WorldWideScience

Sample records for math stem metlife

  1. A descriptive study of high school Latino and Caucasian students' values about math, perceived math achievement and STEM career choice

    Science.gov (United States)

    Rodriguez Flecha, Samuel

    The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students

  2. Maximizing Gender Equality by Minimizing Course Choice Options? Effects of Obligatory Coursework in Math on Gender Differences in STEM

    Science.gov (United States)

    Hübner, Nicolas; Wille, Eike; Cambria, Jenna; Oschatz, Kerstin; Nagengast, Benjamin; Trautwein, Ulrich

    2017-01-01

    Math achievement, math self-concept, and vocational interests are critical predictors of STEM careers and are closely linked to high school coursework. Young women are less likely to choose advanced math courses in high school, and encouraging young women to enroll in advanced math courses may therefore bring more women into STEM careers. We…

  3. Meeting the STEM Workforce Demand: Accelerating Math Learning among Students Interested in STEM. BHEF Research Brief

    Science.gov (United States)

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    Efforts by federal and state governments to increase the STEM (science, technology, engineering and mathematics) workforce in support of innovation and competitiveness are frustrated by a shortage of adequately prepared and interested students. Less than half of 12th graders meet the math proficiency benchmark that indicates college readiness.…

  4. Alternative Fuels Data Center: Workplace Charging Success: MetLife

    Science.gov (United States)

    future." Several others noted that their decision to purchase or lease a PEV was based on MetLife's : MetLife " By making PEV charging stations more readily available to employees, we can encourage more promote alternative transportation. By making PEV charging stations more readily available to employees

  5. Science, Technology, Engineering and Math (STEM) Academic Librarian Positions during 2013: What Carnegie Classifications Reveal about Desired STEM Skills

    Science.gov (United States)

    Trei, Kelli

    2015-01-01

    This study analyzes the requirements and preferences of 171 science, technology, engineering, and math (STEM) academic librarian positions in the United States as advertised in 2013. This analysis compares the STEM background experience preferences with the Carnegie rankings of the employing institution. The research examines the extent to which…

  6. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  7. How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom

    Science.gov (United States)

    Milgram, Donna

    2011-01-01

    Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…

  8. Math

    CERN Document Server

    Robertson, William C

    2006-01-01

    Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.

  9. The influence of female social models in corporate STEM initiatives on girls' math and science attitudes

    Science.gov (United States)

    Medeiros, Donald J.

    The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task

  10. STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America

    Science.gov (United States)

    Drew, David E.

    2011-01-01

    One study after another shows American students ranking behind their international counterparts in the STEM fields--science, technology, engineering, and math. Business people such as Bill Gates warn that this alarming situation puts the United States at a serious disadvantage in the high-tech global marketplace of the twenty-first century, and…

  11. Family Context Predictors of Math Self-Concept among Undergraduate STEM Majors: An Analysis of Gender Differences

    Science.gov (United States)

    Rinn, Anne N.; Miner, Kathi; Taylor, Aaron B.

    2013-01-01

    The purpose of the current study was to examine four family context variables (socioeconomic status, mother's level of education, father's level of education, and perceived family social support) as predictors of math self-concept among undergraduate STEM majors to better understand the gender differential in math self-concept. Participants…

  12. Gender in STEM Education: An Exploratory Study of Student Perceptions of Math and Science Instructors in the United Arab Emirates

    Science.gov (United States)

    Pasha-Zaidi, Nausheen; Afari, Ernest

    2016-01-01

    The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…

  13. Underrepresented Entrepreneurship: A Mixed Method Study Evaluating Postsecondary Persistence Approaches for Minorities in Science Technology Engineering Math (STEM) to Graduate Studies and STEM Entrepreneurship Education

    Science.gov (United States)

    Goodwyn, Kamela Joy

    2017-01-01

    Small businesses with emphasis in science, technology, engineering and math (STEM) are catalytic in launching the United States' global presence and competitiveness into the twenty-first century through innovation and technology. The projected growth compared to non-STEM occupations, is almost twice as high for STEM occupations which further…

  14. 75 FR 1007 - MetLife, Inc. and MetLife Capital Trust V; Notice of Application

    Science.gov (United States)

    2010-01-07

    ... the definition of investment company by section 3(b) of the Act or by the rules or regulations under... Act for an exclusion from the definition of an investment company. To the extent MetLife or another... definition of a ``parent company'' in rule 3a-5(b)(2)(i) solely because it is an ``insurance company'' or...

  15. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  16. Re-enJEANeering STEM Education: Math Options Summer Camp

    Science.gov (United States)

    Dave, Vibhuti; Blasko, Dawn; Holliday-Darr, Kathryn; Kremer, Jennifer Trich; Edwards, Robert; Ford, Melanie; Lenhardt, Lucy; Hido, Barbara

    2010-01-01

    Although the number of women majoring in engineering and engineering technology has increased in the last few decades, percentages lag behind those in other STEM disciplines. Young women often have misperceptions about the nature of engineering, and that leads to lack of interest. Engineering is often seen as men's work. They do not understand how…

  17. "But I'm Not Good at Math": The Changing Salience of Mathematical Self-Concept in Shaping Women's and Men's STEM Aspirations

    Science.gov (United States)

    Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.

    2015-01-01

    Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…

  18. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    Science.gov (United States)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students

  19. Differences between the Sexes among Protestant Christian Middle School Students and Their Attitudes toward Science, Technology, Engineering and Math (STEM)

    Science.gov (United States)

    Michael, Kurt Y.; Alsup, Philip R.

    2016-01-01

    Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…

  20. 75 FR 71464 - Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased...

    Science.gov (United States)

    2010-11-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,210; TA-W-73,210A] Metlife... negative determination regarding the eligibility of workers and former workers of MetLife, Technology... revised certification, and all workers in the group threatened with total or partial separation from...

  1. The MetLife Survey of the American Teacher: Listening to Teachers in Rural Schools

    Science.gov (United States)

    MetLife, Inc., 2013

    2013-01-01

    MetLife has sponsored and Harris Interactive has conducted the annual MetLife Survey of the American Teacher series since 1984 to share the voices of teachers with educators, policymakers and the public. The series examines significant changes and trends over time, highlights important current issues, and explores topics relevant to the future of…

  2. The MetLife Survey of the American Teacher: Challenges for School Leadership

    Science.gov (United States)

    MetLife, Inc., 2013

    2013-01-01

    "The MetLife Survey of the American Teacher: Challenges for School Leadership" (2012) was conducted by Harris Interactive and is the twenty-ninth in a series sponsored annually by MetLife since 1984 to give voice to those closest to the classroom. This report examines the views of teachers and principals on the responsibilities and challenges…

  3. Math achievement is important, but task values are critical, too: examining the intellectual and motivational factors leading to gender disparities in STEM careers

    Science.gov (United States)

    Wang, Ming-Te; Degol, Jessica; Ye, Feifei

    2015-01-01

    Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices. PMID:25741292

  4. Math Achievement is Important, but Task Values are Critical, Too: Examining the Intellectual and Motivational Factors Leading to Gender Disparities in STEM Careers

    Directory of Open Access Journals (Sweden)

    Mingte eWang

    2015-02-01

    Full Text Available Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some STEM occupations. This study drew on expectancy-value theory to assess (1 which intellectual and motivational factors in high school predict gender differences in career choices and (2 whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in twelfth grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.

  5. Math achievement is important, but task values are critical, too: examining the intellectual and motivational factors leading to gender disparities in STEM careers.

    Science.gov (United States)

    Wang, Ming-Te; Degol, Jessica; Ye, Feifei

    2015-01-01

    Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students' motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women's underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.

  6. Science, Technology, Engineering, Math (STEM) in Higher Education from the Perspective of Female Students: An Institutional Ethnography

    Science.gov (United States)

    Parson, Laura J.

    A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate

  7. Taking Advantage of STEM (Science, Technology, Engineering, and Math) Popularity to Enhance Student/Public Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2011-12-01

    For a student group on campus, "the public" can refer to other students on campus or citizens from the community (including children, parents, teenagers, professionals, tradespeople, older people, and others). All of these groups have something to offer that can enrich the experiences of a student group. Our group focuses on science, technology, engineering and math (STEM) education in K-12 schools, university courses, and outreach activities with the general public. We will discuss the experiences of "All Things STEM" on the University of Colorado-Boulder campus and outreach in Boulder and Weld County, CO. Our experiences include (1) tours and events that offer an opportunity for student/public interaction, (2) grant requests and projects that involve community outreach, and (3) organizing conferences and events with campus/public engagement. Since our group is STEM-oriented, tours of water treatment plants, recycling centers, and science museums are a great way to create connections. Our most successful campus/public tour is our annual tour of the Valmont Station coal power plant near Boulder. We solicit students from all over campus and Boulder public groups with the goal to form a diverse and intimate 8 person group (students, school teachers, mechanics, hotel managers, etc.) that takes a 1.5 hr tour of the plant guided by the Chief Engineer. This includes a 20 minute sit-down discussion of anything the group wants to talk about including energy policy, plant history, recent failures, coal versus other fuels, and environmental issues. The tour concludes with each member placing a welding shield over their face and looking at the flames in the middle of the boiler, a little excitement that adds to the connections the group forms with each other. We have received over 11,000 to work with local K-12 schools and CU-Boulder undergraduate and graduate classes to develop a platform to help students learn and explain water quality concepts in a more practical manner

  8. Can Financial Aid Help to Address the Growing Need for STEM Education? The Effects of Need-Based Grants on the Completion of Science, Technology, Engineering, and Math Courses and Degrees

    Science.gov (United States)

    Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary

    2018-01-01

    Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…

  9. Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools

    Science.gov (United States)

    Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald

    2007-01-01

    If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…

  10. A Study of the Experience of Female African-American Seventh Graders in a Science, Technology, Engineering, and Math (STEM) Afterschool Program

    Science.gov (United States)

    Hinds, Beverley Fiona

    The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired

  11. Making the case for STEM integration at the upper elementary level: A mixed methods exploration of opportunity to learn math and science, teachers' efficacy and students' attitudes

    Science.gov (United States)

    Miller, Brianna M.

    Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math

  12. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    Science.gov (United States)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  13. Advanced Placement Math and Science Courses: Influential Factors and Predictors for Success in College STEM Majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    2010-01-01

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country.…

  14. Talking Math, Blogging Math

    OpenAIRE

    Mathews, Linda Marie

    2009-01-01

    Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...

  15. The Consequences of the National Math and Science Performance Environment for Gender Differences in STEM Aspiration

    Directory of Open Access Journals (Sweden)

    Allison Mann

    2016-07-01

    Full Text Available Using the lens of expectation states theory, which we formalize in Bayesian terms, this article examines the influences of national performance and self-assessment contexts on gender differences in the rate of aspiring to science, technology, engineering, and mathematics (STEM occupations. We demonstrate that girls hold themselves to a higher performance standard than do boys before forming STEM orientations, and this gender "standards gap" grows with the strength of a country’s performance environment. We also demonstrate that a repeatedly observed paradox in this literature—namely, that the STEM gender gap increases with a more strongly gender-egalitarian national culture—vanishes when the national performance culture is taken into account. Whereas other research has proposed theories to explain the apparent paradox as an empirical reality, we demonstrate that the empirical relationship is as expected; net of the performance environment, countries with a more gender-egalitarian culture have a smaller gender gap in STEM orientations. We also find, consistent with our theory, that the proportion of high-performing girls among STEM aspirants grows with the strength of the national performance environment even as the overall gender gap in STEM orientations grows because of offsetting behavior by students at the lower end of the performance distribution.

  16. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  17. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    Science.gov (United States)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  18. Characteristics of Exemplary Science, Technology, Engineering, and Math (STEM)-Related Experiential Learning Opportunities

    Science.gov (United States)

    Simmons, Jamie Munn

    Experiential opportunities at the secondary level give students the "intimate and necessary relation between the processes of actual experience and education" (Dewey, 1938, p. 19- 20). Career and Technical Education classes (CTE) and co-curricular experiences, one type of experiential learning, underpin and cultivate student curiosity and often channel interests into STEM-related post-secondary disciplines and career choices. There is little existent research on the characteristics of exemplary experiential learning opportunities and the impact on stakeholders. This study is intended to identify the qualities and characteristics of an exemplary secondary experience through the lived experiences of the stakeholders; students, STEM-related teachers, and CTE/STEM Administrators. A qualitative research design was used to examine characteristics and implications for students of four STEM-related programs throughout Virginia. Conclusions from the study include fundamental principles for providing exemplary experiential STEM-related learning opportunities. These principles include: providing hands-on, real world learning opportunities for students, providing learning opportunities that will enhance student ownership in their learning, providing unique and comprehensive career exploration opportunities for students, providing a schedule for teachers that will give them time to plan, deliver, and manage exemplary experiential learning opportunities, providing continual teacher and administrator in-service training relative to planning and implementing exemplary experiential learning opportunities, investing appropriate funds for providing exemplary experiential learning opportunities. Establishing and maintaining active partnerships with business/industry and colleges/universities, and maintaining active advisory communities, providing appropriate staff to support the provision of exemplary experiential learning opportunities is needed. The need for adequate funding

  19. African American women making race work in science, technology, engineering, and math (STEM)

    Science.gov (United States)

    Galloway, Stephanie Nicole

    African American women maintain distinctive social locations at the intersection of race, gender, and class (Crenshaw, 1991; Collins, 1986; 2000; Wing, 2003). However, their voices, interpretation of experiences, and concern with the use of formal education as a mechanism for racial uplift have not been priorities in feminist movements (hooks, 1981; 1989; Perkins, 1993; Smith, 1998; Spitzack & Carter, 1987). Alternatively, Black feminist thought (Collins, 1990; 2000) is a theory constructed by and for African American women. Given the consequences of pursuing formal education in the histories of African American women and the paucity of African American women represented in STEM fields, the purpose of this study was to (a) reveal how African American women conducting research in STEM disciplines accomplished their professional goals, (b) learn how the women negotiated their multiple identities (i.e. race, gender, and class), (c) link the history of educational experiences among African Americans with agendas for social justice, (d) understand how African American women in STEM align their personal accomplishments with broader agendas for activism in higher education, and (e) discover whether there is a collective identity that successful African American women in STEM share. Using Black feminist thought (Collins, 1986; 2000) and narrative analysis of semi- interviews with eight African American women in STEM, the findings from this study revealed: (a) the women in this study described the challenges of pursuing a career in STEM from a feminist perspective, identifying gender as more significant than race; (b) the women in this study experienced more positive interactions with Black male, White female, and White male mentors than with Black female mentors; (c) the women in this study described the use of empowering strategies for overcoming obstacles in their academic pathways; and (d) their collective academic identities were formed by early interactions with

  20. Modern maths

    CERN Multimedia

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  1. Engaging Historically Black Colleges and Universities through Science, Technology, Engineering and Math (STEM) Education and Community Engagement

    Science.gov (United States)

    EPA’s STEM Outreach Program in RTP began in 2004, with the aim of supporting EPA’s mission of protecting human health and the environment by increasing awareness, providing education, and inspiring the public, especially K-12 students.

  2. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  3. Math Safari.

    Science.gov (United States)

    Nelson, Vaunda; Stanko, Anne

    1992-01-01

    Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)

  4. Underrepresented Racial/Ethnic Minority Graduate Students in Science, Technology, Engineering, and Math (STEM) Disciplines: A Cross Institutional Analysis of their Experiences

    Science.gov (United States)

    Figueroa, Tanya

    Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on

  5. Math Stuff

    CERN Document Server

    Pappas, Theoni

    2002-01-01

    Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to

  6. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  7. STEM Careers Are Out of This World--No Need to Fear Science, Technology, Engineering, or Math

    Science.gov (United States)

    Griffin, Amanda; Manning, Kelvin

    2012-01-01

    At NASA, we fully support the President's Educate to Innovate Program in the hopes that American students move from the middle of the pack to the top in the next decade; and that we are expanding STEM education and career opportunities for underrepresented groups, including minorities and females. The first goal we have implemented to help accomplish this is to Strengthen NASA and the Nation's future workforce - Many of you in the audience could be our potential workforce, and the co-op and intern program at NASA is helping students like you. The second goal is to Attract and retain students in STEM disciplines-To compete effectively for the minds, imaginations and career ambitions of young people like you, throughout NASA, we regularly send educators and NASA speakers into classrooms to work directly with you, encouraging you to follow in the footsteps of NASA engineers and scientists. The Third goal is to Engage Americans in NASA's mission- To get young people involved in NASA's mission, we have many exciting programs for college students like the Lunabotics Mining Competition and the Cubes Satellites sent to space

  8. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    Science.gov (United States)

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  9. Talking Maths

    Science.gov (United States)

    Murray, Jenny

    2006-01-01

    Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…

  10. Penguin Math

    Science.gov (United States)

    Green, Daniel; Kearney, Thomas

    2015-01-01

    Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…

  11. Tangible Math

    Science.gov (United States)

    Scarlatos, Lori L.

    2006-01-01

    Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…

  12. Math Problem

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  13. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  14. Counseling the Math Anxious

    Science.gov (United States)

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  15. Taking Math Anxiety out of Math Instruction

    Science.gov (United States)

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  16. A Multi-Case Study of Student Interactions with Educational Robots and Impact on Science, Technology, Engineering, and Math (STEM) Learning and Attitudes

    Science.gov (United States)

    Holmquist, Stephanie Kaye

    2014-01-01

    The demand for STEM trained workers continues to increase not only in the United States, but globally. Reports have indicated that the United States is not doing a good job encouraging students to pursue STEM oriented degrees. In particular, it has become increasingly important to emphasize STEM connections at an early level in order to encourage…

  17. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    Outsourcing of jobs to low-wage countries has increased the focus onthe accumulation of skills - such as Math skills - in high-wage countries.In this paper, we exploit a high school pilot scheme to identify the causaleffect of advanced high school Math on labor market outcomes. The pilotscheme...... reduced the costs of choosing advanced Math because it allowedfor at more flexible combination of Math with other courses. We findclear evidence of a causal relationship between Math and earnings for thestudents who are induced to choose Math after being exposed to the pilotscheme. The effect partly stems...

  18. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  19. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  20. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    OpenAIRE

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...

  1. Advanced Math Equals Career Readiness. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…

  2. Teaching Math Their Way.

    Science.gov (United States)

    Tankersley, Karen

    1993-01-01

    Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…

  3. Solving America's Math Problem

    Science.gov (United States)

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  4. Maths in Prison

    Directory of Open Access Journals (Sweden)

    Catherine Patricia Byrne

    2015-08-01

    Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.

  5. College Math Assessment: SAT Scores vs. College Math Placement Scores

    Science.gov (United States)

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  6. Architecture: A Nexus of Creativity, Math, and Spatial Ability

    Science.gov (United States)

    Senne, Jessica; Coxon, Steve V.

    2016-01-01

    The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…

  7. Female teachers' math anxiety affects girls' math achievement.

    Science.gov (United States)

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  8. Maths in Prison

    OpenAIRE

    Catherine Patricia Byrne

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...

  9. Maths in Prison

    OpenAIRE

    Byrne, Catherine; Carr, Michael

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...

  10. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  11. GRE math tests

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop

  12. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, E. Juanna Schröter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear...... evidence of a causal relationship between math and earnings for students who are induced to choose math after being exposed to the pilot scheme. The effect partly stems from the fact that these students end up with a higher education....

  13. Dr Math at your service

    CSIR Research Space (South Africa)

    Butgereit, L

    2012-10-01

    Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....

  14. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    Science.gov (United States)

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  15. Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes

    Directory of Open Access Journals (Sweden)

    Bettina J Casad

    2015-11-01

    Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.

  16. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    Science.gov (United States)

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  17. The influence of experiencing success in math on math anxiety, perceived math competence, and math performance

    NARCIS (Netherlands)

    Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a

  18. Barron's SAT math workbook

    CERN Document Server

    Leff MS, Lawrence S

    2016-01-01

    This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.

  19. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  20. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    Science.gov (United States)

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  1. GRE math workbook

    CERN Document Server

    Madore, Blair

    2015-01-01

    Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.

  2. The Hidden STEM Economy

    Science.gov (United States)

    Rothwell, Jonathan

    2013-01-01

    Workers in STEM (science, technology, engineering, and math) fields play a direct role in driving economic growth. Yet, because of how the STEM economy has been defined, policymakers have mainly focused on supporting workers with at least a bachelor's (BA) degree, overlooking a strong potential workforce of those with less than a BA. This report…

  3. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  4. Math remediation for the college bound how teachers can close the gap, from the basics through algebra

    CERN Document Server

    Khatri, Daryao

    2011-01-01

    Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences.

  5. Motivation and Math Anxiety for Ability Grouped College Math Students

    Science.gov (United States)

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  6. Girls Talk Math - Engaging Girls Through Math Media

    Science.gov (United States)

    Bernardi, Francesca; Morgan, Katrina

    2017-11-01

    ``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.

  7. The Effects of Math Anxiety

    Science.gov (United States)

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  8. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    Directory of Open Access Journals (Sweden)

    Wanda Nugroho Yanuarto

    2016-08-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. The purpose of this study is to provide some treatments to overcome students’ anxiety in math classroom at The University of Muhammadiyah Purwokerto, Indonesia especially in Math Department, but before it has attempted to investigate the factors that students’ anxiety can possibly stem from, both within the classroom environment and out of classroom in the wilder social context.

  9. SAT math prep course

    CERN Document Server

    Kolby, Jeff

    2011-01-01

    Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!

  10. More math into Latex

    CERN Document Server

    Grätzer, George

    2007-01-01

    For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr

  11. Principals in Partnership with Math Coaches

    Science.gov (United States)

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  12. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    Science.gov (United States)

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  13. Implicit Social Cognitions Predict Sex Differences in Math Engagement and Achievement

    Science.gov (United States)

    Nosek, Brian A.; Smyth, Frederick L.

    2011-01-01

    Gender stereotypes about math and science do not need to be endorsed, or even available to conscious introspection, to contribute to the sex gap in engagement and achievement in science, technology, engineering, and mathematics (STEM). The authors examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants.…

  14. Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.

    Science.gov (United States)

    Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey

    2018-03-01

    People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.

  15. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  16. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  17. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  18. Culture and math.

    Science.gov (United States)

    Tcheang, Lili

    2014-01-01

    Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.

  19. Business math for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...

  20. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Directory of Open Access Journals (Sweden)

    Ian M Lyons

    Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  1. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    Science.gov (United States)

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  2. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  3. Group Activities for Math Enthusiasts

    Science.gov (United States)

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  4. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  5. Business Math without Tears.

    Science.gov (United States)

    Merchant, Ronald

    1980-01-01

    Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)

  6. Where's the Math?

    Science.gov (United States)

    Texas Child Care, 2003

    2003-01-01

    Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…

  7. Understand electrical and electronics maths

    CERN Document Server

    Bishop, Owen

    1993-01-01

    Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math

  8. Teachers and Counselors: Building Math Confidence in Schools

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2017-08-01

    Full Text Available Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is important that all students feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, technology, science, and mathematics. It really is a school's obligation to see that their students value and feel confident in their ability to do math, because ultimately a child's life: all decisions they will make and careers choices may be determined based on their disposition toward mathematics. This paper raises some interesting questions and provides some strategies (See Appendix A for teachers and counselors for addressing the issue of math anxiety while discussing the importance of developing mathematically confident young people for a high-tech world of STEM.

  9. Learning Math With My Father: A Memoir

    Directory of Open Access Journals (Sweden)

    Yolanda De La CRUZ

    2012-07-01

    Full Text Available If he is indeed wise he does not bid you enter the house of his wisdom, but rather leads you to the threshold of your own mind. Kahlil Gibran. We all build our own houses of wisdom, each of us; we cannot build them for each other. Teachers cannot simply invite students into their houses of wisdom, but can often find ways to help learners to enter and explore their own minds. While Constructivism has had a positive impact on the teaching and learning of literacy mathematics instruction continues to rely heavily on rote memorization and drills. As a young child, I learned to love math. My love of math stems from learning math with my father. He did not focus on rote memorization and drills. The primary emphasis was for a real purpose. My self-confidence was enforced when he started me out with problems that were less difficult and had many different solutions. These solutions were valued and respected, which allowed me to trust in my own problem solving abilities. How can we hope to lead children to the thresholds of their own minds when we remain intent on forcing them into our houses of wisdom? What alternative ways can we devise of interacting with children that respect their confidence and leave intact their levels of understanding, that lead them to the thresholds of their own minds excited about entering?

  10. Adolescent Girls' Experiences and Gender-Related Beliefs in Relation to Their Motivation in Math/Science and English

    Science.gov (United States)

    Leaper, Campbell; Farkas, Timea; Brown, Christia Spears

    2012-01-01

    Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…

  11. Attentional Bias in Math Anxiety

    Directory of Open Access Journals (Sweden)

    Orly eRubinsten

    2015-10-01

    Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.

  12. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  13. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  14. Technical Math For Dummies

    CERN Document Server

    Schoenborn, Barry

    2010-01-01

    Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses you’ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. You’ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. You’ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, you’ll find out how to perform basic arithmetic

  15. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  16. All Students Need Advanced Mathematics. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  17. Financial Statement Math

    OpenAIRE

    2007-01-01

    game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis

  18. MathSci

    OpenAIRE

    De Robbio, Antonella

    1997-01-01

    This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...

  19. The role of social support in students' perceived abilities and attitudes toward math and science.

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  20. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    Science.gov (United States)

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  1. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Science.gov (United States)

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID

  2. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Necka

    2015-10-01

    Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be

  3. Experiences and Perceptions of STEM Subjects, Careers, and Engagement in STEM Activities among Middle School Students in the Maritime Provinces

    Science.gov (United States)

    Franz-Odendaal, Tamara A.; Blotnicky, Karen; French, Frederick; Joy, Phillip

    2016-01-01

    To enhance understanding of factors that might improve STEM career participation, we assessed students' self-perceptions of competency and interest in science/math, engagement in STEM activities outside of school, and knowledge of STEM career requirements. We show that the primary positive influencer directing students to a STEM career is high…

  4. Global Collaborative STEM Education

    Science.gov (United States)

    Meabh Kelly, Susan; Smith, Walter

    2016-04-01

    Global Collaborative STEM Education, as the name suggests, simultaneously supports two sets of knowledge and skills. The first set is STEM -- science, technology, engineering and math. The other set of content knowledge and skills is that of global collaboration. Successful global partnerships require awareness of one's own culture, the biases embedded within that culture, as well as developing awareness of the collaborators' culture. Workforce skills fostered include open-mindedness, perseverance when faced with obstacles, and resourceful use of technological "bridges" to facilitate and sustain communication. In respect for the 2016 GIFT Workshop focus, Global Collaborative STEM Education projects dedicated to astronomy research will be presented. The projects represent different benchmarks within the Global Collaborative STEM Education continuum, culminating in an astronomy research experience that fully reflects how the global STEM workforce collaborates. To facilitate wider engagement in Global Collaborative STEM Education, project summaries, classroom resources and contact information for established international collaborative astronomy research projects will be disseminated.

  5. From Skeletons to Bridges & Other STEM Enrichment Exercises for High School Biology

    Science.gov (United States)

    Riechert, Susan E.; Post, Brian K.

    2010-01-01

    The national Science, Technology, Engineering, and Math (STEM) Education Initiative favors a curriculum shift from the compartmentalization of math and science classes into discrete subject areas to an integrated, multidisciplinary experience. Many states are currently implementing programs in high schools that provide greater integration of math,…

  6. Advanced Math: Closing the Equity Gap. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…

  7. Early Math Interest and the Development of Math Skills

    Science.gov (United States)

    Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.

    2012-01-01

    Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…

  8. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…

  9. The Maths Arcade: A Tool for Supporting and Stretching Mathematics Undergraduates

    OpenAIRE

    Bradshaw, Noel-Ann

    2017-01-01

    The Maths Arcade is an activity which aims simultaneously to support those university mathematics learners who are having difficulties, stretch more confident learners, and encourage the development of a staff-student mathematical community. The first Maths Arcade was set up at the University of Greenwich in September 2010, funded initially by a University grant for innovative teaching and later by the Mathematical Sciences Curriculum Innovation Fund of the UK National Higher Education STEM P...

  10. Math primer for engineers

    CERN Document Server

    Cryer, CW

    2014-01-01

    Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formula

  11. Math Education at a Crossroads

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...

  12. Math Learning Begins at Home

    Science.gov (United States)

    Eason, Sarah H.; Levine, Susan C.

    2017-01-01

    Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…

  13. From Mxit to Dr Math

    CSIR Research Space (South Africa)

    Botha, Adèle

    2013-02-01

    Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...

  14. What Math Teachers Need Most

    Science.gov (United States)

    Nelson, Barbara Scott; Sassi, Annette

    2007-01-01

    The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…

  15. "Math Anxiety" Explored in Studies

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…

  16. Math Fact Strategies Research Project

    Science.gov (United States)

    Boso, Annie

    2011-01-01

    An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…

  17. The math excellence workshop

    International Nuclear Information System (INIS)

    Lasser, Susan J.S.; Snelsire, Robert W.

    1992-01-01

    This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)

  18. The math excellence workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lasser, Susan J.S.; Snelsire, Robert W [College of Engineering, Clemson University, Clemson, SC (United States)

    1992-07-01

    This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)

  19. The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement

    Science.gov (United States)

    Soni, Akanksha; Kumari, Santha

    2017-01-01

    The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…

  20. Math anxiety and math performance in children: The mediating roles of working memory and math self-concept.

    Science.gov (United States)

    Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago

    2017-12-01

    Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.

  1. Do Growth Mindsets in Math Benefit Females? Identifying Pathways between Gender, Mindset, and Motivation.

    Science.gov (United States)

    Degol, Jessica L; Wang, Ming-Te; Zhang, Ya; Allerton, Julie

    2018-05-01

    Despite efforts to increase female representation in science, technology, engineering, and mathematics (STEM), females continue to be less motivated to pursue STEM careers than males. A short-term longitudinal study used a sample of 1449 high school students (grades 9-12; 49% females) to examine pathways from gender and mindset onto STEM outcomes via motivational beliefs (i.e., expectancy beliefs, task value, and cost). Mindset, motivational beliefs, and STEM career aspirations were assessed between the fall and winter months of the 2014-2015 school year and math grades were obtained at the conclusion of the same year. Student growth mindset beliefs predicted higher task values in math. Task values also mediated the pathway from a growth mindset to higher STEM career aspirations. Expectancy beliefs mediated the pathway between gender and math achievement. This mediated pathway was stronger for females than for males, such that females had higher math achievement than males when they endorsed a growth mindset. Findings suggest possible avenues for improving female's interest in STEM.

  2. Addressing Math Anxiety in the Classroom

    Science.gov (United States)

    Finlayson, Maureen

    2014-01-01

    In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…

  3. Enhancing Mathematical Communication for Virtual Math Teams

    Science.gov (United States)

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  4. Helping Students Get Past Math Anxiety

    Science.gov (United States)

    Scarpello, Gary

    2007-01-01

    Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…

  5. String-Math 2015

    CERN Document Server

    2015-01-01

    Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...

  6. Mathe Kompakt fur Dummies

    CERN Document Server

    Zegarelli, Mark

    2015-01-01

    Der schnelle Überblick für Schüler und jeden, den es sonst noch interessiert Müssen Sie sich in der Schule oder im Beruf mit Mathematik beschäftigen und es hapert schon an den Grundlagen? Frei nach dem Motto »Einst gelernt, doch längst vergessen« bereiten oft gerade die einfachen Fragestellungen Probleme. Wie viel Prozent sind das nochmal? Wie war das doch gleich mit der Bruchrechnung und wie berechnet man eigentlich den Flächeninhalt eines Dreiecks? Keine Sorge, Mark Zegarelli erklärt es Ihnen einfach, aber zugleich amüsant, und hilft Ihnen so, Ihre Wissenslücken zu schließen. Damit ist Mathe

  7. Age at Menarche and Choice of College Major: Implications for STEM Majors

    Science.gov (United States)

    Brenner-Shuman, Anna; Waren, Warren

    2013-01-01

    Even though boys and girls in childhood perform similarly in math and spatial thinking, after puberty fewer young women pursue majors that emphasize abilities such as science, technology, engineering, and math (STEM) in college. If postpubertal feminization contributes to a lower likelihood of choosing STEM majors, then young women who enter…

  8. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  9. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    OpenAIRE

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test, achievement motivation test, and the math experience questionnaire. A significant positive correlation was found between math self-concept and math achievement in all four math domains (measurement, rela...

  10. Students as Math Level Designers

    DEFF Research Database (Denmark)

    Jensen, Erik Ottar; Hanghøj, Thorkild; Schoenau-Fog, Henrik

    The short paper presents preliminary findings from a pilot study on how students become motivated through design of learning games in math. The research is carried out in a Danish public school with two classes of 5th graders (N = 42 students). Over the course of two weeks, the students work...... with a design template for a runner game in the Unity 3D game design engine. The students are introduced to the concept of “flow” (Csikszentmihalyi, 1991) as a game design principle and are asked to design levels for a math runner game, which are both engaging as well as a meaningful way of learning math....... In this way, the students are positioned as “math level designers”, which means that they both have to redesign the difficulty of the runner game as well as the difficulty of the mathematical questions and possible answers....

  11. Impact of Cover, Copy, and Compare on Fluency Outcomes for Students with Disabilities and Math Deficits: A Review of the Literature

    Science.gov (United States)

    Stocker, James D., Jr.; Kubina, Richard M., Jr.

    2017-01-01

    Fluency, a combination of response accuracy and speed, enables students to work efficiently through academic tasks. Students with disabilities and math deficits often struggle to learn math facts fluently. Although issues with fluency frequently coexist with a disability, problems gaining fluency also stem from a lack of practice and appropriate…

  12. Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities

    OpenAIRE

    Susan Sonnenschein; Claudia Galindo; Shari R. Metzger; Joy A. Thompson; Hui Chih Huang; Heather Lewis

    2012-01-01

    This study explored associations between parents’ beliefs about children’s development and children’s reported math activities at home. Seventy-three parents were interviewed about the frequency of their children’s participation in a broad array of math activities, the importance of children doing math activities at home, how children learn math, parents’ role in their children’s math learning, and parents’ own math skills. Although the sample consisted of African Americans, Chinese, Latino, ...

  13. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    OpenAIRE

    Krystle O'Leary; Cheryll L. Fitzpatrick; Darcy Hallett

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through...

  14. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries

    Science.gov (United States)

    Lee, Jihyun

    2009-01-01

    The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…

  15. Attentional bias in math anxiety.

    Science.gov (United States)

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.

  16. STEM Equality and Diversity Toolkit

    Science.gov (United States)

    Collins, Jill

    2011-01-01

    In 2008, the Centre for Science Education at Sheffield Hallam University teamed up with VT Enterprise (now Babcock International) in their submission of a successful bid to deliver the national STEM (Science, Technology, Engineering and Maths) Subject Choice and Careers Project. An integral part of the bid was the promotion of equality and…

  17. Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.

    Science.gov (United States)

    Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L

    2015-09-01

    A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.

  18. An Exploration of the Ways that Parents Can Influence African American Girls Interest in Achieving in Math and Science

    Science.gov (United States)

    Alexander, Lori L.

    Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.

  19. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    OpenAIRE

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...

  20. Individual differences in nonverbal number skills predict math anxiety.

    Science.gov (United States)

    Lindskog, Marcus; Winman, Anders; Poom, Leo

    2017-02-01

    Math anxiety (MA) involves negative affect and tension when solving mathematical problems, with potentially life-long consequences. MA has been hypothesized to be a consequence of negative learning experiences and cognitive predispositions. Recent research indicates genetic and neurophysiological links, suggesting that MA stems from a basic level deficiency in symbolic numerical processing. However, the contribution of evolutionary ancient purely nonverbal processes is not fully understood. Here we show that the roots of MA may go beyond symbolic numbers. We demonstrate that MA is correlated with precision of the Approximate Number System (ANS). Individuals high in MA have poorer ANS functioning than those low in MA. This correlation remains significant when controlling for other forms of anxiety and for cognitive variables. We show that MA mediates the documented correlation between ANS precision and math performance, both with ANS and with math performance as independent variable in the mediation model. In light of our results, we discuss the possibility that MA has deep roots, stemming from a non-verbal number processing deficiency. The findings provide new evidence advancing the theoretical understanding of the developmental etiology of MA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. When approximate number acuity predicts math performance: The moderating role of math anxiety

    Science.gov (United States)

    Libertus, Melissa E.

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939

  2. Measurement of math beliefs and their associations with math behaviors in college students.

    Science.gov (United States)

    Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara

    2014-12-01

    Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.

  3. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Science.gov (United States)

    Braham, Emily J; Libertus, Melissa E

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  4. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Directory of Open Access Journals (Sweden)

    Emily J Braham

    Full Text Available Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  5. Dragons, Ladybugs, and Softballs: Girls' STEM Engagement with Human-Centered Robotics

    Science.gov (United States)

    Gomoll, Andrea; Hmelo-Silver, Cindy E.; Šabanovic, Selma; Francisco, Matthew

    2016-01-01

    Early experiences in science, technology, engineering, and math (STEM) are important for getting youth interested in STEM fields, particularly for girls. Here, we explore how an after-school robotics club can provide informal STEM experiences that inspire students to engage with STEM in the future. Human-centered robotics, with its emphasis on the…

  6. The Blue Blazer Club: Masculine Hegemony in Science, Technology, Engineering, and Math Fields

    Science.gov (United States)

    Page, Melanie C.; Bailey, Lucy E.; Van Delinder, Jean

    2009-01-01

    The under-representation of women in Science, Technology, Engineering, and Math (STEM) fields is of continuing concern, as is the lack of women in senior positions and leadership roles. During a time of increasing demand for science and engineering enterprise, the lack of women and minorities in these academic disciplines needs to be addressed by…

  7. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    Science.gov (United States)

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  8. "I Was Scared to Be the Stupid": Latinas in Residential Academies of Science and Math

    Science.gov (United States)

    Sayman, Donna

    2015-01-01

    This study examines the experiences of Latinas in state residential academies of science, technology, engineering, and math (STEM). Goals of this project focused on understanding their experiences and identifying factors leading to the decision to enroll, along with issues contributing to retention. These schools represent powerful opportunities…

  9. Math and Science Education for the California Workforce: It Starts with K-12

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Workforce projections worldwide show a growing need for people with strong backgrounds in math and science. As the eighth largest economy in the world, California benefits particularly from enterprises in the "STEM" fields (science, technology, engineering, and mathematics). How well California's current public school students are…

  10. Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work

    Science.gov (United States)

    Bull, Heather

    2009-01-01

    Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…

  11. A Motivational Technique for Business Math

    Science.gov (United States)

    Voelker, Pamela

    1977-01-01

    The author suggests the use of simulation and role playing as a method of motivating students in business math. Examples of career-oriented business math simulation games are counting change, banking, payrolls, selling, and shopping. (MF)

  12. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  13. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    Science.gov (United States)

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  14. Reciprocal Relations among Motivational Frameworks, Math Anxiety, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.

    2018-01-01

    School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…

  15. Math word problems for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work

  16. Response to intervention in math

    CERN Document Server

    Riccomini, Paul J

    2010-01-01

    Boost academic achievement for all students in your mathematics classroom! This timely resource leads the way in applying RTI to mathematics instruction. The authors describe how the three tiers can be implemented in specific math areas and illustrate RTI procedures through case studies. Aligned with the NMAP final report and IES practice guide, this book includes: Intervention strategies for number sense, fractions, problem solving, and more Procedures for teaching math using systematic and explicit instruction for assessment, instructional planning, and evaluation Essential components to con

  17. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness. REL 2015-096

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2015-01-01

    The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…

  18. Math Branding in a Community College Library

    Science.gov (United States)

    Brantz, Malcolm; Sadowski, Edward B.

    2010-01-01

    As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…

  19. Saxon Math. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2017

    2017-01-01

    "Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…

  20. Math Game(s) - an alternative (approach) to teaching math?

    NARCIS (Netherlands)

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the

  1. Taking Math Outside of the Classroom: Math in the City

    Science.gov (United States)

    Radu, Petronela

    2013-01-01

    Math in the City is an interdisciplinary mathematics course offered at University of Nebraska-Lincoln in which students engage in a real-world experience to understand current major societal issues of local and national interest. The course is run in collaboration with local businesses, research centers, and government organizations, that provide…

  2. Americans Need Advanced Math to Stay Globally Competitive. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…

  3. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Science.gov (United States)

    Hart, Sara A; Ganley, Colleen M; Purpura, David J

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  4. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  5. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Directory of Open Access Journals (Sweden)

    Sara A Hart

    Full Text Available There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  6. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary

  7. Meeting a Math Achievement Crisis

    Science.gov (United States)

    Jennings, Lenora; Likis, Lori

    2005-01-01

    An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…

  8. Teaching Math to the Talented

    Science.gov (United States)

    Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger

    2011-01-01

    Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…

  9. Big Math for Little Kids

    Science.gov (United States)

    Greenes, Carole; Ginsburg, Herbert P.; Balfanz, Robert

    2004-01-01

    "Big Math for Little Kids," a comprehensive program for 4- and 5-year-olds, develops and expands on the mathematics that children know and are capable of doing. The program uses activities and stories to develop ideas about number, shape, pattern, logical reasoning, measurement, operations on numbers, and space. The activities introduce the…

  10. Basic Maths Practice Problems For Dummies

    CERN Document Server

    Beveridge, Colin

    2012-01-01

    Fun, friendly coaching and all the practice you need to tackle maths problems with confidence and ease In his popular Basic Maths For Dummies, professional maths tutor Colin Beveridge proved that he could turn anyone - even the most maths-phobic person - into a natural-born number cruncher. In this book he supplies more of his unique brand of maths-made- easy coaching, plus 2,000 practice problems to help you master what you learn. Whether you're prepping for a numeracy test or an employability exam, thinking of returning to school, or you'd just like to be one of those know-it-alls who says

  11. Three brief assessments of math achievement.

    Science.gov (United States)

    Steiner, Eric T; Ashcraft, Mark H

    2012-12-01

    Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.

  12. Does Applied STEM Course Taking Link to STEM Outcomes for High School Students With Learning Disabilities?

    Science.gov (United States)

    Gottfried, Michael A; Sublett, Cameron

    Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has examined whether these courses link to STEM persistence for the general student population, no work has examined the role of these courses for students with learning disabilities (LDs). This is a critical lapse, as these courses have been supported as being one path by which STEM material can become more accessible for students with diverse learning needs. Hence, this descriptive study examines the landscape of applied STEM course taking for students with LDs. The findings suggest students with LDs are less likely to take applied STEM courses in high school compared to the general population. Additionally, while the general population does benefit from taking these courses, there is a unique association between applied STEM course taking and advanced math and science course taking or math achievement for students with LDs. Hence, there is no evidence that applied STEM course taking is related to any closure of the STEM achievement gap for students with LDs.

  13. Affective and Motivational Factors Mediate the Relation between Math Skills and Use of Math in Everyday Life

    Science.gov (United States)

    Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122

  14. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    Directory of Open Access Journals (Sweden)

    Brenda RJ Jansen

    2016-04-01

    Full Text Available This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations. Data from a Dutch nation-wide research on math among adults (N = 521 were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life.

  15. Science Technology Engineering and Math (STEM) Education MUST Begin in Early Childhood Education: A Systematic Analysis of Washington State Guidelines Used to Gauge the Development and Learning of Young Learners

    Science.gov (United States)

    Briseno, Luis Miguel

    This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.

  16. Girls and STEM (Science, Technology, Engineering, and Mathematics) in Catholic Schools: A Mixed Methods Exploration of Interest, Confidence, and Perceptions of STEM

    Science.gov (United States)

    McKenna, Rachel Lynn-Pleis

    2016-01-01

    Over the past decade, there has been a considerable push in emphasizing STEM--an acronym standing for Science, Technology, Engineering, and Math--as an integral aspect of educational curriculums. Even though research suggests that females tend to outperform males in standardized testing in STEM areas, they remain underrepresented in STEM careers…

  17. Strengthening maths learning dispositions through ‘math clubs’

    OpenAIRE

    Mellony Graven

    2016-01-01

    In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sense-making maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3-6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low l...

  18. Math Game(s) - an alternative (approach) to teaching math?

    OpenAIRE

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the opportunities offered by computer graphics, visual programming and game design as an alternative for traditional methods of teaching mathemathics. In particular, games may be deployed both as intruments to d...

  19. Nurses' maths: researching a practical approach.

    Science.gov (United States)

    Wilson, Ann

    To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.

  20. Family Maths and Complexity Theory

    OpenAIRE

    Webb, Paul; Austin, Pam

    2012-01-01

    The importance of family involvement is highlighted by findings that parents’ behaviours, beliefs and attitudes affect children’s behaviour in a major way. The Family Maths programme, which is the focus of this study, provides support for the transformative education practices targeted by the South African Department of Education by offering an intervention which includes teachers, learners and their families in an affirming learning community. In this study participating parents were intervi...

  1. Greg Tang: Making Math Count

    Science.gov (United States)

    Pierpont, Katherine

    2006-01-01

    Greg Tang has a resume that could get his foot in the door to a lot of places. A graduate of Harvard with both a B.A. and M.A. in economics, Tang has found success as a business executive, a speechwriter, a software designer and owner of a Tae Kwon Do school. After the publication of his first best-selling book for children, "The Grapes of Math"…

  2. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  3. Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules

    Science.gov (United States)

    Etheredge, Jessica; Moody, Dana; Cooper, Ashley

    2014-01-01

    This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…

  4. Maths4Stats: Educating teachers

    Directory of Open Access Journals (Sweden)

    Renette J. Blignaut

    2013-02-01

    Full Text Available The inadequate nature of the education infrastructure in South Africa has led to poor academic performance at public schools. Problems within schools such as under-qualified teachers and poor teacher performance arise due to the poorly constructed education system in our country. The implementation in 2012 of the Curriculum and Assessment Policy Statement (CAPS at public schools in South Africa saw the further crippling of some teachers, as they were unfamiliar with parts of the CAPS subject content. The Statistics and Population Studies department at the University of the Western Cape was asked to join the Maths4Stats project in 2012. This project was launched by Statistics South Africa in an effort to assist in training the teachers in statistical content within the CAPS Mathematics curricula. The University of the Western Cape’s team would like to share their experience of being part of the Maths4Stats training in the Western Cape. This article focuses on how the training sessions were planned and what the outcomes were. With the knowledge gained from our first Maths4Stats experience, it is recommended that future interventions are still needed to ensure that mathematics teachers become well-informed and confident to teach topics such as data handling, probability and regression analysis.

  5. Productive failure in learning math.

    Science.gov (United States)

    Kapur, Manu

    2014-06-01

    When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.

  6. Do High School STEM Courses Prepare Non-College Bound Youth for Jobs in the STEM Economy?

    Science.gov (United States)

    Bozick, Robert; Srinivasan, Sinduja; Gottfried, Michael

    2017-01-01

    Our study assesses whether high school science, technology, engineering, and mathematics (STEM) courses provide non-college bound youth with the skills and training necessary to successfully transition from high school into the STEM economy. Specifically, our study estimates the effects that advanced math, advanced science, engineering, and…

  7. Revising the economic imperative for US STEM education.

    Science.gov (United States)

    Donovan, Brian M; Moreno Mateos, David; Osborne, Jonathan F; Bisaccio, Daniel J

    2014-01-01

    Over the last decade macroeconomic studies have established a clear link between student achievement on science and math tests and per capita gross domestic product (GDP) growth, supporting the widely held belief that science, technology, engineering, and math(STEM) education are important factors in the production of economic prosperity. We critique studies that use science and math tests to predict GDP growth, arguing that estimates of the future economic value of STEM education involve substantial speculation because they ignore the impacts of economic growth on biodiversity and ecosystem functionality, which, in the long-term, limit the potential for future economic growth. Furthermore, we argue that such ecological impacts can be enabled by STEM education. Therefore, we contend that the real economic imperative for the STEM pipeline is not just raising standardized test scores, but also empowering students to assess, preserve, and restore ecosystems in order to reduce ecological degradation and increase economic welfare.

  8. Changes in Math Prerequisites and Student Performance in Business Statistics: Do Math Prerequisites Really Matter?

    OpenAIRE

    Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles

    2007-01-01

    We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...

  9. Inhibition Performance in Children with Math Disabilities

    OpenAIRE

    Winegar, Kathryn Lileth

    2013-01-01

    This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...

  10. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  11. Teachers’ ability in using math learning media

    Science.gov (United States)

    Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.

    2017-12-01

    The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.

  12. Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs

    Science.gov (United States)

    Wu-Rorrer, Ray

    2017-01-01

    The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…

  13. Creating the Workforce of the Future: The STEM Interest and Proficiency Challenge. BHEF Research Brief

    Science.gov (United States)

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    A strong economy requires a highly educated workforce, especially in science, technology, engineering, and math (STEM) fields. In the United States, STEM degree production has stagnated, despite employment projections forecasting a 17% growth in the field over the next decade. Two key criteria influence progression through the STEM education…

  14. Numbers and other math ideas come alive

    CERN Document Server

    Pappas, Theoni

    2012-01-01

    Most people don't think about numbers, or take them for granted. For the average person numbers are looked upon as cold, clinical, inanimate objects. Math ideas are viewed as something to get a job done or a problem solved. Get ready for a big surprise with Numbers and Other Math Ideas Come Alive. Pappas explores mathematical ideas by looking behind the scenes of what numbers, points, lines, and other concepts are saying and thinking. In each story, properties and characteristics of math ideas are entertainingly uncovered and explained through the dialogues and actions of its math

  15. The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores

    Science.gov (United States)

    Bennett, Angela Stephens

    2010-01-01

    One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…

  16. The Effectiveness of Using STAR Math to Improve PSSA Math Scores

    Science.gov (United States)

    Holub, Sherry L.

    2017-01-01

    This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…

  17. Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study

    Science.gov (United States)

    Henslee, Amber M.; Klein, Brandi A.

    2017-01-01

    The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…

  18. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    Science.gov (United States)

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2015-01-01

    Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…

  19. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    Science.gov (United States)

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

  20. Math Performance as a Function of Math Anxiety and Arousal Performance Theory

    Science.gov (United States)

    Farnsworth, Donald M., Jr.

    2009-01-01

    While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…

  1. CODE STEM - Moon, Mars, and Beyond; DLESE-Powered On-Line Classroom, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — "CODE (COrps DEvelopment) STEM (Science, Technology, Engineering, and Math) ? Moon Mars and Beyond; DLESE-Powered On-Line Classroom" shares the excitement of...

  2. Math Anxiety and Math Performance in Children: The Mediating Roles of Working Memory and Math Self-Concept

    Science.gov (United States)

    Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago

    2017-01-01

    Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…

  3. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    NARCIS (Netherlands)

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test,

  4. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    Science.gov (United States)

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The effects of gender composition on women's experience in math work groups.

    Science.gov (United States)

    Grover, Sarah S; Ito, Tiffany A; Park, Bernadette

    2017-06-01

    The present studies tested a model outlining the effects of group gender composition on self- and others' perceptions of women's math ability in a truly interactive setting with groups composed entirely of naïve participants (N = 158 4-person groups across 3 studies). One woman in each group was designated to be the "expert" by having her complete a tutorial that gave her task-relevant knowledge for a subsequent group task. Group gender composition was hypothesized to influence perceptions of women's math ability through intrapersonal processes (stereotype threat effects on performance) and interpersonal processes (social cohesion between the expert and other group members). Group composition affected the experts' performance in the group math task, but importantly, it also affected their social cohesion with group members. Moreover, both of these effects-lowered performance and poorer social cohesion in male-dominated groups-made independent contributions in accounting for group gender composition effects on perceptions of women's math ability (Studies 1 and 2). Boundary conditions were examined in a 3rd study. Women who had a history of excelling in math and had chosen a math-intensive STEM major were selected to be the designated experts. We predicted and found this would be sufficient to eliminate the effect of group gender composition on interpersonal processes, and correspondingly the effect on women's perceived math ability. Interestingly (and consistent with past work on stereotype threat effects among highly domain-identified individuals), there were continued performance differences indicative of effects on intrapersonal processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Mathematics anxiety: separating the math from the anxiety.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-09-01

    Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.

  7. Friends and Family: A Literature Review on How High School Social Groups Influence Advanced Math and Science Coursetaking

    Science.gov (United States)

    Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela

    2017-01-01

    In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…

  8. Employment of an Informal Educational Mathematical Facility to Lower Math Anxiety and Improve Teacher and Student Attitudes Towards Understanding Mathematics

    Science.gov (United States)

    Adams, Vicki

    2012-01-01

    Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…

  9. 80 Years of Zentralblatt MATH

    CERN Document Server

    Teschke, Olaf; Werner, Dirk

    2011-01-01

    Founded in 1931 by Otto Neugebauer as the printed documentation service "Zentralblatt fur Mathematik und ihre Grenzgebiete", Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of t

  10. Maths for the building trades

    CERN Document Server

    Kidd, Jim

    2014-01-01

    Maths for the Building Trades provides students of all ages with an easy-to-understand guide to the fundamental mathematics that is required in their area of study and beyond. It can be used as a learning programme on its own or in conjunction with the textbooks associated with their chosen trade. The book assumes only a minimum level of mathematical knowledge and thoroughly covers the basic rules. It then goes on to fully explain some of the more complex areas in which the student will be required to demonstrate competence.

  11. Combining Basic Business Math and Electronic Calculators.

    Science.gov (United States)

    Merchant, Ronald

    As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…

  12. Explaining Math Achievement: Personality, Motivation, and Trust

    Science.gov (United States)

    Kilic-Bebek, Ebru

    2009-01-01

    This study investigated the statistical significance of student trust next to the well-tested constructs of personality and motivation to determine whether trust is a significant predictor of course achievement in college math courses. Participants were 175 students who were taking undergraduate math courses in an urban public university. The…

  13. Childcare Quality and Preschoolers' Math Development

    Science.gov (United States)

    Choi, Ji Young; Dobbs-Oates, Jennifer

    2014-01-01

    This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…

  14. Football to Improve Math and Reading Performance

    Science.gov (United States)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…

  15. Five Keys for Teaching Mental Math

    Science.gov (United States)

    Olsen, James R.

    2015-01-01

    After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…

  16. Mini-Portfolio on Math and Science.

    Science.gov (United States)

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  17. Football to improve math and reading performance

    NARCIS (Netherlands)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates ‘Playing for Success’ (PfS), an extended

  18. Decreasing Math Anxiety in College Students

    Science.gov (United States)

    Perry, Andrew B.

    2004-01-01

    This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…

  19. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    Science.gov (United States)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  20. Phylogeny of the TRAF/MATH domain.

    Science.gov (United States)

    Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie

    2007-01-01

    The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.

  1. Engaging Math-Avoidant College Students

    Directory of Open Access Journals (Sweden)

    M. Paul Latiolais

    2009-07-01

    Full Text Available This paper is an informal, personal account of how we, as two college teachers, became interested in math anxiety, decided to explore it amongst students at our institution in order to inform our teaching, and became convinced that the massive problem is math avoidance. We tried discussion groups, but few students attended, although those that did made useful suggestions. Thus informed, we designed an innovative course, Confronting College Mathematics as a Humanities course with the possibility of credit toward the math requirement, but it was undersubscribed in its first offering and had to be canceled. How can we get college students who avoid math to break through the barrier of math avoidance? We have now begun to explore a new approach: Second Life, where students can engage math—and quantitative literacy—virtually, and anonymously.

  2. Turning the STEM Tide: An Approach for Mentoring Young Women on How to Thrive in STEM Careers

    Science.gov (United States)

    2014-08-01

    belonging for women STEM majors in the college domain; understanding the climate/culture of the STEM college/ workplace and defining strategies to achieve...a “sense of fit” to enable confidence and satisfaction; understanding the stereotypes and biases toward women in STEM; and seeking/developing...avid slalom water skier. This speaker, a 35ish Caucasian women , told how she fell victim to the stereotype that “girls are not as good at math as

  3. Math

    Directory of Open Access Journals (Sweden)

    Srinivas Jangili

    2016-09-01

    Full Text Available The present study investigates the entropy generation in magnetized-micropolar fluid flow in between two vertical concentric rotating cylinders of infinite length. The surface of the inner cylinder is heated while the surface of the outer cylinder is cooled. Internal heat generation is incorporated. The Eringen thermo-micropolar fluid model is used to simulate the micro-structural rheological flow characteristics in the annulus region. The flow is subjected to a constant, static, axial magnetic field. The surface of the inner cylinder is prescribed to be isothermal whereas the surface of the outer cylinder was exposed to convection cooling. The conservation equations are normalized and closed-form solutions are obtained for the velocity, microrotation, temperature, entropy generation number, Bejan number and total entropy generation rate. The effects of the relevant parameters are displayed graphically. It is observed that the external magnetic force enhances the entropy production rate and it is maximum in the proximity of the inner cylinder. This causes more wear and tear at the surface of the inner cylinder. Greater Hartmann number also elevates microrotation values in the entire annulus region. The study is relevant to optimization of chemical engineering processes, nuclear engineering cooling systems and propulsion systems utilizing non-Newtonian fluids and magnetohydrodynamics.

  4. Strengthening maths learning dispositions through ‘math clubs’

    Directory of Open Access Journals (Sweden)

    Mellony Graven

    2016-02-01

    Full Text Available In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sensemaking maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3–6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low levels of numeracy learning across the majority of schools in the province. Two sources of data, learner interviews and teacher questionnaires, from one case study club, are shared in this article to illuminate the potential such clubs hold in developing increasingly participatory mathematics learning dispositions.

  5. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973

  6. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  7. Math Anxiety Is Related to Some, but Not All, Experiences with Math.

    Science.gov (United States)

    O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  8. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    Directory of Open Access Journals (Sweden)

    Krystle O'Leary

    2017-12-01

    Full Text Available Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  9. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Directory of Open Access Journals (Sweden)

    Lital Daches Cohen

    2017-11-01

    Full Text Available Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a mother’s math anxiety and maternal behaviors (environmental factors; (b children’s arithmetic skills (cognitive factors; and (c intrinsic math motivation (personal factor. A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  10. Enhancing Mathematical Communication for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-06-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.

  11. La maison des mathématiques

    CERN Document Server

    Villani, Cédric; Moncorgé, Vincent

    2014-01-01

    Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...

  12. The neurodevelopmental basis of math anxiety.

    Science.gov (United States)

    Young, Christina B; Wu, Sarah S; Menon, Vinod

    2012-05-01

    Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.

  13. Math-Gender Stereotypes in Elementary School Children

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…

  14. More than Counting: Whole Math Activities for Preschool and Kindergarten.

    Science.gov (United States)

    Moomaw, Sally; Hieronymus, Brenda

    This book presents extensive sampling of a "whole math" curriculum for preschool and kindergarten children ages 3 and older. An introductory chapter is followed by seven curriculum chapters that discuss math manipulatives, collections, grid games, path games, graphing, math and gross-motor play, and the "math suitcase." Each chapter is divided…

  15. Integrated STEM in secondary education: A case study

    International Nuclear Information System (INIS)

    De Meester, Jolien; Dehaene, Wim; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet

    2015-01-01

    Despite many opportunities to study STEM (Science, Technology, Engineering and Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils’ interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school’s teachers and a STEM education research group of the University of Leuven. To examine the pupils’ attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils’ interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils’ understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.

  16. Gender Gap in Science, Technology, Engineering, and Mathematics (STEM): Current Knowledge, Implications for Practice, Policy, and Future Directions

    Science.gov (United States)

    Wang, Ming-Te; Degol, Jessica L.

    2017-01-01

    Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences…

  17. Recruitment of Early STEM Majors into Possible Secondary Science Teaching Careers: The Role of Science Education Summer Internships

    Science.gov (United States)

    Borgerding, Lisa A.

    2015-01-01

    A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…

  18. Math and Gender: Is Math a Route to a High-Powered Career?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    There is a large gender gap in advanced math coursework in high school that many believe exists because girls are discouraged from taking math courses. In this paper, we exploit an institutional change that reduced the costs of acquiring advanced high school math to determine if access is, in fact......, the mechanism - in particular for girls at the top of the math ability distribution. By estimating marginal treatment effects of acquiring advanced math qualifications, we document substantial beneficial wage effects from encouraging even more females to opt for these qualifications. Our analysis suggests...... that the beneficial effect comes from accelerating graduation and attracting females to high-paid or traditionally male-dominated career tracks and to CEO positions. Our results may be reconciled with experimental and empirical evidence suggesting there is a pool of unexploited math talent among high ability girls...

  19. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    NARCIS (Netherlands)

    Jansen, B.R.J.; Schmitz, E.A.; van der Maas, H.L.J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence

  20. Turning Negatives into Positives: The Role of an Instructional Math Course on Preservice Teachers' Math Beliefs

    Science.gov (United States)

    Looney, Lisa; Perry, David; Steck, Andy

    2017-01-01

    Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…

  1. An Investigation of Boys' and Girls' Emotional Experience of Math, Their Math Performance, and the Relation between These Variables

    Science.gov (United States)

    Erturan, Selin; Jansen, Brenda

    2015-01-01

    Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…

  2. An investigation of boys’ and girls’ emotional experience of math, their math performance, and the relation between these variables

    NARCIS (Netherlands)

    Erturan, S; Jansen, B.

    2015-01-01

    GGender differences in children’s emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages

  3. Math Practice and Its Influence on Math Skills and Executive Functions in Adolescents with Mild to Borderline Intellectual Disability

    Science.gov (United States)

    Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…

  4. Neural correlates of math anxiety – an overview and implications

    OpenAIRE

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  5. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  6. Math: The Gateway to Great Careers

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2010-01-01

    This slide presentation examines the role of mathematical proficiency and how it relates to advantages in careers. It emphasises the role of math in attaining entrance to college, graduate schools, and a career that is interesting and well paying.

  7. Developing Mathematical Resilience of Prospective Math Teachers

    Science.gov (United States)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  8. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills

    Science.gov (United States)

    Ganley, Colleen M.; Purpura, David J.

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925

  9. On the Leaky Math Pipeline: Comparing Implicit Math-Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents

    Science.gov (United States)

    Steffens, Melanie C.; Jelenec, Petra; Noack, Peter

    2010-01-01

    Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…

  10. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  11. Math Tracks: What Pace in Math Is Best for the Middle School Child?

    Science.gov (United States)

    Morrison, Michelle

    2011-01-01

    Mathematics is a critical part of academic preparation of the middle school child, or, as Dr. Maria Montessori would refer to them, children in the third plane of development. Montessori educators are sincere in their endeavors not only to prepare young students for further studies of math and the application of math in their world and careers,…

  12. Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria

    Science.gov (United States)

    Zakariya, Yusuf F.

    2016-01-01

    In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…

  13. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  14. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2016-01-01

    To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…

  15. Evaluation of the MIND Research Institute's Spatial-Temporal Math (ST Math) Program in California

    Science.gov (United States)

    Wendt, Staci; Rice, John; Nakamoto, Jonathan

    2014-01-01

    The MIND Research Institute contracted with the Evaluation Research Program at WestEd to conduct an independent assessment of mathematics outcomes in elementary school grades across California that were provided with the ST Math program. Spatial-Temporal (ST) Math is a game-based instructional software designed to boost K-5 and secondary-level…

  16. Literacy Specialists in Math Class! Closing the Achievement Gap on State Math Assessments

    Science.gov (United States)

    DiGisi, Lori L.; Fleming, Dianne

    2005-01-01

    Sixth and eighth grade students who are English language learners must be able to read and interpret 39 math word problems in order to successfully calculate the answers on the Massachusetts state math assessment (MCAS). The first year that MCAS was administered, many ELL students read the questions, found them confusing, and left them blank,…

  17. Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…

  18. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  19. Math Anxiety and the "Math Gap": How Attitudes toward Mathematics Disadvantages Students as Early as Preschool

    Science.gov (United States)

    Geist, Eugene

    2015-01-01

    This study was conducted to examine the attitudes of Head Start teachers toward mathematics and how it may influence how and what they teach in the classroom. In general, the findings of this study can be summarized as this: 1) Math anxiety affects how teachers assess their ability at mathematics. The more math anxiety they report, the lower they…

  20. Math Is Like a Scary Movie? Helping Young People Overcome Math Anxiety

    Science.gov (United States)

    Kulkin, Margaret

    2016-01-01

    Afterschool teachers who tutor students or provide homework help have a unique opportunity to help students overcome the social or emotional barriers that so often block learning. They can embrace a creative and investigative approach to math learning. Margaret Kulkin's interest in being a math attitude "myth-buster" led her to apply to…

  1. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  2. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  3. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  4. Reimagining the Role of School Libraries in STEM Education: Creating Hybrid Spaces for Exploration

    Science.gov (United States)

    Subramaniam, Mega M.; Ahn, June; Fleischmann, Kenneth R.; Druin, Allison

    2012-01-01

    In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education,…

  5. Girl Power! How Parents Can Support Girls' Academic Success in Stem

    Science.gov (United States)

    Gadzikowski, Ann

    2015-01-01

    Helping daughters recognize science, technology, engineering, and math (STEM) in their daily lives, even in tasks like feeding the dog, baking a cake, or packing a suitcase, supports and encourages their STEM interests and abilities. Often young girls, even those who are very bright, aren't accustomed to thinking of themselves as being good at…

  6. Black Undergraduate Women and Their Sense of Belonging in STEM at Predominantly White Institutions

    Science.gov (United States)

    Dortch, Deniece; Patel, Chirag

    2017-01-01

    Because little work exists on the sense of belonging focusing on just Black undergraduate women in science, technology, engineering, and math (STEM), especially at highly selective predominantly white institutions (PWIs), this study takes a phenomenological approach to understand the lived experiences of Black undergraduate women in STEM by…

  7. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  8. The role of expressive writing in math anxiety.

    Science.gov (United States)

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. The new math of ownership.

    Science.gov (United States)

    Gross, B

    1998-01-01

    In 1994, when the software maker Knowledge Adventure decided to spin out a new venture--Worlds, Incorporated--founder Bill Gross expected the worst. He had argued with the board that it was in KA's best interests to maintain a controlling ownership stake in Worlds, whose powerful new software technology had enormous revenue potential. But the board prevailed, and KA took only a 20% ownership in the new company, giving the rest to Worlds' employees. Within a year, the company's performance had surpassed all expectations, and instead of owning 80% of a $5 million business, KA owned 20% of a $77 million business. The arithmetic may have been counterintuitive, but the lesson was clear. When KA let go of Worlds and gave its employees near total ownership, the company unleashed a new level of employee performance. That, in turn, led to the creation of economic value that more than made up for the equity KA had surrendered. So compelling was this "new math of ownership" that Gross founded a new company, Idealab, on this principle. The company, which develops ideas for Internet-based businesses and seeds the most promising ones, takes no more than a 49% equity stake in the new ventures and gives at least 1% of ownership to each employee. For Gross, this radical approach to ownership is the key to inspiring stellar performances. In part, employee-owners are motivated by their potential to earn great financial reward. But the drama of ownership, he argues, is even more important. In that drama, employees become personally involved in the struggle to outdo the competition and emerge victorious.

  10. Mathematics and Science Teachers Professional Development with Local Businesses to Introduce Middle and High School Students to Opportunities in STEM Careers

    Science.gov (United States)

    Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore

    2015-01-01

    TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…

  11. Future of the Pacific: Inspiring the Next Generation of Scientists and Engineers Through Place-Based Problem-Solving Using Innovative STEM Curriculum and Technology Tools

    Science.gov (United States)

    2016-03-30

    Hands-on, Inquiry Learning Methods to Enhance STEM Learning by Engaging Students in Renewable Energy Solutions ( Research to Practice) Strand ...minorities in STEM fields, including engineering. Researchers believe that engaging, context-based engineering activities at the K-12 level could...Office ofNaval Research PD: Professional Development STEM : Science, Technology, Engineering, and Math • WIT: Women in Technology Project 3

  12. Math Achievement and Self-Efficacy of Linguistically and Ethnically Diverse High School Students: Their Relationships with English Reading and Native Language Proficiency

    Science.gov (United States)

    Son, Elena

    2015-01-01

    The under-preparation in math at the high school and college levels, as well as the low participation of ethnically and linguistically diverse individuals in STEM fields are concerning because their preparation for work in these areas is essential for the U.S. to remain competitive in the innovative knowledge economy. While there is now a…

  13. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability.

    Science.gov (United States)

    Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J

    2013-05-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Math at home adds up to achievement in school.

    Science.gov (United States)

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  15. Elementary School Math Instruction: Can Reading Specialists Assist?

    Science.gov (United States)

    Heinrichs, Audrey S.

    1987-01-01

    Discusses the contradictions found in recommendations for direction instruction or informal math language development, and some suggestions for practical resolution of disagreements, to enable school reading specialists to provide both background and practical help to classroom instructors teaching math. (HTH)

  16. What Types of Instructional Shifts Do Students Experience? Investigating Active Learning in Science, Technology, Engineering, and Math Classes across Key Transition Points from Middle School to the University Level

    OpenAIRE

    Kenneth Akiha; Kenneth Akiha; Emilie Brigham; Emilie Brigham; Brian A. Couch; Justin Lewin; Justin Lewin; Marilyne Stains; MacKenzie R. Stetzer; MacKenzie R. Stetzer; Erin L. Vinson; Erin L. Vinson; Michelle K. Smith; Michelle K. Smith

    2018-01-01

    Despite the need for a strong Science, Technology, Engineering, and Math (STEM) workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon m...

  17. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  18. Addressing the STEM Workforce Challenge: Missouri. BHEF Research Brief

    Science.gov (United States)

    Business-Higher Education Forum (NJ1), 2012

    2012-01-01

    While states and the federal government have put efforts in place to increase the size of the workforce trained in science, technology, engineering, and math (STEM) to meet innovation demands, there continues to be a nationwide shortage of students who are interested in and prepared for such careers. Missouri is no exception to this problem, one…

  19. Integrated STEM: A New Primer for Teaching Technology Education

    Science.gov (United States)

    Asunda, Paul A.; Mativo, John

    2017-01-01

    Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…

  20. SHINE for Girls: Innovating STEM Curriculum with Dance

    Science.gov (United States)

    Hally, Tara; Sinha, Kirin

    2018-01-01

    SHINE for Girls, a nonprofit with the mission of empowering young women to value their own potential and capabilities within STEM fields, employs a unique curriculum that blends math with dance. They were selected as part of HundreED's 100 Global Education Innovations for 2017. In this article, Tara Hally, Director of Programming, and Kirin Sinha,…

  1. Video games: a route to large-scale STEM education?

    Science.gov (United States)

    Mayo, Merrilea J

    2009-01-02

    Video games have enormous mass appeal, reaching audiences in the hundreds of thousands to millions. They also embed many pedagogical practices known to be effective in other environments. This article reviews the sparse but encouraging data on learning outcomes for video games in science, technology, engineering, and math (STEM) disciplines, then reviews the infrastructural obstacles to wider adoption of this new medium.

  2. Changing academic culture to improve undergraduate STEM education.

    Science.gov (United States)

    Suchman, Erica L

    2014-12-01

    Improving undergraduate science, technology, engineering, and math (STEM) education requires faculty with the skills, resources, and time to create active learning environments that foster student engagement. Current faculty hiring, promotion, and tenure practices at many universities do not measure, reward, nor encourage faculty pursuit of these skills. A cultural change is needed to foster improvement. Published by Elsevier Ltd.

  3. Perfectionism Moderates Stereotype Threat Effects on STEM Majors' Academic Performance

    Science.gov (United States)

    Rice, Kenneth G.; Lopez, Frederick G.; Richardson, Clarissa M. E.; Stinson, Jennifer M.

    2013-01-01

    Using a randomized, between-subjects experimental design, we tested hypotheses that self-critical perfectionism would moderate the effects of subtle stereotype threat (ST) for women and students in underrepresented racial/ethnic groups who are pursuing traditional degrees in science, technology, engineering, or math (STEM). A diverse sample of…

  4. The Experience and Persistence of College Students in STEM Majors

    Science.gov (United States)

    Xu, Yonghong Jade

    2018-01-01

    In this study, an online survey was constructed based on the extant literature on college student success. The survey was used to collect data from a sample of college students in science, technology, engineering, and math (STEM) majors in order to examine their learning experiences and to identify the factors that may influence their persistence…

  5. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    Science.gov (United States)

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  6. Essential math and calculations for pharmacy technicians

    CERN Document Server

    Reddy, Indra K

    2003-01-01

    Working with Roman and Arabic NumeralsUsing Fractions and Decimals in Pharmacy MathUsing Ratios, Proportions and Percentages in Dosage CalculationsApplying Systems of MeasurementsInterpreting Medication OrdersIdentifying Prescription Errors and OmissionsWorking with Liquid Dosage FormsWorking with Solid Dosage FormsAdjusting IsotonicityWorking with Buffer and Ionization ValuesDealing with ReconstitutionsDetermining Milliequivalent StrengthsCalculating Caloric Values Determining IV Flow RatesWorking with Insulin and Heparin ProductsAppendices: A: Working with Temperature ConversionsB: Working with Capsule Dosage FormsC: Dealing with Pediatric Dosages D: Understanding Essential Business Math.

  7. The "Parrot Math" Attack on Memorization

    Directory of Open Access Journals (Sweden)

    Bill Quirk

    2013-01-01

    Full Text Available Constructivist math educators regularly cite Parrot Math by Thomas C. O'Brien. Although this paper promotes constructivist "activity-based" learning over direct instruction, it's primary claim to fame is the open hostility to memorization. Professor O'Brien rejects "memorization and parrot-like drill " in favor of "children's invented strategies." He references a paper by Kamii and Dominick as evidence of "considerable research" showing that mastery of the standard algorithms of arithmetic is harmful for children. [See The Bogus Research in Kamii and Dominick's Harmful Algorithms Papers

  8. Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102

    Science.gov (United States)

    Blazer, Christie

    2011-01-01

    Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…

  9. Supporting English Language Learners in Math Class, Grades K-2

    Science.gov (United States)

    Bresser, Rusty; Melanese, Kathy; Sphar, Christine

    2009-01-01

    More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…

  10. Firefighter Math - a web-based learning tool

    Science.gov (United States)

    Dan Jimenez

    2010-01-01

    Firefighter Math is a web based interactive resource that was developed to help prepare wildland fire personnel for math based training courses. The website can also be used as a refresher for fire calculations including slope, flame length, relative humidity, flow rates, unit conversion, etc. The website is designed to start with basic math refresher skills and...

  11. Specific Cognitive Predictors of Early Math Problem Solving

    Science.gov (United States)

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  12. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    Science.gov (United States)

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  13. Learning to Be a Math Teacher: What Knowledge Is Essential?

    Science.gov (United States)

    Reid, Mary; Reid, Steven

    2017-01-01

    This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…

  14. Formula for Success: Engaging Families in Early Math Learning

    Science.gov (United States)

    Global Family Research Project, 2017

    2017-01-01

    Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…

  15. How to Make the Most of Math Manipulatives.

    Science.gov (United States)

    Burns, Marilyn

    1996-01-01

    A discussion of how to use math manipulatives to teach elementary students focuses on essential program elements: what math manipulatives are and why they are used, common questions about math manipulatives, how one teacher introduced the geoboard into the classroom, and pattern block activities. (SM)

  16. District Finds the Right Equation to Improve Math Instruction

    Science.gov (United States)

    Holmstrom, Annette

    2010-01-01

    The math problem is common to most U.S. school districts, and education leaders are well aware that U.S. math achievement lags far behind many other countries in the world. University Place (Washington) School District Superintendent Patti Banks found the conspicuous income gap for math scores even more disturbing. In her school district, only 23%…

  17. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  18. The Sum of All Fears: The Effects of Math Anxiety on Math Achievement in Fifth Grade Students and the Implications for School Counselors

    Science.gov (United States)

    Ruff, Sarah E.; Boes, Susan R.

    2014-01-01

    Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…

  19. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  20. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability

    NARCIS (Netherlands)

    Jansen, B.R.J.; Lange, E.; van der Molen, M.J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this

  1. Opportunities for Learning Math in Elementary School: Implications for SES Disparities in Procedural and Conceptual Math Skills

    Science.gov (United States)

    Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa

    2015-01-01

    The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…

  2. Developmental Math Programs in California Community College: An Analysis of Math Boot Camp at Cosumnes River College

    Science.gov (United States)

    Powell, Torence J.

    2017-01-01

    The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…

  3. Order of Administration of Math and Verbal Tests: An Ecological Intervention to Reduce Stereotype Threat on Girls' Math Performance

    Science.gov (United States)

    Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle

    2013-01-01

    In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…

  4. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michele M. M.

    2006-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…

  5. Strengthening STEM Education through Community Partnerships.

    Science.gov (United States)

    Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R

    2016-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.

  6. Predicting College Readiness in STEM: A Longitudinal Study of Iowa Students

    Science.gov (United States)

    Rickels, Heather Anne

    The demand for STEM college graduates is increasing. However, recent studies show there are not enough STEM majors to fulfill this need. This deficiency can be partially attributed to a gender discrepancy in the number of female STEM graduates and to the high rate of attrition of STEM majors. As STEM attrition has been associated with students being unprepared for STEM coursework, it is important to understand how STEM graduates change in achievement levels from middle school through high school and to have accurate readiness indicators for first-year STEM coursework. This study aimed to address these issues by comparing the achievement growth of STEM majors to non-STEM majors by gender in Science, Math, and Reading from Grade 6 to Grade 11 through latent growth models (LGMs). Then STEM Readiness Benchmarks were established in Science and Math on the Iowas (IAs) for typical first-year STEM courses and validity evidence was provided for the benchmarks. Results from the LGM analyses indicated that STEM graduates start at higher achievement levels in Grade 6 and maintain higher achievement levels through Grade 11 in all subjects. In addition, gender differences were examined. The findings indicate that students with high achievement levels self-select as STEM majors, regardless of gender. In addition, they suggest that students who are not on-track for a STEM degree may need to begin remediation prior to high school. Results from the benchmark analyses indicate that STEM coursework is more demanding and that students need to be better prepared academically in science and math if planning to pursue a STEM degree. In addition, the STEM Readiness Benchmarks were more accurate in predicting success in STEM courses than if general college readiness benchmarks were utilized. Also, students who met the STEM Readiness Benchmarks were more likely to graduate with a STEM degree. This study provides valuable information on STEM readiness to students, educators, and college

  7. Interactive geometry inside MathDox

    NARCIS (Netherlands)

    Cuypers, H.; Hendriks, M.; Knopper, J.W.

    2010-01-01

    In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes

  8. What Adds Up?: Math Enrollment and Graduation

    Science.gov (United States)

    Utah System of Higher Education, 2015

    2015-01-01

    College students struggling to pass a college level math course required for Quantitative Literacy (QL) credit1 has been a common issue facing many institutions in higher education. In the fall of 2014, the Utah State Board of Regents solidified a statewide initiative that set goals for each of the Utah System of Higher Education institutions (UU,…

  9. ADP Security Plan, Math Building, Room 1139

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.

    1985-08-27

    This document provides the draft copy of an updated (ADP) Security Plan for an IBM Personal Computer to be used in the Math Building at PNL for classified data base management. Using the equipment specified in this document and implementing the administrative and physical procedures as outlined will provide the secure environment necessary for this work to proceed.

  10. Admission Math Level and Student Performance

    DEFF Research Database (Denmark)

    la Cour, Lisbeth

    2015-01-01

    In this paper we analyze the study performance data for three cohorts of students for the course in Economics at the Business Diploma (herafter HD) study program at Copenhagen Business School. Out main findings are 1) that students with the lowest level of math from high school are performing worse...

  11. Confessions of a Dr Math tutor

    CSIR Research Space (South Africa)

    Butgereit, L

    2015-06-01

    Full Text Available Mathematics look different on a small 3-inch screen of an inexpensive cell phone when compared to a 3-meter whiteboard in a mathematics classroom. Dr Math uses cell phone or mobile data "chat" technologies to assist primary and secondary school...

  12. Early math intervention for marginalized students

    DEFF Research Database (Denmark)

    Overgaard, Steffen; Tonnesen, Pia Beck

    2016-01-01

    This study is one of more substudies in the project Early Math Intervention for Marginalized Students (TMTM2014). The paper presents the initial process of this substudy that will be carried out fall 2015. In the TMTM2014 project, 80 teachers, who completed a one week course in the idea of TMTM...

  13. Fold in Origami and Unfold Math

    Science.gov (United States)

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  14. Math on the Job. Metal Product Assembler.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…

  15. Ideas on Manipulative Math for Young Children.

    Science.gov (United States)

    Murray, Anne

    2001-01-01

    Presents a case study of one kindergarten class in which the mathematics center is the popular area in the room. Focuses on how math is best understood if activities follow the five-C formula: collaborative, concrete, comprehensive, connecting, and cavorting. Describes how children used manipulatives to construct mathematics concepts…

  16. The Demise of the Asian Math Gene.

    Science.gov (United States)

    Bracey, Gerald W.

    1999-01-01

    The 1996 National Assessment of Educational Progress math scores for eighth-graders show that when socioeconomic status is considered, English-proficient Asian students have no achievement advantage over other ethnic groups. However, Chinese sixth-graders, using abstract reasoning skills, outperformed American students on 12 open-ended math…

  17. MIT professor wins major international math prize

    CERN Multimedia

    Allen, S

    2004-01-01

    Mathematicians Isadore Singer of MIT and Sir Michael Francis Atiyah of the University of Edinburgh will share an $875,000 award as winners of the second Abel Prize, which some hope will come to be seen as a Nobel Prize for math.

  18. Online Options for Math-Advanced Students

    Science.gov (United States)

    Wessling, Suki

    2012-01-01

    Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…

  19. Relationship between Affective Dimension and Math Learning

    Directory of Open Access Journals (Sweden)

    Ronny Gamboa Araya

    2014-05-01

    Full Text Available Math has become an obstacle to achieve educational goals for a large number of students; thus it has transcended the academic world and has become a cognitive and emotional impairment.  What students feel, perceive, believe, and how they act directly influences this.  In addition, what teachers feel and perceive, their expectations, beliefs and attitudes towards the discipline also play an important role in how they teach and in the affective dimension of their students.  Based on theoretical aspects from various authors, this paper is aimed at addressing some elements regarding the affective dimension, and at showing elements pertaining to teachers and students, and their relationship with math learning and teaching.  It was concluded that the role of the affective dimension in math learning must be addressed by math educators in order to understand the process from the perspective of the actors associated with it, both students and teachers, as well as to achieve a change in the discipline by improving the beliefs and attitudes of students and teachers.

  20. New Mexico Math Pathways Taskforce Report

    Science.gov (United States)

    New Mexico Higher Education Department, 2016

    2016-01-01

    In April 2015 New Mexico faculty, Dana Center staff, and New Mexico Higher Education (NMHED) co-presented the need for better math pathways statewide. Faculty from 6 institutions (New Mexico State University, New Mexico Highlands University, Dine College, Eastern New Mexico University, El Paso Community College, and San Juan College) participated…

  1. Tic Tac Toe Math. Train the Trainer.

    Science.gov (United States)

    Center for Alternative Learning, Bryn Mawr, PA.

    This report describes a project that developed a "Train the Trainer" program that would enable individuals to learn and teach the alternative instructional technique, Tic Tac Toe Math, developed by Richard Cooper for adult basic education students. The pilot workshop conducted as part of the project identified problems that traditional…

  2. Basic math and pre-algebra practice problems for dummies

    CERN Document Server

    Zegarelli, Mark

    2013-01-01

    1001 Basic Math & Pre- Algebra Practice Problems For  Dummies   Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per

  3. Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.

    Science.gov (United States)

    Pizzie, Rachel G; Kraemer, David J M

    2017-11-01

    Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context

    Science.gov (United States)

    Myers, J. D.; Lyford, M. E.; Mayes, R. L.

    2010-12-01

    Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and

  5. Neural correlates of math anxiety – an overview and implications

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  6. Neural correlates of math anxiety - an overview and implications.

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  7. Neural correlates of math anxiety – An overview and implications

    Directory of Open Access Journals (Sweden)

    Christina eArtemenko

    2015-09-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i math anxiety elicits emotion- and pain-related activation during and before math activities, (ii that the negative emotional response to math anxiety impairs processing efficiency, and (iii that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  8. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    Science.gov (United States)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  9. Queer in STEM Organizations: Workplace Disadvantages for LGBT Employees in STEM Related Federal Agencies

    OpenAIRE

    Erin A. Cech; Michelle V. Pham

    2017-01-01

    Lesbian, gay, bisexual, and transgender (LGBT) individuals in U.S. workplaces often face disadvantages in pay, promotion, and inclusion and emergent research suggests that these disadvantages may be particularly pernicious within science and engineering environments. However, no research has systematically examined whether LGBT employees indeed encounter disadvantages in science, technology, engineering and math (STEM) organizations. Using representative data of over 30,000 workers employed i...

  10. STEM Education for Girls of Color

    Science.gov (United States)

    Yee, Kam H.

    Science, technology, engineering, and math (STEM) fields struggle to increase recruitment and retention of girls of color. The dominant framework in STEM education is the pipeline which assumes girls in general lack motivation and interest to persist in STEM fields. Recent public discourse shifts to address institutionalized discrimination and systemic barriers in STEM culture that filter out underrepresented populations. Informal education or complementary learning STEM programs offer alternative opportunities for students to explore outside of rigid school academic and social systems. Few articles look specifically at STEM complementary learning programs, and even fewer focus on the effects on girls of color. This research is a quantitative study to categorize existing mission statements and training behind organizations that provide STEM programs. The results will provide a better understanding of the relationship between practices of STEM education organizations and the programs they create. Diversity training and inclusive language in mission statements had weak correlations with increased cultural responsiveness in the program offerings. The results suggest organizations must be more intentional and explicit when implementing diversity goals.

  11. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  12. Strategic Future Directions for Developing STEM Education in Higher Education in Egypt as a Driver of Innovation Economy

    Science.gov (United States)

    Ahmed, Hanaa Ouda Khadri

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…

  13. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    Science.gov (United States)

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  14. Learning across Disciplines: A Collective Case Study of Two University Programs That Integrate the Arts with STEM

    Science.gov (United States)

    Ghanbari, Sheena

    2015-01-01

    There has been some debate and research that suggests the arts are well-suited to be combined with science, technology, engineering, and math disciplines making the STEM acronym STEAM. STEM education is an educational and political priority in the United States and is valued as a means of strengthening national security and ensuring global…

  15. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michèle M. M.

    2009-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180

  16. STEm Minority Graduate Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Kaen E

    2012-09-20

    ABSTRACT The state of science, technology, engineering and math (STEM) education in the United States has seen some unfavorable assessments over the past decade. In early February, 2010 the House of Representatives heard testimony on undergraduate and graduate education. The message from the panel, which included experts from academia, STEM-based industries, and the National Science Foundation (NSF) was dire and required an urgent response. The experts along with the committee's chairperson, U. S. Representative Daniel Lipinski (D-IL) cited that the complexity of Science, Technology, Engineering, and Mathematics applications and coursework and the methodology utilized to teach these subjects are forcing students out of these disciplines. As the National Academies described in its 2007 report Rising Above the Gathering Storm, successful STEM education is not just an academic pursuit it's a necessity for competing in the knowledge-based economy that the United States had a key role in creating. The potential for action is being made available again as the America COMPETES Act of 2007 is up for reauthorization. Its initial focus was on STEM education at the K-12 levels, but efforts at the undergraduate and graduate levels are needed to retain students to fill the jobs left vacant as baby boomers retire. The Educational Advancement Alliance, Inc. (EAA) has for two decades created programs that have not only addressed the issues of ensuring that students are aptly prepared for college but have focused its efforts over the past decade on increasing the number of students who pursue degrees in STEM disciplines. For the EAA, the introduction of the wonders of science begins at the elementary and middle school level via the Learning Lab, a state-of-the-art mobile science laboratory that visits students in grades 4-6 at the various schools throughout Philadelphia and The Math/Tech Academy which meets on Saturdays for students in grades 5-7. For the past two years

  17. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  18. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  19. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  20. Addressing the Math-Practice Gap in Elementary School: Are Tablets a Feasible Tool for Informal Math Practice?

    Science.gov (United States)

    Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi

    2017-01-01

    Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.

  1. Math Description Engine Software Development Kit

    Science.gov (United States)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  2. Who Chooses STEM Careers? Using A Relative Cognitive Strength and Interest Model to Predict Careers in Science, Technology, Engineering, and Mathematics.

    Science.gov (United States)

    Wang, Ming-Te; Ye, Feifei; Degol, Jessica Lauren

    2017-08-01

    Career aspirations in science, technology, engineering, and mathematics (STEM) are formulated in adolescence, making the high school years a critical time period for identifying the cognitive and motivational factors that increase the likelihood of future STEM employment. While past research has mainly focused on absolute cognitive ability levels in math and verbal domains, the current study tested whether relative cognitive strengths and interests in math, science, and verbal domains in high school were more accurate predictors of STEM career decisions. Data were drawn from a national longitudinal study in the United States (N = 1762; 48 % female; the first wave during ninth grade and the last wave at age 33). Results revealed that in the high-verbal/high-math/high-science ability group, individuals with higher science task values and lower orientation toward altruism were more likely to select STEM occupations. In the low-verbal/moderate-math/moderate-science ability group, individuals with higher math ability and higher math task values were more likely to select STEM occupations. The findings suggest that youth with asymmetrical cognitive ability profiles are more likely to select careers that utilize their cognitive strengths rather than their weaknesses, while symmetrical cognitive ability profiles may grant youth more flexibility in their options, allowing their interests and values to guide their career decisions.

  3. Primary maths anyone can feed skittles to sharks

    CERN Document Server

    Tiley-Nunn, Nick

    2014-01-01

    Primary maths is stereotypically loved by a few hairy oddballs, tolerated by most sane primary practitioners; loathed by many. With the right approach, however; the right mindset and sense of the impossible being achievable, maths can be moulded into the diamond in the rough of the primary curriculum. Enter Nick Tiley-Nunn: Britain's most imaginative, most exciting primary maths specialist. Over years of practice he has generated ideas about the teaching of maths that are so distinct, so far out and so utterly brilliant that any primary teacher struggling to grasp the nettle of teaching long division will emerge from communing with his ideas not just with some clichéd sense that ‘maths can be fun', but that it can be brilliant, life-enhancing and truly hilarious. This book presents ideas for primary maths teaching so wildly creative and so full of the joy of life that any classroom of kids will be grateful you read it.

  4. Metacognition and Confidence: Comparing Math to Other Academic Subjects

    Directory of Open Access Journals (Sweden)

    Shanna eErickson

    2015-06-01

    Full Text Available Two studies addressed student metacognition in math, measuring confidence accuracy about math performance. Underconfidence would be expected in light of pervasive math anxiety. However, one might alternatively expect overconfidence based on previous results showing overconfidence in other subject domains. Metacognitive judgments and performance were assessed for biology, literature, and mathematics tests. In Study 1, high school students took three different tests and provided estimates of their performance both before and after taking each test. In Study 2, undergraduates similarly took three shortened SAT II Subject Tests. Students were overconfident in predicting math performance, indeed showing greater overconfidence compared to other academic subjects. It appears that both overconfidence and anxiety can adversely affect metacognitive ability and can lead to math avoidance. The results have implications for educational practice and other environments that require extensive use of math.

  5. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  6. Metacognitive awareness and math anxiety in gifted students

    OpenAIRE

    Hakan Sarıcam; Üzeyir Ogurlu

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary S...

  7. Insecure attachment is associated with math anxiety in middle childhood

    OpenAIRE

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children?s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hy...

  8. What to Do About Canada's Declining Math Scores?

    OpenAIRE

    Anna Stokke

    2015-01-01

    The declining performance of Canadian students on international math assessments should worry Canadians and their provincial governments. Strong mathematics knowledge is required for success in the workforce, and early achievement in math is one of the best predictors of later academic success and future career options. Between 2003 and 2012, all but two Canadian provinces showed statistically significant declines in math scores on international exams administered by the Organization for Econ...

  9. Cognitive consistency and math-gender stereotypes in Singaporean children.

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu

    2014-01-01

    In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A Correlation of Community College Math Readiness and Student Success

    Science.gov (United States)

    Brown, Jayna Nicole

    Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p college students' math competencies and degree achievement.

  11. The Impact of Length of Engagement in After-School STEM Programs on Middle School Girls

    Science.gov (United States)

    Cupp, Garth Meichel

    An underrepresentation of females exists in the STEM fields. In order to tackle this issue, work begins early in the education of young women to ensure they are interested and have the confidence to gain a career in the STEM fields. It is important to engage girls in STEM opportunities in and out of school to ignite their interest and build their confidence. Brigid Barron's learning ecology perspective shows that girls pursuing STEM outside of the classroom is critical to their achievement in the STEM pipeline. This study investigated the impact after-school STEM learning opportunities have on middle school girls by investigating (a) how the length of engagement in after-school programs can affect the confidence of female students in their science and math abilities; (b) how length of engagement in after-school programs can affect the interest of female students in attaining a career in STEM; (c) how length of engagement in after-school programs can affect interest in science and math classes; and (d) how length of engagement can affect how female students' view gender parity in the STEM workforce. The major findings revealed no statistical significance when comparing confidence in math or science abilities or the perception that gender plays a role in attaining a career in STEM. The findings revealed statistical significance in the areas when comparing length of engagement in the girls' interest in their math class and attaining a career in three of the four STEM fields: science, technology, and engineering. The findings showed that multiple terms of engagement in the after-school STEM programs appear to be an effective catalyst to maintain the interest of girls pursuing STEM-related careers, in addition to allowing their interest in a topic to provide a new lens for the way they see their math work during the school day. The implications of this study show that schools must engage middle school girls who are interested in STEM in a multitude of settings

  12. Can Low-Cost Online Summer Math Programs Improve Student Preparation for College-Level Math? Evidence from Randomized Experiments at Three Universities

    Science.gov (United States)

    Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine

    2017-01-01

    Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…

  13. Trajectories of Self-Perceived Math Ability, Utility Value and Interest across Middle School as Predictors of High School Math Performance

    Science.gov (United States)

    Petersen, Jennifer Lee; Hyde, Janet Shibley

    2017-01-01

    Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…

  14. Helping all Students Become Einstein’s using Bibliotherapy when Teaching Mathematics to Prepare Students for a STEM World

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2017-06-01

    Full Text Available Today, being confident and having a sound understanding of mathematics is critical in an age of STEM.Teachers must play in important role in seeing that all students display their confidence in their ability to domathematics. This paper explains the process of using bibliotherapy when teaching mathematics to addressboth the math anxious or the math gifted student to build more math confidence in a STEM world. Oftengifted students of mathematics can be made to feel bad by their peers just because they know mathematicsand things come easy to them. Today there are many students in school that have math anxiety. Children'sand adolescent literature has been recognized now as a means to teaching mathematics to students throughthe use of stories to make the mathematics concepts relevant and meaningful. Literature can also be usedas a form of therapy, bibliotherapy, to reach students who may be frustrated with children picking on themfor knowing a lot of mathematics or who are math anxious. Story and picture books such as Counting onFrank, Math Curse and A Gebra Named Al are now available to use in the classroom as forms of bibliotherapyin helping students come to terms with issues that haunt them as it relates to mathematics. Children's bookscan be beneficial to address the math anxious and even the gifted. In this paper the author proposes usingreading and discussion (bibliotherapy to help all students become confident in mathematics in the STEMworld we live in.

  15. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and usefulness: insights from the Polish adaptation

    Directory of Open Access Journals (Sweden)

    Krzysztof eCipora

    2015-11-01

    Full Text Available Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS, known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857 was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS.

  16. Math starters 5- to 10-minute activities aligned with the common core math standards, grades 6-12

    CERN Document Server

    Muschla, Judith A; Muschla, Erin

    2013-01-01

    A revised edition of the bestselling activities guide for math teachers Now updated with new math activities for computers and mobile devices-and now organized by the Common Core State Standards-this book includes more than 650 ready-to-use math starter activities that get kids quickly focused and working as soon as they enter the classroom. Ideally suited for any math curriculum, these high-interest problems spark involvement in the day's lesson, help students build skills, and allow teachers to handle daily management tasks without wasting valuable instructional time. A newly updated edit

  17. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and Usefulness: Insights from the Polish Adaptation.

    Science.gov (United States)

    Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.

  18. STEM Education.

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-08-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.'s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches.

  19. Exposing the Myth: Advanced Math Does Not Increase Drop out Rates. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    A common argument against raising math course-taking requirements for all students is that it will cause more students to drop out of high school. But most students who drop out for academic reasons do so not because they are being "too challenged," but rather because they are not being challenged enough. It is important to raise the rigor and…

  20. How Effective Are Community College Remedial Math Courses for Students with the Lowest Math Skills?

    Science.gov (United States)

    Xu, Di; Dadgar, Mina

    2018-01-01

    Objective: This article examines the effectiveness of remediation for community college students who are identified as having the lowest skills in math. Method: We use transcript data from a state community college system and take advantage of a regression discontinuity design that compares statistically identical students who are assigned to the…

  1. Math Teachers' Attitudes towards Photo Math Application in Solving Mathematical Problem Using Mobile Camera

    Science.gov (United States)

    Hamadneh, Iyad M.; Al-Masaeed, Aslan

    2015-01-01

    This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…

  2. Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities

    Science.gov (United States)

    Erbstein, Nancy

    2015-01-01

    This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…

  3. Essential maths for geoscientists an introduction

    CERN Document Server

    Palmer, Paul I

    2014-01-01

    Maths for Geoscientists is an accessible, student-friendly introduction to the essential mathematics required by those students taking degree courses within the Geosciences. Clearly structured throughout, this book carefully guides the student step by step through the mathematics they will encounter and will provide numerous applied examples throughout to enhance students understanding and to place each technique into context. Opening with a chapter explaining the need for studying mathematics within geosciences the book then moves on to cover algebra, equations, solutions, logarithms and ex

  4. MhicMathúna v Ireland

    OpenAIRE

    Thornton, Liam

    2016-01-01

    This is a feminist re-imagining of the Supreme Court decision MhicMathúna v Ireland [1995] 1 I.R. 454. The actual Supreme Court decision in this case continues to have a profound impact upon how the Irish superior courts view constitutional socio-economic rights claims. This feminist judgment seeks to re-situate the legal analysis of constitutionalised socio-economic rights claims. However, this, as is seen from the feminist judgment, has not been an easy task. The plaintiffs' in this case at...

  5. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  6. An Object in Motion: An Integrative STEM Approach to Accelerating Students' Interest in Newton's Laws of Motion

    Science.gov (United States)

    Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather

    2017-01-01

    Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…

  7. Evaluating Number Sense in Community College Developmental Math Students

    Science.gov (United States)

    Steinke, Dorothea A.

    2017-01-01

    Community college developmental math students (N = 657) from three math levels were asked to place five whole numbers on a line that had only endpoints 0 and 20 marked. How the students placed the numbers revealed the same three stages of behavior that Steffe and Cobb (1988) documented in determining young children's number sense. 23% of the…

  8. Do the Math: Course Redesign's Impact on Learning and Scheduling

    Science.gov (United States)

    Squires, John; Faulkner, Jerry; Hite, Carl

    2009-01-01

    The math department at Cleveland State Community College embarked upon course redesign in 2008. As a result of this project, student engagement, learning, and success rates have increased dramatically. By including both developmental and college level math courses in the redesign, the department has been able to implement innovative scheduling and…

  9. Classroom Environment, Achievement Goals and Maths Performance: Gender Differences

    Science.gov (United States)

    Gherasim, Loredana Ruxandra; Butnaru, Simona; Mairean, Cornelia

    2013-01-01

    This study investigated how gender shapes the relationships between classroom environment, achievement goals and maths performance. Seventh-grade students ("N"?=?498) from five urban secondary schools filled in achievement goal orientations and classroom environment scales at the beginning of the second semester. Maths performance was…

  10. Math and Economics: Implementing Authentic Instruction in Grades K-5

    Science.gov (United States)

    Althauser, Krista; Harter, Cynthia

    2016-01-01

    The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…

  11. Math on MXit: the medium is the message

    CSIR Research Space (South Africa)

    Butgereit, L

    2007-07-01

    Full Text Available Homework is a necessary evil in the path of learning mathematics at school. Mathematics homework is traditionally seen as difficult and boring. In the case of difficult homework, “math clubs” and “math extra lessons” are often perceived as even more...

  12. Determinants of Grades in Maths for Students in Economics

    DEFF Research Database (Denmark)

    Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario

    attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the determinants of the elapsed time to pass the exam using survival analysis. Modeling simultaneously maths...

  13. How Math Anxiety Relates to Number–Space Associations

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  14. Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents

    Science.gov (United States)

    Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.

    2012-01-01

    Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…

  15. The Math Promise: Celebrating at Home and School

    Science.gov (United States)

    Legnard, Danielle; Austin, Susan

    2014-01-01

    The Math Promise is a contract that family members make with one another. They commit to spending mathematical time together; getting to know each other's mathematical thinking and understanding; and finding time to play math games, solve problems, and notice mathematics in their daily lives. Whether parents and children are cooking in the…

  16. Feedback Design Patterns for Math Online Learning Systems

    Science.gov (United States)

    Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil

    2017-01-01

    Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…

  17. An Integration of Math with Auto Technician Courses

    Science.gov (United States)

    Valenzuela, Hector

    2012-01-01

    This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…

  18. HeartMath and Ubuntu integral healing approaches for social ...

    African Journals Online (AJOL)

    HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...

  19. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  20. Restructuring Schools To Be Math Friendly to Females.

    Science.gov (United States)

    Karp, Karen; Shakeshaft, Charol

    1997-01-01

    The gender gap in math Scholastic Aptitude Test scores, attributable to course avoidance, lack of confidence, and unbalanced classroom instruction, can have serious consequences for young women, such as limited university selection, limited career choices, and lower lifetime salaries. Solutions include hiring math specialists, establishing role…

  1. Math Garden: A new educational and scientific instrument

    NARCIS (Netherlands)

    Straatemeier, M.

    2014-01-01

    This dissertation describes the research concerning the construction of a new educational and scientific instrument. This instrument, Math Garden, is a web application in which children can practice arithmetic by playing math games in which items are tailored to their ability level. At the same

  2. Basic Math Skills and Performance in an Introductory Economics Class

    Science.gov (United States)

    Ballard, Charles L.; Johnson, Marianne F.

    2004-01-01

    The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…

  3. Why Aren't More Minorities Taking Advanced Math?

    Science.gov (United States)

    Walker, Erica N.

    2007-01-01

    Black and Latino students are still underepresented in upper-level math classes in the United States, a fact which has serious implications for their academic achievement and futures. Walker provides six suggestions for how educators can encourage more black and Latino students to successfully take higher level math courses: (1) Expand our…

  4. How math anxiety relates to number-space associations

    Directory of Open Access Journals (Sweden)

    Carrie Georges

    2016-09-01

    Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  5. Effects of Math Anxiety on Student Success in Higher Education

    Science.gov (United States)

    Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.

    2013-01-01

    This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…

  6. The Effect of Cooperative Groups on Math Anxiety

    Science.gov (United States)

    Batton, Melissa

    2010-01-01

    Research indicates that many students have difficulty with mathematics, which can be attributed to many factors including math anxiety. Students who experience math anxiety have poor attitudes towards mathematics and perform below grade level based on class and statewide assessments. The purpose of this quasi-experimental quantitative study was to…

  7. How Math Anxiety Relates to Number-Space Associations.

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  8. Metacognitive Awareness and Math Anxiety in Gifted Students

    Science.gov (United States)

    Saricam, Hakan; Ogurlu, Üzeyir

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students' metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students…

  9. Remediation of Math Anxiety in Preservice Elementary School Teachers

    Science.gov (United States)

    Dunkle, Susan M.

    2010-01-01

    The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…

  10. Cognitive and Academic Profiles Associated with Math Disability Subtypes

    Science.gov (United States)

    Kubas, Hanna A.; Schmid, Amy D.; Drefs, Michelle A.; Poole, Jennifer M.; Holland, Sara; Fiorello, Catherine A.

    2014-01-01

    Children with math disabilities (MD) represent a heterogeneous group and often display deficits in one or more cognitive domains. Math proficiency requires a number of different cognitive processes, including quantitative knowledge, working memory, processing speed, fluid reasoning, and executive functions. Assessment practices that do not address…

  11. The Reliability of Randomly Generated Math Curriculum-Based Measurements

    Science.gov (United States)

    Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.

    2015-01-01

    "Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…

  12. Impact of University Lecturers' Intervention in School MathTeaching

    Indian Academy of Sciences (India)

    Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...

  13. Math and Science Gateways to California's Fastest Growing Careers

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…

  14. Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math

    Science.gov (United States)

    Garibay, Guadalupe

    The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.

  15. Membangun Karakter Anak Usia Dini melalui Pembelajaran Math Character

    Directory of Open Access Journals (Sweden)

    Titin Faridatun Nisa’

    2016-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran math character untuk membangun karakter Anak Usia Dini (AUD dan kesulitan-kesulitan yang dialami guru dalam penerapan pembelajaran math character. Target penelitian ini adalah terbentuknya karakter anak usia dini melalui pembelajaran math character. Jenis penelitian ini adalah penelitian deskriptif dengan metode penelitian kualitatif. Teknik pengumpulan informasi penelitian ini dengan metode observasi dan wawancara. Analisis data penelitian ini menggunakan analisis deskriptif. Hasil penelitian menunjukkan bahwa penerapan pembelajaran math character dapat membangun delapan belas nilai-nilai karakter AUD. Kesulitan-kesulitan yang dialami guru dalam pembentukan karakter AUD melalui pembelajaran math character meliputi tema yang digunakan termasuk tema baru, siswa belum terbiasa dengan pembelajaran berbasis sentra, usia siswa bervariasi, dan adanya ikut campur wali siswa dalam kegiatan pembelajaran di kelas sehingga siswa menjadi kurang mandiri.

  16. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    Science.gov (United States)

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  17. Math for scientists refreshing the essentials

    CERN Document Server

    Maurits, Natasha

    2017-01-01

    Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: ·                     Read mathematical symbols ·                     Understand formulas, data or statistical information ·                     Determine medication equivalents ·                     Analyze neuroimaging  Mathematical concepts are presented alongside illustrative and useful real-world scien­tific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...

  18. PUMAS: Practical Uses of Math And Science

    Science.gov (United States)

    Kahn, R. A.

    2009-12-01

    For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.

  19. Imagine math 3 between culture and mathematics

    CERN Document Server

    2015-01-01

    Imagine mathematics, imagine with the help of mathematics, imagine new worlds, new geometries, new forms. This volume in the series “Imagine Math” casts light on what is new and interesting in the relationships between mathematics, imagination, and culture. The book opens by examining the connections between modern and contemporary art and mathematics, including Linda D. Henderson’s contribution. Several further papers are devoted to mathematical models and their influence on modern and contemporary art, including the work of Henry Moore and Hiroshi Sugimoto. Among the many other interesting contributions are an homage to Benoît Mandelbrot with reference to the exhibition held in New York in 2013 and the thoughts of Jean-Pierre Bourguignon on the art and math exhibition at the Fondation Cartier in Paris. An interesting part is dedicated to the connections between math, computer science and theatre with the papers by C. Bardainne and A. Mondot.  The topics are treated in a way that is rigorous but capt...

  20. Maths and physics, a love story

    CERN Multimedia

    CERN Bulletin

    Denis Guedj brings one of his plays to CERN. The writer and mathematician is working on a new novel in which LHC research figures prominently. In Denis Guedj’s plays, the number One is a self-absorbed character, Zero is not to be underestimated, and the Line Segment wants the Curve to straighten out. In his novels, mathematical entities come to life—and turn out to have exciting stories to tell. Denis Guedj is a mathematician and professor of the history of science and epistemology at the University of Paris VIII; over the years he has also indulged a personal passion for bringing maths to the stage. His novels and plays reach a broad public. Among his notable successes is a crime thriller called “The Parrot’s Theorem”, which has been translated into 20 languages. The popularity of his work owes much to the author’s refusal to be didactic. “If it works, it’s because I don’t try to teach maths,” he explains....

  1. Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development

    Science.gov (United States)

    Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.

    2018-01-01

    Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…

  2. Instant Math Storymats with Hands-on Activities for Building Essential Primary Math Skills, Grades K-2.

    Science.gov (United States)

    Spann, Mary Beth

    This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…

  3. Carnegie Math Pathways 2015-2016 Impact Report: A Five-Year Review. Carnegie Math Pathways Technical Report

    Science.gov (United States)

    Hoang, Hai; Huang, Melrose; Sulcer, Brian; Yesilyurt, Suleyman

    2017-01-01

    College math is a gateway course that has become a constraining gatekeeper for tens of thousands of students annually. Every year, over 500,000 students fail developmental mathematics, preventing them from achieving their college and career goals. The Carnegie Math Pathways initiative offers students an alternative. It comprises two Pathways…

  4. Math Academy: Play Ball! Explorations in Data Analysis & Statistics. Book 3: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…

  5. Math Academy: Let's Go to the Mall! Explorations in Combinatorics. Book 5: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…

  6. Math Academy: Dining Out! Explorations in Fractions, Decimals, & Percents. Book 4: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…

  7. Building a Math-Positive Culture: How to Support Great Math Teaching in Your School (ASCD Arias)

    Science.gov (United States)

    Seeley, Cathy L.

    2016-01-01

    Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, turns the spotlight on administrative leaders who are seeking to improve their math programs, offering an overview of what an effective program looks like and examples of actions to take to achieve that goal. "Building a Math-Positive Culture" addresses…

  8. STEM Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  9. Math anxiety and exposure to statistics in messages about genetically modified foods: effects of numeracy, math self-efficacy, and form of presentation.

    Science.gov (United States)

    Silk, Kami J; Parrott, Roxanne L

    2014-01-01

    Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.

  10. The Ties That Bind: The Experiences of Women of Color Faculty in STEM

    Science.gov (United States)

    Wilkins, Ashlee Nichole

    2017-01-01

    As women of color (WOC) enter the science, technology, engineering, and math (STEM) pipeline with aspirations to join the faculty ranks, it is important that the academy is prepared to address their unique needs to ensure they are supported as they engage in scientific and technological research, support students, and advance in their career.…

  11. Cybersecurity Implications for Industry, Academia, and Parents: A Qualitative Case Study in NSF STEM Education

    Science.gov (United States)

    Stevenson, Gregory V.

    2017-01-01

    Rationale: Former President Barack Obama's $3.9 trillion for the 2015 fiscal year budget request included a $2.9 billion investment in Science, Technology, Engineering and Math (STEM) education. Research then showed that the national spending for cybersecurity has exceeded $10.7 billion in the 2015 fiscal year. Nonetheless, the number of…

  12. Examining the Quality of Technology Implementation in STEM Classrooms: Demonstration of an Evaluative Framework

    Science.gov (United States)

    Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla

    2015-01-01

    Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…

  13. From STEM to STEAM: How Early Childhood Educators Can Apply Fred Rogers' Approach

    Science.gov (United States)

    Sharapan, Hedda

    2012-01-01

    For many in early childhood education, STEAM is a new term. It began in this decade as STEM, an acronym for Science, Technology, Engineering, and Math. These curriculum areas have become a major focus in education because of the concern that the United States is falling behind in scientific innovation. With a new and familiar addition to the…

  14. Relationship between Active Learning Methodologies and Community College Students' STEM Course Grades

    Science.gov (United States)

    Lesk, Cherish Christina Clark

    2017-01-01

    Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use…

  15. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  16. STEM Pilot Project Grant Program: Report to the Legislature, June 2016

    Science.gov (United States)

    Noahr, Lorrell; Black, Scott; Rogers, Justin

    2016-01-01

    The Washington State Legislature established the Science, Technology, Engineering, & Math (STEM) Pilot Program in the 2015-2017 capital budget (Chapter 3, Laws of 2015, 3rd Sp. Session, Section 5026) and provided $12,500,000 for this pilot grant program. Grants awarded under this program constitute the districts' local funding for purposes of…

  17. College Admissions Viewbooks and the Grammar of Gender, Race, and STEM

    Science.gov (United States)

    Osei-Kofi, Nana; Torres, Lisette E.

    2015-01-01

    Numerous reports on the US economy argue that American higher education institutions must prepare a greater number of workers for employment in science, technology, engineering, and math (STEM), in order for the US to remain globally competitive. To do so, addressing the underrepresentation of women and people of color who pursue degrees in STEM…

  18. News from the Library: Zentralblatt MATH: it's not all about maths

    CERN Multimedia

    CERN Library

    2011-01-01

    The CERN Library provides access to numerous and diverse information services of interest to the CERN community. Among them, Zentralblatt MATH stands out from our offer of online databases.   Zentralblatt MATH covers more than 3 million articles published in about 3500 journals, from 1826 to the present. Most bibliographic records are linked to the online published article. It covers all areas of pure and applied mathematics and also theoretical computer science, mathematical quantum and statistical physics, classical, solid and fluid mechanics, and general relativity and astronomy. Therefore, this database is useful in many disciplines beyond mathematics. It is daily updated and allows advanced search functionalities. Among others things, it includes the content of the Electronic Research Archive for Mathematics, the European Mathematical Information Service, and the Mathematics Preprint Search System. Please note the "Online Ordering" button next to every bibliographic recor...

  19. Math anxiety in second and third graders and its relation to mathematics achievement

    Directory of Open Access Journals (Sweden)

    Sarah eWu

    2012-06-01

    Full Text Available Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in 2nd and 3rd graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA, a new measure for assessing math anxiety in 2nd and 3rd graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Wechsler Individual Achievement Test (WIAT-II. Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were significantly correlated with scores on the Math Reasoning subtest, which involves more complex verbal problem solving, but not with the Numerical Operations subtest which assesses basic computation skills. Our results suggest that math anxiety has a pronounced effect on more demanding calculations. Our results further suggest that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.

  20. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Insecure attachment is associated with math anxiety in middle childhood.

    Science.gov (United States)

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  2. Insecure attachment is associated with math anxiety in middle childhood

    Directory of Open Access Journals (Sweden)

    Guy eBosmans

    2015-10-01

    Full Text Available Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect-regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63 filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  3. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov (United States)

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  4. Contextual Factors Related to Math Anxiety in Second-Grade Children

    Science.gov (United States)

    Jameson, Molly M.

    2014-01-01

    As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…

  5. Supporting English Language Learners in Math Class, Grades 6-8

    Science.gov (United States)

    Melanese, Kathy; Chung, Luz; Forbes, Cheryl

    2011-01-01

    This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…

  6. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    Science.gov (United States)

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  7. Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak

    Directory of Open Access Journals (Sweden)

    Galuh Boy Hertantyo

    2014-11-01

    Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.

  8. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  9. Forum Math-for-Industry 2015

    CERN Document Server

    Broadbridge, Philip; Fukumoto, Yasuhide; Kamiyama, Naoyuki; Mizoguchi, Yoshihiro; Polthier, Konrad; Saeki, Osamu

    2017-01-01

    This book is a collection of papers presented at the “Forum Math-for-Industry 2015” for which the unifying theme was “The Role and Importance of Mathematics in Innovation”, held at the Institute of Mathematics for Industry, Kyushu University, October 26–30, 2015. The theme highlights two key roles that mathematics plays in supporting innovation in science, technology, and daily life, namely, needs-based and idea-based. For the former, mathematics assists with sorting through the possibilities and putting matters on a more rigorous foundation, and for the latter, mathematical models of the possible implementations play a key role. The book gives excellent examples of how mathematics assists with stimulating innovation and, thereby, highlights the importance and relevance of the concept Mathematics_FOR_Industry. The contents of this volume address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that result when mathematics...

  10. Gesturing Gives Children New Ideas About Math

    Science.gov (United States)

    Goldin-Meadow, Susan; Cook, Susan Wagner; Mitchell, Zachary A.

    2009-01-01

    How does gesturing help children learn? Gesturing might encourage children to extract meaning implicit in their hand movements. If so, children should be sensitive to the particular movements they produce and learn accordingly. Alternatively, all that may matter is that children move their hands. If so, they should learn regardless of which movements they produce. To investigate these alternatives, we manipulated gesturing during a math lesson. We found that children required to produce correct gestures learned more than children required to produce partially correct gestures, who learned more than children required to produce no gestures. This effect was mediated by whether children took information conveyed solely in their gestures and added it to their speech. The findings suggest that body movements are involved not only in processing old ideas, but also in creating new ones. We may be able to lay foundations for new knowledge simply by telling learners how to move their hands. PMID:19222810

  11. Exploring Gender Differences across Elementary, Middle, and High School Students' Science and Math Attitudes and Interest

    Science.gov (United States)

    LeGrand, Julie

    The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (pgender differences in mathematics are present only at the elementary school level.

  12. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  13. Das habt ihr schon im Mathe gelernt! Stimmt das wirklich?

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Uhden, Olaf; Höttecke, Dietmar

    2016-01-01

    Mathematics is widely considered to be a prerequisite for learning physics. However, it is quite naive to believe that learning basic math is sufficient to use mathematics as a reasoning tool to think about the physical world. The main reason is that using mathematics in physics is substantially...... different than in math. In this paper we show how the way physicists make use of some basic mathematical concepts (e.g. multiplication, division and functions) is specific to physics by identifying their historical genesis and contrasting with the way these concepts are usually taught in math lessons. We...

  14. Social Capital, Information, and Socioeconomic Disparities in Math Coursework

    Science.gov (United States)

    Crosnoe, Robert; Schneider, Barbara

    2011-01-01

    Analysis of the National Education Longitudinal Study revealed that socioeconomically advantaged students persist in high school math at higher rates than their disadvantaged peers, even when they have the same initial placements and skill levels. These disparities are larger among students with prior records of low academic status because students from more privileged backgrounds persist in math coursework even when their prior performance predicts they will not. Among students with low middle school math performance, those from socioeconomically disadvantaged families appear to benefit from having consultants for coursework decisions, so that they make up ground with their socioeconomically advantaged peers. PMID:21743762

  15. Basic math and pre-algebra for dummies

    CERN Document Server

    Zegarelli, Mark

    2014-01-01

    Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that

  16. Avoidance temperament and social-evaluative threat in college students' math performance: a mediation model of math and test anxiety.

    Science.gov (United States)

    Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man

    2014-01-01

    Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.

  17. Queer in STEM Organizations: Workplace Disadvantages for LGBT Employees in STEM Related Federal Agencies

    Directory of Open Access Journals (Sweden)

    Erin A. Cech

    2017-02-01

    Full Text Available Lesbian, gay, bisexual, and transgender (LGBT individuals in U.S. workplaces often face disadvantages in pay, promotion, and inclusion and emergent research suggests that these disadvantages may be particularly pernicious within science and engineering environments. However, no research has systematically examined whether LGBT employees indeed encounter disadvantages in science, technology, engineering and math (STEM organizations. Using representative data of over 30,000 workers employed in six STEM-related federal agencies (the Department of Energy, the Environmental Protection Agency, the National Science Foundation, NASA, the Nuclear Regulatory Commission, and the Department of Transportation, over 1000 of whom identify as LGBT, we compare the workplace experiences of LGBT employees in STEM-related federal agencies with those of their non-LGBT colleagues. Across numerous measures along two separate dimensions of workplace experiences—perceived treatment as employees and work satisfaction—LGBT employees in STEM agencies report systematically more negative workplace experiences than their non-LGBT colleagues. Exploring how these disadvantages vary by agency, supervisory status, age cohort, and gender, we find that LGBT persons have more positive experiences in regulatory agencies but that supervisory status does not improve LGBT persons’ experiences, nor do the youngest LGBT employees fare better than their older LGBT colleagues. LGBT-identifying men and women report similar workplace disadvantages. We discuss the implications of these findings for STEM organizations and STEM inequality more broadly.

  18. Math anxiety in second and third graders and its relation to mathematics achievement.

    Science.gov (United States)

    Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement

  19. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    OpenAIRE

    Wanda Nugroho Yanuarto

    2016-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  20. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement

    OpenAIRE

    Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure f...

  1. Emporium Model: The Key to Content Retention in Secondary Math Courses

    Directory of Open Access Journals (Sweden)

    Sandra Wilder

    2016-07-01

    Full Text Available The math emporium model was first developed by Virginia Tech in 1999. In the emporium model students use computer-based learning resources, engage in active learning, and work toward mastery of concepts. This approach to teaching and learning mathematics was piloted in a rural STEM high school. The purpose of this experimental study was to compare the impact of the emporium model and the traditional approach to instruction on student achievement and retention of algebra. The results indicated that both approaches to instruction were equally effective in improving student mathematics knowledge. However, the findings revealed that the students in the emporium section had significantly higher retention of the content knowledge.

  2. Les grands problèmes mathématiques ils orientent l'avenir des maths

    CERN Document Server

    2012-01-01

    Les mathématiques ont leurs sept merveilles ! Il s’agit des sept problèmes du millénaire, mis à prix à un million de dollars chacun par l’Institut Clay de mathématiques en 2000. Mais l’intelligence des mathématiciens est aussi mise à l’épreuve par bien d’autres problèmes, tels ceux de Hilbert. Découvrez dans ce numéro comment ces énigmes orientent l’avenir de la discipline ouvrant la voie à de nouvelles connaissances fondamentales.

  3. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  4. Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety.

    Science.gov (United States)

    Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L

    2011-08-01

    In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved

  5. Analyzing the attributes of Indiana's STEM schools

    Science.gov (United States)

    Eltz, Jeremy

    "Primary and secondary schools do not seem able to produce enough students with the interest, motivation, knowledge, and skills they will need to compete and prosper in the emerging world" (National Academy of Sciences [NAS], 2007a, p. 94). This quote indicated that there are changing expectations for today's students which have ultimately led to new models of education, such as charters, online and blended programs, career and technical centers, and for the purposes of this research, STEM schools. STEM education as defined in this study is a non-traditional model of teaching and learning intended to "equip them [students] with critical thinking, problem solving, creative and collaborative skills, and ultimately establishes connections between the school, work place, community and the global economy" (Science Foundation Arizona, 2014, p. 1). Focusing on science, technology, engineering, and math (STEM) education is believed by many educational stakeholders to be the solution for the deficits many students hold as they move on to college and careers. The National Governors Association (NGA; 2011) believes that building STEM skills in the nation's students will lead to the ability to compete globally with a new workforce that has the capacity to innovate and will in turn spur economic growth. In order to accomplish the STEM model of education, a group of educators and business leaders from Indiana developed a comprehensive plan for STEM education as an option for schools to use in order to close this gap. This plan has been promoted by the Indiana Department of Education (IDOE, 2014a) with the goal of increasing STEM schools throughout Indiana. To determine what Indiana's elementary STEM schools are doing, this study analyzed two of the elementary schools that were certified STEM by the IDOE. This qualitative case study described the findings and themes from two elementary STEM schools. Specifically, the research looked at the vital components to accomplish STEM

  6. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  7. Is Discrete Mathematics the New Math of the Eighties?

    Science.gov (United States)

    Hart, Eric W.

    1985-01-01

    Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)

  8. Change Vocational Funding to Acquire Qualified Math/Science Teachers.

    Science.gov (United States)

    Heron, Bill

    1985-01-01

    Gives a brief overview of the problems occurring at the high school level due to inadequately paid personnel in the math and science areas, summarizes the current bureaucratic structure surrounding vocational funding, and suggests an alternative. (FL)

  9. Math and science illiteracy: Social and economic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.

  10. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  11. Threats and Supports to Female Students' Math Beliefs and Achievement.

    Science.gov (United States)

    McKellar, Sarah E; Marchand, Aixa D; Diemer, Matthew A; Malanchuk, Oksana; Eccles, Jacquelynne S

    2018-03-23

    This study examines how student perceptions of teacher practices contribute to female high school students' math beliefs and achievement. Guided by the expectancy-value framework, we hypothesized that students' motivation beliefs and achievement outcomes in mathematics are fostered by teachers' emphasis on the relevance of mathematics and constrained by gender-based differential treatment. To examine these questions, structural equation modeling was applied to a longitudinal panel of 518 female students from the Maryland Adolescent Development in Context Study. While controlling for prior achievement and race, gendered differential treatment was negatively associated with math beliefs and achievement, whereas relevant math instruction was positively associated with these outcomes. These findings suggest inroads that may foster positive math motivational beliefs and achievement among young women. © 2018 Society for Research on Adolescence.

  12. The Potential Role of Science, Technology, Engineering, and Math Programs in Reducing Teen Dating Violence and Intimate Partner Violence.

    Science.gov (United States)

    D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E

    2016-12-01

    Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.

  13. Using Aviation to Change Math Attitudes

    Science.gov (United States)

    Wood, Jerra

    2013-01-01

    Mathematics teachers are constantly looking for real-world applications of mathematics. Aerospace education provides an incredible context for teaching and learning important STEM concepts, inspiring young people to pursue careers in science, technology, engineering, and mathematics. Teaching mathematics within the context of aerospace generates…

  14. The retention of first-generation college students in STEM: An extension of Tinto's longitudinal model

    Science.gov (United States)

    Uche, Ada Rosemary

    In the current technologically advanced global economy, the role of human capital and education cannot be over-emphasized. Since almost all great inventions in the world have a scientific or technological foundation, having a skilled workforce is imperative for any nation's economic growth. Currently, large segments of the United States' population are underrepresented in the attainment of science, technology, engineering, and math (STEM) degrees, and in the STEM professions. Scholars, educators, policy-makers, and employers are concerned about the decline in student enrollment and graduation from STEM disciplines. This trend is especially problematic for first-generation college students. This study uses both quantitative and qualitative methods to assess the factors that predict the retention of first-generation college students in the STEM majors. It employs Tinto's longitudinal model (1993) as a conceptual framework to predict STEM retention for first-generation college students. The analysis uses the Beginning Post-secondary Students study (BPS 04/09) data and Roots of STEM qualitative data to investigate the role of first-generation status in STEM major retention. Results indicate that upper levels of achievement in high school math have a significant effect on first-generation status in STEM outcomes.

  15. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-05-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  16. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. STEeM- STEM&eTwinning in my school

    Science.gov (United States)

    Nicolaita, Cristina

    2017-04-01

    My name is Cristina Nicolăiță, I am a teacher of Physics and Computer Science in Gheorghe Magheru School, Caracal, Romania, and a Romanian Scientix&eTwinning ambassador. My poster presents the two eTwinning projects my students are actively involved in, "STEM Club" and "What's the weather like #eTwCitizen2016", with partners mostly from the Mediterranean area. STEM CLUB project focuses on the introductory level STEM activities, as well as awareness of the STEM fields and occupations. This initial step provides standards-based structured inquiry-based and real world problem-based learning, connecting all four of the STEM subjects. Project's basic aims are: 1. increasing student STEM ability, engagement, participation and aspiration 2. increasing teacher capacity and STEM teaching quality 3. supporting STEM education opportunities 4. facilitating effective school partnerships 5. building a strong evidence base 6. improving ICT skills During the second eTwinning project, What's the weather like #eTwCitizen2016", students will investigate weather in our lives, culture and science, in literature (including popular sayings and informative digital literacy), languages, science and Maths( including astronomy, physics, environmental studies) social sciences, religion, art, music, history, psychology (ways of thinking at different weather conditions, feelings related with the weather forecast, careers related to weather, climate change and sustainability).They will use the different intelligences they possess, bringing their contribution to the team work and developing the ability to identify, find, evaluate, and use information effectively.

  18. Characteristics and Effects of a Statewide STEM Program

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Weld

    2015-10-01

    Full Text Available A comprehensive statewide STEM (science, technology, engineering, mathematics reform initiative enters its fifth year in the U.S. state of Iowa. A significant proportion of the state’s pre K-12 students and teachers participate in one or more of the twenty programs offered, ranging from classroom curricular innovations to teacher professional development, and from community STEM festivals to career exploration events. An external, inter-university evaluation consortium measures annual progress of the initiative through the Iowa STEM Monitoring Project. Results show citizens to be increasingly aware of and supporting of STEM education; students to be increasingly interested in STEM as well as outperforming nonparticipating peers on state math and science tests; and teachers more confident and knowledgeable in teaching STEM. Iowa’s STEM initiative has garnered national acclaim though challenges remain with regard to expanding the participation of learners of diversity, as well as ensuring the long-term sustainability of the programs and structures that define Iowa’s statewide STEM initiative.

  19. Metacognitive awareness and math anxiety in gifted students

    Directory of Open Access Journals (Sweden)

    Hakan Sarıcam

    2015-12-01

    Full Text Available The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary School Students and The Metacognitive Awareness Inventory for Children were used. For analysing the data, Spearman correlation analysis, the Mann Whitney U test, and linear regression analysis were used. According to the findings: firstly, gifted students’ metacognitive awareness scores were higher than those of non-gifted students. On the other hand, non-gifted students’ maths anxiety levels were higher than those of gifted students. Secondly, there was negative correlation between metacognitive awareness and math anxiety. Finally, the findings of linear regression analysis indicated that metacognitive awareness is explained by 48% total variance of maths anxiety in gifted students.

  20. Math you can really use--every day

    CERN Document Server

    Herzog, David Alan

    2007-01-01

    Math You Can Really Use--Every Day skips mind-numbing theory and tiresome drills and gets right down to basic math that helps you do real-world stuff like figuring how much to tip, getting the best deals shopping, computing your gas mileage, and more. This is not your typical, dry math textbook. With a comfortable, easygoing approach, it: Covers math you''ll need for balancing your checkbook, choosing or managing credit cards, comparing options for mortgages, insurance, and investments, and moreIncludes the basics on fractions, decimals, percentages, measurements, and geometric mathClues you in on simple shortcutsIncludes examples plus pop quizzes with answers to help you solidify your understanding Features tear-out guides you can take with you for tipping and converting measurements Want to know how much 20% off is in dollars and cents? Want to figure out how much gas is going to cost for your road trip? This is the math book you''ll really use!

  1. Training the approximate number system improves math proficiency.

    Science.gov (United States)

    Park, Joonkoo; Brannon, Elizabeth M

    2013-10-01

    Humans and nonhuman animals share an approximate number system (ANS) that permits estimation and rough calculation of quantities without symbols. Recent studies show a correlation between the acuity of the ANS and performance in symbolic math throughout development and into adulthood, which suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic math. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic-math ability. In the two experiments reported here, we showed that ANS training on approximate addition and subtraction of arrays of dots selectively improved symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities and provides the first direct evidence that the ANS and symbolic math may be causally related. It also raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math.

  2. STEM Education-An Exploration of Its Impact on Female Academic Success in High School

    Science.gov (United States)

    Ybarra, Michael E.

    The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.

  3. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    Science.gov (United States)

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  4. Does Geographic Setting Alter the Roles of Academically Supportive Factors? African American Adolescents' Friendships, Math Self-Concept, and Math Performance

    Science.gov (United States)

    Jones, Martin H.; Irvin, Matthew J.; Kibe, Grace W.

    2012-01-01

    The study is one of few to examine how living in rural, suburban, or urban settings may alter factors supporting African Americans adolescents' math performance. The study examines the relationship of math self-concept and perceptions of friends' academic behaviors to African American students' math performance. Participants (N = 1,049) are…

  5. Persistence among Minority STEM Majors: A Phenomenological Study

    Science.gov (United States)

    Williams-Watson, Stacey

    The United States needs to increase the number of science, technology, engineering, and math (STEM) graduates to remain competitive in the global market and maintain national security. Minority students, specifically African-American and Hispanic, are underrepresented in STEM fields. As the minority population continues to grow it is essential that higher education institutions improve minority students' persistence in STEM education. This study examined the problem of minority students' lack of persistence in STEM programs. The purpose of this qualitative transcendental phenomenological study was to describe the lived experiences that minority students perceived as contributing to their persistence in STEM. The central research question was: What are the lived experiences of minority STEM students that have contributed to their persistence in a STEM program? The sub-questions were: a) What led participants to majors in STEM?; b) What contributed to students' success and persistence in STEM?; and c) What advice do students have to offer? The researcher interviewed 12 minority STEM students and uncovered 10 themes that described the lived experiences of minority students' persistence in STEM programs. The themes were 1) Childhood experiences and interests; 2) Positive educational experiences in secondary school; 3) Self- motivation; 4) Positive experiences with professors; 5) Family encouragement and values; 6) Lack of minorities; 7) Lack of educational preparation; 8) The need for financial assistance; 9) Clubs and organizations; and 10) Friends within the major. The significance of these findings is the potential to produce changes in curricula, programs, and retention methods that may improve the persistence of minority students in STEM programs.

  6. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  7. The experiences of Panamanian Afro-Caribbean women in STEM: Voices to inform work with Black females in STEM education

    Science.gov (United States)

    Miller, Beverly A. King

    This grounded theory case study examines the experiences of Panamanian Afro-Caribbean women and their membership in STEM (Science, Technology, Engineering and Mathematics) training and careers. The shortage of Science and Math teachers in 48 of 50 States heightens the need for those trained in STEM. Females of African phenotype have persistently been underrepresented in STEM. However, this trend does not appear to have held for Panamanian Afro-Caribbean women. The current study explores issues related to STEM participation for these women by addressing the overarching question: What key factors from the lived experiences of Panamanian Afro-Caribbean women in STEM careers can be used to inform work with females of African phenotype in their pursuit of STEM education and STEM careers? Five women were identified for inclusion in the study's purposive sample. The study draws upon assertions and implications about the relevance of self-identity and collective-identity for membership in STEM. Data for the study was gathered through qualitative interviews, surveys, and observations. The grounded theory approach was used to analyze emergent themes related to participants' responses to the research questions. Two models, the STEM Attainment Model (SAM) and the Ecological Model of Self-Confidence and Bi-Directional Effect, are proposed from evaluation of the identified information. Socio-cultural values and learned strategies were determined to influence self-confidence which is identified as important for persistence in STEM training and careers for females of African phenotype. Evidence supports that the influences of parents, country of origin, neighborhood communities, schools and teachers are factors for persistence. Through the voices of these women, recommendations are offered to the gatekeepers of STEM academic pathways and ultimately STEM careers.

  8. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    Science.gov (United States)

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  9. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    Science.gov (United States)

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  10. Engaging Girls in STEM: A Discussion of Foundational and Current Research on What Works

    Science.gov (United States)

    Sharma, M.; Peterson, K. A.; Bleacher, L. V.; Smith, D. A.

    2012-08-01

    This article summarizes a panel discussion with Jolene Jesse (Program Director, NSF Research on Gender in Science and Engineering program) and Laura Migus (Director of Equity & Diversity at the Association of Science Technology Centers) on research related to gender in science, technology, engineering and math (STEM). Moderated by Ms. Karen Peterson from the NSF-funded National Girls Collaborative Project, Dr. Jesse and Ms. Migus discussed foundational and current research on pressing questions about the lack of gender diversity in STEM advanced education and careers, and on strategies the EPO community could employ in designing and implementing programs to encourage more girls and women to engage in STEM for the long term.

  11. Number-specific and general cognitive markers of preschoolers' math ability profiles.

    Science.gov (United States)

    Gray, Sarah A; Reeve, Robert A

    2016-07-01

    Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.

    Science.gov (United States)

    Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon

    2017-08-29

    With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.

  13. Pollution! Find a STEM solution!

    Science.gov (United States)

    Takač, Danijela; Moćan, Marina

    2016-04-01

    Primary and secondary school Pantovčak is an innovative school in downtown Zagreb, Croatia. The school is involved in many projects concerning STEM education. Pollution! Find a STEM solution! is a two year long cross-curricular project that grew out of identified need to develop STEM and ICT skills more. Pisa results make evident that students' knowledge is poor and motivation for math and similar subjects is low. Implying priorities of European Commission, like e-learning, raises motivation and also develops basic skills and improves knowledge in science, math, physic, ICT. Main objectives are to increase students' interest in STEM education and careers and introduce them to all available new trends in technology, engineering and science in their region by visiting clean technology industries and strengthening links with them, to introduce some future digital jobs and prepare students for rapid technological changes by integrating ICT into classroom practice more, to highlight the importance of global environmental issues and improve the knowledge in the areas of sustainable development and renewable energy, to develop collaborative partnership between schools and the wider community in formal, non-formal and informal learning, to support multilingualism by publishing Open Educational Resources in 8 different languages and to strengthen the professional profile of the teaching profession. The project brings together 231 teachers and 2729 students from five different European countries in learning to think globally and work on activities that contribute to the community's well-being. There are altogether 33 activities, divided in 4 categories. STEM activities are focused on students building the devices for measuring air, light and noise pollution in their school and homes. They use the scientific method to analyze the data and compare the results with their peers to find a solution. Eskills, digital literacy and digital jobs are focused on introducing career

  14. The Relationship between Cognitive Reserve and Math Abilities

    Directory of Open Access Journals (Sweden)

    Giorgio Arcara

    2017-12-01

    Full Text Available Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations, in a group of healthy older people (aged 65–98 years. Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq, and assessed with the Numerical Activities of Daily Living battery (NADL, which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  15. The Relationship between Cognitive Reserve and Math Abilities.

    Science.gov (United States)

    Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo

    2017-01-01

    Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65-98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  16. The Conundrum of Social Class: Disparities in Publishing among STEM Students in Undergraduate Research Programs at a Hispanic Majority Institution

    Science.gov (United States)

    Grineski, Sara; Daniels, Heather; Collins, Timothy; Morales, Danielle X.; Frederick, Angela; Garcia, Marilyn

    2018-01-01

    Research on the science, technology, engineering, and math (STEM) student development pipeline has largely ignored social class and instead examined inequalities based on gender and race. We investigate the role of social class in undergraduate student research publications. Data come from a sample of 213 undergraduate research participants…

  17. Embedded Simultaneous Prompting Procedure to Teach STEM Content to High School Students with Moderate Disabilities in an Inclusive Setting

    Science.gov (United States)

    Heinrich, Sara; Collins, Belva C.; Knight, Victoria; Spriggs, Amy D.

    2016-01-01

    Effects of an embedded simultaneous prompting procedure to teach STEM (science, technology, engineering, math) content to three secondary students with moderate intellectual disabilities in an inclusive general education classroom were evaluated in the current study. Students learned discrete (i.e., geometric figures, science vocabulary, or use of…

  18. Cross-Cultural and Global Interdependency Development in STEM Undergraduate Students: Results from Singapore Study Abroad Program

    Science.gov (United States)

    Alexis, Frank; Casco, M.; Martin, J.; Zhang, G.

    2017-01-01

    The goal of study abroad programs is to educate and train future global leaders. This article examines the effectiveness of Clemson University's Singapore Study Abroad program in meeting this goal by exposing students to global perspectives of science technology, engineering and math (STEM) research and learning through an international summer…

  19. Science in Action: How Middle School Students Are Changing Their World through STEM Service-Learning Projects

    Science.gov (United States)

    Newman, Jane L.; Dantzler, John; Coleman, April N.

    2015-01-01

    The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…

  20. Helping All Students Become Einstein's Using Bibliotherapy When Teaching Mathematics to Prepare Students for a STEM World

    Science.gov (United States)

    Furner, Joseph M.

    2017-01-01

    Today, being confident and having a sound understanding of mathematics is critical in an age of STEM. Teachers must play in important role in seeing that all students display their confidence in their ability to do mathematics. This paper explains the process of using bibliotherapy when teaching mathematics to address both the math anxious or the…