methodology; (2) methodology with perceptual and manipulative components, and (3) methodology with language and playful components. Mathematical competence was assessed with the Mathematical Criterial Pre-school Test and the subtest of quantitative-numeric concepts of BADyG. Participants were evaluated before and after the academic course during which they followed one of these methodologies. The results show that the programme with language and playful components is more effective than the traditional methodology (p<.000) and also more effective than the perceptual and manipulative methodology (p<.000). Implications of the results for instructional practices are analyzed.

  6. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  7. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  8. Reflection-for-action and the choice or design of examples in the teaching of mathematics

    Science.gov (United States)

    Olteanu, Constanta

    2017-09-01

    A qualitative study documented the use of examples in connection with reflection-for-action by mathematics educators. This article focuses on the use of mathematical examples that were chosen or designed by the teachers during lesson planning. The data are drawn from a 3-year project intended to make educational research in mathematics more useful to teachers. The focus in the present article was on how teachers reflected about students' learning as they prepared lessons. Analysis of the data showed that reflection-for-action was an effective teacher practice and useful for increasing the quality of the content the teacher intended to cover in a teaching situation. However, at the beginning of the study the teachers could not provide a proper explanation of what reflection was about. Their reflections were limited to preparing for the lessons in relation to the actual curriculum in Sweden. During the study, the teachers' reflection-for-action improved as a consequence of using patterns of variation in designing examples connected to the object of learning.

  9. Mathematical programming solver based on local search

    CERN Document Server

    Gardi, Frédéric; Darlay, Julien; Estellon, Bertrand; Megel, Romain

    2014-01-01

    This book covers local search for combinatorial optimization and its extension to mixed-variable optimization. Although not yet understood from the theoretical point of view, local search is the paradigm of choice for tackling large-scale real-life optimization problems. Today's end-users demand interactivity with decision support systems. For optimization software, this means obtaining good-quality solutions quickly. Fast iterative improvement methods, like local search, are suited to satisfying such needs. Here the authors show local search in a new light, in particular presenting a new kind of mathematical programming solver, namely LocalSolver, based on neighborhood search. First, an iconoclast methodology is presented to design and engineer local search algorithms. The authors' concern about industrializing local search approaches is of particular interest for practitioners. This methodology is applied to solve two industrial problems with high economic stakes. Software based on local search induces ex...

  10. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.

    Science.gov (United States)

    Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael

    2016-11-01

    Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.

  11. Participatory Design Research as a Practice for Systemic Repair: Doing Hand-in-Hand Math Research with Families

    Science.gov (United States)

    Booker, Angela; Goldman, Shelley

    2016-01-01

    Success and failure in formal mathematics education has been used to legitimize stratification. We describe participatory design research as a methodology for systemic repair. The analysis describes epistemic authority--exercising the right or the power to know--as a form of agency in processes of mathematical problem solving and learning. We…

  12. A Praxeological Study of Proportionality in Mathematics Lower Secondary Textbooks

    DEFF Research Database (Denmark)

    Wijayanti, Dyana

    Research on the uses and contents of mathematics textbooks has expanded over the past decades, due to the central role textbooks occupy in mathematics teaching worldwide. However, the methodology of analysing the texts themselves often appears underdeveloped or even naïve, especially when it comes...... to specific mathematical content. The central idea of this thesis is to deploy the anthropological theory of the didactic, and especially the notion of praxeology, to analyse how textbooks treat three specific and related areas (or more precisely, sectors) of mathematical contents for lower secondary school......, namely "proportion and ratio" (in Arithmetic), "similar plane figures" (in Geometry), and "linear functions" (in Algebra). This leads to a new and very precise methodological tool for analysing the practices (types of tasks, techniques) supported by the textbooks through examples, explanations...

  13. Methodology for safety assessment of near-surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Mateeva, M.

    1998-01-01

    The objective of the work is to present the conceptual model of the methodology of safety assessment of near-surface radioactive disposal facilities. The widely used mathematical models and approaches are presented. The emphasis is given on the mathematical models and approaches, which are applicable for the conditions in our country. The different transport models for analysis and safety assessment of migration processes are presented. The parallel between the Mixing-Cell Cascade model and model of Finite-Differences is made. In the methodology the basic physical and chemical processes and events, concerning mathematical modelling of the flow and the transport of radionuclides from the Near Field to Far Field and Biosphere are analyzed. Suitable computer codes corresponding to the ideology and appropriate for implementing of the methodology are shown

  14. Cultural and Mathematical Meanings of Regular Octagons in Mesopotamia: Examining Islamic Art Designs

    Directory of Open Access Journals (Sweden)

    Jeanam Park

    2018-03-01

    Full Text Available The most common regular polygon in Islamic art design is the octagon. Historical evidence of the use of an 8-star polygon and an 8-fold rosette dates back to Jemdet Nasr (3100-2900 B.C. in Mesopotamia. Additionally, in ancient Egypt, octagons can be found in mathematical problem (Ahmose papyrus, Problem number 48, household goods (papyrus storage, architecture (granite columns and decorations (palace decorations. The regular octagon which is a fundamentally important element of Islamic art design, is widely used as arithmetic objects in metric algebra along with other regular polygons in Mesopotamia. The 8-point star polygon has long been a symbol of the ancient Sumerian goddess Inanna and her East Semitic counterpart Ishtar. During the Neo-Assyrian period, the 8-fold rosette occasionally replaced the star as the symbol of Ishtar. In this paper, we discuss how octagonal design prevailed in the Islamic region since the late ninth century, and has existed in Mesopotamia from Jemdet Nasr to the end of third century B.C. We describe reasons why the geometric pattern of regular polygons, including regular octagons, developed in the Islamic world. Furthermore, we also discuss mathematical meanings of regular polygons.

  15. New Methods in Design Education: The Systemic Methodology and the Use of Sketch in the Conceptual Design Stage

    Science.gov (United States)

    Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis

    2011-01-01

    This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…

  16. Developing a Design Methodology for Web 2.0 Mediated Learning

    DEFF Research Database (Denmark)

    Buus, Lillian; Georgsen, Marianne; Ryberg, Thomas

    2010-01-01

    Ed). We describe how this method has been adopted as part of a learning methodology building on concepts and models presented in the other symposium papers, in particular those of active, problem based learning and web 2.0-technologies. The challenge of designing on the basis of an explicit learning...

  17. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  18. Designing Math Trails for Enhanced by Mobile Learning Realistic Mathematics Education in Primary Education

    Directory of Open Access Journals (Sweden)

    Georgios Fesakis

    2018-05-01

    Full Text Available Seeking a systematic combination of the pedagogical model of m-learning with the Realistic Mathematics Education (RME approach, this study concerns the use of math trail as a learning activity model that can take the advantages of mobile computing devices for the design of effective learning experiences in an authentic context. The paper presents the design and the case study of the first pilot implementation of a math trail, using mobile devices for primary school students. In this math trail, the students are guided, through a digital map, to a sequence of preselected sites of a park where they solve specially designed math problems using data from the environmental context. The students measure real objects’ dimensions either with conventional instruments or by measurement applications of their tablet. According to the findings of the study, students solved the puzzles by applying mathematical knowledge, discussion and collaboration. The students applied and reinforced their knowledge through an effective and engaging learning activity. Moreover, the students were puzzled about the differences of the measurements by conventional and digital instruments and this confusion triggered social negotiation. Further research is needed for a grounded theory development about m-learning design for RME.

  19. Examining the Design Features of a Communication-Rich, Problem-Centred Mathematics Professional Development

    Science.gov (United States)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-01-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The…

  20. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  1. Calibration Modeling Methodology to Optimize Performance for Low Range Applications

    Science.gov (United States)

    McCollum, Raymond A.; Commo, Sean A.; Parker, Peter A.

    2010-01-01

    Calibration is a vital process in characterizing the performance of an instrument in an application environment and seeks to obtain acceptable accuracy over the entire design range. Often, project requirements specify a maximum total measurement uncertainty, expressed as a percent of full-scale. However in some applications, we seek to obtain enhanced performance at the low range, therefore expressing the accuracy as a percent of reading should be considered as a modeling strategy. For example, it is common to desire to use a force balance in multiple facilities or regimes, often well below its designed full-scale capacity. This paper presents a general statistical methodology for optimizing calibration mathematical models based on a percent of reading accuracy requirement, which has broad application in all types of transducer applications where low range performance is required. A case study illustrates the proposed methodology for the Mars Entry Atmospheric Data System that employs seven strain-gage based pressure transducers mounted on the heatshield of the Mars Science Laboratory mission.

  2. Mathematical Tools for Discovery of Nanoporous Materials for Energy Applications

    International Nuclear Information System (INIS)

    Haranczyk, M; Martin, R L

    2015-01-01

    Porous materials such as zeolites and metal organic frameworks have been of growing importance as materials for energy-related applications such as CO 2 capture, hydrogen and methane storage, and catalysis. The current state-of-the-art molecular simulations allow for accurate in silico prediction of materials' properties but the computational cost of such calculations prohibits their application in the characterisation of very large sets of structures, which would be required to perform brute-force screening. Our work focuses on the development of novel methodologies to efficiently characterize and explore this complex materials space. In particular, we have been developing algorithms and tools for enumeration and characterisation of porous material databases as well as efficient screening approaches. Our methodology represents a ensemble of mathematical methods. We have used Voronoi tessellation-based techniques to enable high-throughput structure characterisation, statistical techniques to perform comparison and screening, and continuous optimisation to design materials. This article outlines our developments in material design

  3. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    in size of the target solute was investigated using the same separation process and IL entrainer to obtain the same product purity. The proposed methodology has been evaluated through a case study of binary alcoholic aqueous azeotropic separation: water+ethanol and water+isopropanol.......A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, water...

  4. A SystemC-Based Design Methodology for Digital Signal Processing Systems

    Directory of Open Access Journals (Sweden)

    Christian Haubelt

    2007-03-01

    Full Text Available Digital signal processing algorithms are of big importance in many embedded systems. Due to complexity reasons and due to the restrictions imposed on the implementations, new design methodologies are needed. In this paper, we present a SystemC-based solution supporting automatic design space exploration, automatic performance evaluation, as well as automatic system generation for mixed hardware/software solutions mapped onto FPGA-based platforms. Our proposed hardware/software codesign approach is based on a SystemC-based library called SysteMoC that permits the expression of different models of computation well known in the domain of digital signal processing. It combines the advantages of executability and analyzability of many important models of computation that can be expressed in SysteMoC. We will use the example of an MPEG-4 decoder throughout this paper to introduce our novel methodology. Results from a five-dimensional design space exploration and from automatically mapping parts of the MPEG-4 decoder onto a Xilinx FPGA platform will demonstrate the effectiveness of our approach.

  5. A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan

    2010-01-01

    . The PGC methodology is used to generate more efficient separation designs in terms of energy consumption by targeting the separation task at the largest DF. Both methodologies are highlighted through the application of two case studies, a bioethanol production process and a succinic acid production...

  6. Exploring the affective domain in the teaching of mathematics

    DEFF Research Database (Denmark)

    Schmidt, Maria Christina Secher; Nissen, Stine Karen; Tonnesen, Pia Beck

    2015-01-01

    The paper presents the initial constructs of a study being carried out within the Danish public school (primary education) during the fall of 2015. It is based on a substudy conducted in connection with a study of the Early Mathematics Intervention Program for Marginal Groups in Denmark (TMTM i.e....... The methodology forms the basis for a qualitative approach toward gaining insight into the affective domain, which contributes to a field of research significantly dominated by quantitative approaches........e. Tidlig Matematikindsats Til Marginalgrupper). The 12-week intervention was implemented by 82 mathematics teachers in 41 schools in 31 different Danish municipalities. The presentation focuses on the development of a methodology aimed at capturing young students’ voices and views on mathematics...

  7. Inquiry-Based Learning in Mathematics: Designing Collaborative Research with Schools

    Science.gov (United States)

    Makar, Katie; Dole, Shelley

    2013-01-01

    A series of research projects were implemented over seven years to understand and facilitate teachers' experiences in adopting inquiry. An overview of the project, methodology and key outcomes are outlined as a basis for the partnership described in this symposium. We end the paper with a list of recommendations for designing collaborative…

  8. Educating mathematics teacher educators

    DEFF Research Database (Denmark)

    Højgaard, Tomas; Jankvist, Uffe Thomas

    2014-01-01

    The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension......; the two mathematical topics of differential equations and stochastics, this being the second dimension; and finally a third dimension the purpose of which is to deepen the two others by means of a didactical perspective....

  9. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  10. Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design

    International Nuclear Information System (INIS)

    Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.

    2003-01-01

    In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks

  11. The multi-copy simultaneous search methodology: a fundamental tool for structure-based drug design.

    Science.gov (United States)

    Schubert, Christian R; Stultz, Collin M

    2009-08-01

    Fragment-based ligand design approaches, such as the multi-copy simultaneous search (MCSS) methodology, have proven to be useful tools in the search for novel therapeutic compounds that bind pre-specified targets of known structure. MCSS offers a variety of advantages over more traditional high-throughput screening methods, and has been applied successfully to challenging targets. The methodology is quite general and can be used to construct functionality maps for proteins, DNA, and RNA. In this review, we describe the main aspects of the MCSS method and outline the general use of the methodology as a fundamental tool to guide the design of de novo lead compounds. We focus our discussion on the evaluation of MCSS results and the incorporation of protein flexibility into the methodology. In addition, we demonstrate on several specific examples how the information arising from the MCSS functionality maps has been successfully used to predict ligand binding to protein targets and RNA.

  12. LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2007-03-01

    Full Text Available Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the

  13. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  14. The Joy of Mathematics Discovering Mathematics All Around You

    CERN Document Server

    Pappas, Theoni

    1993-01-01

    Part of the joy of mathematics is that it is everywhere-in soap bubbles, electricity, da Vinci's masterpieces, even in an ocean wave. Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the "real" world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century. THE JOY OF MATHEMATICS is designed to be opened at random…it's mini essays are self-contained providing the reader

  15. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  16. Statistical core design methodology using the VIPRE thermal-hydraulics code

    International Nuclear Information System (INIS)

    Lloyd, M.W.; Feltus, M.A.

    1995-01-01

    An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)

  17. Co-design of RAD and ETHICS methodologies: a combination of information system development methods

    Science.gov (United States)

    Nasehi, Arezo; Shahriyari, Salman

    2011-12-01

    Co-design is a new trend in the social world which tries to capture different ideas in order to use the most appropriate features for a system. In this paper, co-design of two information system methodologies is regarded; rapid application development (RAD) and effective technical and human implementation of computer-based systems (ETHICS). We tried to consider the characteristics of these methodologies to see the possibility of having a co-design or combination of them for developing an information system. To reach this purpose, four different aspects of them are analyzed: social or technical approach, user participation and user involvement, job satisfaction, and overcoming change resistance. Finally, a case study using the quantitative method is analyzed in order to examine the possibility of co-design using these factors. The paper concludes that RAD and ETHICS are appropriate to be co-designed and brings some suggestions for the co-design.

  18. Design methodology for fault-tolerant control of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, B. de; Verhaegen, M.H.G.

    2003-01-01

    The objective of this project is to develop a methodology for the design, testing, evaluation and implementation of control systems for Advanced Driver Assistance Systems (ADAS). Examples of ADAS are collision avoidance systems, lane departure warning systems, pre-crash sensing, and adaptive cruise

  19. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  20. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors.

    Science.gov (United States)

    Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter

    2016-08-24

    Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.

  1. A methodology to derive Synthetic Design Hydrographs for river flood management

    Science.gov (United States)

    Tomirotti, Massimo; Mignosa, Paolo

    2017-12-01

    The design of flood protection measures requires in many cases not only the estimation of the peak discharges, but also of the volume of the floods and its time distribution. A typical solution to this kind of problems is the formulation of Synthetic Design Hydrographs (SDHs). In this paper a methodology to derive SDHs is proposed on the basis of the estimation of the Flow Duration Frequency (FDF) reduction curve and of a Peak-Duration (PD) relationship furnishing respectively the quantiles of the maximum average discharge and the average peak position in each duration. The methodology is intended to synthesize the main features of the historical floods in a unique SDH for each return period. The shape of the SDH is not selected a priori but is a result of the behaviour of FDF and PD curves, allowing to account in a very convenient way for the variability of the shapes of the observed hydrographs at local time scale. The validation of the methodology is performed with reference to flood routing problems in reservoirs, lakes and rivers. The results obtained demonstrate the capability of the SDHs to describe the effects of different hydraulic systems on the statistical regime of floods, even in presence of strong modifications induced on the probability distribution of peak flows.

  2. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  3. Aligning Mathematical Tasks to the Common Core Standards for Mathematical Practice

    OpenAIRE

    Johnson, Raymond

    2016-01-01

    How do algebra teachers align mathematical tasks to the CCSSM Standards of Mathematical Practice? Using methods of design-based implementation research, we identified difficulties of alignment to practices and developed strategies identifying high-quality tasks.

  4. Growing of the mathematical thinking imaginative to students in designing of the teaching aids for CWD towards to joyful learning

    Science.gov (United States)

    Sugiman; Sugiharti, E.; Kurniawati, N. F.

    2018-03-01

    Government and the private parties had also organized of Special School (SS) and Inclusive School. SS requires of math teachers who were professional in the material, but also master the needs of Children with Disabilities (CwD) in teaching-learning process. The problem: How to design the Teaching Aids for CwD through Extra-Curriculum Training (ECT) activities to Joyful Learning? The purposes of this research: (1) To find new ways how to grow the imaginative in mathematical thinking for students of Mathematics Education. (2) To find a Teaching Aids Design that suitable for CwD who studying in SS. (3) In order to create a Teaching Aids for CwD through activities based on ECT to Joyful Learning. The research method was done by qualitative approach. The research subjects were 6 students of Mathematics Education Study Program of FMIPA UNNES who were interested in attending of the training activities based on ECT. The results: (1) ECT can be a place to grow an Imaginative in Mathematical Thinking of students, (2) created the design of the teaching aids for CwD through activities based on ECT to Joyful Learning as a mirror of the imaginative growth in mathematical thinking for students.

  5. Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept

    International Nuclear Information System (INIS)

    Fabbris, Olivier

    2014-01-01

    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr

  6. A systematic methodology for the design of continuous active pharmaceutical ingredient production processes

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Gani, Rafiqul; Kiil, Søren

    2011-01-01

    Continuous pharmaceutical manufacturing (CPM) has emerged as a powerful technology to obtain higher reaction yields and improved separation efficiencies, potentially leading to simplified process flowsheets, reduced total costs, lower environmental impacts, and safer and more flexible production...... and representation, as well as on how to employ this knowledge for process (re-)design. The aim of this paper is to introduce a methodology that systematically identifies already existing PSE methods and tools which can assist in the design of CPM processes. This methodology has been applied to a process...... for the production of an API developed by H. Lundbeck A/S, demonstrating the mentioned potential benefits that CPM can offer....

  7. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  8. Applying Statistical Design to Control the Risk of Over-Design with Stochastic Simulation

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2010-02-01

    Full Text Available By comparing a hard real-time system and a soft real-time system, this article elicits the risk of over-design in soft real-time system designing. To deal with this risk, a novel concept of statistical design is proposed. The statistical design is the process accurately accounting for and mitigating the effects of variation in part geometry and other environmental conditions, while at the same time optimizing a target performance factor. However, statistical design can be a very difficult and complex task when using clas-sical mathematical methods. Thus, a simulation methodology to optimize the design is proposed in order to bridge the gap between real-time analysis and optimization for robust and reliable system design.

  9. Methodological imperfection and formalizations in scientific activity

    International Nuclear Information System (INIS)

    Svetlichny, G.

    1987-01-01

    Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, dirty, rotten, and dammed. Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and related all other objects to these more regular ones. Examples are drawn from empirical logic

  10. Factors That Influence the Understanding of Good Mathematics Teaching

    Science.gov (United States)

    Leong, Kwan Eu

    2013-01-01

    This study explored the factors that influenced the understanding of good mathematics teaching. A mixed methodology was used investigate the beliefs of beginning secondary teachers on good mathematics teaching. The two research instruments used in this study were the survey questionnaire and an interview. Beginning teachers selected Immediate…

  11. A methodology which facilitated the evaluation of learning in a mass university course for basic calculus

    Directory of Open Access Journals (Sweden)

    Patricia Villalonga de García

    2005-03-01

    Full Text Available The aim of the present work is to introduce the methodology used to carry out a diagnostic of the system of evaluation in learning for Mathematics I (subject of the first year in the Facultad de Bioquímica, Química y Farmacia of the Universidad Nacional of Tucumán in Argentina This diagnostic was based on a model of alternative evaluation of learning, designed on the basis of criteria resulting from constructivist pedagogical currents and on the basis of methodological principles for the qualitative and quantitative paradigms in socioeducational research. The criteria stated in this model led to the formulation of the hypothesis: “the evaluation of learning in the subject is enhanced with a reductionistic and disintegrated conception of the processes of teaching and learning”. In order to contrast it, surveys were designed which were applied to students in years 2001 and 2003 and to teachers in year 2001, and a study was carried out on the items of summative evaluation of the subject based on the principles of evaluation standards of the National Council of Teachers of Mathematics. The sources of information were chosen by attending to the characteristics of the context of work and the limitations which conditioned the investigation. A technique was designed to analyze the open and close questions of the surveys and to study the items of the exams. This facilitated the elaboration of a system of categories with which the diagnostic was implemented. The methodological design adopted and the sources used were adequate to reach the aims proposed in the study. Besides, they provided the means to find solid argumentations to contrast the hypotheses of work.

  12. Methodology for worker neutron exposure evaluation in the PDCF facility design

    International Nuclear Information System (INIS)

    Scherpelz, R. I.; Traub, R. J.; Pryor, K. H.

    2004-01-01

    A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y -1 for the whole body and 100 mSv y -1 for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons were

  13. Design Thinking: A Methodology towards Sustainable Problem Solving in Higher Education in South Africa

    Science.gov (United States)

    Munyai, Keneilwe

    2016-01-01

    This short paper explores the potential contribution of design thinking methodology to the education and training system in South Africa. Design thinking is slowly gaining traction in South Africa. Design Thinking is gaining traction in South Africa. There is offered by the Hasso Plattner Institute of Design Thinking at the University of Cape Town…

  14. C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component

    Science.gov (United States)

    Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.

    2018-06-01

    The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.

  15. C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component

    Science.gov (United States)

    Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.

    2018-02-01

    The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.

  16. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    Science.gov (United States)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  17. A methodological approach for designing a usable ontology-based GUI in healthcare.

    Science.gov (United States)

    Lasierra, N; Kushniruk, A; Alesanco, A; Borycki, E; García, J

    2013-01-01

    This paper presents a methodological approach to the design and evaluation of an interface for an ontology-based system used for designing care plans for monitoring patients at home. In order to define the care plans, physicians need a tool for creating instances of the ontology and configuring some rules. Our purpose is to develop an interface to allow clinicians to interact with the ontology. Although ontology-driven applications do not necessarily present the ontology in the user interface, it is our hypothesis that showing selected parts of the ontology in a "usable" way could enhance clinician's understanding and make easier the definition of the care plans. Based on prototyping and iterative testing, this methodology combines visualization techniques and usability methods. Preliminary results obtained after a formative evaluation indicate the effectiveness of suggested combination.

  18. TEACHING MATHEMATICAL DISCIPLINES AT THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    V. Ya. Gelman

    2018-01-01

    Full Text Available Introduction.In programs of training of students of medical specialties, Mathematics is a subject of basic education, i.e. non-core discipline. However, studying Mathematics is extremely important for future physicians, as recently there has been an impetuous development of mathematization in the field of health care. Today, a set of the new medical devices, the equipment and high technologies are being developed based on the mathematical modeling, analysis and forecasting. Mathematical methods are widely applied to diagnostics, development of life-support systems and the description of various biological processes both at the molecular level,  and at the level of a whole organism, its systems, bodies and tissues. The solution of many medical tasks in the field of taxonomy, genetics, and organization of medical service is impossible without knowledge of mathematics. Unfortunately, along with the evident importance of mathematical preparation for a medical profession, its need is poorly realized not only by junior students, but even by some teachers of specialized departments of medical schools.The aim of the publication is to discuss the problems that arise in the teaching of mathematical disciplines to students at a medical school and to suggest possible solutions to these problems.Methodology and research methods. The study is based on the use of modeling of the educational process. The methods of analysis, generalization and the method of expert assessments were applied in the course of the research.Results and scientific novelty. The aspects of mathematical preparation at the university are considered on the basis of the application of the multiplicative model of training quality. It is shown that the main students’ learning difficulties in Mathematics are connected with the following factors: the initial level of mathematical preparation of students and their motivation; outdated methods of Mathematics teaching and academic content

  19. Discrete mathematics using a computer

    CERN Document Server

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  20. Integrating Ontology Debugging and Matching into the eXtreme Design Methodology

    OpenAIRE

    Dragisic, Zlatan; Lambrix, Patrick; Blomqvist, Eva

    2015-01-01

    Ontology design patterns (ODPs) and related ontology development methodologies were designed as ways of sharing and reusing best practices in ontology engineering. However, while the use of these reduces the number of issues in the resulting ontologies defects can still be introduced into the ontology due to improper use or misinterpretation of the patterns. Thus, the quality of the developed ontologies is still a major concern. In this paper we address this issue by describing how ontology d...

  1. Designing food supply chains- a structured methodology: a case on novel protein foods

    NARCIS (Netherlands)

    Apaiah, R.K.

    2006-01-01

    This thesis proposes and implements a structured methodology to aid in chain design and the evaluation and decision making processes that accompany it.It focusesonhow to design the entire chain from start to finish, so that the

  2. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  3. Economics and Mathematical Theory of Games

    OpenAIRE

    Ajda Fosner

    2012-01-01

    The theory of games is a branch of applied mathematics that is used in economics, management, and other social sciences. Moreover, it is used also in military science, political science, international relations, computer science, evolutionary biology, and ecology. It is a field of mathematics in which games are studied. The aim of this article is to present matrix games and the game theory. After the introduction, we will explain the methodology and give some examples. We will show applicatio...

  4. A methodological approach for designing and sequencing product families in Reconfigurable Disassembly Systems

    Directory of Open Access Journals (Sweden)

    Ignacio Eguia

    2011-10-01

    Full Text Available Purpose: A Reconfigurable Disassembly System (RDS represents a new paradigm of automated disassembly system that uses reconfigurable manufacturing technology for fast adaptation to changes in the quantity and mix of products to disassemble. This paper deals with a methodology for designing and sequencing product families in RDS. Design/methodology/approach: The methodology is developed in a two-phase approach, where products are first grouped into families and then families are sequenced through the RDS, computing the required machines and modules configuration for each family. Products are grouped into families based on their common features using a Hierarchical Clustering Algorithm. The optimal sequence of the product families is calculated using a Mixed-Integer Linear Programming model minimizing reconfigurability and operational costs. Findings: This paper is focused to enable reconfigurable manufacturing technologies to attain some degree of adaptability during disassembly automation design using modular machine tools. Research limitations/implications: The MILP model proposed for the second phase is similar to the well-known Travelling Salesman Problem (TSP and therefore its complexity grows exponentially with the number of products to disassemble. In real-world problems, which a higher number of products, it may be advisable to solve the model approximately with heuristics. Practical implications: The importance of industrial recycling and remanufacturing is growing due to increasing environmental and economic pressures. Disassembly is an important part of remanufacturing systems for reuse and recycling purposes. Automatic disassembly techniques have a growing number of applications in the area of electronics, aerospace, construction and industrial equipment. In this paper, a design and scheduling approach is proposed to apply in this area. Originality/value: This paper presents a new concept called Reconfigurable Disassembly System

  5. School mathematical discourse in a learning landscape

    DEFF Research Database (Denmark)

    Valero, Paola; Meaney, Tamsin; Alrø, Helle

    By bringing our research work together, we are able to discuss the potential of combining the notions of the learning landscape and school mathematical discourse. We do so in a search for concepts and methodological tools to challenge the simplification of issues in regard to mathematics learning...... in multicultural settings, when adopting restricted perspectives on issues of bilingualism. In the paper we discuss the relationship between the learning landscape and school mathematical discourse. We then use these notions to analyse two case studies in Danish and New Zealand schools. Our conclusion raises...... possibilities about how these notions can be used when researching mathematics education in multicultural settings....

  6. Mathematical modelling of steam generator and design of temperature regulator

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)

    1999-07-01

    The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)

  7. Heat exchanger networks design with constraints

    International Nuclear Information System (INIS)

    Amidpur, M.; Zoghi, A.; Nasiri, N.

    2000-01-01

    So far there have been two approaches to the problem of heat recovery system design where stream matching constraints exist. The first approach involves mathematical techniques for solving the combinational problem taking due recognition of the constraints. These methodologies are now efficient, still suffer from the problem of taking a significant amount of control and direction away from the designer. The second approach based upon so called pinch technology and involves the use of adaptation of standard problem table algorithm. Unfortunately, the proposed methodologies are not very easy to understand, therefore they fail to provide the insight and generally associated with these approaches. Here, a new pinch based methodology is presented. In this method, we modified the traditional numerical targeting procedure-problem table algorithm which is stream cascade table. Unconstrained groups are established by using of artificial intelligence method such that they have minimum utility consumption among different alternatives. Each group is an individual network, therefore, traditional optimization, used in pinch technology, should be employed. By transferring energy between groups heat recovery can be maximized, then each group designs individually and finally networks combine together. One of the advantages of using this method is simple targeting and easy networks-design. Besides the approach has the potential using of new network design methods such as dual temperature approach, flexible pinch design, pseudo pinch design. It is hoped that this methodology provides insight easy network design

  8. Learning of the subject: Methodology of investigation by means of a Site Web.

    Directory of Open Access Journals (Sweden)

    Yolanda Margarita Carbonell Cabarga

    2010-10-01

    Full Text Available Results of an investigation are presented having as an objective: the design of a Web Site for the learning of Methodology of Investigation subject in Psychology Bachelor of the Municipal University of Sancti Spíritus. This study was carried out in students of psychology career who were facing first year. Methods of the theoretical and empiric level were applied as well as the Mathematical Statistic. In the diagnosis was possible to appreciate the ignorance regarding the use of the methodology in the therorical methodological design of an investigation, also the difficulties in the study of the subject and violations in the application of orientations from the professors at the time of doing the research papers, so an interactive Web Site was obtained and applied which allow the teaching of the subject. The site was validated by means of a quasi-experiment, the obtained information was processed with the use of the statistical inferentia, results were in general highly significant for the feasibility of the proposal.

  9. A probabilistic methodology for the design of radiological confinement of tokamak reactors

    International Nuclear Information System (INIS)

    Golinescu, Ruxandra P.; Morosan, Florinel; Kazimi, Mujid S.

    1997-01-01

    A methodology using probabilistic risk assessment techniques is proposed for evaluating the design of multiple confinement barriers for a fusion plant within the context of a limited allowable risk. The methodology was applied to the reference design of the International Thermonuclear Experimental Reactor (ITER). Accident sequence models were developed to determine the probability of radioactive releases from each confinement barrier. The current ITER design requirements, that set environmental radioactive release limits for individual event sequences grouped in categories by frequency, is extended to derive a limit on the plant overall risk. This avoids detailed accounting for event uncertainties in both frequency and consequence. Thus, an analytical form for a limit line is derived as a complementary cumulative frequency of permissible radioactive releases to the environment. The line can be derived using risk aversion of the designer's own choice. By comparing the releases from each confinement barrier against this limit line, a decision can be made about the number of barriers required to comply with the design requirements. A decision model using multi-attribute utility function theory was constructed to help the designer in choosing the type of the tokamak building while considering preferences for attributes such as construction cost, project completion time, technical feasibility and public attitude. Sensitivity analysis on some of the relevant parameters in the model was performed

  10. MODEL - INTEGRAL METHODOLOGY FOR SUCCESSFUL DESIGNING AND IMPLEMENTING OF TQM SYSTEM IN MACEDONIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elizabeta Mitreva

    2011-12-01

    Full Text Available The subject of this paper is linked with the valorization of the meaning and the perspectives of Total Quality Management (TQM system design and implementation within the domestic companies and creating a model-methodology for improved performance, efficiency and effectiveness. The research is designed as an attempt to depict the existing condition in the Macedonian companies regarding quality system design and implementation, analysed through 4 polls in the "house of quality" whose top is the ultimate management, and as its bases measurement, evaluation, analyzing and comparison of the quality are used. This "house" is being held by 4 subsystems e.g. internal standardization, methods and techniques for flawless work performance, education and motivation and analyses of the quality costs. The data received from the research and the proposal of the integral methodology for designing and implementing of TQM system are designed in turn to help and present useful directions to all Macedonian companies tending to become "world class" organizations. The basis in the creation of this model is the redesign of the business processes which afterword begins as a new phase of the business performance - continued improvement, rolling of Deming's Quality Circle (Plan-Do-Check-Act. The model-methodology proposed in this paper is integral and universal which means that it is applicable to all companies regardless of the business area.

  11. A Platform-Based Methodology for System-Level Mixed-Signal Design

    Directory of Open Access Journals (Sweden)

    Alberto Sangiovanni-Vincentelli

    2010-01-01

    Full Text Available The complexity of today's embedded electronic systems as well as their demanding performance and reliability requirements are such that their design can no longer be tackled with ad hoc techniques while still meeting tight time to-market constraints. In this paper, we present a system level design approach for electronic circuits, utilizing the platform-based design (PBD paradigm as the natural framework for mixed-domain design formalization. In PBD, a meet-in-the-middle approach allows systematic exploration of the design space through a series of top-down mapping of system constraints onto component feasibility models in a platform library, which is based on bottom-up characterizations. In this framework, new designs can be assembled from the precharacterized library components, giving the highest priority to design reuse, correct assembly, and efficient design flow from specifications to implementation. We apply concepts from design centering to enforce robustness to modeling errors as well as process, voltage, and temperature variations, which are currently plaguing embedded system design in deep-submicron technologies. The effectiveness of our methodology is finally shown on the design of a pipeline A/D converter and two receiver front-ends for UMTS and UWB communications.

  12. Putting Teachers First: Leading Change through Design--Initiating and Sustaining Effective Teaching of Mathematics

    Science.gov (United States)

    Proffitt-White, Rob

    2017-01-01

    The Teachers First initiative is a grass-roots cluster-model approach for bringing together primary and secondary teachers and school principals: to analyse student performance data; design and practice activities and assessment tools; and promote teaching practices that address students' learning difficulties in mathematics. The balance of both…

  13. Mathematical and physical theory of turbulence

    CERN Document Server

    Cannon, John

    2006-01-01

    Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...

  14. The role ofcontextualinterpretationofthe mathematical resultsin professional formation

    OpenAIRE

    Eurico WongoGungula; Raquel Diéguez Batista; Eglys Pérez Ugartemendía

    2013-01-01

    This article aims to approach the application of mathematical problems results, using criteria issued by teachers, pre-university and university students surrounding this proc ess. The problems identified in pre-university and Higher Pedagogical institutes in Angola, are related to the lack of motivation among students in mathematical careers, due to insufficient contextualization achieved by the programmed contents, as well as the insistent use of scientific and methodological approaches tha...

  15. Theoretical Basics of Teaching Discrete Mathematics

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  16. Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design.

    Science.gov (United States)

    Wang, Y; Harrison, M; Clark, B J

    2006-02-10

    An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.

  17. A symbolic methodology to improve disassembly process design.

    Science.gov (United States)

    Rios, Pedro; Blyler, Leslie; Tieman, Lisa; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Millions of end-of-life electronic components are retired annually due to the proliferation of new models and their rapid obsolescence. The recovery of resources such as plastics from these goods requires their disassembly. The time required for each disassembly and its associated cost is defined by the operator's familiarity with the product design and its complexity. Since model proliferation serves to complicate an operator's learning curve, it is worthwhile to investigate the benefits to be gained in a disassembly operator's preplanning process. Effective disassembly process design demands the application of green engineering principles, such as those developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), which include regard for product complexity, structural commonality, separation energy, material value, and waste prevention. This paper introduces the concept of design symbolsto help the operator more efficiently survey product complexity with respect to location and number of fasteners to remove a structure that is common to all electronics: the housing. With a sample of 71 different computers, printers, and monitors, we demonstrate that appropriate symbols reduce the total disassembly planning time by 13.2 min. Such an improvement could well make efficient the separation of plastic that would otherwise be destined for waste-to-energy or landfill. The symbolic methodology presented may also improve Design for Recycling and Design for Maintenance and Support.

  18. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  19. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  20. Socio-functional dynamics of the mathematical contents

    Directory of Open Access Journals (Sweden)

    Isabel Alonso-Berenguer

    2018-01-01

    Full Text Available The article presents a model of the socio-functional dynamics of the mathematical contents that offers a novel theoretical-methodological basement for the development of the process of teaching-learning of the mathematical one. The investigation, of theoretical character, used the methods of analysis-synthesis, inductive-deductive and historical-logical to elaborate the one mentioned model that leaves of considering that the future professors have appropriated previously of the mathematical contents, foreseen in the curriculum, and they are, therefore, under conditions of understanding the potentialities of the same ones to facilitate the formation of socio-functional values.   

  1. Application of NASA Kennedy Space Center system assurance analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    The Kennedy Space Center (KSC) entered into an agreement with the Nuclear Regulatory Commission (NRC) to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. In joint meetings of KSC and Duke Power personnel, an agreement was made to select to CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set a Final Safety Analysis Reports as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. The conclusion is drawn that nuclear power plant systems and aerospace ground support systems are similar in complexity and design and share common safety and reliability goals. The SAA methodology is readily adaptable to nuclear power plant designs because of it's practical application of existing and well known safety and reliability analytical techniques tied to an effective management information system

  2. Design of capability measurement instruments pedagogic content knowledge (PCK) for prospective mathematics teachers

    Science.gov (United States)

    Aminah, N.; Wahyuni, I.

    2018-05-01

    The purpose of this study is to find out how the process of designing a tool of measurement Pedagogical Content Knowledge (PCK) capabilities, especially for prospective mathematics teachers are valid and practical. The design study of this measurement appliance uses modified Plomp development step, which consists of (1) initial assessment stage, (2) design stage at this stage, the researcher designs the measuring grille of PCK capability, (3) realization stage that is making measurement tool ability of PCK, (4) test phase, evaluation, and revision that is testing validation of measurement tools conducted by experts. Based on the results obtained that the design of PCK capability measurement tool is valid as indicated by the assessment of expert validator, and the design of PCK capability measurement tool, shown based on the assessment of teachers and lecturers as users of states strongly agree the design of PCK measurement tools can be used.

  3. An Improved Setpoint Determination Methodology for the Plant Protection System Considering Beyond Design Basis Events

    International Nuclear Information System (INIS)

    Lee, C.J.; Baik, K.I.; Baek, S.M.; Park, K.-M.; Lee, S.J.

    2013-06-01

    According to the nuclear regulations and industry standards, the trip setpoint and allowable value for the plant protection system have been determined by considering design basis events. In order to improve the safety of a nuclear power plant, an attempt has been made to develop an improved setpoint determination methodology for the plant protection system trip parameter considering not only a design basis event but also a beyond design basis event. The results of a quantitative evaluation performed for the Advanced Power Reactor 1400 nuclear power plant in Korea are presented herein. The results confirmed that the proposed methodology is able to improve the nuclear power plant's safety by determining more reasonable setpoints that can cover beyond design basis events. (authors)

  4. Research in collegiate mathematics education III

    CERN Document Server

    Arcavi, A; Kaput, Jim; Dubinsky, Ed; Dick, Thomas

    1998-01-01

    Volume III of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem solving. Included here are three different articles analyzing aspects of Schoenfeld's undergraduate problem-solving instruction. The articles provide new detail and insight on a well-known and widely discussed course taught by Schoenfeld for many years. Understanding concepts. These articles fe

  5. Mathematical diagnosis of pediatric echocardiograms with fractal dimension measures evaluated through intrinsic mathematical harmony

    International Nuclear Information System (INIS)

    Rodriguez V, Javier O; Prieto, Signed E; Ortiz, Liliana

    2010-01-01

    Geometry allows the objective mathematical characterization of forms. Fractal geometry characterizes irregular objects. The left ventricle dynamical states form observed through echocardiography can be objectively evaluated through fractal dimension measures. Methods: A measurement of fractal dimension was performed using the Box-counting method of three defined objects in 28 echocardiographic images, 16 from normal children (group A) and 12 ill children (group B), in order to establish differences between health and illness from its comparison with the fractal dimensions of 2 normality prototypes and 2 disease prototypes. Results: A new diagnostic, clinical application methodology was developed based in the intrinsic mathematical harmony (IMH) concept, and it was observed that the fractal dimensions of the defined objects for an abnormal echocardiogram show similarity to its fourth significant number, thus demonstrating the possibility of following up the evolution from normality towards disease. According to the performed calculations, 68.75% of the cases in group A could be better evaluated with the developed diagnostic methodology, and the ill ones could be diagnosed more effectively. Conclusions: The pediatric echocardiography images can be objectively characterized with fractal dimension measurements, thus enabling the development of a clinical diagnostic methodology of echocardiography in children from the IMH concept.

  6. A multimedia exposure assessment methodology for evaluating the performance of the design of structures containing chemical and radioactive wastes

    International Nuclear Information System (INIS)

    Stephanatos, B.N.; Molholt, B.; Walter, K.P.; MacGregor, A.

    1991-01-01

    The objectives of this work are to develop a multimedia exposure assessment methodology for the evaluation of existing and future design of structures containing chemical and radioactive wastes and to identify critical parameters for design optimization. The designs are evaluated in terms of their compliance with various federal and state regulatory requirements. Evaluation of the performance of a particular design is presented within the scope of a given exposure pathway. An exposure pathway has four key components: (1) a source and mechanism of chemical release, (2) a transport medium; (3) a point of exposure; and (4) a route of exposure. The first step in the analysis is the characterization of the waste source behavior. The rate and concentration of releases from the source are evaluated using appropriate mathematical models. The migration of radionuclides and chemicals is simulated through each environmental medium to the exposure point. The total exposure to the potential receptor is calculated, and an estimate of the health effects of the exposure is made. Simulation of the movement of radionuclides and chemical wastes from the source to the receptor point includes several processes. If the predicted human exposure to contaminants meets the performance criteria, the design has been validated. Otherwise the structure design is improved to meet the performance criteria. A phased modeling approach is recommended at a particular mixed waste site. A relatively simple model is initially used to pinpoint critical fate and transport processes and design parameters. The second phase of the modeling effort involves the use of more complex and resource intensive fate and transport models. This final step in the modeling process provides more accurate estimates of contaminant concentrations at the point of exposure. Thus the human dose is more accurately predicted, providing better design validation

  7. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  8. Application of project management methodology in design management of nuclear safety related structure

    International Nuclear Information System (INIS)

    Chen Mao

    2004-01-01

    This paper focuses on the application of project management methodology in the design management of Nuclear Safety Related Structure (NSRS), considering the design management features of its civil construction. Based on the experiences from the management of several projects, the project management triangle is proposed to be used in the management, to well treat the position of design interface in the project management. Some other management methods are also proposed

  9. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  10. The Effects of a Computer-Assisted Teaching Material, Designed According to the ASSURE Instructional Design and the ARCS Model of Motivation, on Students' Achievement Levels in a Mathematics Lesson and Their Resulting Attitudes

    Science.gov (United States)

    Karakis, Hilal; Karamete, Aysen; Okçu, Aydin

    2016-01-01

    This study examined the effects that computer-assisted instruction had on students' attitudes toward a mathematics lesson and toward learning mathematics with computer-assisted instruction. The computer software we used was based on the ASSURE Instructional Systems Design and the ARCS Model of Motivation, and the software was designed to teach…

  11. Design optimization for cost and quality: The robust design approach

    Science.gov (United States)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  12. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  13. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  14. IoT-Based Information System for Healthcare Application: Design Methodology Approach

    Directory of Open Access Journals (Sweden)

    Damian Dziak

    2017-06-01

    Full Text Available Over the last few decades, life expectancy has increased significantly. However, elderly people who live on their own often need assistance due to mobility difficulties, symptoms of dementia or other health problems. In such cases, an autonomous supporting system may be helpful. This paper proposes the Internet of Things (IoT-based information system for indoor and outdoor use. Since the conducted survey of related works indicated a lack of methodological approaches to the design process, therefore a Design Methodology (DM, which approaches the design target from the perspective of the stakeholders, contracting authorities and potential users, is introduced. The implemented solution applies the three-axial accelerometer and magnetometer, Pedestrian Dead Reckoning (PDR, thresholding and the decision trees algorithm. Such an architecture enables the localization of a monitored person within four room-zones with accuracy; furthermore, it identifies falls and the activities of lying, standing, sitting and walking. Based on the identified activities, the system classifies current activities as normal, suspicious or dangerous, which is used to notify the healthcare staff about possible problems. The real-life scenarios validated the high robustness of the proposed solution. Moreover, the test results satisfied both stakeholders and future users and ensured further cooperation with the project.

  15. Research Commentary: The Promise of Qualitative Metasynthesis for Mathematics Education

    Science.gov (United States)

    Thunder, Kateri; Berry, Robert Q., III.

    2016-01-01

    Mathematics education has benefited from qualitative methodological approaches over the past 40 years across diverse topics. Although the number, type, and quality of qualitative research studies in mathematics education has changed, little is known about how a collective body of qualitative research findings contributes to our understanding of a…

  16. DEVELOPING STUDENTS’ ABILITY OF MATHEMATICAL CONNECTION THROUGH USING OUTDOOR MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Saleh Haji

    2017-01-01

    Full Text Available The Purpose of this study is to determine the achievement and improvement of students’ mathematical connectionability through using outdoor mathematics learning. 64 students from the fifth grade of Primary School at SDN 65 and SDN 67 Bengkulu City were taken as the sample of this study. While the method of the research used in this research is experiment with quasi-experimental designs non-equivalent control group. The results of the study are as follows: (1 There is an increasing ability found in mathematical connection of students whom taught by using outdoors mathematics learning is 0,53; (2 Based on statical computation that achievement of students’ ability of mathematical connection is taught by using outdoor mathematics learning score is 71,25. It is higher than the students score 66,25 which were taught by using the conventional learning. So as to improve students’ mathematical connection, teachers are suggested to use the outdoors mathematics learning

  17. Learning to Teach Mathematics Specialists in a Synchronous Online Course: A Self-Study

    Science.gov (United States)

    Hjalmarson, Margret A.

    2017-01-01

    This article uses a self-study research methodology to explore teaching an online course for mathematics specialists. The course included weekly videoconferencing sessions and focused on supporting their development as mathematics coaches working with K-8 teachers to enhance mathematics teaching and learning. The central question for the…

  18. Experimental design and estimation of growth rate distributions in size-structured shrimp populations

    International Nuclear Information System (INIS)

    Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K

    2009-01-01

    We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations

  19. Nonlinear Observer Design of the Generalized Rössler Hyperchaotic Systems via DIL Methodology

    Directory of Open Access Journals (Sweden)

    Yeong-Jeu Sun

    2012-01-01

    Full Text Available The generalized Rössler hyperchaotic systems are presented, and the state observation problem of such systems is investigated. Based on the differential inequality with Lyapunov methodology (DIL methodology, a nonlinear observer design for the generalized Rössler hyperchaotic systems is developed to guarantee the global exponential stability of the resulting error system. Meanwhile, the guaranteed exponential decay rate can be accurately estimated. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of proposed approach.

  20. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  1. Safety critical software design approach developed for Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Ichiyen, M.M.; Joannou, P.K.

    1995-01-01

    Recently two methodologies were developed that comply with a high safety critical standard: the Rational Design Process, which can be characterized as a methodology based on state machines where the required behaviour of the software is defined using mathematical functions written in a notation which has a well defined syntax and semantics, and the Integrated Approach, which uses a graphical functional notation to specify the functional software requirements. The first implementations based on the two methodologies are discussed. Results from all phases of testing show a remarkably low number of errors, demonstrating that the new methodologies have indeed led to a higher demonstrable level of software reliability. (orig./HP) [de

  2. Designing incentive schemes for promoting energy-efficient appliances: A new methodology and a case study for Spain

    International Nuclear Information System (INIS)

    Galarraga, Ibon; Abadie, Luis M.; Kallbekken, Steffen

    2016-01-01

    The energy-efficiency gap has been high on research and policy agendas for several decades. Incentive schemes such as subsidies, taxes and bonus-malus schemes are widely used to promote energy-efficient appliances. Most research, however, considers instruments in isolation, and only rarely in the context of political constraints on instrument use, or for alternative policy goals. This paper presents a methodology for the optimal design of incentive schemes based on the minimisation of Dead Weight Loss for different policy goals and policy restrictions. The use of the methodology is illustrated by designing optimal combinations of taxes and subsidies in Spain for three types of appliance: dishwashers, refrigerators and washing machines. The optimal policies are designed subject to different policy goals such as achieving a fixed reduction in emissions or a certain increased market share for efficient appliances, and for policy constraints such as budget neutrality. The methodology developed here can also be used to evaluate past and current incentive schemes. - Highlights: • A new methodology for the optimal design of incentive schemes is presented. • This is done minimising the Dead Weight Loss for different goals and restrictions. • Efficient bonus malus schemes can be designed with this method.

  3. Effects of a Mathematics Fluency Program on Mathematics Performance of Students with Challenging Behaviors

    Science.gov (United States)

    Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.

    2016-01-01

    In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…

  4. Value-centric design architecture based on analysis of space system characteristics

    Science.gov (United States)

    Xu, Q.; Hollingsworth, P.; Smith, K.

    2018-03-01

    Emerging design concepts such as miniaturisation, modularity, and standardisation, have contributed to the rapid development of small and inexpensive platforms, particularly cubesats. This has been stimulating an upcoming revolution in space design and development, leading satellites into the era of "smaller, faster, and cheaper". However, the current requirement-centric design philosophy, focused on bespoke monolithic systems, along with the associated development and production process does not inherently fit with the innovative modular, standardised, and mass-produced technologies. This paper presents a new categorisation, characterisation, and value-centric design architecture to address this need for both traditional and novel system designs. Based on the categorisation of system configurations, a characterisation of space systems, comprised of duplication, fractionation, and derivation, is proposed to capture the overall system configuration characteristics and promote potential hybrid designs. Complying with the definitions of the system characterisation, mathematical mapping relations between the system characterisation and the system properties are described to establish the mathematical foundation of the proposed value-centric design methodology. To illustrate the methodology, subsystem reliability relationships are therefore analysed to explore potential system configurations in the design space. The results of the applications of system characteristic analysis clearly show that the effects of different configuration characteristics on the system properties can be effectively analysed and evaluated, enabling the optimization of system configurations.

  5. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications

    Science.gov (United States)

    Lee, Jay; Wu, Fangji; Zhao, Wenyu; Ghaffari, Masoud; Liao, Linxia; Siegel, David

    2014-01-01

    Much research has been conducted in prognostics and health management (PHM), an emerging field in mechanical engineering that is gaining interest from both academia and industry. Most of these efforts have been in the area of machinery PHM, resulting in the development of many algorithms for this particular application. The majority of these algorithms concentrate on applications involving common rotary machinery components, such as bearings and gears. Knowledge of this prior work is a necessity for any future research efforts to be conducted; however, there has not been a comprehensive overview that details previous and on-going efforts in PHM. In addition, a systematic method for developing and deploying a PHM system has yet to be established. Such a method would enable rapid customization and integration of PHM systems for diverse applications. To address these gaps, this paper provides a comprehensive review of the PHM field, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information. This methodology includes procedures for identifying critical components, as well as tools for selecting the most appropriate algorithms for specific applications. Visualization tools are presented for displaying prognostics information in an appropriate fashion for quick and accurate decision making. Industrial case studies are included in this paper to show how this methodology can help in the design of an effective PHM system.

  6. Evaluation methodology for tariff design under escalating penetrations of distributed energy resources

    OpenAIRE

    Abdelmotteleb, I.I.A.; Gómez, Tomás; Reneses, Javier

    2017-01-01

    As the penetration of distributed energy resources (DERs) escalates in distribution networks, new network tariffs are needed to cope with this new situation. These tariffs should allocate network costs to users, promoting an efficient use of the distribution network. This paper proposes a methodology to evaluate and compare network tariff designs. Four design attributes are proposed for this aim: (i) network cost recovery; (ii) deferral of network reinforcements; (iii) efficient consumer resp...

  7. User-inspired design methodology using Affordance Structure Matrix (ASM) for construction projects

    OpenAIRE

    Maheswari J. Uma; Charlesraj V. Paul C.; Battacharya Soma

    2017-01-01

    Traditionally, design phase of construction projects is often performed with incomplete and inaccurate user preferences. This is due to inefficiencies in the methodologies used for capturing the user requirements that can subsequently lead to inconsistencies and result in non-optimised end-result. Iterations and subsequent reworks due to such design inefficiencies is one of the major reasons for unsuccessful project delivery as they impact project performance measures such as time and cost am...

  8. COMPUTER TOOLS OF DYNAMIC MATHEMATIC SOFTWARE AND METHODICAL PROBLEMS OF THEIR USE

    Directory of Open Access Journals (Sweden)

    Olena V. Semenikhina

    2014-08-01

    Full Text Available The article presents results of analyses of standard computer tools of dynamic mathematic software which are used in solving tasks, and tools on which the teacher can support in the teaching of mathematics. Possibility of the organization of experimental investigating of mathematical objects on the basis of these tools and the wording of new tasks on the basis of the limited number of tools, fast automated check are specified. Some methodological comments on application of computer tools and methodological features of the use of interactive mathematical environments are presented. Problems, which are arising from the use of computer tools, among which rethinking forms and methods of training by teacher, the search for creative problems, the problem of rational choice of environment, check the e-solutions, common mistakes in the use of computer tools are selected.

  9. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bauer, S.J.

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs

  10. An integrative approach to the design methodology for 3-phase power conditioners in Photovoltaic Grid-Connected systems

    International Nuclear Information System (INIS)

    Rey-Boué, Alexis B.; García-Valverde, Rafael; Ruz-Vila, Francisco de A.; Torrelo-Ponce, José M.

    2012-01-01

    Highlights: ► A design methodology for Photovoltaic grid-connected systems is presented. ► Models of the Photovoltaic Generator and the 3-phase Inverter are described. ► The power factor and the power quality are regulated with vector control. ► Simulation and experimental results validate the design methodology. ► The proposed methodology can be extended to any Renewable or Industrial System. - Abstract: A novel methodology is presented in this paper, for the design of the Power and Control Subsystems of a 3-phase Photovoltaic Grid-Connected system in an easy and comprehensive way, as an integrative approach. At the DC side of the Power Subsystem, the Photovoltaic Generator modeling is revised and a simple model is proposed, whereas at the AC side, a vector analysis is done to deal with the instantaneous 3-phase variables of the grid-connected Voltage Source Inverter. A d–q control approach is established in the Control Subsystem, along with its specific tuned parameters, as a vector control alternative which will allow the decoupled control of the instantaneous active and reactive powers. A particular Case of Study is presented to illustrate the behavior of the design methodology regarding the fulfillment of the Photovoltaic plant specifications. Some simulations are run to study the performance of the Photovoltaic Generator together with the exerted d–q control to the grid-connected 3-phase inverter, and some experimental results, obtained from a built flexible platform, are also shown. The simulations and the experimental results validate the overall performance of the 3-phase Photovoltaic Grid-Connected system due to the attained unitary power factor operation together with good power quality. The final validation of the proposed design methodology is also achieved.

  11. Spanish methodological approach for biosphere assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Agueero, A.; Pinedo, P.; Cancio, D.; Simon, I.; Moraleda, M.; Perez-Sanchez, D.; Trueba, C.

    2007-01-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS 'Reference Biospheres Methodology' and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates

  12. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    Science.gov (United States)

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  13. Probabilistic methodology for turbine missile risk analysis

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1984-01-01

    A methodology has been developed for estimation of the probabilities of turbine-generated missile damage to nuclear power plant structures and systems. Mathematical models of the missile generation, transport, and impact events have been developed and sequenced to form an integrated turbine missile simulation methodology. Probabilistic Monte Carlo techniques are used to estimate the plant impact and damage probabilities. The methodology has been coded in the TURMIS computer code to facilitate numerical analysis and plant-specific turbine missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and probabilities have been estimated for a hypothetical nuclear power plant case study. (orig.)

  14. A New Methodology of Design and Development of Serious Games

    Directory of Open Access Journals (Sweden)

    André F. S. Barbosa

    2014-01-01

    Full Text Available The development of a serious game requires perfect knowledge of the learning domain to obtain the desired results. But it is also true that this may not be enough to develop a successful serious game. First of all, the player has to feel that he is playing a game where the learning is only a consequence of the playing actions. Otherwise, the game is viewed as boring and not as a fun activity and engaging. For example, the player can catch some items in the scenario and then separate them according to its type (i.e., recycle them. Thus, the main action for player is catching the items in the scenario where the recycle action is a second action, which is viewed as a consequence of the first action. Sometimes, the game design relies on a detailed approach based on the ideas of the developers because some educational content are difficult to integrate in the games, while maintaining the fun factor in the first place. In this paper we propose a new methodology of design and development of serious games that facilitates the integration of educational contents in the games. Furthermore, we present a serious game, called “Clean World”, created using this new methodology.

  15. Parameters Investigation of Mathematical Model of Productivity for Automated Line with Availability by DMAIC Methodology

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2014-01-01

    Full Text Available Automated line is widely applied in industry especially for mass production with less variety product. Productivity is one of the important criteria in automated line as well as industry which directly present the outputs and profits. Forecast of productivity in industry accurately in order to achieve the customer demand and the forecast result is calculated by using mathematical model. Mathematical model of productivity with availability for automated line has been introduced to express the productivity in terms of single level of reliability for stations and mechanisms. Since this mathematical model of productivity with availability cannot achieve close enough productivity compared to actual one due to lack of parameters consideration, the enhancement of mathematical model is required to consider and add the loss parameters that is not considered in current model. This paper presents the investigation parameters of productivity losses investigated by using DMAIC (Define, Measure, Analyze, Improve, and Control concept and PACE Prioritization Matrix (Priority, Action, Consider, and Eliminate. The investigated parameters are important for further improvement of mathematical model of productivity with availability to develop robust mathematical model of productivity in automated line.

  16. Process monitor design for an extraction column: an application of estimation/detection

    International Nuclear Information System (INIS)

    Candy, J.V.; Emmert, R.A.; Patterson, G.K.

    1979-03-01

    The NRC Safeguards Program at LLL is directed toward developing a methodology for assessing the effectiveness of material control and accounting systems at processing/reprocessing facilities for special nuclear material. The methodology under development requires many types of mathematical models including performance models of safeguard components. Included in the class of safeguard components are real-time measurement systems which incorporate on-line estimators/detectors for the timely detection of material losses. Performance modeling generally involves mathematical model development and simulation of the physical process being measured. This report discusses the development of material estimator designs for a liquid--liquid extraction column using a reprocessing application. These designs are applicable to any processing unit which can be adequately represented by linear or nonlinear models in state space form. Although this work is discussed in the context of a plutonium extraction column, it is representative of two classes of safeguard components which are generic to any fuel cycle involving chemical separations/purifications

  17. Research design: the methodology for interdisciplinary research framework.

    Science.gov (United States)

    Tobi, Hilde; Kampen, Jarl K

    2018-01-01

    Many of today's global scientific challenges require the joint involvement of researchers from different disciplinary backgrounds (social sciences, environmental sciences, climatology, medicine, etc.). Such interdisciplinary research teams face many challenges resulting from differences in training and scientific culture. Interdisciplinary education programs are required to train truly interdisciplinary scientists with respect to the critical factor skills and competences. For that purpose this paper presents the Methodology for Interdisciplinary Research (MIR) framework. The MIR framework was developed to help cross disciplinary borders, especially those between the natural sciences and the social sciences. The framework has been specifically constructed to facilitate the design of interdisciplinary scientific research, and can be applied in an educational program, as a reference for monitoring the phases of interdisciplinary research, and as a tool to design such research in a process approach. It is suitable for research projects of different sizes and levels of complexity, and it allows for a range of methods' combinations (case study, mixed methods, etc.). The different phases of designing interdisciplinary research in the MIR framework are described and illustrated by real-life applications in teaching and research. We further discuss the framework's utility in research design in landscape architecture, mixed methods research, and provide an outlook to the framework's potential in inclusive interdisciplinary research, and last but not least, research integrity.

  18. QFD: a methodological tool for integration of ergonomics at the design stage.

    Science.gov (United States)

    Marsot, Jacques

    2005-03-01

    As a marked increase in the number of musculoskeletal disorders was noted in many industrialized countries and more specifically in companies that require the use of hand tools, the French National Research and Safety Institute launched in 1999 a research program on the topic of integrating ergonomics into hand tool design. After a brief review of the problems of integrating ergonomics at the design stage, the paper shows how the "Quality Function Deployment" method has been applied to the design of a boning knife and it highlights the difficulties encountered. Then, it demonstrates how this method can be a methodological tool geared to greater ergonomics consideration in product design.

  19. Examining Pre-Service Mathematics Teachers' Conceptual Structures about "Geometry"

    Science.gov (United States)

    Erdogan, Ahmet

    2017-01-01

    The aim of this study is to examine pre-service mathematics teachers' conceptual structures about "geometry". Qualitative research methodology has been adopted in the study. The data of the study is obtained from mathematics teacher candidates who have been students at the faculties of education of an Anatolian university in the academic…

  20. Instructional design in mathematics for undergraduate students based on learning by mistakes approach utilizing scilab assistance

    Science.gov (United States)

    Kartika, H.

    2018-03-01

    The issue related to making mistake while learning such as negative emotion is found while students learn mathematics with the aid of a computer. When the computer output showed a mistake message, the students considered it as a computer software malfunction. Based on this issue, the writer designs an instructional model based on learning by mistake approach and which is Scilab assisted. The method used in this research is research design involving undergraduate students in matrix algebra courses. The data collected throught survey with questionnaire to gain feedback about the approach implemented. The data analyzed using quantitative descriptive. The instructional design proposed is the student act as a mistake corrector while the teacher acts as a mistake maker. Teacher deliberately makes mistakes with the help of Scilab software. On the other hand, students correct, analyze and explain errors resulting from Scilab software. The result of this research is an ICT based instructional design which is expected to be applicable as an alternative learning in directing students to think positively about mistakes in learning. Furthermore, students are also expected to improve their ability in understanding and thinking critically while solving problems and improving themselves in learning mathematics.

  1. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  2. Searching for Authentic Context in Designing PISA-like Mathematics Problem: From Indoor to Outdoor Field Experience

    Science.gov (United States)

    Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah

    2018-01-01

    Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.

  3. A Methodology for the Design of Robotic Hands with Multiple Fingers

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Parada Puig

    2008-11-01

    Full Text Available This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand.

  4. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms

    International Nuclear Information System (INIS)

    Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.

    2013-01-01

    This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem

  5. Didactic use of cinema in Mathematics

    Directory of Open Access Journals (Sweden)

    Pablo BELTRÁN PELLICER

    2014-10-01

    Full Text Available The use of cinema as didactical resource in the Mathematics classroom has interested several authors and teachers during the last years, mainly because of its power to motivate students. On this point, suggestive compilations of scenes containing mathematical references, detailed analysis of movies closely related to Mathematics and even didactical materials to be used in the classroom have been developed. This article proposes a theoretical framework for designing classroom sequences based on the didactical situation which can arise from movies or fiction series scenes. In order to develop such a framework, we follow a didactical engineering process, taking into account some specific characteristics, as the one related to the didactical transposition, as it is required to consider the mathematic knowledge within the chosen scene, overall the way it appears. As well, a classroom experience is described, designed following the mentioned guidelines and implemented in the course of a collaborative project between two secondary education centers, where a significant motivation increase has been detected, due to using mathematical situations from the real world (or from fictional contexts but which can be easily assimilated by the students. There was also evidence about the fact that the designed didactical sequences allow to reduce the cognitive gap required to acquire certain mathematical concepts, because of the scenes provide additional information within an extra-mathematical context. Therefore, our proposal establishes some basic considerations in order to efficiently design didactical sequences using movie scenes as a resource, underlining its power to motivate as well as its facilitating ability when introducing new mathematical concepts to our students.

  6. Mathematics, Language, and Learning: A Longitudinal Study of Elementary Teachers and Their Mathematics Teaching Practices

    OpenAIRE

    Yeh, Cathery

    2016-01-01

    Elementary school mathematics has gained increased attention in the last few decades. A growing field of research has studied the programmatic design and development of elementary mathematics teaching in teacher education, however, few studies have examined longitudinally the mathematics teaching of novice elementary teachers. Existing longitudinal studies on elementary mathematics teaching have generally focused on the effects of teacher preparation on their beginning practices and have exam...

  7. Design consideration of resonance inverters with electro-technological application

    Science.gov (United States)

    Hinov, Nikolay

    2017-12-01

    This study presents design consideration of resonance inverters with electro-technological application. The presented methodology was achieved as a result of investigations and analyses of different types and working regimes of resonance inverters, made by the author. Are considered schemes of resonant inverters without inverse diodes. The first harmonic method is used in the analysis and design. This method for the case of inverters with electro-technological application gives very good accuracy. This does not require the use of a complex and heavy mathematical apparatus. The proposed methodology is easy to use and is suitable for use in training students in power electronics. Authenticity of achieved results is confirmed by simulating and physical prototypes research work.

  8. [Methodological design of the National Health and Nutrition Survey 2016].

    Science.gov (United States)

    Romero-Martínez, Martín; Shamah-Levy, Teresa; Cuevas-Nasu, Lucía; Gómez-Humarán, Ignacio Méndez; Gaona-Pineda, Elsa Berenice; Gómez-Acosta, Luz María; Rivera-Dommarco, Juan Ángel; Hernández-Ávila, Mauricio

    2017-01-01

    Describe the design methodology of the halfway health and nutrition national survey (Ensanut-MC) 2016. The Ensanut-MC is a national probabilistic survey whose objective population are the inhabitants of private households in Mexico. The sample size was determined to make inferences on the urban and rural areas in four regions. Describes main design elements: target population, topics of study, sampling procedure, measurement procedure and logistics organization. A final sample of 9 479 completed household interviews, and a sample of 16 591 individual interviews. The response rate for households was 77.9%, and the response rate for individuals was 91.9%. The Ensanut-MC probabilistic design allows valid statistical inferences about interest parameters for Mexico´s public health and nutrition, specifically on overweight, obesity and diabetes mellitus. Updated information also supports the monitoring, updating and formulation of new policies and priority programs.

  9. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Delaware, Newark, DE (United States); Vlachos, Dionisios G. [Univ. of Delaware, Newark, DE (United States)

    2018-01-23

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems, etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.

  10. Mathematics for computer graphics

    CERN Document Server

    Vince, John

    2006-01-01

    Helps you understand the mathematical ideas used in computer animation, virtual reality, CAD, and other areas of computer graphics. This work also helps you to rediscover the mathematical techniques required to solve problems and design computer programs for computer graphic applications

  11. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  12. Spintronic logic design methodology based on spin Hall effect–driven magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Kang, Wang; Zhang, Youguang; Zhao, Weisheng; Wang, Zhaohao; Klein, Jacques-Olivier; Lv, Weifeng

    2016-01-01

    Conventional complementary metal-oxide-semiconductor (CMOS) technology is now approaching its physical scaling limits to enable Moore’s law to continue. Spintronic devices, as one of the potential alternatives, show great promise to replace CMOS technology for next-generation low-power integrated circuits in nanoscale technology nodes. Until now, spintronic memory has been successfully commercialized. However spintronic logic still faces many critical challenges (e.g. direct cascading capability and small operation gain) before it can be practically applied. In this paper, we propose a standard complimentary spintronic logic (CSL) design methodology to form a CMOS-like logic design paradigm. Using the spin Hall effect (SHE)-driven magnetic tunnel junction (MTJ) device as an example, we demonstrate CSL implementation, functionality and performance. This logic family provides a unified design methodology for spintronic logic circuits and partly solves the challenges of direct cascading capability and small operation gain in the previously proposed spintronic logic designs. By solving a modified Landau–Lifshitz–Gilbert equation, the magnetization dynamics in the free layer of the MTJ is theoretically described and a compact electrical model is developed. With this electrical model, numerical simulations have been performed to evaluate the functionality and performance of the proposed CSL design. Simulation results demonstrate that the proposed CSL design paradigm is rather promising for low-power logic computing. (paper)

  13. Effect of the Impeller Design on Degasification Kinetics Using the Impeller Injector Technique Assisted by Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Diego Abreu-López

    2017-04-01

    Full Text Available A mathematical model was developed to describe the hydrodynamics of a batch reactor for aluminum degassing utilizing the rotor-injector technique. The mathematical model uses the Eulerian algorithm to represent the two-phase system including the simulation of vortex formation at the free surface, and the use of the RNG k-ε model to account for the turbulence in the system. The model was employed to test the performances of three different impeller designs, two of which are available commercially, while the third one is a new design proposed in previous work. The model simulates the hydrodynamics and consequently helps to explain and connect the performances in terms of degassing kinetics and gas consumption found in physical modeling previously reported. Therefore, the model simulates a water physical model. The model reveals that the new impeller design distributes the bubbles more uniformly throughout the ladle, and exhibits a better-agitated bath, since the transfer of momentum to the fluids is better. Gas is evenly distributed with this design because both phases, gas and liquid, are dragged to the bottom of the ladle as a result of the higher pumping effect in comparison to the commercial designs.

  14. The Interaction between Multimedia Data Analysis and Theory Development in Design Research

    Science.gov (United States)

    van Nes, Fenna; Doorman, Michiel

    2010-01-01

    Mathematics education researchers conducting instruction experiments using a design research methodology are challenged with the analysis of often complex and large amounts of qualitative data. In this paper, we present two case studies that show how multimedia analysis software can greatly support video data analysis and theory development in…

  15. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  16. MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR

    Directory of Open Access Journals (Sweden)

    I. Yu. Khomenko

    2013-07-01

    Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different

  17. Process-oriented Design Methodology for the (Inter-) Organizational Intellectual Capital Management

    OpenAIRE

    Galeitzke, Mila; Oertwig, Nicole; Orth, Ronald; Kohl, Holger

    2016-01-01

    The development of a process-oriented design methodology for the visualization of intellectual capital in organisational business processes is described in this contribution. A tangible and intangible resource-oriented taxonomy in an integrated enterprise modelling environment is established. The comprehensive assessment, allocation and referencing of intellectual capital (human, structural and relational capital) counters the underutilization of available intellectual capital and allows for ...

  18. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  19. Methodology for predicting the life of waste-package materials, and components using multifactor accelerated life tests

    International Nuclear Information System (INIS)

    Thomas, R.E.; Cote, R.W.

    1983-09-01

    Accelerated life tests are essential for estimating the service life of waste-package materials and components. A recommended methodology for generating accelerated life tests is described in this report. The objective of the methodology is to define an accelerated life test program that is scientifically and statistically defensible. The methodology is carried out using a select team of scientists and usually requires 4 to 12 man-months of effort. Specific agendas for the successive meetings of the team are included in the report for use by the team manager. The agendas include assignments for the team scientists and a different set of assignments for the team statistician. The report also includes descriptions of factorial tables, hierarchical trees, and associated mathematical models that are proposed as technical tools to guide the efforts of the design team

  20. Fusion integral experiments and analysis and the determination of design safety factors - I: Methodology

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A.; Oyama, Y.; Maekawa, H.

    1995-01-01

    The role of the neutronics experimentation and analysis in fusion neutronics research and development programs is discussed. A new methodology was developed to arrive at estimates to design safety factors based on the experimental and analytical results from design-oriented integral experiments. In this methodology, and for a particular nuclear response, R, a normalized density function (NDF) is constructed from the prediction uncertainties, and their associated standard deviations, as found in the various integral experiments where that response, R, is measured. Important statistical parameters are derived from the NDF, such as the global mean prediction uncertainty, and the possible spread around it. The method of deriving safety factors from many possible NDFs based on various calculational and measuring methods (among other variants) is also described. Associated with each safety factor is a confidence level, designers may choose to have, that the calculated response, R, will not exceed (or will not fall below) the actual measured value. An illustrative example is given on how to construct the NDFs. The methodology is applied in two areas, namely the line-integrated tritium production rate and bulk shielding integral experiments. Conditions under which these factors could be derived and the validity of the method are discussed. 72 refs., 17 figs., 4 tabs

  1. New statistical methodology, mathematical models, and data bases relevant to the assessment of health impacts of energy technologies

    International Nuclear Information System (INIS)

    Ginevan, M.E.; Collins, J.J.; Brown, C.D.; Carnes, B.A.; Curtiss, J.B.; Devine, N.

    1981-01-01

    The present research develops new statistical methodology, mathematical models, and data bases of relevance to the assessment of health impacts of energy technologies, and uses these to identify, quantify, and pedict adverse health effects of energy related pollutants. Efforts are in five related areas including: (1) evaluation and development of statistical procedures for the analysis of death rate data, disease incidence data, and large scale data sets; (2) development of dose response and demographic models useful in the prediction of the health effects of energy technologies; (3) application of our method and models to analyses of the health risks of energy production; (4) a reanalysis of the Tri-State leukemia survey data, focusing on the relationship between myelogenous leukemia risk and diagnostic x-ray exposure; and (5) investigation of human birth weights as a possible early warning system for the effects of environmental pollution

  2. DEVELOPMENT OF METHODOLOGY FOR DESIGNING TESTABLE COMPONENT STRUCTURE OF DISCIPLINARY COMPETENCE

    Directory of Open Access Journals (Sweden)

    Vladimir I. Freyman

    2014-01-01

    Full Text Available The aim of the study is to present new methods of quality results assessment of the education corresponding to requirements of Federal State Educational Standards (FSES of the Third Generation developed for the higher school. The urgency of search of adequate tools for quality competency measurement and its elements formed in the course of experts’ preparation are specified. Methods. It is necessary to consider interference of competency components such as knowledge, abilities, possession in order to make procedures of assessment of students’ achievements within the limits of separate discipline or curriculum section more convenient, effective and exact. While modeling of component structure of the disciplinary competence the testable design of components is used; the approach borrowed from technical diagnostics. Results. The research outcomes include the definition and analysis of general iterative methodology for testable designing component structure of the disciplinary competence. Application of the proposed methodology is illustrated as the example of an abstract academic discipline with specified data and index of labour requirement. Methodology restrictions are noted; practical recommendations are given. Scientific novelty. Basic data and a detailed step-by-step implementation phase of the proposed common iterative approach to the development of disciplinary competence testable component structure are considered. Tests and diagnostic tables for different options of designing are proposed. Practical significance. The research findings can help promoting learning efficiency increase, a choice of adequate control devices, accuracy of assessment, and also efficient use of personnel, temporal and material resources of higher education institutions. Proposed algorithms, methods and approaches to procedure of control results organization and realization of developed competences and its components can be used as methodical base while

  3. Design of a Tank Cleaning Blend through a Systematic Emulsified Product Design Methodology

    DEFF Research Database (Denmark)

    Mattei, Michele; Krogh, Peter; Depner, Bo

    Commercial and industrial detergents, formulated liquid blends, have recently become extremely sophisticated, in order to address a broad range of cleaning tasks and to deliver superior performances with a minimum of effort and time. These products, by definition, consist of different chemicals, ......, the  whole  design  procedure speeds  up, saving time  and money,  and the optimum formulation is identified, since a broad range of alternatives are investigated. The approach adopted for the design of emulsion-based chemical products consists in a systematic model-based methodology...... for  consideration  in  a  product  design methodology, rule-based selection criteria are applied. These are centered on structured databases, where some relevant properties (e.g. safety or toxicity-related), if not available,are predicted through dedicated pure component property models. Once......, classified according to their function and associated properties, has been developed. Also, a model library consisting of pure component and mixture property models has been developed so that the needed functional properties can be reliably predicted when their data cannot be found in the database. The  abovementioned  methodology  and related tools  are  generic,  in the sense that  many  different  emulsified...

  4. The influence of Missouri mathematics project on seventh grade students’ mathematical understanding ability

    Science.gov (United States)

    Rezeki, S.; Setyawan, A. A.; Amelia, S.

    2018-01-01

    Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.

  5. EVOLVING AN EMPIRICAL METHODOLOGY DOR DETERMINING ...

    African Journals Online (AJOL)

    The uniqueness of this approach, is that it can be applied to any forest or dynamic feature on the earth, and can enjoy universal application as well. KEY WORDS: Evolving empirical methodology, innovative mathematical model, appropriate interval, remote sensing, forest environment planning and management. Global Jnl ...

  6. A mathematical programming framework for early stage design of wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2015-01-01

    The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based on e...... the design problem is formulated as a Mixed Integer (Non)linear Programming problem e MI(N)LP e and solved. A case study is formulated and solved to highlight the application of the framework. © 2014 Elsevier Ltd. All rights reserved....... on expert decisions and previous experiences. This paper proposes a new approach based on mathematical programming to manage the complexity of the problem. The approach generates/identifies novel and optimal wastewater treatment process selection, and the interconnection between unit operations to create...

  7. (Re)Envisioning Mathematics Education: Examining Equity and Social Justice in an Elementary Mathematics Methods Course

    Science.gov (United States)

    Koestler, Courtney

    2010-01-01

    In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…

  8. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Calculator: A Hardware Design, Math and Software Programming Project Base Learning

    Directory of Open Access Journals (Sweden)

    F. Criado

    2015-03-01

    Full Text Available This paper presents the implementation by the students of a complex calculator in hardware. This project meets hardware design goals, and also highly motivates them to use competences learned in others subjects. The learning process, associated to System Design, is hard enough because the students have to deal with parallel execution, signal delay, synchronization … Then, to strengthen the knowledge of hardware design a methodology as project based learning (PBL is proposed. Moreover, it is also used to reinforce cross subjects like math and software programming. This methodology creates a course dynamics that is closer to a professional environment where they will work with software and mathematics to resolve the hardware design problems. The students design from zero the functionality of the calculator. They are who make the decisions about the math operations that it is able to resolve it, and also the operands format or how to introduce a complex equation into the calculator. This will increase the student intrinsic motivation. In addition, since the choices may have consequences on the reliability of the calculator, students are encouraged to program in software the decisions about how implement the selected mathematical algorithm. Although math and hardware design are two tough subjects for students, the perception that they get at the end of the course is quite positive.

  10. Octopus: A Design Methodology for Motion Capture Wearables.

    Science.gov (United States)

    Marin, Javier; Blanco, Teresa; Marin, Jose J

    2017-08-15

    Human motion capture (MoCap) is widely recognised for its usefulness and application in different fields, such as health, sports, and leisure; therefore, its inclusion in current wearables (MoCap-wearables) is increasing, and it may be very useful in a context of intelligent objects interconnected with each other and to the cloud in the Internet of Things (IoT). However, capturing human movement adequately requires addressing difficult-to-satisfy requirements, which means that the applications that are possible with this technology are held back by a series of accessibility barriers, some technological and some regarding usability. To overcome these barriers and generate products with greater wearability that are more efficient and accessible, factors are compiled through a review of publications and market research. The result of this analysis is a design methodology called Octopus, which ranks these factors and schematises them. Octopus provides a tool that can help define design requirements for multidisciplinary teams, generating a common framework and offering a new method of communication between them.

  11. Methodology to design a municipal solid waste pre-collection system. A case study

    International Nuclear Information System (INIS)

    Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J.

    2015-01-01

    Highlights: • MSW recovery starts at homes; therefore it is important to facilitate it to people. • Additionally, to optimize MSW collection a previous pre-collection must be planned. • A methodology to organize pre-collection considering several factors is presented. • The methodology has been verified applying it to a Spanish middle town. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has

  12. Optimized planning methodologies of ASON implementation

    Science.gov (United States)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  13. A readable introduction to real mathematics

    CERN Document Server

    Rosenthal, Daniel; Rosenthal, Peter

    2014-01-01

    Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: * mathematical induction * modular arithmetic * the fundamental theorem of arithmetic * Fermat's little theorem * RSA encryption * the Euclidean algorithm * rational and irrational numbers * complex numbers * cardinality * Euclidean pl...

  14. An architecture and methodology for the design and development of Technical Information Systems

    NARCIS (Netherlands)

    Capobianchi, R.; Mautref, M.; van Keulen, Maurice; Balsters, H.

    In order to meet demands in the context of Technical Information Systems (TIS) pertaining to reliability, extensibility, maintainability, etc., we have developed an architectural framework with accompanying methodological guidelines for designing such systems. With the framework, we aim at complex

  15. Beyond Needs Analysis: Soft Systems Methodology for Meaningful Collaboration in EAP Course Design

    Science.gov (United States)

    Tajino, Akira; James, Robert; Kijima, Kyoichi

    2005-01-01

    Designing an EAP course requires collaboration among various concerned stakeholders, including students, subject teachers, institutional administrators and EAP teachers themselves. While needs analysis is often considered fundamental to EAP, alternative research methodologies may be required to facilitate meaningful collaboration between these…

  16. Students' Conflicting Attitudes towards Games as a Vehicle for Learning Mathematics: A Methodological Dilemma

    Science.gov (United States)

    Bragg, Leicha

    2007-01-01

    Mathematics games are widely employed in school classrooms for such reasons as a reward for early finishers or to enhance students' attitude towards mathematics. During a four week period, a total of 222 Grade 5 and 6 (9 to 12 years old) children from Melbourne, Australia, were taught multiplication and division of decimal numbers using calculator…

  17. About the Effectiveness of the Training Technology Model of Trigonometry Teaching for the Mathematical Profile Students

    Directory of Open Access Journals (Sweden)

    N. I. Popov

    2013-01-01

    Full Text Available The paper is devoted to trigonometry teaching in higher school as a part of the elementary mathematics course with a complex hierarchical structure. Due to the complicated content of the given discipline,each of its modules can be divided into separate themes; though, the teacher should emphasize their interrelations, as well as the links with the coordinate method, geometry and mathematical analysis.The recommended training technology model allows the teacher to build up and control the training process, and achieve good results in accordance with the assigned tasks. In the course of the model approbation, theauthor developed the e-learning resource and identification method for selecting the key mathematical examples and exercises for each theme and module. The analysis of students’ tests and questionnaires conducted for several years proves the effectiveness of the designed model for the senior university students of mathematical profile. Based on the research findings, the author developed the educational methodology complex for the Basics of Trigonometry course.

  18. A system-of-systems modeling methodology for strategic general aviation design decision-making

    Science.gov (United States)

    Won, Henry Thome

    General aviation has long been studied as a means of providing an on-demand "personal air vehicle" that bypasses the traffic at major commercial hubs. This thesis continues this research through development of a system of systems modeling methodology applicable to the selection of synergistic product concepts, market segments, and business models. From the perspective of the conceptual design engineer, the design and selection of future general aviation aircraft is complicated by the definition of constraints and requirements, and the tradeoffs among performance and cost aspects. Qualitative problem definition methods have been utilized, although their accuracy in determining specific requirement and metric values is uncertain. In industry, customers are surveyed, and business plans are created through a lengthy, iterative process. In recent years, techniques have developed for predicting the characteristics of US travel demand based on travel mode attributes, such as door-to-door time and ticket price. As of yet, these models treat the contributing systems---aircraft manufacturers and service providers---as independently variable assumptions. In this research, a methodology is developed which seeks to build a strategic design decision making environment through the construction of a system of systems model. The demonstrated implementation brings together models of the aircraft and manufacturer, the service provider, and most importantly the travel demand. Thus represented is the behavior of the consumers and the reactive behavior of the suppliers---the manufacturers and transportation service providers---in a common modeling framework. The results indicate an ability to guide the design process---specifically the selection of design requirements---through the optimization of "capability" metrics. Additionally, results indicate the ability to find synergetic solutions, that is solutions in which two systems might collaborate to achieve a better result than acting

  19. A Step-by-Step Design Methodology for a Base Case Vanadium Redox-Flow Battery

    Science.gov (United States)

    Moore, Mark; Counce, Robert M.; Watson, Jack S.; Zawodzinski, Thomas A.; Kamath, Haresh

    2012-01-01

    The purpose of this work is to develop an evolutionary procedure to be used by Chemical Engineering students for the base-case design of a Vanadium Redox-Flow Battery. The design methodology is based on the work of Douglas (1985) and provides a profitability analysis at each decision level so that more profitable alternatives and directions can be…

  20. Analysis of Combined Data from Heterogeneous Study Designs: A Methodological Proposal from the Patient Navigation Research program

    Science.gov (United States)

    Roetzheim, Richard G.; Freund, Karen M.; Corle, Don K.; Murray, David M.; Snyder, Frederick R.; Kronman, Andrea C.; Jean-Pierre, Pascal; Raich, Peter C.; Holden, Alan E. C.; Darnell, Julie S.; Warren-Mears, Victoria; Patierno, Steven; Design, PNRP; Committee, Analysis

    2013-01-01

    Background The Patient Navigation Research Program (PNRP) is a cooperative effort of nine research projects, each employing its own unique study design. To evaluate projects such as PNRP, it is desirable to perform a pooled analysis to increase power relative to the individual projects. There is no agreed upon prospective methodology, however, for analyzing combined data arising from different study designs. Expert opinions were thus solicited from members of the PNRP Design and Analysis Committee Purpose To review possible methodologies for analyzing combined data arising from heterogeneous study designs. Methods The Design and Analysis Committee critically reviewed the pros and cons of five potential methods for analyzing combined PNRP project data. Conclusions were based on simple consensus. The five approaches reviewed included: 1) Analyzing and reporting each project separately, 2) Combining data from all projects and performing an individual-level analysis, 3) Pooling data from projects having similar study designs, 4) Analyzing pooled data using a prospective meta analytic technique, 5) Analyzing pooled data utilizing a novel simulated group randomized design. Results Methodologies varied in their ability to incorporate data from all PNRP projects, to appropriately account for differing study designs, and in their impact from differing project sample sizes. Limitations The conclusions reached were based on expert opinion and not derived from actual analyses performed. Conclusions The ability to analyze pooled data arising from differing study designs may provide pertinent information to inform programmatic, budgetary, and policy perspectives. Multi-site community-based research may not lend itself well to the more stringent explanatory and pragmatic standards of a randomized controlled trial design. Given our growing interest in community-based population research, the challenges inherent in the analysis of heterogeneous study design are likely to become

  1. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  2. Heat integration of an Olefins Plant: Pinch Analysis and mathematical optimization working together

    Directory of Open Access Journals (Sweden)

    M. Beninca

    2011-03-01

    Full Text Available This work explores a two-step, complexity reducing methodology, to analyze heat integration opportunities of an existing Olefins Plant, identify and quantify reduction of energy consumption, and propose changes of the existing heat exchanger network to achieve these goals. Besides the analysis of plant design conditions, multiple operational scenarios were considered to propose modifications for handling real plant operation (flexibility. On the strength of plant complexity and large dimension, work methodology was split into two parts: initially, the whole plant was evaluated with traditional Pinch Analysis tools. Several opportunities were identified and modifications proposed. Modifications were segregated to represent small and independent portions of the original process. One of them was selected to be re-analyzed, considering two scenarios. Reduction of problem dimension allowed mathematical methodologies (formulation with decomposition, applying LP, MILP and NLP optimization methods to synthesize flexible networks to be applied, generating a feasible modification capable of fulfilling the proposed operational scenarios.

  3. An investigative study towards constructing anthropocentric Man-Machine System design evaluation methodology

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Gofuku, A.; Itoh, T.; Sasaki, K.

    1992-01-01

    A methodological investigation has been conducted for evaluating the reliability of man-machine interaction in the total Man-Machine System (MMS) from the view-point of safety maintenance for emergent situations of nuclear power plant. Basic considerations in our study are: (i) what are the MMS design data to be evaluated, (ii) how are those MMS design data should be treated, and (iii) how the introduction effects of various operator support tools can be evaluated. The methods of both qualitative and quantitative MMS design evaluation are summarized in this paper, with the system architecture based on man-machine interaction simulation and the related cognitive human error factor analysis. (author)

  4. A methodology for designing flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Viana Ensinas, Adriano; Münster, Marie

    2016-01-01

    An FMG (flexible multi-generation system) consists of integrated and flexibly operated facilities that provide multiple links between the various layers of the energy system. FMGs may facilitate integration and balancing of fluctuating renewable energy sources in the energy system in a cost...... is based on consideration of the following points: Selection, location and dimensioning of processes; systematic heat and mass integration; flexible operation optimization with respect to both short-term market fluctuations and long-term energy system development; global sensitivity and uncertainty...... analysis; biomass supply chains; variable part-load performance; and multi-objective optimization considering economic and environmental performance. Tested in a case study, the methodology is proved effective in screening the solution space for efficient FMG designs, in assessing the importance...

  5. Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage

    International Nuclear Information System (INIS)

    Nam, Kiil; Chang, Daejun; Chang, Kwangpil; Rhee, Taejin; Lee, In-Beum

    2011-01-01

    This study proposed a new LCC (life cycle cost) methodology with the risk expenditure taken into account for comparative evaluation of offshore process options at their conceptual design stage. The risk expenditure consisted of the failure risk expenditure and the accident risk expenditure. The former accounted for the production loss and the maintenance expense due to equipment failures while the latter reflected the asset damage and the fatality worth caused by disastrous accidents such as fire and explosion. It was demonstrated that the new LCC methodology was capable of playing the role of a process selection basis in choosing the best of the liquefaction process options including the power generation systems for a floating LNG (Liquefied natural gas) production facility. Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. The new methodology with the risk expenditure, however, indicated that the nitrogen expansion cycle driven by steam turbines should be the optimum choice, mainly due to its better availability and safety. -- Highlights: → The study presented the methodology of the LCC with the risk expenditure for the conceptual design of offshore processes. → The proposed methodology demonstrated the applicability of the liquefaction unit with the power generation system of LNG FPSO. → Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. → The new methodology indicated that the nitrogen expansion cycle driven by steam turbines is the optimum choice due to its better availability and safety.

  6. Methodology to design a municipal solid waste generation and composition map: A case study

    International Nuclear Information System (INIS)

    Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J.

    2014-01-01

    Highlights: • To draw a waste generation and composition map of a town a lot of factors must be taken into account. • The methodology proposed offers two different depending on the available data combined with geographical information systems. • The methodology has been applied to a Spanish city with success. • The methodology will be a useful tool to organize the municipal solid waste management. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the

  7. MATHEMATICAL MODEL DESIGNATED FOR THE ASSESSMENT OF THE INTEGRATED ENVIRONMENTAL LOAD PRODUCED BY A BUILDING PROJECT

    OpenAIRE

    Lapidus Azariy Abramovich; Berezhnyy Aleksandr Yurevich

    2012-01-01

    In the paper, the author proposes a mathematical model designated for the assessment of the ecological impact produced on the environment within the territory of the construction site. Integrated index EI (Environmental Index) is introduced as a vehicle designated for the evaluation of the ecological load. EI represents the intensity of the ecological load, or a generalized and optimized parameter reflecting the intensity of the anthropogenic impact of the construction site onto the natural e...

  8. Applications of different design methodologies in navigation systems and development at JPL

    Science.gov (United States)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  9. Creating Innovative Research Designs: The 10-Year Methodological Think Tank Case Study

    Science.gov (United States)

    Katerndahl, David; Crabtree, Benjamin

    2006-01-01

    PURPOSE Addressing important but complex research questions often necessitates the creation of innovative mixed methods designs. This report describes an approach to developing research designs for studying important but methodologically challenging research questions. METHODS The Methodological Think Tank has been held annually in conjunction with the Primary Care Research Methods and Statistics Conference in San Antonio since 1994. A group of 3 to 4 methodologists with expertise balanced between quantitative and qualitative backgrounds is invited by the think tank coordinators to serve on a 2-day think tank to discuss a research question selected from those submitted in response to a call for proposals. During the first half-day, these experts explore the content area with the investigator, often challenging beliefs and assumptions. During the second half-day, the think tank participants systematically prune potential approaches until a desirable research method is identified. RESULTS To date, the most recent 7 think tanks have produced fundable research designs, with 1 being funded by a K award and 4 by R01 grants. All participating investigators attributed much of their success to think tank participation. Lessons learned include (1) the importance of careful selection of participating methodologists, (2) all think tank communities of inquiry must go through 4 stages of development from pseudocommunity to community, and (3) the critical importance of listening by the investigator. CONCLUSION Researchers and academic departments could use this process locally to develop innovative research designs. PMID:17003146

  10. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  11. A study of school mathematics curriculum enacted by competent teachers in Singapore secondary schools

    Science.gov (United States)

    Kaur, Berinderjeet; Tay, Eng Guan; Toh, Tin Lam; Leong, Yew Hoong; Lee, Ngan Hoe

    2018-03-01

    A study of school mathematics curriculum enacted by competent teachers in Singapore secondary schools is a programmatic research project at the National Institute of Education (NIE) funded by the Ministry of Education (MOE) in Singapore through the Office of Education Research (OER) at NIE. The main goal of the project is to collect a set of data that would be used by two studies to research the enacted secondary school mathematics curriculum. The project aims to examine how competent experienced secondary school teachers implement the designated curriculum prescribed by the MOE in the 2013 revision of curriculum. It does this firstly by examining the video recordings of the classroom instruction and interactions between secondary school mathematics teachers and their students, as it is these interactions that fundamentally determine the nature of the actual mathematics learning and teaching that take place in the classroom. It also examines content through the instructional materials used—their preparation, use in classroom and as homework. The project comprises a video segment and a survey segment. Approximately 630 secondary mathematics teachers and 600 students are participating in the project. The data collection for the video segment of the project is guided by the renowned complementary accounts methodology while the survey segment adopts a self-report questionnaire approach. The findings of the project will serve several purposes. They will provide timely feedback to mathematics specialists in the MOE, inform pre-service and professional development programmes for mathematics teachers at the NIE and contribute towards articulation of "Mathematics pedagogy in Singapore secondary schools" that is evidence based.

  12. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2015-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  13. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2014-01-01

    A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.

  14. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  15. Mentoring in mathematics education

    CERN Document Server

    Hyde, Rosalyn

    2013-01-01

    Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:

  16. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  17. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2017-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  18. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2016-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  19. Evolutionary-Simulative Methodology in the Management of Social and Economic Systems

    Directory of Open Access Journals (Sweden)

    Konyavskiy V.A.

    2017-01-01

    Full Text Available The article outlines the main provisions of the evolutionary-simulative methodology (ESM which is a methodology of mathematical modeling of equilibrium random processes (CPR, widely used in the economy. It discusses the basic directions of use of ESM solutions for social problems and economic management systems.

  20. Improving University Students' Perception of Mathematics and Mathematics Ability

    Directory of Open Access Journals (Sweden)

    Shelly L. Wismath

    2015-01-01

    Full Text Available Although mathematical and quantitative reasoning skills are an essential part of adult life in our society, many students arrive at post-secondary education without such skills. Taking a standard mathematics course such as calculus may do little to improve those skills. Using a modification of the Tapia & Marsh questionnaire, we surveyed 62 students taking a broad quantitative reasoning course designed to develop quantitative skills, with respect to two broad attitudinal areas: students’ perception of their own ability, confidence and anxiety, and their perception of the value of mathematics in their studies and their lives. Pre- to post-course comparisons were done by both paired t-tests and Wilcoxon signed-rank tests. Our results showed a significant increase in confidence and decrease in anxiety, while perception of the value of mathematics was already high and changed little by the end of the course.

  1. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    Science.gov (United States)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  2. Methodological design of the National Health and Nutrition Survey 2016

    Directory of Open Access Journals (Sweden)

    Martín Romero-Martínez

    2017-05-01

    Full Text Available Objective. Describe the design methodology of the halfway health and nutrition national survey (Ensanut-MC 2016. Materials and methods. The Ensanut-MC is a national probabilistic survey whose objective population are the in­habitants of private households in Mexico. The sample size was determined to make inferences on the urban and rural areas in four regions. Describes main design elements: target population, topics of study, sampling procedure, measurement procedure and logistics organization. Results. A final sample of 9 479 completed household interviews, and a sample of 16 591 individual interviews. The response rate for households was 77.9%, and the response rate for individuals was 91.9%. Conclusions. The Ensanut-MC probabilistic design allows valid statistical inferences about interest parameters for Mexico´s public health and nutrition, specifically on over­weight, obesity and diabetes mellitus. Updated information also supports the monitoring, updating and formulation of new policies and priority programs.

  3. Automated Methodologies for the Design of Flow Diagrams for Development and Maintenance Activities

    Science.gov (United States)

    Shivanand M., Handigund; Shweta, Bhat

    The Software Requirements Specification (SRS) of the organization is a text document prepared by strategic management incorporating the requirements of the organization. These requirements of ongoing business/ project development process involve the software tools, the hardware devices, the manual procedures, the application programs and the communication commands. These components are appropriately ordered for achieving the mission of the concerned process both in the project development and the ongoing business processes, in different flow diagrams viz. activity chart, workflow diagram, activity diagram, component diagram and deployment diagram. This paper proposes two generic, automatic methodologies for the design of various flow diagrams of (i) project development activities, (ii) ongoing business process. The methodologies also resolve the ensuing deadlocks in the flow diagrams and determine the critical paths for the activity chart. Though both methodologies are independent, each complements other in authenticating its correctness and completeness.

  4. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  5. Inverse truss design as a conic mathematical program with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Outrata, Jiří

    2017-01-01

    Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf

  6. Accountability as a Design for Teacher Learning: Sensemaking about Mathematics and Equity in the NCLB Era

    Science.gov (United States)

    Horn, Ilana Seidel

    2018-01-01

    Using a learning design perspective on No Child Left Behind (NCLB), I examine how accountability policy shaped urban educators' instructional sensemaking. Focusing on the role of policy-rooted classifications, I examine conversations from a middle school mathematics teacher team as a "best case" because they worked diligently to comply…

  7. Designing and Implementing INTREPID, an Intensive Program in Translational Research Methodologies for New Investigators

    Science.gov (United States)

    Aphinyanaphongs, Yindalon; Shao, Yongzhao; Micoli, Keith J.; Fang, Yixin; Goldberg, Judith D.; Galeano, Claudia R.; Stangel, Jessica H.; Chavis‐Keeling, Deborah; Hochman, Judith S.; Cronstein, Bruce N.; Pillinger, Michael H.

    2014-01-01

    Abstract Senior housestaff and junior faculty are often expected to perform clinical research, yet may not always have the requisite knowledge and skills to do so successfully. Formal degree programs provide such knowledge, but require a significant commitment of time and money. Short‐term training programs (days to weeks) provide alternative ways to accrue essential information and acquire fundamental methodological skills. Unfortunately, published information about short‐term programs is sparse. To encourage discussion and exchange of ideas regarding such programs, we here share our experience developing and implementing INtensive Training in Research Statistics, Ethics, and Protocol Informatics and Design (INTREPID), a 24‐day immersion training program in clinical research methodologies. Designing, planning, and offering INTREPID was feasible, and required significant faculty commitment, support personnel and infrastructure, as well as committed trainees. PMID:25066862

  8. Students' perceptions of the relevance of mathematics in engineering

    Science.gov (United States)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  9. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    Science.gov (United States)

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  10. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Andres Takach

    2006-07-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  11. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Cavallaro JosephR

    2006-01-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  12. Technical Training: EMAG-2005 - Electromagnetic Design and Mathematical Optimization Methods in Magnet Technology

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! CERN Technical Training, in collaboration with the AT-MEL-EM section, is organising a new course series in the framework of the 2005 CERN Technical Training programme: EMAG-2005 - Electromagnetic Design and Mathematical Optimization Methods in Magnet Technology, composed of three-hour lectures in the morning and topical seminars in the afternoon. The EMAG-2005 course series will run at CERN from Monday April 4 until Thursday April 14 (no lectures on Friday 8). The course series, in English, will focus on the foundations of electromagnetism and the design of accelerator magnets, both normal conducting and superconducting, employing analytical and numerical field computations. Examples of the LHC magnet design using the CERN field computation program ROXIE will be presented. However, EMAG-2005 is not a ROXIE user course: it is rather a course for users or potential users of numerical field computation software, and for magnet designers. The course will be o...

  13. Design Methodology And Performance Studies Of A Flexible Electrotextile Surface

    Directory of Open Access Journals (Sweden)

    Kayacan Ozan

    2015-09-01

    Full Text Available ‘The smart textiles’ concept has to develop products based not only on design, fashion and comfort but also in terms of functions. The novel electro-textiles in the market open up new trends in smart and interactive gadgets. ‘Easy to care and durability’ properties are among the most important features of these products. On the other hand, wearable electronic knitwear has been gaining the attention of both researchers and industrial sectors. Combining knitting technology with electronics may become a dominant trend in the future because of the wide application possibilities. This research is concerned primarily with the design methodology of knitted fabrics containing electrically conductive textiles and especially in-use performance studies. The structural characteristics of the fabrics have been evaluated to enhance the performance properties.

  14. The challenges facing ethnographic design research: A proposed methodological solution

    DEFF Research Database (Denmark)

    Cash, Philip; Hicks, Ben; Culley, Steve

    2009-01-01

    Central to improving and maintaining high levels of performance in emerging ethnographic design research is a fundamental requirement to address some of the problems associated with the subject. In particular seven core issues are identified and include the complexity of test development......, variability of methods, resource intensiveness, subjectivity, comparability, common metrics and industrial acceptance. To address these problems this paper describes a structured methodological approach in which three main areas are proposed, the modularisation of the research process, the standardisation...... of the dataset and the stratification of the research context. The paper then examines the fundamental requirements of this scheme and how these relate to a Design Observatory approach. Following this, the proposed solution is related back to the initial problem set and potential issues are discussed. Finally...

  15. The Effects of a Computer-Assisted Teaching Material, Designed According to the ASSURE Instructional Design and the ARCS Model of Motivation, on Students’ Achievement Levels in a Mathematics Lesson and Their Resulting Attitudes

    OpenAIRE

    Hilal Karakış; Ayşen Karamete; Aydın Okçu

    2016-01-01

    This study examined the effects that computer-assisted instruction had on students’ attitudes toward a mathematics lesson and toward learning mathematics with computer-assisted instruction. The computer software we used was based on the ASSURE Instructional Systems Design and the ARCS Model of Motivation, and the software was designed to teach fractions to fourth-grade students. The skill levels of these students were gauged before and after receiving the computer-assisted instruction. We str...

  16. Designing charge-sensitive preamplifiers based on low-noise analog integrated circuits

    International Nuclear Information System (INIS)

    Agakhanyan, T.M.

    1998-01-01

    The methodology for designing charge-sensitive preamplifiers on the low-noise analog integral circuits, including all the stages: the mathematical synthesis with optimization of the intermediate function; the scheme-technical synthesis with parametric optimization of the scheme and analysis of draft projects with the parameter verification is presented. The designing is conducted on the basis of requirements for signal parameters and noise indices of the preamplifier. The system of automated designing of the charge-sensitive preamplifiers on the low-noise analog integral circuits is developed [ru

  17. The influence of mathematics learning using SAVI approach on junior high school students’ mathematical modelling ability

    Science.gov (United States)

    Khusna, H.; Heryaningsih, N. Y.

    2018-01-01

    The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.

  18. NEW TEACHING MATHEMATICS TEACHING EFFECTIVENESS OF THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES

    OpenAIRE

    Zhanys Aray Boshanqyzy; Nurkasymova Saule Nurkasymovna

    2017-01-01

    The possibilities of computer technologies in improving the quality of teaching mathematics and its application in the 7th grade students studied the impact on the development of mathematical thinking. Teachers and pupils kanşalıktı methodology to apply this technology meñgergendikteri tested and determined to improve the methods of teaching mathematics in the scientific literature of the main ideas, 7th grade, based on the best practices in the teaching of mathematics and taking into account...

  19. Introduction to the papers of TWG19: Mathematics teacher and classroom practices

    OpenAIRE

    Potari , Despina; Figueiras , Lourdes; Mosvold , Reidar; Sakonidis , Charalambos; Skott , Jeppe

    2015-01-01

    International audience; This Thematic Working Group (TWG) together with TWG18 and TWG20 addresses questions related to mathematics teachers, teaching, and their development. TWG19 focuses particularly on mathematics teaching, including important micro and macro factors that frame it. Classroom research has been the focus for many years in mathematics education, but new theoretical and methodological directions have been reported in this group aiming to study on the one hand the overall comple...

  20. The materiality of mathematics: presenting mathematics at the blackboard.

    Science.gov (United States)

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics. © London School of Economics and Political Science 2014.

  1. A Design Methodology for Medical Processes

    Science.gov (United States)

    Bonacina, Stefano; Pozzi, Giuseppe; Pinciroli, Francesco; Marceglia, Sara

    2016-01-01

    Summary Background Healthcare processes, especially those belonging to the clinical domain, are acknowledged as complex and characterized by the dynamic nature of the diagnosis, the variability of the decisions made by experts driven by their experiences, the local constraints, the patient’s needs, the uncertainty of the patient’s response, and the indeterminacy of patient’s compliance to treatment. Also, the multiple actors involved in patient’s care need clear and transparent communication to ensure care coordination. Objectives In this paper, we propose a methodology to model healthcare processes in order to break out complexity and provide transparency. Methods The model is grounded on a set of requirements that make the healthcare domain unique with respect to other knowledge domains. The modeling methodology is based on three main phases: the study of the environmental context, the conceptual modeling, and the logical modeling. Results The proposed methodology was validated by applying it to the case study of the rehabilitation process of stroke patients in the specific setting of a specialized rehabilitation center. The resulting model was used to define the specifications of a software artifact for the digital administration and collection of assessment tests that was also implemented. Conclusions Despite being only an example, our case study showed the ability of process modeling to answer the actual needs in healthcare practices. Independently from the medical domain in which the modeling effort is done, the proposed methodology is useful to create high-quality models, and to detect and take into account relevant and tricky situations that can occur during process execution. PMID:27081415

  2. A Design Methodology for Medical Processes.

    Science.gov (United States)

    Ferrante, Simona; Bonacina, Stefano; Pozzi, Giuseppe; Pinciroli, Francesco; Marceglia, Sara

    2016-01-01

    Healthcare processes, especially those belonging to the clinical domain, are acknowledged as complex and characterized by the dynamic nature of the diagnosis, the variability of the decisions made by experts driven by their experiences, the local constraints, the patient's needs, the uncertainty of the patient's response, and the indeterminacy of patient's compliance to treatment. Also, the multiple actors involved in patient's care need clear and transparent communication to ensure care coordination. In this paper, we propose a methodology to model healthcare processes in order to break out complexity and provide transparency. The model is grounded on a set of requirements that make the healthcare domain unique with respect to other knowledge domains. The modeling methodology is based on three main phases: the study of the environmental context, the conceptual modeling, and the logical modeling. The proposed methodology was validated by applying it to the case study of the rehabilitation process of stroke patients in the specific setting of a specialized rehabilitation center. The resulting model was used to define the specifications of a software artifact for the digital administration and collection of assessment tests that was also implemented. Despite being only an example, our case study showed the ability of process modeling to answer the actual needs in healthcare practices. Independently from the medical domain in which the modeling effort is done, the proposed methodology is useful to create high-quality models, and to detect and take into account relevant and tricky situations that can occur during process execution.

  3. The mechanical design of a transfemoral prosthesis using computational tools and design methodology

    Directory of Open Access Journals (Sweden)

    John Sánchez Otero

    2012-09-01

    Full Text Available Artificial limb replacement with lower limb prostheses has been widely reported in current scientific literature. There are many lower limb prosthetic designs ranging from a single-axis knee mechanism to complex mechanisms involving microcontrollers, made from many materials ranging from lightweight, high specific strength ones (e.g., carbon fibre to traditional forms (e.g., stainless steel. However, the challenge is to design prostheses whose movement resembles the human body’s natural movement as closely as possible. Advances in prosthetics have enabled many amputees to return to their everyday activities; however, such prostheses are expensive, some costing as much as $60,000. Many of the affected population in Colombia have scarce economic resources; there is therefore a need to develop affordable functional prostheses.The Universidad del Norte’s Materials, Processes and Design Research Group and the Robotics and Intelligent Systems Group have been working on this line of research to develop modular prostheses which can be adjusted to each patient’s requirements. This research represents an initial methodological approach to developing a prosthesis in which software tools have been used (the finite element method with a criteria relationship matrix for selecting the best alternative while considering different aspects such as mod-ularity, cost, stiffness and weight.

  4. Using turbidity for designing water networks.

    Science.gov (United States)

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Implementation and Effects of the Mathematics Design Collaborative (MDC): Early Findings from Kentucky Ninth-Grade Algebra 1 Courses. CRESST Report 845

    Science.gov (United States)

    Herman, Joan L.; Matrundola, Deborah La Torre; Epstein, Scott; Leon, Seth; Dai, Yunyun; Reber, Sarah; Choi, Kilchan

    2015-01-01

    With support from the Bill and Melinda Gates Foundation, researchers and experts in mathematics education developed the Mathematics Design Collaborative (MDC) as a strategy to support the transition to Common Core State Standards in math. MDC provides short formative assessment lessons known as Classroom Challenges for use in middle and high…

  6. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    Science.gov (United States)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  7. Rhetorical ways of thinking Vygotskian theory and mathematical learning

    CERN Document Server

    Albert, Lillie R; Macadino, Vittoria

    2012-01-01

    Combining Vygotskian theory with current teaching and learning practices, this volume focuses on how the co-construction of learning models the interpretation of a mathematical situation, providing educationalists with a valuable practical methodology.

  8. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  9. Toward Developmental Trajectories: A Commentary on "Assessing Measures of Mathematical Knowledge for Teaching"

    Science.gov (United States)

    Kulikowich, Jonna M.

    2007-01-01

    Operating from multiple literature bases in cognitive psychology, mathematics education, and theoretical and applied psychometrics, Schilling, Hill and their colleagues provide a systemic approach to studying the validity of scores of mathematical knowledge for teaching. This system encompasses an array of task formats and methodologies. The…

  10. Comparative analysis between three different methodologies for design of MSE walls: FHWA NHI-10-024, BS 8006 and EBGEO

    International Nuclear Information System (INIS)

    Galindo Mondragon, A.

    2014-01-01

    This document reflects the current practice for design of MSE walls using Partial coefficients. A deep compassion between three of the most applied methodologies around the world for the design of this type of structures has been done (Galindo, 2012). In the study, almost all the limit states involved in an external and internal analysis were analyzed. The methodologies under study are the FHWA NHI-10-024 (2009), BS-8006 ((2010) and EBGEO (2010) used in United States, Great Britain and Germany, respectively. Like a complement of the analysis, the results of two examples developed with the three methodologies are presented, showing that exist a tendency to a more conservative wall design for EBGEO and BS 8006 in comparison with FHWA. (Author)

  11. Optimization of emergy sustainability index for biodiesel supply network design

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le

    2015-01-01

    sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution...... centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains....

  12. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    Science.gov (United States)

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  13. Mathematical Interventions for Secondary Students with Learning Disabilities and Mathematics Difficulties: A Meta-Analysis

    Science.gov (United States)

    Jitendra, Asha K.; Lein, Amy E.; Im, Soo-hyun; Alghamdi, Ahmed A.; Hefte, Scott B.; Mouanoutoua, John

    2018-01-01

    This meta-analysis is the first to provide a quantitative synthesis of empirical evaluations of mathematical intervention programs implemented in secondary schools for students with learning disabilities and mathematics difficulties. Included studies used a treatment-control group design. A total of 19 experimental and quasi-experimental studies…

  14. Design Methodology and Performance Evaluation of New Generation Sounding Rockets

    Directory of Open Access Journals (Sweden)

    Marco Pallone

    2018-01-01

    Full Text Available Sounding rockets are currently deployed for the purpose of providing experimental data of the upper atmosphere, as well as for microgravity experiments. This work provides a methodology in order to design, model, and evaluate the performance of new sounding rockets. A general configuration composed of a rocket with four canards and four tail wings is sized and optimized, assuming different payload masses and microgravity durations. The aerodynamic forces are modeled with high fidelity using the interpolation of available data. Three different guidance algorithms are used for the trajectory integration: constant attitude, near radial, and sun-pointing. The sun-pointing guidance is used to obtain the best microgravity performance while maintaining a specified attitude with respect to the sun, allowing for experiments which are temperature sensitive. Near radial guidance has instead the main purpose of reaching high altitudes, thus maximizing the microgravity duration. The results prove that the methodology at hand is straightforward to implement and capable of providing satisfactory performance in term of microgravity duration.

  15. Predicting the microstructure-dependent mechanical performance of materials for early-stage design

    International Nuclear Information System (INIS)

    Dimiduk, D.M.; Uchic, M.D.; Parathasarathy, T.A.; Rao, S.I.; Choi, Y.-S.

    2004-01-01

    A description is offered of a simulation and testing methodology for structural materials that incorporates the influence of the local, microscopic and submicroscopic heterogeneous nature of material properties directly into design procedures. The new methodology builds upon a multitude of rapid microstructural and property assessments of selected local regions of a material (i.e. single-crystal regions, defected regions, grain aggregates, etc.), perhaps from a fully-processed component, or from materials specifically prepared to represent selected aspects of the full-scale process. The results from these assessments are used to define parameters within a hierarchy of mathematical and numerical representations of the material, and together in turn these may be used in design performance simulation codes to predict the intrinsic response of larger-scale structures. Further, the methodology may be used to anticipate the effects of defects on the performance of the full-scale structure. Most steps of this alternative design and test methodology are amenable to automation, and the methodology as a whole will reduce the number of iterative large-scale cycles required to qualify a material's suitability for structural service; thus, the new method is a framework for accelerating the development of structural materials

  16. Enhanced Production of Xylitol from Corncob by Pachysolen tannophilus Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    S. Ramesh

    2013-01-01

    Full Text Available Optimization of the culture medium and process variables for xylitol production using corncob hemicellulose hydrolysate by Pachysolen tannophilus (MTTC 1077 was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. Peptone, xylose, MgSO4·7H2O, and yeast extract were selected based on their positive influence on xylitol production. The selected components were optimized with Box-Behnken design using response surface methodology (RSM. The optimum levels (g/L were peptone: 6.03, xylose: 10.62, MgSO4·7H2O: 1.39, yeast extract: 4.66. The influence of various process variables on the xylitol production was evaluated. The optimal levels of these variables were quantified by the central composite design using RSM, for establishment of a significant mathematical model with a coefficient determination of . The validation experimental was consistent with the prediction model. The optimum levels of process variables were temperature (36.56°C, pH (7.27, substrate concentration (3.55 g/L, inoculum size (3.69 mL, and agitation speed (194.44 rpm. These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.80 g/g.

  17. Your move: The effect of chess on mathematics test scores.

    Science.gov (United States)

    Rosholm, Michael; Mikkelsen, Mai Bjørnskov; Gumede, Kamilla

    2017-01-01

    We analyse the effect of substituting a weekly mathematics lesson in primary school grades 1-3 with a lesson in mathematics based on chess instruction. We use data from the City of Aarhus in Denmark, combining test score data with a comprehensive data set obtained from administrative registers. We use two different methodological approaches to identify and estimate treatment effects and we tend to find positive effects, indicating that knowledge acquired through chess play can be transferred to the domain of mathematics. We also find larger impacts for unhappy children and children who are bored in school, perhaps because chess instruction facilitates learning by providing an alternative approach to mathematics for these children. The results are encouraging and suggest that chess may be an important and effective tool for improving mathematical capacity in young students.

  18. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    Science.gov (United States)

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  19. Developing Digital Technologies for Undergraduate University Mathematics

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    Our research effort presented in this paper relates with developing digital tools for mathematics education at undergraduate university level. It focuses specifically on studies where mathematics is not a core subject but it is very important in order to cope with core subjects. For our design, we...... requirements for the development of digital tools that support mathematics teaching and learning at university level....... during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student feedback inspire the next round of design...

  20. Bridging the Gap: A Design-based Case Study of a Mathematics Skills Intervention Program

    OpenAIRE

    Safaralian, Leila

    2017-01-01

    Abstract of the DissertationBridge the Gap: A Design-based Case Study of a Mathematics Skills Intervention ProgrambyLeila SafaralianDoctor of Education in Educational LeadershipUniversity of California, San Diego, 2017California State University, San Marcos, 2017Kenneth P. Gonzalez, ChairMany students aspire to continue their educational journey, but far too many enter college without the basic content knowledge, skills, or habits of mind needed to succeed. Research on college readiness indic...