Math Description Engine Software Development Kit
Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.
2010-01-01
The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.
Cryer, CW
2014-01-01
Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formula
Robertson, William C
2006-01-01
Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.
Multivariate Analysis of Students' Performance in Math Courses and Specific Engineering Courses
H. Naccache; R. Hleiss
2016-01-01
The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students a...
Fusion engineering device design description
Energy Technology Data Exchange (ETDEWEB)
Flanagan, C.A.; Steiner, D.; Smith, G.E.
1981-12-01
The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.
Fusion Engineering Device design description
International Nuclear Information System (INIS)
Flanagan, C.A.; Steiner, D.; Smith, G.E.
1981-12-01
The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein
Fusion engineering device design description
International Nuclear Information System (INIS)
Flanagan, C.A.; Steiner, D.; Smith, G.E.
1981-12-01
The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein
Rodriguez Flecha, Samuel
The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students
Fusion Engineering Device. Volume II. Design description
International Nuclear Information System (INIS)
1981-10-01
This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components
Directory of Open Access Journals (Sweden)
Srinivas Jangili
2016-09-01
Full Text Available The present study investigates the entropy generation in magnetized-micropolar fluid flow in between two vertical concentric rotating cylinders of infinite length. The surface of the inner cylinder is heated while the surface of the outer cylinder is cooled. Internal heat generation is incorporated. The Eringen thermo-micropolar fluid model is used to simulate the micro-structural rheological flow characteristics in the annulus region. The flow is subjected to a constant, static, axial magnetic field. The surface of the inner cylinder is prescribed to be isothermal whereas the surface of the outer cylinder was exposed to convection cooling. The conservation equations are normalized and closed-form solutions are obtained for the velocity, microrotation, temperature, entropy generation number, Bejan number and total entropy generation rate. The effects of the relevant parameters are displayed graphically. It is observed that the external magnetic force enhances the entropy production rate and it is maximum in the proximity of the inner cylinder. This causes more wear and tear at the surface of the inner cylinder. Greater Hartmann number also elevates microrotation values in the entire annulus region. The study is relevant to optimization of chemical engineering processes, nuclear engineering cooling systems and propulsion systems utilizing non-Newtonian fluids and magnetohydrodynamics.
The Blue Blazer Club: Masculine Hegemony in Science, Technology, Engineering, and Math Fields
Page, Melanie C.; Bailey, Lucy E.; Van Delinder, Jean
2009-01-01
The under-representation of women in Science, Technology, Engineering, and Math (STEM) fields is of continuing concern, as is the lack of women in senior positions and leadership roles. During a time of increasing demand for science and engineering enterprise, the lack of women and minorities in these academic disciplines needs to be addressed by…
Guide to essential math a review for physics, chemistry and engineering students
Blinder, Sy M
2013-01-01
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The
A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development
DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April
2012-01-01
A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…
McPherson, Ezella
2014-01-01
This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…
STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America
Drew, David E.
2011-01-01
One study after another shows American students ranking behind their international counterparts in the STEM fields--science, technology, engineering, and math. Business people such as Bill Gates warn that this alarming situation puts the United States at a serious disadvantage in the high-tech global marketplace of the twenty-first century, and…
Math and science education programs from the Idaho National Engineering Laboratory
International Nuclear Information System (INIS)
1991-01-01
This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students
How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom
Milgram, Donna
2011-01-01
Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…
"MathePraxis"--Connecting First-Year Mathematics with Engineering Applications
Harterich, Jorg; Kiss, Christine; Rooch, Aeneas; Monnigmann, Martin; Darup, Moritz Schulze; Span, Roland
2012-01-01
First-year engineering students often complain about their mathematics courses as the significance of the difficult and abstract calculus to their field of study remains unclear. We report on the project "MathePraxis", a feasibility study which was designed as a means to give first-year students some impression about the use of…
Persistence Motivations of Chinese Doctoral Students in Science, Technology, Engineering, and Math
Zhou, Ji
2014-01-01
This study explored what motivated 6 Chinese international students to complete a PhD in science, technology, engineering, and math fields in the United States despite perceived dissatisfaction. This study was grounded in the value-expectancy achievement motivation theory and incorporated a Confucian cultural lens to understand motivation. Four…
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-01-01
The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…
Guide to essential math a review for physics, chemistry and engineering students
Blinder, Sy M
2008-01-01
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...
Parabolic Mirror: Focusing on Science, Technology, Engineering, and Math
Smith, Karianne; Hughes, William
2013-01-01
In the fall of 2011, Park Forest Middle School (PFMS) students approached the STEM faculty with numerous questions regarding the popular television show Myth Busters, which detailed Greek mathematician, physicist, engineer, and inventor, Archimedes. Two episodes featured attempts to test historical accounts that Archimedes developed a death ray…
Evaluation MUMIE Online Math Education Pilot Aerospace Engineering
Vuik, K.; Daalderop, F.; Van Kints, R.; Schaap, B.
2011-01-01
In this document the Mumie pilot that took place in March 2010 for the Linear Algebra course (wi1403lr) at Aerospace Engineering will be evaluated. This pilot is the result of an interest in using an e-learning platform that can improve the level of education for first year mathematical courses at
Developing Elementary Math and Science Process Skills Through Engineering Design Instruction
Strong, Matthew G.
This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.
Fundamental math and physics for scientists and engineers
Yevick, David
2014-01-01
This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications.Covers major undergraduate physics topics including the complete Physics GRE subject examination syllabusOverview of key results in undergraduate applied mathematics and introduces scientific programmingPresents simple, coherent derivations and illustrations of fundamental concepts
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the
Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria
2017-08-01
To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
AISES, None
2013-09-25
The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students
Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study
Valtorta, Clara G.; Berland, Leema K.
2015-01-01
Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…
Michael, Kurt Y.; Alsup, Philip R.
2016-01-01
Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…
Trei, Kelli
2015-01-01
This study analyzes the requirements and preferences of 171 science, technology, engineering, and math (STEM) academic librarian positions in the United States as advertised in 2013. This analysis compares the STEM background experience preferences with the Carnegie rankings of the employing institution. The research examines the extent to which…
Signaling threat: how situational cues affect women in math, science, and engineering settings.
Murphy, Mary C; Steele, Claude M; Gross, James J
2007-10-01
This study examined the cues hypothesis, which holds that situational cues, such as a setting's features and organization, can make potential targets vulnerable to social identity threat. Objective and subjective measures of identity threat were collected from male and female math, science, and engineering (MSE) majors who watched an MSE conference video depicting either an unbalanced ratio of men to women or a balanced ratio. Women who viewed the unbalanced video exhibited more cognitive and physiological vigilance, and reported a lower sense of belonging and less desire to participate in the conference, than did women who viewed the gender-balanced video. Men were unaffected by this situational cue. The implications for understanding vulnerability to social identity threat, particularly among women in MSE settings, are discussed.
Mathews, Linda Marie
2009-01-01
Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...
The Didactic Engineering for the Math Olympics Teaching: Olympic Situations with Geogebra’s Support
Directory of Open Access Journals (Sweden)
Ana Paula Rodrigues Alves Santos
2018-01-01
Full Text Available In this article, we intend to present a partial cut of a master's research, in which we describe, in a specific way, two phases determined by Didactic Engineering - ED in the context of the Mathematical Olympiads. Thus, we have the stages of preliminary analyzes and the construction of Olympic situations/a priori analysis. We emphasize in an Olympic situation that is described/structured with the support of GeoGebra software. Intervention through the proper exploitation of software provides the learner with opportunities to overcome certain difficulties/obstacles to an understanding or even conceptual construction in geometry. In this sense, the mentioned Olympic situation was experienced by students of the ninth year of elementary education II, from a private school in the state of Ceara, Brazil. The Olympic situation described proposes the possibility of the construction of metric relations in the triangle rectangle, content referring to the area of plane geometry. The ED is presented in this research, as a vision of complementarity that uses the theory of didactic situations - TSD. In this way, the described Olympic situation represents an alternative to classes directed to the math Olympics, their indication and structure, describes elements related to didactic mediation during the teaching and learning process, which emphasize details that make it possible to control and predict the possible student’s actions, as well as, to provide the experience of more significant didactic situations for geometry study in the Olympic context.
Advancing participation of blind students in Science, Technology, Engineering, and Math
Beck-Winchatz, Bernhard; Riccobono, Mark A.
2008-12-01
Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.
Adamuti-Trache, Maria; Sweet, Robert
2014-03-01
The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.
Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math
Garibay, Guadalupe
The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.
Mimewrighting: Preparing Students for the Real World of Science, Technology, Engineering, and Math
Shope, R. E.
2013-12-01
READING, WRITING, & ENACTING SCIENTIFIC & TECHNICAL LITERATURE: Mimewrighting applies the art of mime as an interpretive springboard to integrate conceptual understanding across all content areas. Mimewrighting guides students to read and express complex ideas in carefully crafted movement integrations, mediating experience, so that students obtain an intuitive grasp of difficult and abstract ideas. THE PROBLEM: Reading science writing presents obstacles for middle and high school students, to the point that many students are turned OFF to science altogether. A typical science abstract, written for colleagues, is as densely packed with concept-laden words as a black hole is densely packed with matter- and just as mysterious. What reads to a science colleague as a richly crafted paragraph, from which a myriad of elegantly interrelated concepts can unfold to point to the significance and context of the study at hand, reads as jabberwocky nonsense to the uninitiated student. So, how do we turn such kids (and teachers) back ON to the inquiry-driven desire to seek out challenging and educative experiences? How do we step up to the national challenge to prepare ALL students adequately for the REAL-WORLD demands of science, technology, engineering, math, (STEM) and communications? How do we help kids read, write, and understand scientific and technical literature? AN UNCONVENTIONAL ANSWER: Mimewrighting applies the classic art of mime to unpack the meaning of science writing. We help students view the text as sequences of action, scenarios that can be enacted theatrically for understanding. HOW DOES IT WORK? READ ALOUD, MIME ALONG: It's as simple as read aloud and mime along. And as complex, in that it requires taking the time to acknowledge each concept packed into the passage. Three opening sentences might involve twenty minutes of mimewrighting activity to ensure that students apprehend the patterns, perceive the relationships, and comprehend the dynamics of such a
Madore, Blair
2015-01-01
Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.
Van de Cavey, Joris; Hartsuiker, Robert J
2016-01-01
Cognitive processing in many domains (e.g., sentence comprehension, music listening, and math solving) requires sequential information to be organized into an integrational structure. There appears to be some overlap in integrational processing across domains, as shown by cross-domain interference effects when for example linguistic and musical stimuli are jointly presented (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Slevc, Rosenberg, & Patel, 2009). These findings support theories of overlapping resources for integrational processing across domains (cfr. SSIRH Patel, 2003; SWM, Kljajevic, 2010). However, there are some limitations to the studies mentioned above, such as the frequent use of unnaturalistic integrational difficulties. In recent years, the idea has risen that evidence for domain-generality in structural processing might also be yielded though priming paradigms (cfr. Scheepers, 2003). The rationale behind this is that integrational processing across domains regularly requires the processing of dependencies across short or long distances in the sequence, involving respectively less or more syntactic working memory resources (cfr. SWM, Kljajevic, 2010), and such processing decisions might persist over time. However, whereas recent studies have shown suggestive priming of integrational structure between language and arithmetics (though often dependent on arithmetic performance, cfr. Scheepers et al., 2011; Scheepers & Sturt, 2014), it remains to be investigated to what extent we can also find evidence for priming in other domains, such as music and action (cfr. SWM, Kljajevic, 2010). Experiment 1a showed structural priming from the processing of musical sequences onto the position in the sentence structure (early or late) to which a relative clause was attached in subsequent sentence completion. Importantly, Experiment 1b showed that a similar structural manipulation based on non-hierarchically ordered color sequences did not yield any priming effect
Dittrich, T. M.
2011-12-01
For a student group on campus, "the public" can refer to other students on campus or citizens from the community (including children, parents, teenagers, professionals, tradespeople, older people, and others). All of these groups have something to offer that can enrich the experiences of a student group. Our group focuses on science, technology, engineering and math (STEM) education in K-12 schools, university courses, and outreach activities with the general public. We will discuss the experiences of "All Things STEM" on the University of Colorado-Boulder campus and outreach in Boulder and Weld County, CO. Our experiences include (1) tours and events that offer an opportunity for student/public interaction, (2) grant requests and projects that involve community outreach, and (3) organizing conferences and events with campus/public engagement. Since our group is STEM-oriented, tours of water treatment plants, recycling centers, and science museums are a great way to create connections. Our most successful campus/public tour is our annual tour of the Valmont Station coal power plant near Boulder. We solicit students from all over campus and Boulder public groups with the goal to form a diverse and intimate 8 person group (students, school teachers, mechanics, hotel managers, etc.) that takes a 1.5 hr tour of the plant guided by the Chief Engineer. This includes a 20 minute sit-down discussion of anything the group wants to talk about including energy policy, plant history, recent failures, coal versus other fuels, and environmental issues. The tour concludes with each member placing a welding shield over their face and looking at the flames in the middle of the boiler, a little excitement that adds to the connections the group forms with each other. We have received over 11,000 to work with local K-12 schools and CU-Boulder undergraduate and graduate classes to develop a platform to help students learn and explain water quality concepts in a more practical manner
Sacramento City Unified School District, CA.
The Academy of Math, Science, and Engineering was established at the Luther Burbank High School of Sacramento, California as a rigorous and competitive academic alternative program. This report contains an evaluation of the second year (1984-85) of the program. Program accomplishments are reviewed in the categories of: (1) student enrollment; (2)…
Goodwyn, Kamela Joy
2017-01-01
Small businesses with emphasis in science, technology, engineering and math (STEM) are catalytic in launching the United States' global presence and competitiveness into the twenty-first century through innovation and technology. The projected growth compared to non-STEM occupations, is almost twice as high for STEM occupations which further…
Beasley, Maya A.; Fischer, Mary J.
2012-01-01
This paper examines the effects of group performance anxiety on the attrition of women and minorities from science, math, and engineering majors. While past research has relied primarily on the academic deficits and lower socioeconomic status of women and minorities to explain their absence from these fields, we focus on the impact of stereotype…
McComas, David
2013-01-01
The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.
Berry Bertram, Kathryn
2011-12-01
The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on
"Soft-Engineering" Students Learning Math during Project Work on Optical Illusions
DEFF Research Database (Denmark)
Timcenko, Olga; Triantafyllou, Evangelia
2015-01-01
Media Technology is a study line between engineering, art and humanities, situated at Faculty of Engineering and Science of Aalborg University. Although formally students of engineering, Media Technology students show even greater difficulties with entry-level mathematical knowledge than typical ...
Lim, Gloria
Women have been underrepresented in many STEM fields including physics. The gap appears to be largely attributable to a lack of women pursuing physics in college, and little is known about the characteristics and career interests of women who do plan to major in physics. Using nationwide data on first-time, full-time college students, this study set out to: (1) document national trends in plans to major in physics among women entering college; (2) document the career aspirations of women who intend to major in physics; and (3) explore the characteristics of women who intend to major in physics and how this population has evolved across time. The results show that women's interest in physics has been consistently low in the past four decades. The most popular career aspiration among women who plan to major in physics is research scientist, although this career aspiration is declining in popularity. Further, this study identifies a distinctive profile of the average female physics student as compared to women in other STEM fields and women across all majors. Women who plan to pursue a physics major tend to be confident in their math abilities, value college as an opportunity to learn, plan to attend graduate school, and are less likely than women in other fields to have a social activist orientation. The paper concludes with implications for scholars, educators, administrators, and policymakers as they seek to recruit more women in to the physics field. This research is supported by the National Science Foundation, HRD No. 1135727. Part of this work was also completed with the support of a Fulbright Fellowship in Finland.
Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho
2016-04-01
STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.
Using the Discipline of Agricultural Engineering to Integrate Math and Science
Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah
2011-01-01
An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…
Online mathematics education: E-math for first year engineering students
DEFF Research Database (Denmark)
Markvorsen, Steen; Schmidt, Karsten
2012-01-01
We consider the technology enhanced learning of first year engineering mathematics and in particular the application of E-learning objects and principles in the course Mathematics 1 which has a yearly intake of 750 students at the technical University of Denmark. We show that with non-linear mult...
Directory of Open Access Journals (Sweden)
Rachel Esselstein
2008-01-01
Full Text Available Dartmouth’s Critical Moments project is designed to promote discussions among faculty and graduate students about the retention of students, particularly women and minorities, in science, math, and engineering (SME disciplines. The first phase of the ongoing project has been the development of four case stories, which are fictionalized composites drawn from surveys and interviews of real Dartmouth students. The surveyed population was 125 students in general chemistry. Of the 77 who agreed to be interviewed, 61 reported having experienced a critical moment – i.e., a positive or negative event or time that had a significant impact on the student’s academic life. Leading critical moments were a poor grade on an exam; challenge from group work; excitement from an internship; and falling in love with a non-SME discipline from other coursework. Interviews of 13 students who had negative critical moments led to the development of case stories for: Antoinetta ’09, who had a disappointing group experience; Dalila ’08, who was poorly prepared; Greg ’09, who got in over his head in his first year; and Michelle ’08, who was shocked by her result in the first exam. The case stories are being discussed by graduate students, TA and faculty in various workshops at the Dartmouth Center for the Advancement of Learning.
Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta
2016-01-01
The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
Directory of Open Access Journals (Sweden)
Rahul Uppal
2016-01-01
Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E
2016-12-01
Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.
Parson, Laura J.
A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate
Thom,R
1974-01-01
Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève
Burnett, Lorie Lasseter
Persistence and retention of college students is a great concern in American higher education. The dropout rate is even more apparent among first-generation college students, as well as those majoring in science, technology, engineering, and math (STEM). More students earning STEM degrees are needed to fill the many jobs that require the skills obtained while in college. More importantly, those students who are associated with a low-socioeconomic background may use a degree to overcome poverty. Although many studies have been conducted to determine the characteristics associated with student attrition among first-generation students or STEM majors, very little information exists in terms of persistence and retention among the combined groups. The current qualitative study identified some of the characteristics associated with persistence and retention among first-generation college students who are also STEM majors. Participants were juniors or seniors enrolled at a regional 4-year institution. Face-to-face interviews were conducted to allow participants to share their personal experiences as first-generation STEM majors who continue to persist and be retained by their institution. Tinto's Theory of Individual Departure (1987) was used as a framework for the investigation. This theory emphasizes personal and academic background, personal goals, disconnecting from one's own culture, and institutional integration as predictors of persistence. The findings of the investigation revealed that persisting first-generation STEM majors are often connected to family, but have been able to separate that connection with that of the institution. They also are goal-driven and highly motivated and have had varied pre-college academic experiences. These students are academically integrated and socially integrated in some ways, but less than their non-first-generation counterparts. They are overcoming obstacles that students from other backgrounds may not experience. They receive
Nelson, Vaunda; Stanko, Anne
1992-01-01
Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)
Collaboration in Global Software Engineering Based on Process Description Integration
Klein, Harald; Rausch, Andreas; Fischer, Edward
Globalization is one of the big trends in software development. Development projects need a variety of different resources with appropriate expert knowledge to be successful. More and more of these resources are nowadays obtained from specialized organizations and countries all over the world, varying in development approaches, processes, and culture. As seen with early outsourcing attempts, collaboration may fail due to these differences. Hence, the major challenge in global software engineering is to streamline collaborating organizations towards a successful conjoint development. Based on typical collaboration scenarios, this paper presents a structured approach to integrate processes in a comprehensible way.
Wagner, Judson
Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.
Pappas, Theoni
2002-01-01
Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to
Voronina, Marianna V.; Tretyakova, Zlata O.
2017-01-01
The article considers the peculiarities of training foreign students subject "Descriptive geometry and Engineering Graphics" in a modern engineering university of Russia. The relevance of the problem conditioned by the fact that virtually there are no special studies of teaching Descriptive Geometry and Engineering Graphics in Russian…
The analogy method for the description of external characteristic of inner combustion engines
Directory of Open Access Journals (Sweden)
A. Stonys
2004-10-01
Full Text Available The original data for the evaluation of vehicle motion dynamics is external characteristic of its engine, which consists of three parameters: torque, power and specific fuel consumption. It is very important to have the dependences of these characteristics on revs for various engine load cases, creating a vehicle model under real motion conditions. Load cases are defined by a load coefficient. Car-makers usually don’t declare full engine external characteristics, which overtake all load coefficient variation interval. The purpose of this article is to research, how to get full description of engine torque function without its full data. The analogy method, which is used in polymers and composites mechanics, was employed for the description of a torque function. The method is based on the creation of summarized characteristic, making horizontal and vertical shifts of torque dependences. From the curve it is possible to get a proper characteristic at a chosen load coefficient.
Description of an engineering-scale facility for uranium fluorination studies
International Nuclear Information System (INIS)
Yagi, Eiji; Saito, Shinichi; Horiuchi, Masato
1976-03-01
In the research program of power reactor fuel reprocessing by fluoride volatility process, the engineering facility was constructed to establish the techniques of handling kilogram quantities of fluorine and uranium hexafluoride and to obtain engineering data on the uranium fluidized-bed oxidation and fluorination. This facility is designed for a capacity of 5 kg per batch. Descriptions on the facility and equipment are given, including design philosophy, safety and its analysis. (auth.)
Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith
2011-01-01
As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.
Murray, Jenny
2006-01-01
Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…
Green, Daniel; Kearney, Thomas
2015-01-01
Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…
Scarlatos, Lori L.
2006-01-01
Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…
Oguntoyinbo, Lekan
2012-01-01
Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary
2018-01-01
Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…
Students as Math Level Designers
DEFF Research Database (Denmark)
Jensen, Erik Ottar; Hanghøj, Thorkild; Schoenau-Fog, Henrik
The short paper presents preliminary findings from a pilot study on how students become motivated through design of learning games in math. The research is carried out in a Danish public school with two classes of 5th graders (N = 42 students). Over the course of two weeks, the students work...... with a design template for a runner game in the Unity 3D game design engine. The students are introduced to the concept of “flow” (Csikszentmihalyi, 1991) as a game design principle and are asked to design levels for a math runner game, which are both engaging as well as a meaningful way of learning math....... In this way, the students are positioned as “math level designers”, which means that they both have to redesign the difficulty of the runner game as well as the difficulty of the mathematical questions and possible answers....
Working memory, math performance, and math anxiety.
Ashcraft, Mark H; Krause, Jeremy A
2007-04-01
The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.
SMC Systems Engineering: Specialty Engineering Disciplines Framework and Descriptions. Volume 2
2011-10-03
Evaluation Activities Provide T&E Program Contract Req’ts: JRMET Participation; GIDEP; FRB, RCM; FMEA; FTA , Derating, Otller T&E Reqts Provide...Operation of the Defense Acquisition System 08 Dec08 CJCSI 3170 01G Joint Capabilities lnteoration and Development svstem 01 Mar 09 DoDI 3020.37...Acquisition and Sustainment Life Cycle Management 22 Mar 11 AFI63-1201 Life Cycle Systems Engineering 23 Jul 07 Document X umber Standards Title Issue
International Nuclear Information System (INIS)
Lasser, Susan J.S.; Snelsire, Robert W.
1992-01-01
This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)
Energy Technology Data Exchange (ETDEWEB)
Lasser, Susan J.S.; Snelsire, Robert W [College of Engineering, Clemson University, Clemson, SC (United States)
1992-07-01
This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)
Tobias, Sheila; Donady, Bonnie
1977-01-01
Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)
Directory of Open Access Journals (Sweden)
Darlington Agholor
Full Text Available Abstract Mentoring research is recent and multidisciplinary and is found in mostly English speaking cultural contexts. The purpose of this study is to describe a fifty-year old mentoring practice involving faculty-mentors and engineering student-mentees, at the school of engineering of a Spanish university, a non-English speaking context. Mentoring is part of the process of developing the career of the engineering students. For this description, we first developed a more complete conceptual framework of mentoring from literature, identifying the key elements or components. The description of each element in the mentoring practice at the study setting was obtained from archival documents, records, observations and interviews of faculty-mentors and student-mentees. The usefulness of the framework is thereby tested and areas for improvement of the mentoring practice are identified. In addition, this study extends mentoring research into the Spanish speaking European culture and highlights a mentoring experience that could be replicated in other universities. We provide a definition of mentoring that is based on the mentoring experience and practice at the institution given the lack of a generally accepted definition of mentoring.
Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria
Zakariya, Yusuf F.
2016-01-01
In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…
Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger
2011-01-01
Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…
Taking Math Anxiety out of Math Instruction
Shields, Darla J.
2007-01-01
To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…
Roue, Leah C.
2007-01-01
The current number of women in technology and engineering only represents a fraction of today’s workforce. Technological innovation depends on our nation’s best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women’s lack of participation can only be measured in jobs not filled, problems not solved, and technology not created. Research in the area of how young women view technology will provide ...
San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.
This fourth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Refrigerator Mechanic and Motorcycle Repairperson. Each begins with a fact sheet that includes this information: occupational title, D.O.T. code, ACE number, career ladder, D.O.T. general educational…
Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-01-01
Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…
Kenneth Akiha; Kenneth Akiha; Emilie Brigham; Emilie Brigham; Brian A. Couch; Justin Lewin; Justin Lewin; Marilyne Stains; MacKenzie R. Stetzer; MacKenzie R. Stetzer; Erin L. Vinson; Erin L. Vinson; Michelle K. Smith; Michelle K. Smith
2018-01-01
Despite the need for a strong Science, Technology, Engineering, and Math (STEM) workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon m...
Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…
Eddy, Sarah L.; Brownell, Sara E.
2016-01-01
This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…
Strother, Elizabeth
The economic future of the United States depends on developing a workforce of professionals in science, technology, engineering and mathematics (Adkins, 2012; Mokter Hossain & Robinson, 2012). In California, the college population is increasingly female and underrepresented minority, a population that has historically chosen to study majors other than STEM. In California, community colleges provide a major inroad for students seeking to further their education in one of the many universities in the state. The recent passage of Senate Bill 1456 and the Student Success and Support Program mandate increased counseling services for all California community college students (California Community College Chancellors Office, 2014). This dissertation is designed to explore the perceptions of female, underrepresented minority college students who are majoring in an area of science, technology, engineering and math, as they relate to community college counseling services. Specifically, it aims to understand what counseling services are most effective, and what community college counselors can do to increase the level of interest in STEM careers in this population. This is a qualitative study. Eight participants were interviewed for the case study, all of whom are current or former community college students who have declared a major in a STEM discipline. The semi-structured interviews were designed to help understand what community college counselors can do to better serve this population, and to encourage more students to pursue STEM majors and careers. Through the interviews, themes emerged to explain what counseling services are the most helpful. Successful STEM students benefited from counselors who showed empathy and support. Counselors who understood the intricacies of educational planning for STEM majors were considered the most efficacious. Counselors who could connect students with enrichment activities, such as internships, were highly valued, as were counseling
Pace, Diana; Witucki, Laurie; Blumreich, Kathleen
2008-01-01
This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…
Berland, Leema; Steingut, Rebecca; Ko, Pat
2014-01-01
Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data…
Wheelwright, S; Baron-Cohen, S
2001-06-01
In the first edition of this journal, we published a paper reporting that fathers and grandfathers of children with autism were over-represented in the field of engineering. This result was interpreted as providing supporting evidence for the folk-psychology/folk-physics theory of autism. After carrying out further analyses on the same data, Jarrold and Routh found that fathers of children with autism were also over-represented in accountancy and science. They suggested that these results could either provide additional support for the folk-psychology/folk-physics theory or be accounted for by an over-representation of professionals amongst the fathers of children with autism. Here we present evidence that engineers are still over-represented among fathers of children with autism, even taking into account the professional bias.
Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.
McManus, Jeffrey M.; Shaw, Kendrick M.
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957
Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document
National Research Council Canada - National Science Library
1999-01-01
The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...
Eddy, Sarah L.; Brownell, Sara E.
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college STEM on measures that have been correlated with retention. These include disparities in academic performance, engagement, self-efficacy, belonging, and identity. We argue that observable factors such as persistence, performance, and engagement can inform researchers about what populations are disadvantaged in a STEM classroom or program, but we need to measure underlying mechanisms to understand how these inequalities arise. We present a framework that helps connect larger sociocultural factors, including stereotypes and gendered socialization, to student affect and observable behaviors in STEM contexts. We highlight four mechanisms that demonstrate how sociocultural factors could impact women in STEM classrooms and majors. We end with a set of recommendations for how we can more holistically evaluate the experiences of women in STEM to help mitigate the underlying inequities instead of applying a quick fix.
STEM Careers Are Out of This World--No Need to Fear Science, Technology, Engineering, or Math
Griffin, Amanda; Manning, Kelvin
2012-01-01
At NASA, we fully support the President's Educate to Innovate Program in the hopes that American students move from the middle of the pack to the top in the next decade; and that we are expanding STEM education and career opportunities for underrepresented groups, including minorities and females. The first goal we have implemented to help accomplish this is to Strengthen NASA and the Nation's future workforce - Many of you in the audience could be our potential workforce, and the co-op and intern program at NASA is helping students like you. The second goal is to Attract and retain students in STEM disciplines-To compete effectively for the minds, imaginations and career ambitions of young people like you, throughout NASA, we regularly send educators and NASA speakers into classrooms to work directly with you, encouraging you to follow in the footsteps of NASA engineers and scientists. The Third goal is to Engage Americans in NASA's mission- To get young people involved in NASA's mission, we have many exciting programs for college students like the Lunabotics Mining Competition and the Cubes Satellites sent to space
Kelly, Gerard W
1984-01-01
Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...
Advanced Math Equals Career Readiness. Math Works
Achieve, Inc., 2013
2013-01-01
The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…
Tankersley, Karen
1993-01-01
Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…
Solving America's Math Problem
Vigdor, Jacob
2013-01-01
Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…
Energy Technology Data Exchange (ETDEWEB)
Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.
1994-10-01
This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.
Deacon, Mary M.
2011-01-01
Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…
Directory of Open Access Journals (Sweden)
Catherine Patricia Byrne
2015-08-01
Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.
Figueroa, Tanya
Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on
Gender compatibility, math-gender stereotypes, and self-concepts in math and physics
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.
College Math Assessment: SAT Scores vs. College Math Placement Scores
Foley-Peres, Kathleen; Poirier, Dawn
2008-01-01
Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…
Female teachers' math anxiety affects girls' math achievement.
Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C
2010-02-02
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.
Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.
Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana
2016-06-01
Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.
Catherine Patricia Byrne
2015-01-01
I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...
Byrne, Catherine; Carr, Michael
2015-01-01
I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...
Getting Manipulative about Math.
Scheer, Janet K.; And Others
1984-01-01
Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)
Kolby, Jeff
2014-01-01
Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop
Baez, A. N.
1985-01-01
Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.
CSIR Research Space (South Africa)
Butgereit, L
2012-10-01
Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes
Directory of Open Access Journals (Sweden)
Bettina J Casad
2015-11-01
Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a
Leff MS, Lawrence S
2016-01-01
This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…
Stallings, William M.
It was hypothesized that instruction in descriptive geometry produces an increase in SRT scores. The resultant data do not firmly support this hypothesis. It is suggested that this study be replicated with the use of randomly selected control groups. (MS)
Motivation and Math Anxiety for Ability Grouped College Math Students
Helming, Luralyn
2013-01-01
The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…
Systems Security Engineering Capability Maturity Model (SSECMM), Model Description, Version 1.1
National Research Council Canada - National Science Library
1997-01-01
This document is designed to acquaint the reader with the SSE-CMM Project as a whole and present the project's major work product - the Systems Security Engineering Capability Maturity Model (SSE- CMM...
Andrews, Amanda; Brown, Jennifer
2015-01-01
Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…
Kolby, Jeff
2011-01-01
Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!
Grätzer, George
2007-01-01
For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr
Principals in Partnership with Math Coaches
Grant, Catherine Miles; Davenport, Linda Ruiz
2009-01-01
One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…
Minimum-complexity helicopter simulation math model
Heffley, Robert K.; Mnich, Marc A.
1988-01-01
An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.
A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults
Hocker, Tami
2017-01-01
This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…
Lorenzen, Janelle K.
2017-01-01
This study addressed how different instructional strategies affected preservice elementary teachers' levels of math anxiety and their achievement in a math content course while considering descriptions of their experiences in the course in relation to their math anxiety and achievement. The instructional strategies used were traditional teaching…
Kieft, Nataša
2014-01-01
Over the last 20 years large efforts have been made in developing and optimising modelling techniques for DoE usage in engine calibration. A prerequisite for optimally applying DoE test designs is the detailed knowledge of the engine’s operating boundaries enclosing the ‘design space’. Known
Tutoring math platform accessible for visually impaired people.
Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland
2018-04-01
There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering
International Nuclear Information System (INIS)
Molina, J.J.
2011-01-01
Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)
General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description
International Nuclear Information System (INIS)
Yip, H.H.
1979-04-01
In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2010-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159
Hinds, Beverley Fiona
The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired
Math in Action. Hands-On, Minds-On Math.
Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.
1998-01-01
Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.
International Nuclear Information System (INIS)
1997-01-01
This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns
Roberts, R.; Fiorentino, A. J.; Diehl, L.
1976-01-01
Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.
An Annotated Math Lab Inventory.
Schussheim, Joan Yares
1980-01-01
A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)
Tcheang, Lili
2014-01-01
Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.
Sterling, Mary Jane
2008-01-01
Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Directory of Open Access Journals (Sweden)
Ian M Lyons
Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Group Activities for Math Enthusiasts
Holdener, J.; Milnikel, R.
2016-01-01
In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.
International Nuclear Information System (INIS)
Zhang Zuoyi; Yang Mingde; Bo Hanliang; Duan Riqqiang; Zhu Hongye
2014-01-01
This paper presents the configuration of the Engineering Test Facility - Helium Technology (ETF-HT) and the information of its key components and subsystems, which is located in the Changping campus of Tsinghua University. The ETF-HT facility began to be constructed in Jan. 2009. The main objective of the facility is to test and verify the thermo-hydraulic performance of one full-sized modular unit of HTR-PM helically coiled SG assembly. In the ETF-HT facility, electricity energy is used to heat the loop helium, centrifugal blower is used to circulate the helium medium, and the heat sink is one would-tested SG module. Up to now, except for the tested SG module, preheater and hot gas duct under way of construction, the other components has been installed in situ. Via the temporary connection of the installed components, the preliminary operation of the loop has been carried out to test its performances as can be done, which include the loop leak tightness, blower pneumatic performance and electrical heater at partial thermal load. (author)
Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David
1990-01-01
This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.
Description of the Sandia National Laboratories science, technology & engineering metrics process.
Energy Technology Data Exchange (ETDEWEB)
Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter
2010-04-01
There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Merchant, Ronald
1980-01-01
Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)
Texas Child Care, 2003
2003-01-01
Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…
Understand electrical and electronics maths
Bishop, Owen
1993-01-01
Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.
Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey
2018-03-01
People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.
Directory of Open Access Journals (Sweden)
Rumiano N.
2006-11-01
Full Text Available Cet article rend compte de l'évolution présente et future des modèles mathématiques directs de simulation dans les moteurs. Ceux-ci sont basés sur la résolution des équations de Navier-Stokes, et deviennent peu à peu une nécessité surtout en ce qui concerne la combustion hétérogène. Après un aperçu sur l'état actuel des algorithmes de calcul et des sous-modèles physiques utilisés, on présente une revue des principaux codes de calcul appliqués au moteur, avec quelques-uns de leurs résultats. Après avoir évoqué les obstacles rencontrés lors de leur mise en oeuvre, on aborde l'évolution prévisible lors des prochaines années, tant pour les techniques de calcul que pour les codes eux-mêmes. This article describes the present and future evolution of direct mathematical models used for engine simulation. These models are based on the solving of Navier-Stokes equations and are gradually becoming an absolute necessity, especially with regard to heterogeneous combustion. Alter briefly describing the present state of the computing algorithms and physical submodels used, the leading computing codes applied to engines are reviewed, with some of their results. Then the stumbling blocks encountered during the implementation of these codes are described, followed by the foresable evolution in the next few years, for both computing techniques and the codes themselves.
Attentional Bias in Math Anxiety
Directory of Open Access Journals (Sweden)
Orly eRubinsten
2015-10-01
Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Schoenborn, Barry
2010-01-01
Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses youâ€™ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. Youâ€™ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. Youâ€™ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, youâ€™ll find out how to perform basic arithmetic
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
All Students Need Advanced Mathematics. Math Works
Achieve, Inc., 2013
2013-01-01
This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…
San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.
This fifth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Household Appliance Mechanic; Lineworker; Painter Helper, Spray; Painter, Brush; and Carpenter Apprentice. Each begins with a fact sheet that includes this information: occupational title, D.O.T. code, ACE…
Alkhatib, Omar J; Abdou, Alaa
2018-04-01
The construction industry is usually characterized as a fragmented system of multiple-organizational entities in which members from different technical backgrounds and moral values join together to develop a particular business or project. The greatest challenge in the construction process for the achievement of a successful practice is the development of an outstanding reputation, which is built on identifying and applying an ethical framework. This framework should reflect a common ethical ground for myriad people involved in this process to survive and compete ethically in today's turbulent construction market. This study establishes a framework for ethical judgment of behavior and actions conducted in the construction process. The framework was primarily developed based on the essential attributes of business management identified in the literature review and subsequently incorporates additional attributes identified to prevent breaches in the construction industry and common ethical values related to professional engineering. The proposed judgment framework is based primarily on the ethical dimension of professional responsibility. The Ethical Judgment Framework consists of descriptive approaches involving technical, professional, administrative, and miscellaneous terms. The framework provides the basis for judging actions as either ethical or unethical. Furthermore, the framework can be implemented as a form of preventive ethics, which would help avoid ethical dilemmas and moral allegations. The framework can be considered a decision-making model to guide actions and improve the ethical reasoning process that would help individuals think through possible implications and consequences of ethical dilemmas in the construction industry.
2007-01-01
game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis
De Robbio, Antonella
1997-01-01
This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...
Implicit Social Cognitions Predict Sex Differences in Math Engagement and Achievement
Nosek, Brian A.; Smyth, Frederick L.
2011-01-01
Gender stereotypes about math and science do not need to be endorsed, or even available to conscious introspection, to contribute to the sex gap in engagement and achievement in science, technology, engineering, and mathematics (STEM). The authors examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants.…
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID
Directory of Open Access Journals (Sweden)
Elizabeth A Necka
2015-10-01
Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be
Manufacturing Math Classes: An Instructional Program Guide for Manufacturing Workers.
McBride, Pamela G.; And Others
This program guide documents a manufacturing job family curriculum that develops competence in generic work force education skills through three courses: Reading Rulers, Charts, and Gauges and Math for Manufacturing Workers I and II. An annotated table of contents lists a brief description of the questions answered in each section. An introduction…
Farnaz Ostad-Ali; Mohammad Hasan Behzadi; Ahmad Shahvarani
2015-01-01
In recent years, one of the most important developments which have been taking place in the primary school education system is the development of the qualitative-descriptive method of evaluating the students' achievements. The main goals of the qualitative-descriptive evaluation are improving the quality of learning and promoting the level of mental health in teaching-learning environments. Therefore, based on the the raised hypothesis, the purpose of this study is to investigate the teachers...
Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.
2004-12-01
The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in
Directory of Open Access Journals (Sweden)
Kenneth Akiha
2018-01-01
Full Text Available Despite the need for a strong Science, Technology, Engineering, and Math (STEM workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon moving from secondary to post-secondary STEM courses. This study compares classroom observation data collected using the Classroom Observation Protocol for Undergraduate STEM from over 450 middle school, high school, introductory-level university, and advanced-level university classes across STEM disciplines. We find similarities between middle school and high school classroom instruction, which are characterized by a large proportion of time spent on active-learning instructional strategies, such as small-group activities and peer discussion. By contrast, introductory and advanced university instructors devote more time to instructor-centered teaching strategies, such as lecturing. These instructor-centered teaching strategies are present in classes regardless of class enrollment size, class period length, or whether or not the class includes a separate laboratory section. Middle school, high school, and university instructors were also surveyed about their views of what STEM instructional practices are most common at each educational level and asked to provide an explanation of those perceptions. Instructors from all levels struggled to predict the level of lecturing practices and often expressed uncertainty about what instruction looks like at levels other than their own. These findings suggest that more opportunities need to be created for instructors across multiple levels of the education system to share their active-learning teaching practices and
Advanced Math: Closing the Equity Gap. Math Works
Achieve, Inc., 2013
2013-01-01
Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…
Early Math Interest and the Development of Math Skills
Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.
2012-01-01
Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2009-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…
Math Education at a Crossroads
DEFF Research Database (Denmark)
Markvorsen, Steen
With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...
Eason, Sarah H.; Levine, Susan C.
2017-01-01
Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…
CSIR Research Space (South Africa)
Botha, Adèle
2013-02-01
Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...
Nelson, Barbara Scott; Sassi, Annette
2007-01-01
The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…
"Math Anxiety" Explored in Studies
Sparks, Sarah D.
2011-01-01
Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…
Math Fact Strategies Research Project
Boso, Annie
2011-01-01
An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…
Architecture: A Nexus of Creativity, Math, and Spatial Ability
Senne, Jessica; Coxon, Steve V.
2016-01-01
The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…
International Nuclear Information System (INIS)
Rieck, C.A.
1996-02-01
This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2
Linker, K. L.; Rawlinson, K. S.; Smith, G.
1991-10-01
The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.
The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement
Soni, Akanksha; Kumari, Santha
2017-01-01
The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…
Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago
2017-12-01
Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.
The role of social support in students' perceived abilities and attitudes toward math and science.
Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M
2013-07-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.
Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.
Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod
2015-09-09
Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. Significance statement: Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate
Addressing Math Anxiety in the Classroom
Finlayson, Maureen
2014-01-01
In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…
Enhancing Mathematical Communication for Virtual Math Teams
Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong
2010-01-01
The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…
Helping Students Get Past Math Anxiety
Scarpello, Gary
2007-01-01
Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
Zegarelli, Mark
2015-01-01
Der schnelle Überblick für Schüler und jeden, den es sonst noch interessiert Müssen Sie sich in der Schule oder im Beruf mit Mathematik beschäftigen und es hapert schon an den Grundlagen? Frei nach dem Motto »Einst gelernt, doch längst vergessen« bereiten oft gerade die einfachen Fragestellungen Probleme. Wie viel Prozent sind das nochmal? Wie war das doch gleich mit der Bruchrechnung und wie berechnet man eigentlich den Flächeninhalt eines Dreiecks? Keine Sorge, Mark Zegarelli erklärt es Ihnen einfach, aber zugleich amüsant, und hilft Ihnen so, Ihre Wissenslücken zu schließen. Damit ist Mathe
DEFF Research Database (Denmark)
Wienecke, Jacob; Beck, Mikkel Malling; Lind, Rune Rasmussen
al., 2015). We conducted a six-week cluster-randomized intervention study of motor-enriched mathematics for Danish schoolchildren (n= 148, age= 7.5 ± 0.02). We investigated whether low intensity motor activity congruently integrated during solving of math problems could enhance math performance....... Three groups were included: 1) Control group with normal math teaching, CON (used pencil, paper but refrained from additional motor activity). 2) Fine-motor-enriched-group, FM (motor-manipulating LEGO bricks integrated in the lessons). 3) Gross-motor-enriched-group, GM (full-body movements integrated...... in the lessons). In FM and GM, all math classes (six lessons pr. week) had motor activity integrated in the math lessons and the teachers of all groups followed a detailed description for the conduction of the lessons. This aimed at ensuring homogeneity between groups concerning the taught themes. The children...
Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.
2017-01-01
:This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test, achievement motivation test, and the math experience questionnaire. A significant positive correlation was found between math self-concept and math achievement in all four math domains (measurement, rela...
Math Machines: Using Actuators in Physics Classes
Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta
2018-01-01
Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.
Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities
Susan Sonnenschein; Claudia Galindo; Shari R. Metzger; Joy A. Thompson; Hui Chih Huang; Heather Lewis
2012-01-01
This study explored associations between parents’ beliefs about children’s development and children’s reported math activities at home. Seventy-three parents were interviewed about the frequency of their children’s participation in a broad array of math activities, the importance of children doing math activities at home, how children learn math, parents’ role in their children’s math learning, and parents’ own math skills. Although the sample consisted of African Americans, Chinese, Latino, ...
Math Anxiety Is Related to Some, but Not All, Experiences with Math
Krystle O'Leary; Cheryll L. Fitzpatrick; Darcy Hallett
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through...
Lee, Jihyun
2009-01-01
The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…
Attentional bias in math anxiety.
Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly
2015-01-01
Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.
1983-01-01
Reporting software programs provide formatted listings and summary reports of the Software Engineering Laboratory (SEL) data base contents. The operating procedures and system information for 18 different reporting software programs are described. Sample output reports from each program are provided.
Khatri, Daryao
2011-01-01
Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences.
Pasha-Zaidi, Nausheen; Afari, Ernest
2016-01-01
The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...
International Nuclear Information System (INIS)
Wagner, E.P.
1999-01-01
The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines
When approximate number acuity predicts math performance: The moderating role of math anxiety
Libertus, Melissa E.
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939
Measurement of math beliefs and their associations with math behaviors in college students.
Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara
2014-12-01
Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Braham, Emily J; Libertus, Melissa E
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Directory of Open Access Journals (Sweden)
Emily J Braham
Full Text Available Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
PUMAS: Practical Uses of Math And Science
Kahn, R. A.
2009-12-01
For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.
Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work
Bull, Heather
2009-01-01
Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…
A Motivational Technique for Business Math
Voelker, Pamela
1977-01-01
The author suggests the use of simulation and role playing as a method of motivating students in business math. Examples of career-oriented business math simulation games are counting change, banking, payrolls, selling, and shopping. (MF)
Math Anxiety, Working Memory, and Math Achievement in Early Elementary School
Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.
2013-01-01
Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…
A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins
Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2016-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…
Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.
2018-01-01
School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Math word problems for dummies
Sterling, Mary Jane
2008-01-01
Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work
Response to intervention in math
Riccomini, Paul J
2010-01-01
Boost academic achievement for all students in your mathematics classroom! This timely resource leads the way in applying RTI to mathematics instruction. The authors describe how the three tiers can be implemented in specific math areas and illustrate RTI procedures through case studies. Aligned with the NMAP final report and IES practice guide, this book includes: Intervention strategies for number sense, fractions, problem solving, and more Procedures for teaching math using systematic and explicit instruction for assessment, instructional planning, and evaluation Essential components to con
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2015-01-01
The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…
Math Branding in a Community College Library
Brantz, Malcolm; Sadowski, Edward B.
2010-01-01
As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…
Saxon Math. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2017
2017-01-01
"Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…
Math Game(s) - an alternative (approach) to teaching math?
Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.
2009-01-01
Getting students to read, digest and practice material is diﬃcult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the
Taking Math Outside of the Classroom: Math in the City
Radu, Petronela
2013-01-01
Math in the City is an interdisciplinary mathematics course offered at University of Nebraska-Lincoln in which students engage in a real-world experience to understand current major societal issues of local and national interest. The course is run in collaboration with local businesses, research centers, and government organizations, that provide…
Americans Need Advanced Math to Stay Globally Competitive. Math Works
Achieve, Inc., 2013
2013-01-01
No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…
Hart, Sara A; Ganley, Colleen M; Purpura, David J
2016-01-01
There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
Directory of Open Access Journals (Sweden)
Sara A Hart
Full Text Available There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Louis, Preeti Tabitha; Kumar, Navin
2016-01-01
Perfectionism is a multifaceted concept. It had both advantages and disadvantages. Perfectionistic traits have been associated with leadership and very intellectual people. The present study is an attempt to understand if engineering students possess perfectionistic orientation and whether it influences self-efficacy, social connectedness, and achievement motivation. The present study adopts a random sampling design to evaluate the presence of perfectionism as a personality trait among undergraduate engineering students ( N = 320). Standardized inventories such as Almost Perfect Scale-Revised were administered first to identify perfectionists and second to differentiate the adaptive from the maladaptive perfectionists. Scheduled interviews were conducted with students to obtain information regarding birth order and family functioning. Findings from the study reveal that there were a significant number of maladaptive perfectionists and that they experienced higher levels of personal and societal demands leading to a negative emotional well-being in comparison to the adaptive perfectionists. We also observed that first-born children were more likely to display a perfectionistic self-presentation and from scheduled interviews, we understood that paternal influences were stronger when it came to decision-making and display of conscientiousness. The study draws on important implications for helping students to understand perfectionism and to respond to demands of the family and societal subsystems in a positive and an adaptive manner.
Louis, Preeti Tabitha; Kumar, Navin
2016-01-01
Background: Perfectionism is a multifaceted concept. It had both advantages and disadvantages. Perfectionistic traits have been associated with leadership and very intellectual people. The present study is an attempt to understand if engineering students possess perfectionistic orientation and whether it influences self-efficacy, social connectedness, and achievement motivation. Materials and Methods: The present study adopts a random sampling design to evaluate the presence of perfectionism as a personality trait among undergraduate engineering students (N = 320). Standardized inventories such as Almost Perfect Scale-Revised were administered first to identify perfectionists and second to differentiate the adaptive from the maladaptive perfectionists. Scheduled interviews were conducted with students to obtain information regarding birth order and family functioning. Results: Findings from the study reveal that there were a significant number of maladaptive perfectionists and that they experienced higher levels of personal and societal demands leading to a negative emotional well-being in comparison to the adaptive perfectionists. We also observed that first-born children were more likely to display a perfectionistic self-presentation and from scheduled interviews, we understood that paternal influences were stronger when it came to decision-making and display of conscientiousness. Conclusion: The study draws on important implications for helping students to understand perfectionism and to respond to demands of the family and societal subsystems in a positive and an adaptive manner. PMID:27833225
van de Craats, J.; Bosch, R.
2014-01-01
All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary
Meeting a Math Achievement Crisis
Jennings, Lenora; Likis, Lori
2005-01-01
An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…
Greenes, Carole; Ginsburg, Herbert P.; Balfanz, Robert
2004-01-01
"Big Math for Little Kids," a comprehensive program for 4- and 5-year-olds, develops and expands on the mathematics that children know and are capable of doing. The program uses activities and stories to develop ideas about number, shape, pattern, logical reasoning, measurement, operations on numbers, and space. The activities introduce the…
Basic Maths Practice Problems For Dummies
Beveridge, Colin
2012-01-01
Fun, friendly coaching and all the practice you need to tackle maths problems with confidence and ease In his popular Basic Maths For Dummies, professional maths tutor Colin Beveridge proved that he could turn anyone - even the most maths-phobic person - into a natural-born number cruncher. In this book he supplies more of his unique brand of maths-made- easy coaching, plus 2,000 practice problems to help you master what you learn. Whether you're prepping for a numeracy test or an employability exam, thinking of returning to school, or you'd just like to be one of those know-it-alls who says
Three brief assessments of math achievement.
Steiner, Eric T; Ashcraft, Mark H
2012-12-01
Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.
Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122
Directory of Open Access Journals (Sweden)
Brenda RJ Jansen
2016-04-01
Full Text Available This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations. Data from a Dutch nation-wide research on math among adults (N = 521 were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life.
Strengthening maths learning dispositions through ‘math clubs’
Mellony Graven
2016-01-01
In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sense-making maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3-6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low l...
Math Game(s) - an alternative (approach) to teaching math?
Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.
2009-01-01
Getting students to read, digest and practice material is diﬃcult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the opportunities oﬀered by computer graphics, visual programming and game design as an alternative for traditional methods of teaching mathemathics. In particular, games may be deployed both as intruments to d...
Nurses' maths: researching a practical approach.
Wilson, Ann
To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.
Family Maths and Complexity Theory
Webb, Paul; Austin, Pam
2012-01-01
The importance of family involvement is highlighted by findings that parents’ behaviours, beliefs and attitudes affect children’s behaviour in a major way. The Family Maths programme, which is the focus of this study, provides support for the transformative education practices targeted by the South African Department of Education by offering an intervention which includes teachers, learners and their families in an affirming learning community. In this study participating parents were intervi...
Pierpont, Katherine
2006-01-01
Greg Tang has a resume that could get his foot in the door to a lot of places. A graduate of Harvard with both a B.A. and M.A. in economics, Tang has found success as a business executive, a speechwriter, a software designer and owner of a Tae Kwon Do school. After the publication of his first best-selling book for children, "The Grapes of Math"…
Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.
2015-01-01
Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…
Maths4Stats: Educating teachers
Directory of Open Access Journals (Sweden)
Renette J. Blignaut
2013-02-01
Full Text Available The inadequate nature of the education infrastructure in South Africa has led to poor academic performance at public schools. Problems within schools such as under-qualified teachers and poor teacher performance arise due to the poorly constructed education system in our country. The implementation in 2012 of the Curriculum and Assessment Policy Statement (CAPS at public schools in South Africa saw the further crippling of some teachers, as they were unfamiliar with parts of the CAPS subject content. The Statistics and Population Studies department at the University of the Western Cape was asked to join the Maths4Stats project in 2012. This project was launched by Statistics South Africa in an effort to assist in training the teachers in statistical content within the CAPS Mathematics curricula. The University of the Western Cape’s team would like to share their experience of being part of the Maths4Stats training in the Western Cape. This article focuses on how the training sessions were planned and what the outcomes were. With the knowledge gained from our first Maths4Stats experience, it is recommended that future interventions are still needed to ensure that mathematics teachers become well-informed and confident to teach topics such as data handling, probability and regression analysis.
Productive failure in learning math.
Kapur, Manu
2014-06-01
When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.
The notion and role of “detection tests” in the Danish upper secondary “maths counsellor” programme
DEFF Research Database (Denmark)
Jankvist, Uffe Thomas; Niss, Mogens
2017-01-01
This paper presents and discusses a specific aspect of the Danish “maths counsellor” programme for upper secondary school, namely that of detection tests. More precisely, the purpose and designof a detection test is presented, as is the prospective counsellors’ use of the test. In the description......, emphasis is placed on the ways in which detection tests assist in informing the maths counsellors in their work with students experiencing learning difficulties in mathematics....
Directory of Open Access Journals (Sweden)
Allison Henrich
2011-07-01
Full Text Available How might one teach mathematics to math-anxious students and at the same time reduce their math anxiety? This paper describes what we found when we incorporated a service learning component into a quantitative reasoning course at Seattle University in Fall 2010 (20 students and Spring 2011 (28 students. The course is taken primarily by humanities majors, many of whom would not take a course in math if they didn’t need to satisfy the university’s core requirement. For the service learning component, each student met with and tutored children at local schools for 1-2 hours per week (total about 15 service hours, kept a weekly journal reflecting on the experience, and wrote a five-page final paper on the importance and reasonable expectations of mathematics literacy. The autobiographies, self-description at the beginning of the class, focus group interviews at the end of the term, journal entries, final essays, and student evaluations indicated that the students gained confidence in their mathematical abilities, a greater interest in mathematics, and a broader sense of the importance of math literacy in modern society. One notable finding was that students discovered that the act of manufacturing enthusiasm about math as a tool for tutoring the children made them more enthusiastic about math in their own courses.
Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles
2007-01-01
We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...
Inhibition Performance in Children with Math Disabilities
Winegar, Kathryn Lileth
2013-01-01
This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...
Briefing paper for universities on Core Maths
Glaister, Paul
2015-01-01
This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...
Teachers’ ability in using math learning media
Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.
2017-12-01
The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.
Exploring Complex Engineering Learning Over Time with Epistemic Network Analysis
Svarovsky, Gina Navoa
2011-01-01
Recently, K-12 engineering education has received increased attention as a pathway to building stronger foundations in math andscience and introducing young people to the profession. However, the National Academy of Engineering found that many K-12engineering programs focus heavily on engineering design and science and math learning while minimizing the development ofengineering habits of mind. This narrowly-focused engineering activity can leave young people – and in particular, girls – with...
Numbers and other math ideas come alive
Pappas, Theoni
2012-01-01
Most people don't think about numbers, or take them for granted. For the average person numbers are looked upon as cold, clinical, inanimate objects. Math ideas are viewed as something to get a job done or a problem solved. Get ready for a big surprise with Numbers and Other Math Ideas Come Alive. Pappas explores mathematical ideas by looking behind the scenes of what numbers, points, lines, and other concepts are saying and thinking. In each story, properties and characteristics of math ideas are entertainingly uncovered and explained through the dialogues and actions of its math
The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores
Bennett, Angela Stephens
2010-01-01
One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…
The Effectiveness of Using STAR Math to Improve PSSA Math Scores
Holub, Sherry L.
2017-01-01
This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…
Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study
Henslee, Amber M.; Klein, Brandi A.
2017-01-01
The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…
Advanced Math Course Taking: Effects on Math Achievement and College Enrollment
Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.
2015-01-01
Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…
Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance
Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.
2011-01-01
This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…
Math Performance as a Function of Math Anxiety and Arousal Performance Theory
Farnsworth, Donald M., Jr.
2009-01-01
While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…
Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago
2017-01-01
Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…
Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.
2017-01-01
:This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test,
Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L
2016-01-01
Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.
I "Still" Wanna Be an Engineer! Women, Education and the Engineering Profession
Gill, Judith; Sharp, Rhonda; Mills, Julie; Franzway, Suzanne
2008-01-01
Women's low enrolment in post-school engineering degrees continues to be a problem for engineering faculties and the profession generally. A qualitative interview-based study of Australian women engineers across the range of engineering disciplines showed the relevance of success in math and science at school to their enrolling in engineering at…
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
Girls Talk Math - Engaging Girls Through Math Media
Bernardi, Francesca; Morgan, Katrina
2017-11-01
``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.
Teschke, Olaf; Werner, Dirk
2011-01-01
Founded in 1931 by Otto Neugebauer as the printed documentation service "Zentralblatt fur Mathematik und ihre Grenzgebiete", Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of t
Kidd, Jim
2014-01-01
Maths for the Building Trades provides students of all ages with an easy-to-understand guide to the fundamental mathematics that is required in their area of study and beyond. It can be used as a learning programme on its own or in conjunction with the textbooks associated with their chosen trade. The book assumes only a minimum level of mathematical knowledge and thoroughly covers the basic rules. It then goes on to fully explain some of the more complex areas in which the student will be required to demonstrate competence.
Combining Basic Business Math and Electronic Calculators.
Merchant, Ronald
As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…
Explaining Math Achievement: Personality, Motivation, and Trust
Kilic-Bebek, Ebru
2009-01-01
This study investigated the statistical significance of student trust next to the well-tested constructs of personality and motivation to determine whether trust is a significant predictor of course achievement in college math courses. Participants were 175 students who were taking undergraduate math courses in an urban public university. The…
Childcare Quality and Preschoolers' Math Development
Choi, Ji Young; Dobbs-Oates, Jennifer
2014-01-01
This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…
Football to Improve Math and Reading Performance
Van Klaveren, Chris; De Witte, Kristof
2015-01-01
Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…
Five Keys for Teaching Mental Math
Olsen, James R.
2015-01-01
After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…
Mini-Portfolio on Math and Science.
Teaching PreK-8, 1996
1996-01-01
Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…
Football to improve math and reading performance
Van Klaveren, Chris; De Witte, Kristof
2015-01-01
Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates ‘Playing for Success’ (PfS), an extended
Decreasing Math Anxiety in College Students
Perry, Andrew B.
2004-01-01
This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
Business-Higher Education Forum (NJ1), 2011
2011-01-01
Efforts by federal and state governments to increase the STEM (science, technology, engineering and mathematics) workforce in support of innovation and competitiveness are frustrated by a shortage of adequately prepared and interested students. Less than half of 12th graders meet the math proficiency benchmark that indicates college readiness.…
Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe
2017-01-01
The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…
Speckle Interferometry with the McMath-Pierce East Auxiliary Telescope
Harshaw, Richard; Ray, Jimmy; Douglass, David; Prause, Lori; Genet, Russell
2015-09-01
Engineering runs and tests on the McMath-Pierce 0.8 meter East Auxiliary telescope successfully configured the telescope for speckle interferometry observations of close visual double stars. This paper reports the procedure and results of the speckle analysis of four double stars.
"I Was Scared to Be the Stupid": Latinas in Residential Academies of Science and Math
Sayman, Donna
2015-01-01
This study examines the experiences of Latinas in state residential academies of science, technology, engineering, and math (STEM). Goals of this project focused on understanding their experiences and identifying factors leading to the decision to enroll, along with issues contributing to retention. These schools represent powerful opportunities…
Math and Science Teachers: Recruiting and Retaining California's Workforce. Policy Brief
EdSource, 2008
2008-01-01
Middle and high school math and science teachers provide the foundation for education in the growing science, technology, engineering, and mathematics fields. They are crucial to California's efforts to remain competitive in a global economy. This policy brief looks at the shortage and challenges involved in recruiting and retaining fully prepared…
Math and Science Education for the California Workforce: It Starts with K-12
EdSource, 2008
2008-01-01
Workforce projections worldwide show a growing need for people with strong backgrounds in math and science. As the eighth largest economy in the world, California benefits particularly from enterprises in the "STEM" fields (science, technology, engineering, and mathematics). How well California's current public school students are…
Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools
Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald
2007-01-01
If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…
Phylogeny of the TRAF/MATH domain.
Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie
2007-01-01
The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.
Engaging Math-Avoidant College Students
Directory of Open Access Journals (Sweden)
M. Paul Latiolais
2009-07-01
Full Text Available This paper is an informal, personal account of how we, as two college teachers, became interested in math anxiety, decided to explore it amongst students at our institution in order to inform our teaching, and became convinced that the massive problem is math avoidance. We tried discussion groups, but few students attended, although those that did made useful suggestions. Thus informed, we designed an innovative course, Confronting College Mathematics as a Humanities course with the possibility of credit toward the math requirement, but it was undersubscribed in its first offering and had to be canceled. How can we get college students who avoid math to break through the barrier of math avoidance? We have now begun to explore a new approach: Second Life, where students can engage math—and quantitative literacy—virtually, and anonymously.
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-09-15
The Laxemar subarea is the focus for the complete site investigations in the Simpevarp area. The south and southwestern parts of the subarea (the so-called 'focused area') have been designated for focused studies during the remainder of the site investigations. This area, some 5.3 square kilometres in size, is characterised on the surface by an arc shaped body of quartz monzodiorite gently dipping to the north, flanked in the north and south by Aevroe granite. The current report documents work conducted during stage 2.1 of the site-descriptive modelling of the Laxemar subarea. The primary objective of the work performed is to provide feedback to the site investigations at Laxemar to ensure that adequate and timely data and information are obtained during the remaining investigation stage. The work has been conducted in cooperation with the site investigation team at Laxemar and representatives from safety assessment and repository engineering. The principal aim of this joint effort has been to safeguard that adequate data are collected that resolve the remaining issues/uncertainties which are of importance for repository layout and long-term safety. The proposed additional works presented in this report should be regarded as recommended additions and/or modifications in relation to the CSI programme published early 2006. The overall conclusion of the discipline-wise review of critical issues is that the CSI programme overall satisfies the demands to resolve the remaining uncertainties. This is interpreted to be partly a result of the close interaction between the site modelling team, site investigation team and the repository engineering teams, which has been in operation since early 2005. In summary, the performed interpretations and modelling have overall confirmed the version 1.2 results. The exception being Hydrogeology where the new Laxemar 2.1 borehole data suggest more favourable conditions in the south and west parts of the focused area compared
International Nuclear Information System (INIS)
2006-09-01
The Laxemar subarea is the focus for the complete site investigations in the Simpevarp area. The south and southwestern parts of the subarea (the so-called 'focused area') have been designated for focused studies during the remainder of the site investigations. This area, some 5.3 square kilometres in size, is characterised on the surface by an arc shaped body of quartz monzodiorite gently dipping to the north, flanked in the north and south by Aevroe granite. The current report documents work conducted during stage 2.1 of the site-descriptive modelling of the Laxemar subarea. The primary objective of the work performed is to provide feedback to the site investigations at Laxemar to ensure that adequate and timely data and information are obtained during the remaining investigation stage. The work has been conducted in cooperation with the site investigation team at Laxemar and representatives from safety assessment and repository engineering. The principal aim of this joint effort has been to safeguard that adequate data are collected that resolve the remaining issues/uncertainties which are of importance for repository layout and long-term safety. The proposed additional works presented in this report should be regarded as recommended additions and/or modifications in relation to the CSI programme published early 2006. The overall conclusion of the discipline-wise review of critical issues is that the CSI programme overall satisfies the demands to resolve the remaining uncertainties. This is interpreted to be partly a result of the close interaction between the site modelling team, site investigation team and the repository engineering teams, which has been in operation since early 2005. In summary, the performed interpretations and modelling have overall confirmed the version 1.2 results. The exception being Hydrogeology where the new Laxemar 2.1 borehole data suggest more favourable conditions in the south and west parts of the focused area compared with the
Strengthening maths learning dispositions through ‘math clubs’
Directory of Open Access Journals (Sweden)
Mellony Graven
2016-02-01
Full Text Available In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sensemaking maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3–6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low levels of numeracy learning across the majority of schools in the province. Two sources of data, learner interviews and teacher questionnaires, from one case study club, are shared in this article to illuminate the potential such clubs hold in developing increasingly participatory mathematics learning dispositions.
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Math Anxiety Is Related to Some, but Not All, Experiences with Math.
O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.
Math Anxiety Is Related to Some, but Not All, Experiences with Math
Directory of Open Access Journals (Sweden)
Krystle O'Leary
2017-12-01
Full Text Available Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Directory of Open Access Journals (Sweden)
Lital Daches Cohen
2017-11-01
Full Text Available Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a mother’s math anxiety and maternal behaviors (environmental factors; (b children’s arithmetic skills (cognitive factors; and (c intrinsic math motivation (personal factor. A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Refractive Thinking Profile In Solving Mathematical Problem Reviewed from Students Math Capability
Maslukha, M.; Lukito, A.; Ekawati, R.
2018-01-01
Refraction is a mental activity experienced by a person to make a decision through reflective thinking and critical thinking. Differences in mathematical capability have an influence on the difference of student’s refractive thinking processes in solving math problems. This descriptive research aims to generate a picture of refractive thinking of students in solving mathematical problems in terms of students’ math skill. Subjects in this study consisted of three students, namely students with high, medium, and low math skills based on mathematics capability test. Data collection methods used are test-based methods and interviews. After collected data is analyzed through three stages that are, condensing and displaying data, data display, and drawing and verifying conclusion. Results showed refractive thinking profiles of three subjects is different. This difference occurs at the planning and execution stage of the problem. This difference is influenced by mathematical capability and experience of each subject.
Enhancing Mathematical Communication for Virtual Math Teams
Directory of Open Access Journals (Sweden)
Gerry Stahl
2010-06-01
Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.
Villani, Cédric; Moncorgé, Vincent
2014-01-01
Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...
The neurodevelopmental basis of math anxiety.
Young, Christina B; Wu, Sarah S; Menon, Vinod
2012-05-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.
Math-Gender Stereotypes in Elementary School Children
Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.
2011-01-01
A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…
More than Counting: Whole Math Activities for Preschool and Kindergarten.
Moomaw, Sally; Hieronymus, Brenda
This book presents extensive sampling of a "whole math" curriculum for preschool and kindergarten children ages 3 and older. An introductory chapter is followed by seven curriculum chapters that discuss math manipulatives, collections, grid games, path games, graphing, math and gross-motor play, and the "math suitcase." Each chapter is divided…
Math and Gender: Is Math a Route to a High-Powered Career?
DEFF Research Database (Denmark)
Joensen, Juanna Schrøter; Nielsen, Helena Skyt
There is a large gender gap in advanced math coursework in high school that many believe exists because girls are discouraged from taking math courses. In this paper, we exploit an institutional change that reduced the costs of acquiring advanced high school math to determine if access is, in fact......, the mechanism - in particular for girls at the top of the math ability distribution. By estimating marginal treatment effects of acquiring advanced math qualifications, we document substantial beneficial wage effects from encouraging even more females to opt for these qualifications. Our analysis suggests...... that the beneficial effect comes from accelerating graduation and attracting females to high-paid or traditionally male-dominated career tracks and to CEO positions. Our results may be reconciled with experimental and empirical evidence suggesting there is a pool of unexploited math talent among high ability girls...
Jansen, B.R.J.; Schmitz, E.A.; van der Maas, H.L.J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence
Looney, Lisa; Perry, David; Steck, Andy
2017-01-01
Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…
Erturan, Selin; Jansen, Brenda
2015-01-01
Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…
Erturan, S; Jansen, B.
2015-01-01
GGender differences in children’s emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages
Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...
Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L.
2014-01-01
The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…
Symbolic math for computation of radiation shielding
International Nuclear Information System (INIS)
Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.
2010-01-01
Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)
Math: The Gateway to Great Careers
Ploutz-Snyder, Robert
2010-01-01
This slide presentation examines the role of mathematical proficiency and how it relates to advantages in careers. It emphasises the role of math in attaining entrance to college, graduate schools, and a career that is interesting and well paying.
Solving math and science problems in the real world with a computational mind
Directory of Open Access Journals (Sweden)
Juan Carlos Olabe
2014-07-01
Full Text Available This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n=242 was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in mathematics, participants were introduced to a taxonomic tool for the description of K-12 Math problems. The tool allows the identification, decomposition and description of Type-A problems, the characteristic ones in the traditional curriculum, and of Type-B problems in the new paradigm. The workshops culminated with a set of surveys where participants were asked to assess both the current and the new proposed paradigms. The surveys in this study revealed that according to the majority of participants: (i The K-12 Mathematics curricula are designed to teach students exclusively the resolution of Type-A problems; (ii real life Math problems respond to a paradigm of Type-B problems; and (iii the current Math curriculum should be modified to include this new paradigm.
Developing Mathematical Resilience of Prospective Math Teachers
Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.
2017-09-01
Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.
Ganley, Colleen M.; Purpura, David J.
2016-01-01
There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925
Posamentier, Alfred S (Steven); Jaye, Daniel I
2013-01-01
The math teacher's go-to resource-now updated for the Common Core! What works in math and why has never been the issue; the research is all out there. Where teachers struggle is the "how." That's the big service What Successful Math Teachers Do provides. It's a powerful portal to what the best research looks like in practice strategy by strategy-now aligned to both the Common Core and the NCTM Standards. For each of the book's 80 strategies, the authors present A brief description A summary of supporting research The corresponding NCTM and Common Core Standards Classroom applications Possible pitfalls Recommended reading and research.
DEFF Research Database (Denmark)
Wigram, Anthony Lewis
2003-01-01
Descriptive research is described by Lathom-Radocy and Radocy (1995) to include Survey research, ex post facto research, case studies and developmental studies. Descriptive research also includes a review of the literature in order to provide both quantitative and qualitative evidence of the effect...... starts will allow effect size calculations to be made in order to evaluate effect over time. Given the difficulties in undertaking controlled experimental studies in the creative arts therapies, descriptive research methods offer a way of quantifying effect through descriptive statistical analysis...
Steffens, Melanie C.; Jelenec, Petra; Noack, Peter
2010-01-01
Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…
Civil Engineering: Improving the Quality of Life.
One Feather, Sandra
2002-01-01
American Indian civil engineers describe the educational paths that led them to their engineering careers, applications of civil engineering in reservation communities, necessary job skills, opportunities afforded by internship programs, continuing education, and the importance of early preparation in math and science. Addresses of 12 resource Web…
Bahr, Peter Riley
2013-01-01
Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…
Math Tracks: What Pace in Math Is Best for the Middle School Child?
Morrison, Michelle
2011-01-01
Mathematics is a critical part of academic preparation of the middle school child, or, as Dr. Maria Montessori would refer to them, children in the third plane of development. Montessori educators are sincere in their endeavors not only to prepare young students for further studies of math and the application of math in their world and careers,…
Math and Movement: Practical Ways to Incorporate Math into Physical Education
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2016-01-01
To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…
Evaluation of the MIND Research Institute's Spatial-Temporal Math (ST Math) Program in California
Wendt, Staci; Rice, John; Nakamoto, Jonathan
2014-01-01
The MIND Research Institute contracted with the Evaluation Research Program at WestEd to conduct an independent assessment of mathematics outcomes in elementary school grades across California that were provided with the ST Math program. Spatial-Temporal (ST) Math is a game-based instructional software designed to boost K-5 and secondary-level…
Literacy Specialists in Math Class! Closing the Achievement Gap on State Math Assessments
DiGisi, Lori L.; Fleming, Dianne
2005-01-01
Sixth and eighth grade students who are English language learners must be able to read and interpret 39 math word problems in order to successfully calculate the answers on the Massachusetts state math assessment (MCAS). The first year that MCAS was administered, many ELL students read the questions, found them confusing, and left them blank,…
Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…
Geist, Eugene
2015-01-01
This study was conducted to examine the attitudes of Head Start teachers toward mathematics and how it may influence how and what they teach in the classroom. In general, the findings of this study can be summarized as this: 1) Math anxiety affects how teachers assess their ability at mathematics. The more math anxiety they report, the lower they…
Math Is Like a Scary Movie? Helping Young People Overcome Math Anxiety
Kulkin, Margaret
2016-01-01
Afterschool teachers who tutor students or provide homework help have a unique opportunity to help students overcome the social or emotional barriers that so often block learning. They can embrace a creative and investigative approach to math learning. Margaret Kulkin's interest in being a math attitude "myth-buster" led her to apply to…
Tan, Tony Xing; Kim, Eun Sook; Baggerly, Jennifer; Mahoney, E Emily; Rice, Jessica
2017-01-01
In this study, we went beyond adoption status to examine the associations between postadoption parental involvement and children's reading and math performance from kindergarten to first grade. Secondary data on a sample of adopted children and nonadopted children were drawn from the Early Childhood Longitudinal Study-Kindergarten Class of 1998 to 1999 (ECLS-K). Weighted data on the children's reading performance were available for 13,900 children (181 were adopted); weighted data on the children's math performance were available for 14,128 children (184 were adopted). Descriptive data showed no group difference in reading scores at all 3 Waves but adopted children scored lower than nonadopted children in math at Wave 2 (Spring of kindergarten) and Wave 3 (Spring of first grade). However, controlling for 6 covariates, latent growth modeling showed that adoption status was unrelated to Wave 1 reading and math scores or subsequent growth rate. Rather, parents' beliefs on skills needed to succeed in kindergarten were a significant predictor of reading and math performance at Wave 1 and subsequent growth rates, and parents' educational expectation was a significant predictor of growth rate in reading and math. Our findings highlight the importance of parental involvement in adopted children's learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices. PMID:25741292
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students' motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women's underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.
Improving Student Achievement in Math and Science
Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.
1998-01-01
As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order
Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1
Ely, W.
1996-01-01
This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.
MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0
Lawson, C. L.
1994-01-01
MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running Sun
PUMAS (Practical Uses of Math And Science) - Low Cost, High Impact
Kahn, R. A.
2004-12-01
PUMAS is an on-line journal, aimed at giving pre-college teachers brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including everyday life. The concept is a simple one - (1) ask scientists, engineers, and other content experts to write up their favorite examples of practical uses, (2) ask the authors to key their examples to the National Standards and Benchmarks, so the material is grade-appropriate and useful in the classroom, (3) have each example peer-reviewed by at least one scientist with a relevant background, and at least one teacher at an appropriate grade level, helping keep an emphasis on quality, and (4) disseminate the examples widely and inexpensively through the PUMAS Web Site (http://pumas.jpl.nasa.gov). PUMAS examples may be activities, anecdotes, descriptions of "neat ideas," formal exercises, puzzles, or demonstrations; each one is a gem, written in the voice of its author. The PUMAS site also provides opportunities for feedback on individual examples and on the journal as a whole. As with most scientific journals, the writing, reviewing, and editing efforts are volunteered; they leverage the "community service" offered by so many teachers and scientists. We have streamlined all aspects of the example submission, review, and search processes so participants can contribute at a high level, with a minimum of extraneous effort. The primary PUMAS operating expenses cover Web Site technical maintenance and computer security. The PUMAS site receives several thousand unique queries per week, and publishes an average of about one new example per month. Maintaining a strong user base has been helped by endorsements from such organizations as the NSTA and NCTM. To contributors we offer an avenue for making a real impact on pre-college education with a relatively small time commitment, and the opportunity for peer-reviewed publication. We are always looking for good examples of the Practical Uses
Briseno, Luis Miguel
This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.
The role of expressive writing in math anxiety.
Park, Daeun; Ramirez, Gerardo; Beilock, Sian L
2014-06-01
Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Impacts of a Summer Bridge Program in Engineering on Student Retention and Graduation
Cançado, Luciana; Reisel, John R.; Walker, Cindy M.
2018-01-01
A summer bridge program was developed in an engineering program to advance the preparation of incoming freshmen students, particularly with respect to their math course placement. The program was intended to raise the initial math course placement of students who otherwise would begin their engineering studies in courses below Calculus I. One…
Atlas 1.1: An Update to the Theory of Effective Systems Engineers
2018-01-16
Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ...which are the most discrete areas of proficiency included in Atlas. • For each proficiency area, there are Levels, which describe the extent to which... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain
Exploring the relationship between math anxiety and gender through implicit measurement.
Rubinsten, Orly; Bialik, Noam; Solar, Yael
2012-01-01
Math anxiety, defined as a negative affective response to mathematics, is suggested as a strong antecedent for the low visibility of women in the science and engineering workforce. However, the assumption of gender differences in math anxiety is still being studied and results are inconclusive, probably due to the use of explicit measures such as direct questionnaires. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in males and females by using a novel affective priming task as an indirect measure. Specifically, university students (23 males and 30 females) completed a priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative, or related to mathematics). Participants were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication, or division) was true or false. People are typically found to respond to target stimuli more rapidly after presentation of an affectively related prime than after an affectively unrelated one. In the current study, shorter response latencies for positive as compared to negative affective primes were found in the male group. An affective priming effect was found in the female group as well, but with a reversed pattern. That is, significantly shorter response latencies were observed in the female group for negative as compared to positive targets. That is, for females, negative affective primes act as affectively related to simple arithmetic problems. In contrast, males associated positive affect with simple arithmetic. In addition, only females with lower or insignificant negative affect toward arithmetic study at faculties of mathematics and science. We discuss the advantages of examining pure anxiety factors with implicit measures which are free of response factors. In addition it is suggested that environmental factors may enhance the association between math achievements
International Nuclear Information System (INIS)
Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.
1979-11-01
The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented
Gross, B
1998-01-01
In 1994, when the software maker Knowledge Adventure decided to spin out a new venture--Worlds, Incorporated--founder Bill Gross expected the worst. He had argued with the board that it was in KA's best interests to maintain a controlling ownership stake in Worlds, whose powerful new software technology had enormous revenue potential. But the board prevailed, and KA took only a 20% ownership in the new company, giving the rest to Worlds' employees. Within a year, the company's performance had surpassed all expectations, and instead of owning 80% of a $5 million business, KA owned 20% of a $77 million business. The arithmetic may have been counterintuitive, but the lesson was clear. When KA let go of Worlds and gave its employees near total ownership, the company unleashed a new level of employee performance. That, in turn, led to the creation of economic value that more than made up for the equity KA had surrendered. So compelling was this "new math of ownership" that Gross founded a new company, Idealab, on this principle. The company, which develops ideas for Internet-based businesses and seeds the most promising ones, takes no more than a 49% equity stake in the new ventures and gives at least 1% of ownership to each employee. For Gross, this radical approach to ownership is the key to inspiring stellar performances. In part, employee-owners are motivated by their potential to earn great financial reward. But the drama of ownership, he argues, is even more important. In that drama, employees become personally involved in the struggle to outdo the competition and emerge victorious.
Energy Technology Data Exchange (ETDEWEB)
Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)
2006-01-15
This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)
Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J
2013-05-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Math at home adds up to achievement in school.
Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L
2015-10-09
With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.
Elementary School Math Instruction: Can Reading Specialists Assist?
Heinrichs, Audrey S.
1987-01-01
Discusses the contradictions found in recommendations for direction instruction or informal math language development, and some suggestions for practical resolution of disagreements, to enable school reading specialists to provide both background and practical help to classroom instructors teaching math. (HTH)
White, Charles V.
A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…
Engine Environment Research Facility (EERF)
Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....
Changes in Levels of Math Anxiety in Pre-Service Primary School Teachers
Directory of Open Access Journals (Sweden)
Juan Francisco Ruiz Hidalgo
2016-12-01
Full Text Available Various investigations study high levels of math anxiety of preservice teachers and possible strategies to reduce them. Assuming that the training methodology influences these levels, we analyzed the evolution of mathematics anxiety of undergraduates in Primary Education of the University of Granada, due to the use of manipulatives in the classroom math practices. We perform an exploratory and descriptive, by using a questionnaire that measures the level of anxiety of 227 students. Eight of them were selected and monitored by audio recordings and interviews. The mean level of anxiety puts undergraduates at an average level of math anxiety. The subjects expressed the perception that practical sessions allow a reduction of mathematics anxiety, suggesting that this reduction is due to the use of a different traditional methodology.Since we detect a favorable evolution in math anxiety manifested as subjects become more involved in cooperative working and with manipulatives, we conjecture that working with this type of active methodology has strengthened its security to their performance in mathematics.
Leaper, Campbell; Farkas, Timea; Brown, Christia Spears
2012-01-01
Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…
Adams, Vicki
2012-01-01
Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…
Essential math and calculations for pharmacy technicians
Reddy, Indra K
2003-01-01
Working with Roman and Arabic NumeralsUsing Fractions and Decimals in Pharmacy MathUsing Ratios, Proportions and Percentages in Dosage CalculationsApplying Systems of MeasurementsInterpreting Medication OrdersIdentifying Prescription Errors and OmissionsWorking with Liquid Dosage FormsWorking with Solid Dosage FormsAdjusting IsotonicityWorking with Buffer and Ionization ValuesDealing with ReconstitutionsDetermining Milliequivalent StrengthsCalculating Caloric Values Determining IV Flow RatesWorking with Insulin and Heparin ProductsAppendices: A: Working with Temperature ConversionsB: Working with Capsule Dosage FormsC: Dealing with Pediatric Dosages D: Understanding Essential Business Math.
The "Parrot Math" Attack on Memorization
Directory of Open Access Journals (Sweden)
Bill Quirk
2013-01-01
Full Text Available Constructivist math educators regularly cite Parrot Math by Thomas C. O'Brien. Although this paper promotes constructivist "activity-based" learning over direct instruction, it's primary claim to fame is the open hostility to memorization. Professor O'Brien rejects "memorization and parrot-like drill " in favor of "children's invented strategies." He references a paper by Kamii and Dominick as evidence of "considerable research" showing that mastery of the standard algorithms of arithmetic is harmful for children. [See The Bogus Research in Kamii and Dominick's Harmful Algorithms Papers
Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102
Blazer, Christie
2011-01-01
Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…
Supporting English Language Learners in Math Class, Grades K-2
Bresser, Rusty; Melanese, Kathy; Sphar, Christine
2009-01-01
More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…
Firefighter Math - a web-based learning tool
Dan Jimenez
2010-01-01
Firefighter Math is a web based interactive resource that was developed to help prepare wildland fire personnel for math based training courses. The website can also be used as a refresher for fire calculations including slope, flame length, relative humidity, flow rates, unit conversion, etc. The website is designed to start with basic math refresher skills and...
Specific Cognitive Predictors of Early Math Problem Solving
Decker, Scott L.; Roberts, Alycia M.
2015-01-01
Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…
Mathematizing: An Emergent Math Curriculum Approach for Young Children
Rosales, Allen C.
2015-01-01
Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…
Learning to Be a Math Teacher: What Knowledge Is Essential?
Reid, Mary; Reid, Steven
2017-01-01
This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…
Formula for Success: Engaging Families in Early Math Learning
Global Family Research Project, 2017
2017-01-01
Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…
How to Make the Most of Math Manipulatives.
Burns, Marilyn
1996-01-01
A discussion of how to use math manipulatives to teach elementary students focuses on essential program elements: what math manipulatives are and why they are used, common questions about math manipulatives, how one teacher introduced the geoboard into the classroom, and pattern block activities. (SM)
District Finds the Right Equation to Improve Math Instruction
Holmstrom, Annette
2010-01-01
The math problem is common to most U.S. school districts, and education leaders are well aware that U.S. math achievement lags far behind many other countries in the world. University Place (Washington) School District Superintendent Patti Banks found the conspicuous income gap for math scores even more disturbing. In her school district, only 23%…
Impact of Math Snacks Games on Students' Conceptual Understanding
Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.
2016-01-01
This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…
Ruff, Sarah E.; Boes, Susan R.
2014-01-01
Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…
Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans
Directory of Open Access Journals (Sweden)
Helena Thuneberg
2017-01-01
Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.
Degol, Jessica L; Wang, Ming-Te; Zhang, Ya; Allerton, Julie
2018-05-01
Despite efforts to increase female representation in science, technology, engineering, and mathematics (STEM), females continue to be less motivated to pursue STEM careers than males. A short-term longitudinal study used a sample of 1449 high school students (grades 9-12; 49% females) to examine pathways from gender and mindset onto STEM outcomes via motivational beliefs (i.e., expectancy beliefs, task value, and cost). Mindset, motivational beliefs, and STEM career aspirations were assessed between the fall and winter months of the 2014-2015 school year and math grades were obtained at the conclusion of the same year. Student growth mindset beliefs predicted higher task values in math. Task values also mediated the pathway from a growth mindset to higher STEM career aspirations. Expectancy beliefs mediated the pathway between gender and math achievement. This mediated pathway was stronger for females than for males, such that females had higher math achievement than males when they endorsed a growth mindset. Findings suggest possible avenues for improving female's interest in STEM.
Jansen, B.R.J.; Lange, E.; van der Molen, M.J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this
Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa
2015-01-01
The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…
Powell, Torence J.
2017-01-01
The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…
Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle
2013-01-01
In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…
Tsui, Joanne M.; Mazzocco, Michele M. M.
2006-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…
Nick, Todd G
2007-01-01
Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.
Bolton, W
2012-01-01
Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units:
Interactive geometry inside MathDox
Cuypers, H.; Hendriks, M.; Knopper, J.W.
2010-01-01
In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes
What Adds Up?: Math Enrollment and Graduation
Utah System of Higher Education, 2015
2015-01-01
College students struggling to pass a college level math course required for Quantitative Literacy (QL) credit1 has been a common issue facing many institutions in higher education. In the fall of 2014, the Utah State Board of Regents solidified a statewide initiative that set goals for each of the Utah System of Higher Education institutions (UU,…
ADP Security Plan, Math Building, Room 1139
Energy Technology Data Exchange (ETDEWEB)
Melton, R.
1985-08-27
This document provides the draft copy of an updated (ADP) Security Plan for an IBM Personal Computer to be used in the Math Building at PNL for classified data base management. Using the equipment specified in this document and implementing the administrative and physical procedures as outlined will provide the secure environment necessary for this work to proceed.
Admission Math Level and Student Performance
DEFF Research Database (Denmark)
la Cour, Lisbeth
2015-01-01
In this paper we analyze the study performance data for three cohorts of students for the course in Economics at the Business Diploma (herafter HD) study program at Copenhagen Business School. Out main findings are 1) that students with the lowest level of math from high school are performing worse...
Confessions of a Dr Math tutor
CSIR Research Space (South Africa)
Butgereit, L
2015-06-01
Full Text Available Mathematics look different on a small 3-inch screen of an inexpensive cell phone when compared to a 3-meter whiteboard in a mathematics classroom. Dr Math uses cell phone or mobile data "chat" technologies to assist primary and secondary school...
Early math intervention for marginalized students
DEFF Research Database (Denmark)
Overgaard, Steffen; Tonnesen, Pia Beck
2016-01-01
This study is one of more substudies in the project Early Math Intervention for Marginalized Students (TMTM2014). The paper presents the initial process of this substudy that will be carried out fall 2015. In the TMTM2014 project, 80 teachers, who completed a one week course in the idea of TMTM...
Fold in Origami and Unfold Math
Georgeson, Joseph
2011-01-01
Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…
Math on the Job. Metal Product Assembler.
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…
Ideas on Manipulative Math for Young Children.
Murray, Anne
2001-01-01
Presents a case study of one kindergarten class in which the mathematics center is the popular area in the room. Focuses on how math is best understood if activities follow the five-C formula: collaborative, concrete, comprehensive, connecting, and cavorting. Describes how children used manipulatives to construct mathematics concepts…
The Demise of the Asian Math Gene.
Bracey, Gerald W.
1999-01-01
The 1996 National Assessment of Educational Progress math scores for eighth-graders show that when socioeconomic status is considered, English-proficient Asian students have no achievement advantage over other ethnic groups. However, Chinese sixth-graders, using abstract reasoning skills, outperformed American students on 12 open-ended math…
MIT professor wins major international math prize
Allen, S
2004-01-01
Mathematicians Isadore Singer of MIT and Sir Michael Francis Atiyah of the University of Edinburgh will share an $875,000 award as winners of the second Abel Prize, which some hope will come to be seen as a Nobel Prize for math.
Online Options for Math-Advanced Students
Wessling, Suki
2012-01-01
Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…
Relationship between Affective Dimension and Math Learning
Directory of Open Access Journals (Sweden)
Ronny Gamboa Araya
2014-05-01
Full Text Available Math has become an obstacle to achieve educational goals for a large number of students; thus it has transcended the academic world and has become a cognitive and emotional impairment. What students feel, perceive, believe, and how they act directly influences this. In addition, what teachers feel and perceive, their expectations, beliefs and attitudes towards the discipline also play an important role in how they teach and in the affective dimension of their students. Based on theoretical aspects from various authors, this paper is aimed at addressing some elements regarding the affective dimension, and at showing elements pertaining to teachers and students, and their relationship with math learning and teaching. It was concluded that the role of the affective dimension in math learning must be addressed by math educators in order to understand the process from the perspective of the actors associated with it, both students and teachers, as well as to achieve a change in the discipline by improving the beliefs and attitudes of students and teachers.
New Mexico Math Pathways Taskforce Report
New Mexico Higher Education Department, 2016
2016-01-01
In April 2015 New Mexico faculty, Dana Center staff, and New Mexico Higher Education (NMHED) co-presented the need for better math pathways statewide. Faculty from 6 institutions (New Mexico State University, New Mexico Highlands University, Dine College, Eastern New Mexico University, El Paso Community College, and San Juan College) participated…
Tic Tac Toe Math. Train the Trainer.
Center for Alternative Learning, Bryn Mawr, PA.
This report describes a project that developed a "Train the Trainer" program that would enable individuals to learn and teach the alternative instructional technique, Tic Tac Toe Math, developed by Richard Cooper for adult basic education students. The pilot workshop conducted as part of the project identified problems that traditional…
Basic math and pre-algebra practice problems for dummies
Zegarelli, Mark
2013-01-01
1001 Basic Math & Pre- Algebra Practice Problems For Dummies Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per
Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.
Pizzie, Rachel G; Kraemer, David J M
2017-11-01
Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824
Neural correlates of math anxiety - an overview and implications.
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Neural correlates of math anxiety – An overview and implications
Directory of Open Access Journals (Sweden)
Christina eArtemenko
2015-09-01
Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i math anxiety elicits emotion- and pain-related activation during and before math activities, (ii that the negative emotional response to math anxiety impairs processing efficiency, and (iii that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Alexander, Lori L.
Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.
Facilitating an Elementary Engineering Design Process Module
Hill-Cunningham, P. Renee; Mott, Michael S.; Hunt, Anna-Blair
2018-01-01
STEM education in elementary school is guided by the understanding that engineering represents the application of science and math concepts to make life better for people. The Engineering Design Process (EDP) guides the application of creative solutions to problems. Helping teachers understand how to apply the EDP to create lessons develops a…
Tsui, Joanne M.; Mazzocco, Michèle M. M.
2009-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180
Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...
Exploring the relationship between math anxiety and gender through implicit measurement
Directory of Open Access Journals (Sweden)
Orly eRubinsten
2012-10-01
Full Text Available Math anxiety, defined as a negative affective response to mathematics, is suggested as a strong antecedent for the low visibility of women in the science and engineering workforce. However, the assumption of gender differences in math anxiety is still being studied and results are inconclusive, probably due to the use of explicit measures such as direct questionnaires. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in males and females by using a novel affective priming task as an indirect measure. Specifically, university students (23 males and 30 females completed a priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative, or related to mathematics. Participants were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication, or division was true or false. People are typically found to respond to target stimuli more rapidly after presentation of an affectively related prime than after an affectively unrelated one. In the current study, shorter response latencies for positive as compared to negative affective primes were found in the male group. An affective priming effect was found in the female group as well, but with a reversed pattern. That is, significantly shorter response latencies were observed in the female group for negative as compared to positive targets. That is, for females, negative affective primes act as affectively related to simple arithmetic problems. In contrast, males associated positive affect with simple arithmetic. In addition, only females with lower or insignificant negative affect towards arithmetic study at faculties of mathematics and science. We discuss the advantages of examining pure anxiety factors with implicit measures which are free of response factors. In addition it is suggested that environmental factors may enhance the association between
PUMAS: The On-line journal of Math and Science Examples for Pre-College Education
Trainer, Melissa G.; Kahn, Ralph A.
2015-11-01
PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.
Women?s Reasons for Leaving the Engineering Field
Fouad, Nadya A.; Chang, Wen-Hsin; Wan, Min; Singh, Romila
2017-01-01
Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. ...
Medeiros, Donald J.
The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task
Hoepner, Cynthia Colon
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Simple arithmetic: not so simple for highly math anxious individuals.
Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-12-01
Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Directory of Open Access Journals (Sweden)
Zhan Shi
Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar
2017-08-01
This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.
New Directions for Biomedical Engineering
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
Optics learning by computing, with examples using Maple, MathCad, Mathematica, and MATLAB
Moeller, Karl Dieter
2007-01-01
This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering; it uses scripts from Maple, MathCad, Mathematica, and MATLAB provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwell's equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The basic text is supplemented by over 170 files in Maple, MathCad, Mathematica, and MATLAB (many of which are in the text, each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are d...
What Does it Take to Become a Good Engineer?
DEFF Research Database (Denmark)
Haase, Sanne Schioldann; Chen, Helen L.; Sheppard, Sheri
2013-01-01
Engineers of the future are expected to possess a range of competencies in addition to math and science skills. This paper turns to engineering students to explore what they think it takes to become a good engineer. Profiles are identified by means of a large-scale survey-based investigation...... of the perceptions of first year engineering students in the US and in Denmark with respect to the importance of math/science skills and interpersonal and professional skills for successful engineering. Four groups of first year engineering students are defined according to combinations of high and low importance...... assessments of each of the two skill types in both countries. This leads to analytically derived groups emphasizing math/science skills, interpersonal and professional skills, both skill types, and none of the skills. Differences and similarities between these groups are explored in terms of relative group...
Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi
2017-01-01
Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.
Gender contentedness in aspirations to become engineers or medical doctors
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2017-11-01
Medical doctor and engineer are highly esteemed STEM professions. This study investigates academic and motivational characteristics of a sample of high school students in Thailand who aspire to become medical doctors or engineers. We used logistic regression to compare maths performance, gender typicality, gender contentedness, and maths and physics self-concepts among students with aspirations for these two professions. We found that high levels of felt gender contentedness in men had positive association with aspirations for engineering irrespective of the levels of maths or physics self-concept. We found that high levels of felt gender contentedness combined with high levels of maths or physics self-concept in women had positive associations with aspirations to become a medical doctor. These findings are evidence that student views of self are associated with uneven gendered patterns in career aspirations and have implications for the potential for future participation.
Learning Math With My Father: A Memoir
Directory of Open Access Journals (Sweden)
Yolanda De La CRUZ
2012-07-01
Full Text Available If he is indeed wise he does not bid you enter the house of his wisdom, but rather leads you to the threshold of your own mind. Kahlil Gibran. We all build our own houses of wisdom, each of us; we cannot build them for each other. Teachers cannot simply invite students into their houses of wisdom, but can often find ways to help learners to enter and explore their own minds. While Constructivism has had a positive impact on the teaching and learning of literacy mathematics instruction continues to rely heavily on rote memorization and drills. As a young child, I learned to love math. My love of math stems from learning math with my father. He did not focus on rote memorization and drills. The primary emphasis was for a real purpose. My self-confidence was enforced when he started me out with problems that were less difficult and had many different solutions. These solutions were valued and respected, which allowed me to trust in my own problem solving abilities. How can we hope to lead children to the thresholds of their own minds when we remain intent on forcing them into our houses of wisdom? What alternative ways can we devise of interacting with children that respect their confidence and leave intact their levels of understanding, that lead them to the thresholds of their own minds excited about entering?
Primary maths anyone can feed skittles to sharks
Tiley-Nunn, Nick
2014-01-01
Primary maths is stereotypically loved by a few hairy oddballs, tolerated by most sane primary practitioners; loathed by many. With the right approach, however; the right mindset and sense of the impossible being achievable, maths can be moulded into the diamond in the rough of the primary curriculum. Enter Nick Tiley-Nunn: Britain's most imaginative, most exciting primary maths specialist. Over years of practice he has generated ideas about the teaching of maths that are so distinct, so far out and so utterly brilliant that any primary teacher struggling to grasp the nettle of teaching long division will emerge from communing with his ideas not just with some clichéd sense that maths can be fun', but that it can be brilliant, life-enhancing and truly hilarious. This book presents ideas for primary maths teaching so wildly creative and so full of the joy of life that any classroom of kids will be grateful you read it.
Metacognition and Confidence: Comparing Math to Other Academic Subjects
Directory of Open Access Journals (Sweden)
Shanna eErickson
2015-06-01
Full Text Available Two studies addressed student metacognition in math, measuring confidence accuracy about math performance. Underconfidence would be expected in light of pervasive math anxiety. However, one might alternatively expect overconfidence based on previous results showing overconfidence in other subject domains. Metacognitive judgments and performance were assessed for biology, literature, and mathematics tests. In Study 1, high school students took three different tests and provided estimates of their performance both before and after taking each test. In Study 2, undergraduates similarly took three shortened SAT II Subject Tests. Students were overconfident in predicting math performance, indeed showing greater overconfidence compared to other academic subjects. It appears that both overconfidence and anxiety can adversely affect metacognitive ability and can lead to math avoidance. The results have implications for educational practice and other environments that require extensive use of math.
Metacognitive awareness and math anxiety in gifted students
Hakan Sarıcam; Üzeyir Ogurlu
2015-01-01
The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary S...
Insecure attachment is associated with math anxiety in middle childhood
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children?s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hy...
What to Do About Canada's Declining Math Scores?
Anna Stokke
2015-01-01
The declining performance of Canadian students on international math assessments should worry Canadians and their provincial governments. Strong mathematics knowledge is required for success in the workforce, and early achievement in math is one of the best predictors of later academic success and future career options. Between 2003 and 2012, all but two Canadian provinces showed statistically significant declines in math scores on international exams administered by the Organization for Econ...
Directory of Open Access Journals (Sweden)
Sborshchikov Sergey Borisovich
2016-10-01
Full Text Available The procedure of evaluating and selecting tender offers is not only an important element of the control system of investment and construction activity but is also an effective tool to increase its efficiency due to optimization of construction works price, reduction of their duration, stimulating innovations in the production, increasing the quality and engineering safety of construction production. At the recent time when new organizational forms and control schemes of investment and construction activity are appearing the system of competitive bidding gains more importance and new functions, because the choice of construction organizer and contracting companies directly influences the results of the construction. The authors consider the task of selecting the bidders’ offers which is a multicriterion task. The offers are evaluated according to the set of parameters reflecting the effectiveness of investment and construction projects. The criteria selection is based on the fact that the proposals of the organizer of construction and the contractors are related to the cost of works and to the deadlines which directly affects the implementation parameters of investment and construction projects.
Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate
2016-01-01
This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…
Cognitive consistency and math-gender stereotypes in Singaporean children.
Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu
2014-01-01
In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.
A Correlation of Community College Math Readiness and Student Success
Brown, Jayna Nicole
Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p college students' math competencies and degree achievement.
International Nuclear Information System (INIS)
Kang, Sing Eun; Park, Seong Taek; Lim, Yong Un
1975-03-01
This book is made up six parts, which deals with circuit theory about sinusoidal alternating current, basic current circuit, wave power, distorted wave, two terminal network, distributed circuit, laplace transformation and transfer function, power engineering on line, failure analysis transmission of line, substation and protection device and hydroelectric power plant, electricity machine like DC machine, electric transformer, induction machine and rectifier, electromagnetic on dielectric substance current, electromagnetic, electricity application like lighting engineering, heat transfer and electricity chemistry, industry, industry math with integer, rational number, factorization, matrix and differential.
Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine
2017-01-01
Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…
Petersen, Jennifer Lee; Hyde, Janet Shibley
2017-01-01
Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…
Directory of Open Access Journals (Sweden)
Krzysztof eCipora
2015-11-01
Full Text Available Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS, known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857 was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS.
Math starters 5- to 10-minute activities aligned with the common core math standards, grades 6-12
Muschla, Judith A; Muschla, Erin
2013-01-01
A revised edition of the bestselling activities guide for math teachers Now updated with new math activities for computers and mobile devices-and now organized by the Common Core State Standards-this book includes more than 650 ready-to-use math starter activities that get kids quickly focused and working as soon as they enter the classroom. Ideally suited for any math curriculum, these high-interest problems spark involvement in the day's lesson, help students build skills, and allow teachers to handle daily management tasks without wasting valuable instructional time. A newly updated edit
Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph
2015-01-01
Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.
Optimizing Engineering Tools Using Modern Ground Architectures
2017-12-01
ENGINEERING TOOLS USING MODERN GROUND ARCHITECTURES by Ryan P. McArdle December 2017 Thesis Advisor: Marc Peters Co-Advisor: I.M. Ross...Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZING ENGINEERING TOOLS USING MODERN GROUND ARCHITECTURES 5. FUNDING NUMBERS 6. AUTHOR(S) Ryan P. McArdle 7... engineering tools. First, the effectiveness of MathWorks’ Parallel Computing Toolkit is assessed when performing somewhat basic computations in
Exposing the Myth: Advanced Math Does Not Increase Drop out Rates. Math Works
Achieve, Inc., 2013
2013-01-01
A common argument against raising math course-taking requirements for all students is that it will cause more students to drop out of high school. But most students who drop out for academic reasons do so not because they are being "too challenged," but rather because they are not being challenged enough. It is important to raise the rigor and…
How Effective Are Community College Remedial Math Courses for Students with the Lowest Math Skills?
Xu, Di; Dadgar, Mina
2018-01-01
Objective: This article examines the effectiveness of remediation for community college students who are identified as having the lowest skills in math. Method: We use transcript data from a state community college system and take advantage of a regression discontinuity design that compares statistically identical students who are assigned to the…
Hamadneh, Iyad M.; Al-Masaeed, Aslan
2015-01-01
This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…
Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities
Erbstein, Nancy
2015-01-01
This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…
CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT
Energy Technology Data Exchange (ETDEWEB)
J.F. Beesley
2005-04-21
The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.
CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT
International Nuclear Information System (INIS)
Beesley. J.F.
2005-01-01
The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process
Fuel Handling Facility Description Document
International Nuclear Information System (INIS)
M.A. LaFountain
2005-01-01
The purpose of the facility description document (FDD) is to establish the requirements and their bases that drive the design of the Fuel Handling Facility (FHF) to allow the design effort to proceed to license application. This FDD is a living document that will be revised at strategic points as the design matures. It identifies the requirements and describes the facility design as it currently exists, with emphasis on design attributes provided to meet the requirements. This FDD was developed as an engineering tool for design control. Accordingly, the primary audience and users are design engineers. It leads the design process with regard to the flow down of upper tier requirements onto the facility. Knowledge of these requirements is essential to performing the design process. It trails the design with regard to the description of the facility. This description is a reflection of the results of the design process to date
Keller, John; Rebar, Bryan
2012-11-01
The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.
Essential maths for geoscientists an introduction
Palmer, Paul I
2014-01-01
Maths for Geoscientists is an accessible, student-friendly introduction to the essential mathematics required by those students taking degree courses within the Geosciences. Clearly structured throughout, this book carefully guides the student step by step through the mathematics they will encounter and will provide numerous applied examples throughout to enhance students understanding and to place each technique into context. Opening with a chapter explaining the need for studying mathematics within geosciences the book then moves on to cover algebra, equations, solutions, logarithms and ex
Thornton, Liam
2016-01-01
This is a feminist re-imagining of the Supreme Court decision MhicMathúna v Ireland [1995] 1 I.R. 454. The actual Supreme Court decision in this case continues to have a profound impact upon how the Irish superior courts view constitutional socio-economic rights claims. This feminist judgment seeks to re-situate the legal analysis of constitutionalised socio-economic rights claims. However, this, as is seen from the feminist judgment, has not been an easy task. The plaintiffs' in this case at...
XML Diagnostics Description Standard
International Nuclear Information System (INIS)
Neto, A.; Fernandes, H.; Varandas, C.; Lister, J.; Yonekawa, I.
2006-01-01
A standard for the self-description of fusion plasma diagnostics will be presented, based on the Extensible Markup Language (XML). The motivation is to maintain and organise the information on all the components of a laboratory experiment, from the hardware to the access security, to save time and money when problems arises. Since there is no existing standard to organise this kind of information, every Association stores and organises each experiment in different ways. This can lead to severe problems when the organisation schema is poorly documented or written in national languages. The exchange of scientists, researchers and engineers between laboratories is a common practice nowadays. Sometimes they have to install new diagnostics or to update existing ones and frequently they lose a great deal of time trying to understand the currently installed system. The most common problems are: no documentation available; the person who understands it has left; documentation written in the national language. Standardisation is the key to solving all the problems mentioned. From the commercial information on the diagnostic (component supplier; component price) to the hardware description (component specifications; drawings) to the operation of the equipment (finite state machines) through change control (who changed what and when) and internationalisation (information at least in the native language and in English), a common XML schema will be proposed. This paper will also discuss an extension of these ideas to the self-description of ITER plant systems, since the problems will be identical. (author)
Management control system description
Energy Technology Data Exchange (ETDEWEB)
Bence, P. J.
1990-10-01
This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.
McVee, Mary; Silvestri, Katarina; Shanahan, Lynn; English, Ken
2017-01-01
This article [explores] the learning of girls who were in a co-ed after school engineering club related to the project: Designing Vital Engineering and Literacy Practices for Science, Technology, Engineering, and Math for Elementary Teachers and Children (DeVELOP STEM ETC). While few girls grow up to become engineers in the US, recently more…
Evaluating Number Sense in Community College Developmental Math Students
Steinke, Dorothea A.
2017-01-01
Community college developmental math students (N = 657) from three math levels were asked to place five whole numbers on a line that had only endpoints 0 and 20 marked. How the students placed the numbers revealed the same three stages of behavior that Steffe and Cobb (1988) documented in determining young children's number sense. 23% of the…
Do the Math: Course Redesign's Impact on Learning and Scheduling
Squires, John; Faulkner, Jerry; Hite, Carl
2009-01-01
The math department at Cleveland State Community College embarked upon course redesign in 2008. As a result of this project, student engagement, learning, and success rates have increased dramatically. By including both developmental and college level math courses in the redesign, the department has been able to implement innovative scheduling and…
Classroom Environment, Achievement Goals and Maths Performance: Gender Differences
Gherasim, Loredana Ruxandra; Butnaru, Simona; Mairean, Cornelia
2013-01-01
This study investigated how gender shapes the relationships between classroom environment, achievement goals and maths performance. Seventh-grade students ("N"?=?498) from five urban secondary schools filled in achievement goal orientations and classroom environment scales at the beginning of the second semester. Maths performance was…
Math and Economics: Implementing Authentic Instruction in Grades K-5
Althauser, Krista; Harter, Cynthia
2016-01-01
The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…
Math on MXit: the medium is the message
CSIR Research Space (South Africa)
Butgereit, L
2007-07-01
Full Text Available Homework is a necessary evil in the path of learning mathematics at school. Mathematics homework is traditionally seen as difficult and boring. In the case of difficult homework, “math clubs” and “math extra lessons” are often perceived as even more...
Determinants of Grades in Maths for Students in Economics
DEFF Research Database (Denmark)
Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario
attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the determinants of the elapsed time to pass the exam using survival analysis. Modeling simultaneously maths...
How Math Anxiety Relates to Number–Space Associations
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570
Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents
Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.
2012-01-01
Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…
The Math Promise: Celebrating at Home and School
Legnard, Danielle; Austin, Susan
2014-01-01
The Math Promise is a contract that family members make with one another. They commit to spending mathematical time together; getting to know each other's mathematical thinking and understanding; and finding time to play math games, solve problems, and notice mathematics in their daily lives. Whether parents and children are cooking in the…
Feedback Design Patterns for Math Online Learning Systems
Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil
2017-01-01
Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…
An Integration of Math with Auto Technician Courses
Valenzuela, Hector
2012-01-01
This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…
HeartMath and Ubuntu integral healing approaches for social ...
African Journals Online (AJOL)
HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...
Science and Math in the Library Media Center Using GLOBE.
Aquino, Teresa L.; Levine, Elissa R.
2003-01-01
Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…
Restructuring Schools To Be Math Friendly to Females.
Karp, Karen; Shakeshaft, Charol
1997-01-01
The gender gap in math Scholastic Aptitude Test scores, attributable to course avoidance, lack of confidence, and unbalanced classroom instruction, can have serious consequences for young women, such as limited university selection, limited career choices, and lower lifetime salaries. Solutions include hiring math specialists, establishing role…
Math Garden: A new educational and scientific instrument
Straatemeier, M.
2014-01-01
This dissertation describes the research concerning the construction of a new educational and scientific instrument. This instrument, Math Garden, is a web application in which children can practice arithmetic by playing math games in which items are tailored to their ability level. At the same
Basic Math Skills and Performance in an Introductory Economics Class
Ballard, Charles L.; Johnson, Marianne F.
2004-01-01
The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…
Why Aren't More Minorities Taking Advanced Math?
Walker, Erica N.
2007-01-01
Black and Latino students are still underepresented in upper-level math classes in the United States, a fact which has serious implications for their academic achievement and futures. Walker provides six suggestions for how educators can encourage more black and Latino students to successfully take higher level math courses: (1) Expand our…
How math anxiety relates to number-space associations
Directory of Open Access Journals (Sweden)
Carrie Georges
2016-09-01
Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.
Effects of Math Anxiety on Student Success in Higher Education
Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.
2013-01-01
This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…
The Effect of Cooperative Groups on Math Anxiety
Batton, Melissa
2010-01-01
Research indicates that many students have difficulty with mathematics, which can be attributed to many factors including math anxiety. Students who experience math anxiety have poor attitudes towards mathematics and perform below grade level based on class and statewide assessments. The purpose of this quasi-experimental quantitative study was to…
How Math Anxiety Relates to Number-Space Associations.
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.
Metacognitive Awareness and Math Anxiety in Gifted Students
Saricam, Hakan; Ogurlu, Üzeyir
2015-01-01
The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students' metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students…
Remediation of Math Anxiety in Preservice Elementary School Teachers
Dunkle, Susan M.
2010-01-01
The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…
Cognitive and Academic Profiles Associated with Math Disability Subtypes
Kubas, Hanna A.; Schmid, Amy D.; Drefs, Michelle A.; Poole, Jennifer M.; Holland, Sara; Fiorello, Catherine A.
2014-01-01
Children with math disabilities (MD) represent a heterogeneous group and often display deficits in one or more cognitive domains. Math proficiency requires a number of different cognitive processes, including quantitative knowledge, working memory, processing speed, fluid reasoning, and executive functions. Assessment practices that do not address…
The Reliability of Randomly Generated Math Curriculum-Based Measurements
Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.
2015-01-01
"Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…
Impact of University Lecturers' Intervention in School MathTeaching
Indian Academy of Sciences (India)
Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...
Math and Science Gateways to California's Fastest Growing Careers
EdSource, 2008
2008-01-01
Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…
Membangun Karakter Anak Usia Dini melalui Pembelajaran Math Character
Directory of Open Access Journals (Sweden)
Titin Faridatun Nisa’
2016-09-01
Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran math character untuk membangun karakter Anak Usia Dini (AUD dan kesulitan-kesulitan yang dialami guru dalam penerapan pembelajaran math character. Target penelitian ini adalah terbentuknya karakter anak usia dini melalui pembelajaran math character. Jenis penelitian ini adalah penelitian deskriptif dengan metode penelitian kualitatif. Teknik pengumpulan informasi penelitian ini dengan metode observasi dan wawancara. Analisis data penelitian ini menggunakan analisis deskriptif. Hasil penelitian menunjukkan bahwa penerapan pembelajaran math character dapat membangun delapan belas nilai-nilai karakter AUD. Kesulitan-kesulitan yang dialami guru dalam pembentukan karakter AUD melalui pembelajaran math character meliputi tema yang digunakan termasuk tema baru, siswa belum terbiasa dengan pembelajaran berbasis sentra, usia siswa bervariasi, dan adanya ikut campur wali siswa dalam kegiatan pembelajaran di kelas sehingga siswa menjadi kurang mandiri.
Testing of the McMath-Pierce 0.8-Meter East Auxiliary Telescope's Acquisition and Slewing Accuracy
Harshaw, Richard; Ray, Jimmy; Prause, Lori; Douglass, David; Branston, Detrick; Genet, Russell M.
2015-09-01
Following mediocre results with pointing tests of the McMath-Pierce 0.8-meter East Auxiliary Telescope in April 2014, a team of astronomers/engineers met again in May 2014 to test other pointing models and assess the telescope's ability to point with enough accuracy to permit the efficient use of speckle interferometry. Results show that accurate collimation is a pre-requisite for such accuracy. Once attained, the telescope performs extremely well.
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
Techniques for Analysing Problems in Engineering Projects
DEFF Research Database (Denmark)
Thorsteinsson, Uffe
1998-01-01
Description of how CPM network can be used for analysing complex problems in engineering projects.......Description of how CPM network can be used for analysing complex problems in engineering projects....
Math for scientists refreshing the essentials
Maurits, Natasha
2017-01-01
Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: · Read mathematical symbols · Understand formulas, data or statistical information · Determine medication equivalents · Analyze neuroimaging Mathematical concepts are presented alongside illustrative and useful real-world scientific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...
Imagine math 3 between culture and mathematics
2015-01-01
Imagine mathematics, imagine with the help of mathematics, imagine new worlds, new geometries, new forms. This volume in the series “Imagine Math” casts light on what is new and interesting in the relationships between mathematics, imagination, and culture. The book opens by examining the connections between modern and contemporary art and mathematics, including Linda D. Henderson’s contribution. Several further papers are devoted to mathematical models and their influence on modern and contemporary art, including the work of Henry Moore and Hiroshi Sugimoto. Among the many other interesting contributions are an homage to Benoît Mandelbrot with reference to the exhibition held in New York in 2013 and the thoughts of Jean-Pierre Bourguignon on the art and math exhibition at the Fondation Cartier in Paris. An interesting part is dedicated to the connections between math, computer science and theatre with the papers by C. Bardainne and A. Mondot. The topics are treated in a way that is rigorous but capt...
Maths and physics, a love story
CERN Bulletin
Denis Guedj brings one of his plays to CERN. The writer and mathematician is working on a new novel in which LHC research figures prominently. In Denis Guedj’s plays, the number One is a self-absorbed character, Zero is not to be underestimated, and the Line Segment wants the Curve to straighten out. In his novels, mathematical entities come to life—and turn out to have exciting stories to tell. Denis Guedj is a mathematician and professor of the history of science and epistemology at the University of Paris VIII; over the years he has also indulged a personal passion for bringing maths to the stage. His novels and plays reach a broad public. Among his notable successes is a crime thriller called “The Parrot’s Theorem”, which has been translated into 20 languages. The popularity of his work owes much to the author’s refusal to be didactic. “If it works, it’s because I don’t try to teach maths,” he explains....
Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development
Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.
2018-01-01
Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…
Spann, Mary Beth
This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…
Hoang, Hai; Huang, Melrose; Sulcer, Brian; Yesilyurt, Suleyman
2017-01-01
College math is a gateway course that has become a constraining gatekeeper for tens of thousands of students annually. Every year, over 500,000 students fail developmental mathematics, preventing them from achieving their college and career goals. The Carnegie Math Pathways initiative offers students an alternative. It comprises two Pathways…
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…
Building a Math-Positive Culture: How to Support Great Math Teaching in Your School (ASCD Arias)
Seeley, Cathy L.
2016-01-01
Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, turns the spotlight on administrative leaders who are seeking to improve their math programs, offering an overview of what an effective program looks like and examples of actions to take to achieve that goal. "Building a Math-Positive Culture" addresses…
Special theory on chemical engineering
International Nuclear Information System (INIS)
1987-06-01
This book give a special description about chemical engineering. The contents of this book are special technique for isolation on introduction and separation by membrane, biochemistry engineering, process system engineering, energy engineering, environment engineering, a high molecular new material, election material and research on surface property of catalyst. It has appendixes on history of transition on Korean chemical engineering text contents and history of the activity of Korea chemical engineering institute.
Silk, Kami J; Parrott, Roxanne L
2014-01-01
Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.
Innovative technologies in course Electrical engineering and electronics
Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.
2017-11-01
Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.
News from the Library: Zentralblatt MATH: it's not all about maths
CERN Library
2011-01-01
The CERN Library provides access to numerous and diverse information services of interest to the CERN community. Among them, Zentralblatt MATH stands out from our offer of online databases. Zentralblatt MATH covers more than 3 million articles published in about 3500 journals, from 1826 to the present. Most bibliographic records are linked to the online published article. It covers all areas of pure and applied mathematics and also theoretical computer science, mathematical quantum and statistical physics, classical, solid and fluid mechanics, and general relativity and astronomy. Therefore, this database is useful in many disciplines beyond mathematics. It is daily updated and allows advanced search functionalities. Among others things, it includes the content of the Electronic Research Archive for Mathematics, the European Mathematical Information Service, and the Mathematics Preprint Search System. Please note the "Online Ordering" button next to every bibliographic recor...
Math anxiety in second and third graders and its relation to mathematics achievement
Directory of Open Access Journals (Sweden)
Sarah eWu
2012-06-01
Full Text Available Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in 2nd and 3rd graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA, a new measure for assessing math anxiety in 2nd and 3rd graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Wechsler Individual Achievement Test (WIAT-II. Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were significantly correlated with scores on the Math Reasoning subtest, which involves more complex verbal problem solving, but not with the Numerical Operations subtest which assesses basic computation skills. Our results suggest that math anxiety has a pronounced effect on more demanding calculations. Our results further suggest that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.
Wang, Ming-Te; Degol, Jessica L.
2017-01-01
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences…
Dubetz, Terry A.; Wilson, Jo Ann
2013-01-01
Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…
Insecure attachment is associated with math anxiety in middle childhood.
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.
Insecure attachment is associated with math anxiety in middle childhood
Directory of Open Access Journals (Sweden)
Guy eBosmans
2015-10-01
Full Text Available Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect-regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63 filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Contextual Factors Related to Math Anxiety in Second-Grade Children
Jameson, Molly M.
2014-01-01
As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…
Supporting English Language Learners in Math Class, Grades 6-8
Melanese, Kathy; Chung, Luz; Forbes, Cheryl
2011-01-01
This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…
Is There a Causal Effect of High School Math on Labor Market Outcomes?
Joensen, Juanna Schroter; Nielsen, Helena Skyt
2009-01-01
In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…
Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak
Directory of Open Access Journals (Sweden)
Galuh Boy Hertantyo
2014-11-01
Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.
Project TIMS (Teaching Integrated Math/Science)
Edwards, Leo, Jr.
1993-01-01
The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.