WorldWideScience

Sample records for maternal medical radiation

  1. Medical radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This leaflet in the At-a-Glance Series describes the medical use of X-rays, how X-rays help in diagnosis, radiation protection of the patient, staff protection, how radioactive materials in nuclear medicine examinations help in diagnosis and the use of radiation in radiotherapy. Magnetic resonance imaging, a diagnostic technique involving no ionizing radiation, is also briefly examined. The role of the NRPB in the medical use of radiation is outlined. (UK)

  2. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  3. International Conference Medical Radiations

    International Nuclear Information System (INIS)

    2010-01-01

    Full text : The second edition of the international conference Medical radiation : research and applications which took place in Marrakech (Morocco) from 7 to 9 April 2010, was designed to bring together researchers and physicians from different countries who dedicated their talents and time to this endeavour. The conference's program defined goals were is to identify the most reliable techniques among the several tested so far and to establish the most practical standardized methodologies, taking into account such recent technological development in radiation medical research. The scientific objectives of this conference are as follows : present the state of the art of the various topics of the congress, give a progress report on the impact of the interaction of the various scientific and technical disciplinary fields (Medicine, Biology, Mathematics, Physics,..) on the applications of radiations in medicine, promote the interdisciplinary efforts of research among researchers, present new technologies and research and development tasks prepared in the field of medical radiations, contribute to the emergence of new ideas of research and development of new collaborations [fr

  4. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  5. Medical care of radiation accidents

    International Nuclear Information System (INIS)

    Nakao, Isamu

    1986-02-01

    This monograph, divided into six chapters, focuses on basic knowledge and medical strategies for radiation accidents. Chapters I to V deal with practice in emergency care for radiation exposure, covering 1) medical strategies for radiation accidents, 2) personnel dosimetry and monitoring, 3) nuclear facilities and their surrounding areas with the potential for creating radiation accidents, and emergency medical care for exposed persons, 4) emergency care procedures for radiation exposure and radioactive contamination, and 5) radiation hazards and their treatment. The last chapter provides some references. (Namekawa, K.)

  6. Radiation physics for medical physicists

    CERN Document Server

    Podgorsak, Ervin B

    2016-01-01

    This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or ...

  7. Radiation physics for medical physicists

    CERN Document Server

    Podgorsak, Ervin B

    2006-01-01

    This book summarizes the radiation physics knowledge that professionals working in medical physics need to master for efficient and safe dealings with ionizing radiation. It contains eight chapters, each chapter covering a specific group of subjects related to radiation physics and is intended as a textbook for a course in radiation physics in medical-physics graduate programs. However, the book may also be of interest to the large number of professionals, not only medical physicists, who in their daily occupations deal with various aspects of medical physics and find a need to improve their understanding of radiation physics. The main target audience for this book is graduate students studying for M.Sc. and Ph.D. degrees in medical physics, who have to possess the necessary physics and mathematics background knowledge to be able to follow and master the complete textbook. Medical residents, technology students and biomedical engineering students may find certain sections too challenging or esoteric, yet they...

  8. Maternal medical risks during pregnancy and childhood externalizing behavior.

    Science.gov (United States)

    Jackson, Dylan B; Vaughn, Michael G

    2018-04-25

    Research has indicated that maternal health during the prenatal period and at delivery carries far reaching significance for the development of offspring. Even so, the role of the accumulation of maternal medical risks during pregnancy in the development of externalizing behavior during childhood has generally been overlooked. The present study investigates whether the accumulation of maternal medical risks during the prenatal period is positively associated with childhood externalizing behavior, and whether this association is stronger among male offspring. We examined a large, nationally representative sample of children who participated in the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B). Information concerning maternal medical history, including the presence of a number of medical risks during pregnancy, was obtained through hospital records. A subsample of children with both parent and teacher reports of externalizing behavior during kindergarten was employed in the present study. A greater number of maternal medical risks during pregnancy increased the odds of childhood externalizing behavior across settings, but only among male offspring. The predicted probability of persistent externalizing behavior among males increased from .084 in the absence of maternal medical risks during pregnancy to .241 in the presence of three or more maternal medical risks during pregnancy. Our findings suggest that maternal medical risks during the prenatal period can have far-reaching consequences for the behavioral development of male offspring. Treatment of medical risks among expectant mothers may have the added benefit of reducing the likelihood of childhood externalizing behavior among male progeny. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Medical supervision of radiation workers

    International Nuclear Information System (INIS)

    Santani, S.B.; Nandakumar, A.N.; Subramanian, G.

    1982-01-01

    The basic elements of an occupational medical supervision programme for radiation workers are very much the same as those relevant to other professions with some additional special features. This paper cites examples from literature and recommends measures such as spot checks and continuance of medical supervision even after a radiation worker leaves this profession. (author)

  10. Radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Khurshid, S.J.; Hussain, A.M.

    1989-01-01

    Radiation sterilization is the best method of sterilization, essentially for single use medical and surgical products. Pakistan has established a commercial gamma irradiation plant for this purpose. This article overviews the advantages and benefits of radiation sterilization to stimulate the interest of industrialists and the users in this technology. This technology can give a better medical care in the country and the growing demand can only be met by bulk sterilization. The radiation sterilized medical products can also compete well with the products sterilized by other methods in the international market, gamma sterilization is accepted internationally and if adopted it can boost our export of medical products. (author)

  11. Radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Kaluska, I.; Stuglik, Z.

    1996-01-01

    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  12. Radiation physics for medical physicists

    International Nuclear Information System (INIS)

    Podgorsak, E.B.

    2006-01-01

    This book summarizes the radiation physics knowledge that professionals working in medical physics need to master for efficient and safe dealings with ionizing radiation. It contains eight chapters, each chapter covering a specific group of subjects related to radiation physics and is intended as a textbook for a course in radiation physics in medical-physics graduate programs. However, the book may also be of interest to the large number of professionals, not only medical physicists, who in their daily occupations deal with various aspects of medical physics and find a need to improve their understanding of radiation physics. The main target audience for this book is graduate students studying for M.Sc. and Ph.D. degrees in medical physics, who have to possess the necessary physics and mathematics background knowledge to be able to follow and master the complete textbook. Medical residents, technology students and biomedical engineering students may find certain sections too challenging or esoteric, yet they will find many sections interesting and useful in their studies. Candidates preparing for professional certification exams in any of the medical physics subspecialties should find the material useful, and some of the material would also help candidates preparing for certification examinations in medical dosimetry or radiation-related medical specialties. Numerous textbooks are available covering the various subspecialties of medical physics but they generally make a transition from the elementary basic physics directly into the intricacies of the given medical physics subspecialty. The intent of this textbook is to provide the missing link between the elementary physics on the one hand and the physics of the subspecialties on the other hand. (orig.)

  13. Medical supervision of radiation workers

    International Nuclear Information System (INIS)

    1968-01-01

    The first part of this volume describes the effects of radiation on living organism, both at the overall and at the molecular level. Special attention is paid to the metabolism and toxicity of radioactivity substances. The second part deals with radiological exposure, natural, medical and occupational. The third part provides data on radiological protection standards, and the fourth part addresses the health supervision of workers exposed to ionizing radiation, covering both physical and medical control.

  14. Evaluating medical and systemic factors related to maternal and ...

    African Journals Online (AJOL)

    Background: This study examined maternal morbidity and mortality and neonatal mortality over a multi-year period from de-identified retrospective medical records at Nyakahanga Designated District Hospital in north-western Tanzania. The study aimed to examine factors related to maternal mortality (MMR) and morbidity in ...

  15. Radiation Exposure from Medical Exams and Procedures

    Science.gov (United States)

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  16. Maternal Mortality at Federal Medical Centre Yola, Adamawa State ...

    African Journals Online (AJOL)

    the management of the Federal Medical centre Yola before the .... response to emergencies may help reduce deaths from obstetric ... HIV, anesthetic deaths and Diabetic ketoacidosis (DKA) were the indirect causes of maternal mortality.

  17. Radiation Physics for Medical Physicists

    CERN Document Server

    Podgorsak, Ervin B

    2010-01-01

    This well-received textbook and reference summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other hand. This expanded and revised second edition offers reorganized and expanded coverage. Several of the original chapters have been split into two with new sections added for completeness and better flow. New chapters on Coulomb scattering; on energy transfer and energy absorption in photon interactions; and on waveguide theory have been added in recognition of their importance. Others tra...

  18. Radiation education in medical and Co-medical schools

    International Nuclear Information System (INIS)

    Koga, Sukehiko

    2005-01-01

    In the medical field, ionizing radiation is very widely in diagnostic and therapeutic procedures, Around 60% of environmental radiation, including natural background and man-made sources of radiation, is caused from medical exposure in Japan. Education of radiation in medical ad co-medical schools are mainly aimed to how effectively use the radiation, and the time shared to fundamental physics, biology and safety or protection of radiation is not so much. (author)

  19. Medical standards for radiation workers

    International Nuclear Information System (INIS)

    Rae, S.

    1977-01-01

    The Council of the European Communities in its Directive of June 1, 1976 has laid down revised basic safety standards for the health protection of the general public and workers against the danger of ionising radiation. The Directive requires each Member State of the Community 'for the guidance of medical practitioners.....to draw up a list, which need not be exhaustive, of the criteria which should be taken into account when judging a worker's fitness to be exposed to ionising radiation'. Medical officers with current responsibility for radiation workers in the U.K. therefore met recently for informal exploratory discussion at the National Radiological Protection Board's headquarters, and an account is given of the views expressed there about the composition of the required 'list', and the possibility of standardizing the procedure adopted. Consideration was given to the objectives of medical examinations, the form of examination, and specific conditions which may give rise to difficulty in making a fitness assessment. These conditions are skin abnormalities, blood abnormalities, cataract, pregnancy, and psychological and psychiatric conditions. It was concluded that the medical examination of radiation workers, including blood examinations, are of value to the extent that they form part of any good general occupational health practice. The promulgation of the Euratom Directive has provided an opportunity for reviewing and standardising procedures for medical surveillance in the light of current knowledge concerning average occupational radiation doses and dose-response relationships. (U.K.)

  20. Medical management of radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-12-31

    The film gives advice on actions to be taken in case of a radiation accident. It addresses involving external irradiation of the whole and partial body, very localized exposure, uptake of radioiodine, inhalation of transuranium elements and a wound of a finger. The film is intended to illustrate the Agency`s Safety Series No. 47 entitled ``Manual on Early Medical Treatment of Possible Radiation Injury`` published in 1978

  1. Medical radiation physics in Bulgaria

    International Nuclear Information System (INIS)

    Todorov, V.; Vasileva, G.

    1999-01-01

    In Bulgaria medical radiation physics in not yet on a world level. The number of medical physicists working in diagnostic and therapeutic centres is low. Comparatively good is the situation of medical physics in the areas of therapy and radiation protection. But the role of physics in medicine is underestimated as a whole, because of subjective reasons. At the other hand the education in this area is good and very professional. Since 1992 there has been established a specialty 'medical physics' in University of Shoumen and since 1997 the same specialty exists in Sofia University. The situation is expected to be approved with reorganization of the Health System in Bulgaria with compliance with the European standards

  2. Medical aspects of radiation accidents

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1990-01-01

    Reactor accidents and nuclear bomb explosions are compared including the release of radioactivity in an accident, results of risk studies, emergency measures of nuclear power plants, and evacuation of the population. The medical aspects refer to the prophylaxies of the thyroid gland, contamination and decontamination of body surfaces, recommendations of the ICRP, radiation injury after total body exposure and medical problems after a reactor accident. (DG)

  3. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  4. Public understanding for medical radiation

    International Nuclear Information System (INIS)

    Yoo, Seongyeol

    1994-01-01

    Main sources of radiation exposure are radiography for the diagnosis of disease and radiation therapy to kill cancer cells, which are using X-ray generators or radioisotopes. The radiation of medical purpose irradiates intentionally to the patients. Another example of intentional exposure is occupational workers who are handling radiological equipment. The patients receive radiation more than the dose exposed to the occupational workers, but there is no doubt for the secondary radiation hazard. Although the epidemiologic studies represents that even low dose irradiation can cause epidemiologic studies represents that even low dose irradiation can cause cancer or congenital anomaly in human as a late effect, the risk is negligible, particularly when it is compared with the incidence of same disease in general population

  5. Maternal medication and breastfeeding: Current recommendations ...

    African Journals Online (AJOL)

    The benefits of breastfeeding for infants in the first year of life in developing countries1 and developed countries2 are well established. In addition, maternal benefits such as earlier return to pre-pregnant weight,3 increased child spacing,4 improved bone re-mineralization postpartum,5 reduction in hip fractures in the ...

  6. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  7. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  8. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  9. Radiation hazards from medical applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1981-01-01

    An introduction is presented on the radiation hazards connected with biomedical radiography and nuclear medicine. The frequency of radiodiagnostic efforts was rather high in the Netherlands. This was reduced considerably by abolishing the thorax screening of the population. About diagnostic nuclear medicine less can be said because far fewer numerical data are available. An exposition of genetically and somatically significant doses and how to compute them is given. The drawing up of a profit versus risk evaluation for medical applications of ionizing radiations is recommended. (Auth.)

  10. Medical radiation physics training EMERALD

    International Nuclear Information System (INIS)

    Tabakov, S.; Roberts, C.; Lamm, I.L.; Milano, F.; Lewis, C.; Smith, D.; Litchev, A.; Jonsson, B.A.; Ljungberg, M.; Strand, S.E.; Jonsson, L.; Riccardi, L.; Benini, A.; Silva, G. da; Teixeira, N.; Pascoal, A.; Noel, A.; Smith, P.; Musilek, L.; Sheahan, N.

    2001-01-01

    Training of young medical physicists is an essential part of the framework of measures for Radiological Protection of Patients. The paper describes the Medical Radiation Physics Training Scheme EMERALD, developed by an European Project Consortium. EMERALD Training covers the Physics of X-ray Diagnostic Radiology, Nuclear Medicine and Radiotherapy. Each of these 3 modules covers 4 months training period. The EMERALD training materials are 3 Workbooks with tasks and a Teachers' Guide (total volume approx 700 pages) and 3 CD-ROMs with image database. (author)

  11. Radiation dosimeters for medical use

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    The several personal radiation dosimeter types for medical use, which look like promising for this kind of application, as pMOS (RADFET) dosimeter, direct ion storage (DIS) dosimeters, thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters, are described, and their advantages and disadvantages are analyzed. The p-channel metal-oxide-semiconductor (pMOS) dosimetric transistors allow dose measurements in vivo in real time, and they are especially important for radiotherapy. Direct ion storage (DIS) dosimeters are a hybrid of ion chamber and floating gate MOSFETs (FGMOSFETs), show very high sensitivity. Radiative processes that happen during the exposure of crystal to radiation are classified as prompt luminescence or radioluminescence (RL). In the case of an emission during stimulation, this phenomenon is referred to thermoluminescence or optically stimulated luminescence depending on whether the stimulation source is heat or light. TL and OSL dosimeters are natural or synthetic materials, which the intensity of emitted light is proportional to the irradiation dose. (Author)

  12. Medical management of radiation emergencies

    International Nuclear Information System (INIS)

    Bongirwar, P.R.

    2002-01-01

    This review deals specifically with the medical management of victims, such as, the triage of exposed individuals on the basis of preliminary observations and investigations, planning priority of treatment to different groups, emergency care, and definitive care. The infrastructure for appropriate management involves first aid posts, decontamination centre, Site Hospital and Specialized Central Hospital. Medical management of life threatening radiation doses involve haematological examinations, blood component therapy, treatment with growth factors and if necessary, bone marrow transplantation as the last option. Most of the radiation accidents involving partial body and localized exposures are associated with industrial radiography sources. Such exposures are generally not life threatening but may involve serious skin injury, such as, ulceration, necrosis and gangrene. Methods have been developed to carry out decontamination of skin and decorporation of internally deposited radio nuclides. This article also provides information on the Radiation Emergency Medical Preparedness and Assistance Network and also outlines the role of media in reducing the human suffering in the event of an accident

  13. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients

  14. Progress in Medical Radiation Physics

    International Nuclear Information System (INIS)

    Orton, C.G.

    1982-01-01

    In-depth reviews of the advances and concepts in the application of radiation to medicine are presented in six comprehensive review articles which help to bridge the communications gap between the international research community and the medical physicists and physicians whose responsibility it is to put these advances into clinical use. Topics include techniques used both for the diagnosis of disease, such as computerized tomography, digital radiography, ultrasonography, computerized nuclear medicine scanning, and nuclear magnetic resonance imaging, and for its treatment, such as the radiotherapeutic utilization of high-LET radiations, and the widespread application of computers to perform dosimetry calculations from 3-D treatment planning and imaging. Each chapter has extensive references and the collection is indexed

  15. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  16. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  17. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  18. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  19. Medical preparedness for radiation emergency in Japan

    International Nuclear Information System (INIS)

    Akashi, Makoto

    1997-01-01

    Medical preparedness for radiation emergency in Japan is primary for off-site public protection. Many things remains to be discussed about on-site emergency medical problems. On the other hand, each nuclear facility should have a countermeasure plan of radiation emergency including medical measures for the emergency. Disaster countermeasure act and a guideline from NSC entitled 'Off-site emergency planning and preparedness for nuclear power plants' establish the system for countermeasures in radiation emergencies. The guideline also establishes medical plans in radiation emergencies, including care system for the severely contaminated or injured. NIRS is designated by the guideline as the definite care hospital for radiation injuries and is prepared to dispatch medical specialists and to receive the injured. NIRS conducts clinical follow-up studies of the injured, researches of diagnosis and treatments for radiation injuries, and education and training for medical personnel. NIRS has the plans to serve as the reference center for emergency in Japan and also in Asia, if necessary. NIRS would like to serve as a member of WHO Collaborating Center for Radiation Emergency Medical Preparedness and Assistance (REMPAN). Now NIRS is making preparation for providing 24-hours direct or consultative assistance with medical problems associated with radiation accidents in local, national, and hopefully international incidents. (author)

  20. Radiation oncology: a primer for medical students.

    Science.gov (United States)

    Berman, Abigail T; Plastaras, John P; Vapiwala, Neha

    2013-09-01

    Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.

  1. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  2. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1993-01-01

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  3. Ethical aspect in medical radiation use

    International Nuclear Information System (INIS)

    Kiefer, Juergen

    2014-01-01

    Medical radiation uses hold a specific position in radiation protection. Patients are purposely exposed to radiation while usually radiation exposure should be avoided. The radiation doses are (at least in principle) planned the risks may be estimated (again in principle). The hazards are justified by the medical benefit. Otherwise irradiation is a violation of physical integrity (article 2 Grundgesetz) that can be prosecuted. For patients no dose limits exist, the responsible physician decides on the real exposures. Justification and optimization are of predominant importance. The decision on the radiological measure, the applied technology is an ethically motivated decision besides the everyday routine.

  4. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  5. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  6. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  7. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  8. Medical care of radiation accidents

    International Nuclear Information System (INIS)

    Nakao, Isamu

    1986-01-01

    Focusing on the population exposed to radioactivity released from a nuclear power plant, the paper gives an overview of medical strategies in emergency care, steps in medical care, and clinical procedures including decontamination and oral administration of iodine-131. Strategies for evacuation are presented depending on predicted exposure doses to the whole body and thyroid gland. Medical care consists of three steps. When the thyroid gland is supposed to be exposed to 5 - 50 rem or more, the oral administration of iodine-131 is recommended. (Namekawa, K.)

  9. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  10. Problems of radiation protection at medical use of radiation equipment

    International Nuclear Information System (INIS)

    Larwin, K.

    1979-01-01

    For medical use of radiation equipment man is not only operator, but also object (patient). The question, if or how much it is necessary to expose the patient, is a medical problem and therefore not to be discussed here. For the user of medical equipments we have often special conditions. For many diagnostic applications the physician has to stay in the application room in contact with the patient. As a typical example for the problems of radiation protection there is discussed the situation on a well known fluoroscopic unit for lung and stomach examinations. (author)

  11. Medical response to radiation emergencies in Argentina

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.; Dubner, Diana L.; Michelin, Severino C.; Vazquez, M.; Demayo, O.

    2006-01-01

    Although radiation accidents are not frequent, the increasing use of radioisotopes in medicine and industry increases the likelihood of such accidental situations. Additionally, risks posed by the malevolent use of radiation sources have been highlighted during the last few years. In this context, the enhancement of national capabilities for medical assistance of victims in radiation emergencies becomes relevant. This communication describes the organization of medical response to radiation emergencies existing in Argentina. A three-level system for medical response has been developed: pre-hospital response given on-site by local emergency services, assistance provided by emergency departments of local general hospitals and central reference hospitals for treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination. An education and training program is regularly executed at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been elaborated and implemented. Research and development of new strategies for diagnosis and treatment of radiation injuries are promoted by ARN in close collaboration with physicians belonging to reference hospitals. (author)

  12. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  13. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  14. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  15. Medical management and planning for radiation emergencies

    International Nuclear Information System (INIS)

    Bongirwar, P.R.

    2001-01-01

    Radiation Emergencies which result as a consequence of nuclear or radiological accidents can produce a spectrum of different types of radiation injuries which could include cases of whole body irradiation causing Acute Radiation Syndrome, partial body irradiation, radiation burns (localized irradiation), radioactive contamination and combined injuries having component of conventional injuries. General principles of managing these cases entail doing triage, offering immediate emergency care and instituting definitive treatment. Infra-structural facilities which are required to facilitate their management include first aid post at plant site, personnel decontamination centre, site clinic and specialized hospital which can offer comprehensive investigational and treatment modalities. Training of medical and paramedical personnel is crucial as part of emergency preparedness programme and if needed, help can be sought from WHO's Radiation Emergency Medical Preparedness and Assistance Network Centres. (author)

  16. Radiation Safety Awareness Among Medical Staff

    International Nuclear Information System (INIS)

    Szarmach, Arkadiusz; Piskunowicz, Maciej; Świętoń, Dominik; Muc, Adam; Mockałło, Gabor; Dzierżanowski, Jarosław; Szurowska, Edyta

    2015-01-01

    The common access to imaging methods based on ionizing radiation requires also radiation protection. The knowledge of ionizing radiation exposure risks among the medical staff is essential for planning diagnostic procedures and therapy. Evaluation of the knowledge of radiation safety during diagnostic procedures among the medical staff. The study consisted of a questionnaire survey. The questionnaire consisted of seven closed-ended questions concerning the knowledge of the effects of exposure to ionizing radiation as well as questions related to responder’s profession and work experience. The study group included a total of 150 individuals from four professional groups: nurses, doctors, medical technicians, support staff. The study was carried out in the three largest hospitals in Gdańsk between July and October 2013. The highest rates of correct answers to questions related to the issue of radiation protection were provided by the staff of radiology facilities and emergency departments with 1–5 years of professional experience. The most vulnerable group in terms of the knowledge of these issues consisted of individuals working at surgical wards with 11–15 years of professional experience. Education in the field of radiological protection should be a subject of periodic training of medical personnel regardless of position and length of service

  17. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  18. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  19. Medical radiation dosimetry with radiochromic film

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, NSW; Cheung, T.; Yu, P.K.N.; Metcalfe, P.

    2004-01-01

    Full text: Photon, electron and proton radiation are used extensively for medical purposes in diagnostic and therapeutic procedures. Dosimetry of these radiation sources can be performed with radiochromic films, devices that have the ability to produce a permanent visible colour change upon irradiation. Within the last ten years, the use of radiochromic films has expanded rapidly in the medical world due to commercial products becoming more readily available, higher sensitivity films and technology advances in imaging which have allowed scientists to use two-dimensional dosimetry more accurately and inexpensively. Radiochromic film dosimeters are now available in formats, which have accurate dose measurement ranges from less than 1 Gy up to many kGy. A relatively energy independent dose response combined with automatic development of radiochromic film products has made these detectors most useful in medical radiation dosimetry. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  20. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  1. Radiation exposure and management of medical employes

    International Nuclear Information System (INIS)

    Yamamoto, Chiaki

    1981-01-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ν-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ν-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years. (J.P.N.)

  2. Radiation exposure and management of medical employes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, C [Nagoya Univ. (Japan)

    1981-11-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ..gamma..-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ..gamma..-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years.

  3. Medical application of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hyodo, Kazuyuki; Nishimura, Katsuyuki.

    1990-01-01

    The number of patients suffering from ischemic heart disease is also increasing rapidly in Japan. The standard method for assessing coronary artery diseases is the coronary angiography. Excellent images are taken by this method, however, it is an invasive method in which a catheter into a peripheral artery. The patients would obtain great benefit if the coronary arteries could be distinguished by intravenous injection of the contrast material. The K-edge subtraction method, which uses the K-edge discontinuity in the attenuation coefficient of the contrast material, is considered to be the most suitable method for coronary angiography by peripheral venous injection. Synchrotron Radiation (SR) is so intense that it allows selection of monochromatic X-rays, and studies on K-edge subtraction using SR has been started at some facilities. Recent activities K-edge subtraction method at the Accumulation Ring are briefly described here. (author)

  4. Radiation education required for medical staff

    International Nuclear Information System (INIS)

    Kunugida, Naoki

    2014-01-01

    This paper introduces the present state and problems of radiation education in the training course for health professionals. Firstly, the following are introduced: Revised version of 'Medical education model and core curriculum ? Guidelines for educational contents (FY2010),' and the contents of pre-graduation education of education curriculum at the Department of Radiation Biology and Health, University of Occupational and Environmental Health (UOEH). Next, the author describes his educational experience at the Institute of Industrial Ecological Sciences (Nursing) of UOEH, and stresses the need for radiation education in order to eliminate the anxiety of nurses against radiation. In addition, he also describes the present state and problems with respect to exposure and radiation risk due to the Fukushima nuclear accident. (A.O.)

  5. Maternal role attainment with medically fragile infants: Part 2. relationship to the quality of parenting.

    Science.gov (United States)

    Holditch-Davis, Diane; Miles, Margaret Shandor; Burchinal, Margaret R; Goldman, Barbara Davis

    2011-02-01

    We examined which components of maternal role attainment (identity, presence, competence) influenced quality of parenting for 72 medically fragile infants, controlling for maternal education and infant illness severity. Maternal competence was related to responsiveness. Maternal presence and technology dependence were inversely related to participation. Greater competence and maternal education were associated with better normal caregiving. Presence was negatively related although competence was positively related to illness-related caregiving. Mothers with lower competence and more technology dependent children perceived their children as more vulnerable and child cues as more difficult to read. Maternal role attainment influenced parenting quality for these infants more than did child illness severity; thus interventions are needed to help mothers develop their maternal role during hospitalization and after discharge. © 2010 Wiley Periodicals, Inc. Res Nurs Health 34:35-48, 2011. Copyright © 2010 Wiley Periodicals, Inc.

  6. Enabling coordination within medical settings: case of a maternity ward

    Directory of Open Access Journals (Sweden)

    Fouzi LEZZAR

    2013-06-01

    Full Text Available Purpose: This study evaluates the planning process issues in healthcare institutions that can be considered as a high risk environment. Most recent healthcare research has focused on methods mainly based on communication, rather than collaboration supports. Material Methods: We followed then a collaborative-based planning approach which constitutes an evolution of planning environment toward new shared workspaces supporting collaboration. Our work led us first, to analyse the related tasks in an Algerian maternity ward in order to highlight the vital collaborative medical tasks that need to be modelled. Results: the paper summaries basic design concepts of our collaborative planning system that is designed to make group interaction support flexible for care coordination and continuity. Conclusion: after development and test of our collaborative planning system, we noticed that our collaborative and planning system can increase awareness and hence decrease coordination breakdowns, reduce costs of information collecting and sharing. All these factors constitute a crucial aspect of an efficient management of a hospital.

  7. Medical radiation protection practice within the EEC

    International Nuclear Information System (INIS)

    Fitzgerald, M.; Courades, J.-M.

    1991-01-01

    The Proceedings of this meeting give a comparative overview of current legislation and practice in the European Member States. This publication represents the most comprehensive collection of data on the legal and administrative aspects of medical radiation protection within the EEC. (author)

  8. Medical Ethics and Protection from Excessive Radiation

    International Nuclear Information System (INIS)

    Ruzicka, I.

    1998-01-01

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  9. Emergency Medical Rescue in a Radiation Environment

    International Nuclear Information System (INIS)

    Briesmeister, L.; Ellington, Y.; Hollis, R.; Kunzman, J.; McNaughton, M.; Ramsey, G.; Somers, B.; Turner, A.; Finn, J.

    1999-01-01

    Previous experience with emergency medical rescues in the presence of radiation or contamination indicates that the training provided to emergency responders is not always appropriate. A new course developed at Los Alamos includes specific procedures for emergency response in a variety of radiological conditions

  10. Medical management of radiation burns - some experiences

    International Nuclear Information System (INIS)

    Iyer, G.K.

    2014-01-01

    Localized exposure resulting in radiation burns are serious injuries, seen not only in this country but all over the world. All of these injuries have resulted from accidents in Industrial Radiography (non-destructive testing). In our country all these injuries have occurred in the private sectors who handle these radiography sources. These sources can be of Iridium-192 or Cobalt-60. Some of these accidents have occurred involving trained radiographers but sometimes casual workers have been exposed. Skin is highly vulnerable to the external radiation exposure. Damage of varying extent can be seen following radiotherapy and accidents involving X- and gamma-ray sources. The reaction is related to the absorbed dose, which in turn is dependent upon the energy of radiation and weather it is particulate or electromagnetic radiation. Beta particles give up their energy within a short range and hence are more hazardous. Radiation burns develop slowly and blister formation occurs usually after 4 weeks. After exposure the skin response occurs in the form of transient erythema, fixed erythema, transepidermal burns, full thickness radiation burns and epilation. In radiation accidents, particularly those involving X-ray machines, the patients may not be aware of the time of accident and the dose may not be known in those circumstances. The medical management and treatment of such patients, therefore, has its own challenges. This talk will share some experiences on treatment of radiation injuries. (author)

  11. Medical radiation protection in next decade

    International Nuclear Information System (INIS)

    Rehani, M. M.; Vano, E.

    2011-01-01

    Interest in medical radiation protection today is the same as what it would have been almost a century ago. After many decades of relatively safe application of radiation in medicine, the recent spurt in over exposures, over-use of imaging and accidental exposures has created the need for stakeholders to join hands and contribute towards increasing radiation safety levels. Whether it be the need for technological developments to achieve sub-mSv CT scans, tracking of patient exposure history, accounting for repeated exposures of the same patient, specific consideration of requests for radiological examinations that deliver few mSv of dose, or utilization of regulatory approaches, radiological equipment will need to alert users whenever the radiation dose to the patient is above a defined value. The current decade will focus increasingly on carcinogenic effects in patients. (authors)

  12. A Comparison of Medical Birth Register Outcomes between Maternity Health Clinics and Integrated Maternity and Child Health Clinics in Southwest Finland.

    Science.gov (United States)

    Tuominen, Miia; Kaljonen, Anne; Ahonen, Pia; Mäkinen, Juha; Rautava, Päivi

    2016-07-08

    Primary maternity care services are globally provided according to various organisational models. Two models are common in Finland: a maternity health clinic and an integrated maternity and child health clinic. The aim of this study was to clarify whether there is a relation between the organisational model of the maternity health clinics and the utilisation of maternity care services, and certain maternal and perinatal health outcomes. A comparative, register-based cross-sectional design was used. The data of women (N = 2741) who had given birth in the Turku University Hospital area between 1 January 2009 and 31 December 2009 were collected from the Finnish Medical Birth Register. Comparisons were made between the women who were clients of the maternity health clinics and integrated maternity and child health clinics. There were no clinically significant differences between the clients of maternity health clinics and integrated maternity and child health clinics regarding the utilisation of maternity care services or the explored health outcomes. The organisational model of the maternity health clinic does not impact the utilisation of maternity care services or maternal and perinatal health outcomes. Primary maternity care could be provided effectively when integrated with child health services.

  13. Medical basis for radiation accident preparedness

    International Nuclear Information System (INIS)

    Huebner, K.F.; Fry, S.A.

    1980-01-01

    The International Conference on The Medical Basis for Radiation Accident Preparedness was organized by the staff of the Radiation Emergency Assistance Center/Training Site (REAC/TS) of the Medical and Health Sciences Division of Oak Ridge Associated Universities (ORAU). The philosophical importance of relating, through investigation and education, the intellectual resources of higher education to the important social problems associated with energy, health, and the environment was the foundation of the meeting. The symposium, held under the auspices of the US Department of Energy, was the ninth since 1960 of a series of international conferences addressing the various aspects of radiation accidents. The approach of this most recent conference differed somewhat from that of those preceding it, in that it sought an international review of the gamut of the medical aspects of radiation injury, not only for the experts in the field, but also for other physicians and scientists who, in view of current events, have had the need to know thrust upon them. Individual entries were made for the separate papers

  14. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Giacomini, J.C.; Gordon, H.J.

    1991-01-01

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  15. Contribution of maternal radionuclide burdens to prenatal radiation doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.; Meznarich, H.K.; Thrall, K.D.

    1992-03-01

    This report discusses approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radionuclides in chemical forms that provided a spectrum of metabolic and dosimetric characteristics. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were estimated for these materials, and were combined with data from biokinetic transfer models to predict radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. Medical Internal Radiation Dosimetry (MIRD) methodologies were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed for representative situations; introduction of 1 μCi into a woman's blood at successive months of pregnancy was assumed to accommodate the stage dependence of geometric relationships and biological behaviors. Summary tables of results, correlations, and dosimetric relations, and of tentative generalized categorizations, are provided in the report

  16. Progress in medical radiation physics. Vol. 1

    International Nuclear Information System (INIS)

    Orton, C.G.

    1982-01-01

    This book is the first of a series that will provide in-depth reviews of new developments in medical radiation physics. This volume is directed toward application scientists who are involved with research in this field. Six chapters review current topics in medical radiation physics. The first chapter reviews neutron dosimetry for biomedical applications. The second chapter briefly surveys current tissue inhomogeneity corrections in proton-beam treatment planning. Chapter three deals with anthropomorphic phantom materials. It includes a useful table of recommended tissue substitutes and information on manufacturing. The fourth chapter reviews applications of computed tomography (CT) in radiotherapy treatment planning. Chapter five is a short introduction to positron imaging. The last chapter describes optical methods for radiograph storage

  17. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  18. Radiation emergency planning for medical organizations

    International Nuclear Information System (INIS)

    Jerez Vergueria, Sergio F.; Jerez Vergueria, Pablo F.

    1997-01-01

    The possible occurrence of accidents involving sources of ionizing radiation demands response plans to mitigate the consequences of radiological accidents. This paper offers orientations in order to elaborate emergency planning for institutions with medical applications of ionizing radiation. Taking into account that the prevention of accidents is of prime importance in dealing with radioactive materials and others sources of ionizing radiation, such as X-rays, it is recommended that one include in emergency instructions and procedures several aspects relative to causes which originate these radiological events. Topics such as identification of radiological events in these practices and their consequences, protective measures, planning for and emergency response and maintenance of emergency capacity, are considered in this article. (author)

  19. The global assessment of medical radiation exposures

    International Nuclear Information System (INIS)

    Shannoun, F.

    2010-01-01

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to s tudy the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use . (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  20. A review of child medical radiation exposure

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    During their first year, children may undergo a lot of X-ray exams: of hips at the age of 4 months to detect any deformities, of lungs to detect bronchiolitis, of bones to detect breaks, of jaw (dental panoramic) to prepare for possible medical care in orthodontics. A survey shows that the medical radiation dose received by children is less than 0.35 mSv a year while the average dose for an adult is 4.5 mSv. This figure is reassuring but children exposure needs to be carefully monitored as children are more sensitive to radiation because they are growing. The control of radiation exposure is made through a compulsory survey: every year radiologists must send to the IRSN (Institute for Radioprotection and Nuclear Safety) the radiation doses received by 30 patients for the most common radiological examinations and the IRSN will then define reference doses based on these figures. The feedback over the 2013-2015 period for children exposure is very low. A new methodology must be defined to compensate this lack of data. The strategy is to reduce the global dose by performing only fully justified examinations and to adapt the dose to the real size and weight of the child. (A.C.)

  1. Ionizing radiations: medical and industrial applications

    International Nuclear Information System (INIS)

    Vidal, H.

    1994-01-01

    Medical diagnosis with X-rays is the best known use of ionizing radiations on account of its wide diffusion (about 57 500 units in France). Other medical applications of artificial radionuclides involving a smaller number of installations are also well known, i.e. gamma teletherapy (167 units), brachytherapy (119 units) or therapy using unsealed sources (257 units). The industrial uses of ionising radiation, the diversity of which is very large, are generally less well known. The use of X- and gamma rays for non-destructive testing or food preservation and the use of tracers have some notoriety, but few people know that radioactive sources are involved in the measurement of parameters controlling industrial processes. The number of persons authorized to hold, use and/or sell artificial radionuclides amounts to about 4 800, all applications included. Approximately 650 of them are involved in therapy and 500 in medical research. The aim of this paper, which is not exhaustive, is to review a few typical applications of radionuclides both in the medical and industrial fields. It also supplies data both on the number of people authorized to use each technique and the radionuclides involved. (author). 10 tabs

  2. Medical Response in Radiation Emergency in Argentina

    International Nuclear Information System (INIS)

    Vazquez, M.A.; Tadic, M.M.

    2011-01-01

    According to the Nuclear Federal Law No. 24804, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control the nuclear activity with regard to radiological and nuclear safety, physical protection and nuclear non-proliferation issues. ARN has a system for intervention in radiological -and nuclear emergencies with a primary intervention group, which is on duty in weekly shifts all year round. This paper aims at describing the system as implemented at present. The Emergency Medical System has been developed into three levels: Level I: local emergency services. This level includes triage (conventional and radiological), first-aid care, and first management of contaminated victims Level II: emergency departments of local general hospitals that are in charge of performing a second triage by a biomedical approach, the treatment of conventional and/or radiocombined injuries and completing decontamination as necessary. In this way the initial triage is completed by a physical examination, timing and severity of prodromal signs and symptoms, sequential blood counts and serum enzymatic levels that allow a first-stage dosimetric approach at this level. Victims requiring higher complexity assistance shall be transferred to third-level hospitals. Level III: three central reference hospitals (Hospital Naval 'Pedro Mallo', Hospital de Quemados from Gobierno Autonomo de la Ciudad de Buenos Aires and Hospital Britanico de Ciudad de Buenos Aires) capable of providing healthcare for diagnosis and treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination constitute this level. An educational program for medical and paramedical responders is regularly carried out at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been drawn up. Research and development of new strategies for first medical response, diagnosis and treatment of radiation

  3. Medical response in radiation emergency in Argentina

    International Nuclear Information System (INIS)

    Vazquez, Marina A.; Tadic, Maria M.

    2008-01-01

    According to the Nuclear Federal Law Nr. 24804, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control the nuclear activity with regard to radiological and nuclear safety, physical protection and nuclear non-proliferation issues. ARN has a system for intervention in radiological -and nuclear emergencies with a primary intervention group, which is on duty in weekly shifts all year round. This paper aims at describing the system as implemented at present. The Emergency Medical System has been developed into three levels: Level I: local emergency services. This level includes triage (conventional and radiological), first-aid care, and first management of contaminated victims. Level II: Emergency departments of local general hospitals that are in charge of performing a second triage by a biomedical approach, the treatment of conventional and/or radio-combined injuries and completing decontamination as necessary. In this way the initial triage is completed by a physical examination, timing and severity of prodromal signs and symptoms, sequential blood counts and serum enzymatic levels that allow a first-stage dosimetric approach at this level. Victims requiring higher complexity assistance shall be transferred to third-level hospitals. Level III: three central reference hospitals (Hospital Naval 'Pedro Mallo', Hospital de Quemados from Gobierno Autonomo de la Ciudad de Buenos Aires and Hospital Britanico de Ciudad de Buenos Aires) capable of providing health care for diagnosis and treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination constitute this level. An educational program for medical and paramedical responders is regularly carried out at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been drawn up. Research and development of new strategies for first medical response, diagnosis and treatment of radiation

  4. EMERALD - Vocational training in medical radiation physics

    International Nuclear Information System (INIS)

    Lewis, C.A.; Tabakov, S.D.; Roberts, V.C.

    2000-01-01

    EMERALD (European MEdiation RAdiation Learning Development) is a project funded by the European Union under the Leonardo da Vinci programme. It involves a collaboration between Universities and Hospitals from the UK, Sweden, Italy and Portugal. The aim of the EMERALD project is to develop and deliver three common transnational vocational training modules in Medical Radiation Physics in the specific areas of Diagnostic Radiology, Nuclear Medicine and Radiotherapy. These modules are intended to be used in the training programme for young professionals involved in medical radiation physics. Each module is developed from a series of competencies. The competencies are acquired by undertaking practical tasks described in a workbook given to each trainee. Once the task has been completed the trainee discusses the results and observations with his supervisor to ensure that the appropriate competency has been achieved. In addition to the workbook, each trainee receives a CD-ROM containing a series of images to help describe each task. The workbooks for each subject area have been completed and students from Sweden have undertaken Diagnostic Radiology training in the United Kingdom using this approach. The project is now entering the next phase; to develop a multimedia version of the workbook. (author)

  5. Responsibility structure in medical radiation applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1989-01-01

    The author discusses the various aspects of the responsibilities of physicians and clinical physicists with regard to radiation protection in medical applications of ionizing radiation. It becomes still clearer that the physician, who carries out the examination or the treatment, also has to bear the responsibility. this holds for the indication assessment as well as for optimization of the quality of the examination or treatment versus radiation burden of the patient, radiologic worker and thirds. Further it is clear that the physician in these will have to delegate specific tasks and responsibilities, whether or not in the elongated-arm construction. The clinical physicist is responsible in particular for the applications of the physical methods and watches the quality of the apparatus and methods used. As such he also is responsible for the technical workers, who take care of the preventive and corrective maintenance. The principal responsibility of the clinical physicist however lies in the field of standardization and calibration of medical-physical instruments. Besides this investigation into and development of new techniques, methods and apparatus come up, while also education and training of various profession groups involved need attention. (author). 6 refs.; 1 tab

  6. Medical record validation of maternally reported history of preeclampsia

    NARCIS (Netherlands)

    M. Coolman (Marianne); C.J.M. de Groot (Christianne); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); H. Raat (Hein); E.A.P. Steegers (Eric)

    2010-01-01

    textabstractObjective: In this study, we assessed the validity of maternally self-reported history of preeclampsia. Study Design and Setting: This study was embedded in the Generation R Study, a population-based prospective cohort study. Data were obtained from prenatal questionnaires and one

  7. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  8. Individual radiation sensitivity: implications in medical practice

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, P.; Dubner, D.; Perez, M.D.R.; Michelin, S.; Di Giogio, M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, Paris (France)

    2006-07-01

    Important advances in radiotherapy and nuclear medicine towards better treatment modalities and safer applications have taken place in recent years. Progress in medical imaging, better tumour targeting and optimization of radiation delivery have allowed for dose escalation and improved patient outcome. However, the tolerance of normal tissues constitutes the limiting factor for dose escalation in therapeutical uses of ionizing radiation (IR). Patients vary considerably in their normal tissue response to IR even after similar treatments. As many as 5% of cancer patients develop severe effects to external radiation therapy in normal tissues within the treatment field: they may include acute effects such as erythema and desquamation of the exposed skin and mucosa that appear during or directly after radiotherapy, late effects developed months or years later, such as fibrosis and telangiectasia and cancer induction. Several patient and treatment related factors are known to influence the variability of side effects, however up to a 70% of the total variance of normal tissue radiation response remained unexplained. Thus, individual sensitivity to IR, i.e. hypersensitivity to carcinogenic risks (stochastic effects) and hypersensitivity to deterministic effects, is becoming an important issue in oncology and raises questions regarding the underlying mechanisms. The mechanisms of DNA repair, the signalling pathways involved in radiation sensitivity and non-targeted effects are key aspects, essential to understanding radiation effects at genetic level. Moreover, human genetic diseases that combine higher incidence of cancer and hypersensitivity to IR are associated with defects in cell response to DNA damage. Therefore, much interest has raised during the last years in the developing of predictive tests capable to detect in advance such hypersensitive conditions. The goal of this presentation is to review the possible mechanisms involved in genetic and epigenetic

  9. Individual radiation sensitivity: implications in medical practice

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Perez, M.D.R.; Michelin, S.; Di Giogio, M.; Bourguignon, M.

    2006-01-01

    Important advances in radiotherapy and nuclear medicine towards better treatment modalities and safer applications have taken place in recent years. Progress in medical imaging, better tumour targeting and optimization of radiation delivery have allowed for dose escalation and improved patient outcome. However, the tolerance of normal tissues constitutes the limiting factor for dose escalation in therapeutical uses of ionizing radiation (IR). Patients vary considerably in their normal tissue response to IR even after similar treatments. As many as 5% of cancer patients develop severe effects to external radiation therapy in normal tissues within the treatment field: they may include acute effects such as erythema and desquamation of the exposed skin and mucosa that appear during or directly after radiotherapy, late effects developed months or years later, such as fibrosis and telangiectasia and cancer induction. Several patient and treatment related factors are known to influence the variability of side effects, however up to a 70% of the total variance of normal tissue radiation response remained unexplained. Thus, individual sensitivity to IR, i.e. hypersensitivity to carcinogenic risks (stochastic effects) and hypersensitivity to deterministic effects, is becoming an important issue in oncology and raises questions regarding the underlying mechanisms. The mechanisms of DNA repair, the signalling pathways involved in radiation sensitivity and non-targeted effects are key aspects, essential to understanding radiation effects at genetic level. Moreover, human genetic diseases that combine higher incidence of cancer and hypersensitivity to IR are associated with defects in cell response to DNA damage. Therefore, much interest has raised during the last years in the developing of predictive tests capable to detect in advance such hypersensitive conditions. The goal of this presentation is to review the possible mechanisms involved in genetic and epigenetic

  10. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  11. Unjustified prenatal radiation exposure in medical applications

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lamadrid, A.I.; Garcia Lima, O.; Diaz Bernal, E.; Freixas, V.; Lopez Bejerano, G.; Sanchez, R.

    2001-01-01

    The exposure to the radiation ionising of pregnant women, frequently constitutes motive of preoccupation for the expectant mother and the medical professionals taken the responsibility with its attention. The protection of the embryo-fetus against the ionising radiation is of singular importance due to its special vulnerability to this agent. On the other hand the diagnosis or treatment with radiations ionising beneficial for the expectant mother, are only indirectly for the embryo-fetus that is exposed to a hazard without perceiving anything. The present paper presents the experience obtained in the clinical and dosimetric evaluation from twenty-one pregnant patients subjected to diverse radiodiagnostic procedures or nuclear medicine during the years 1999-2000. The obtained results evidence that 24% of the patients was subjected to procedures of nuclear medicine with diagnostic purposes. While the period of pregnancy of the patients ranged between 4 and 12 weeks, it could be concluded that in all the cases the doses received by the patients in the whole body did not exceed 2 mSv. When conjugating the period of pregnancy of the patients with the doses received, there is no evidence of significant risk for the embryo-fetus. Paradoxically the physicians of assistance suggested to their patients in all the cases to carry out the interruption of the pregnancy, demonstrating with this decision ignorance on the biological effects of the ionizing radiations during the prenatal exposures. (author)

  12. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  13. Ethics and the medical uses of radiation

    International Nuclear Information System (INIS)

    Hibbard, W.M.

    1982-01-01

    The basis of ethical practice for the medical community in general and for nuclear medicine technology in particular is described as follows: 1) Know and use current guidelines for safe work procedures; 2) Establish and maintain a quality assurance program for equipment and radiopharmaceuticals; 3) Develop work habits incorporating the philosophy of the ALARA concept (radiation dose as low as reasonably achievable); 4) Establish and use protocols for routine procedures; 5) Make exceptions to accepted practices when benefit vs risk warrants these exceptions; 6) Make periodic audits to determine if ethical standards are being applied

  14. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  15. Scanography - Radiation protection: medical sector FR 4

    International Nuclear Information System (INIS)

    Herain, C.; Machacek, C.; Menechal, P.; Aubert, B.; Rehel, J.L.; Vidal, J.P.; Biau, A.; Barbe, R.; Lahaye, T.; Gauron, C.; Gambini, D.; Pierrat, N.; Donnarieix, D.; Marande, J.L.; Barret, C.; Guerin, C.

    2011-09-01

    This document presents the various aspects and measures related to radiation protection when performing a scanography examination for diagnosis purposes, as well as interventional actions for diagnosis or treatment purposes. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention, incident and dysfunction). It indicates the different practices and aspects of medical monitoring (personnel, pregnant women, treatment of anomalies and incidents, medical file, certificate of occupational exposure). It evokes how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, electric risk). The appendix proposes an example of workstation study in the case of scanography

  16. Basic principles of medical aid in cases of radiation accidents

    International Nuclear Information System (INIS)

    Andreev, E.; Mikhajlov, M.A.; Bliznakov, V.

    1979-01-01

    A model scheme has been presented of medical aid organization in emergency cases of irradiation. The tasks of medical service have been pointed out in connection with evacuation stages, bulk of medical aid depending on the natur of radiation damages, first aid and some general principles of radiation sickness treatment. (author)

  17. Medical modification of human acute radiation injury

    International Nuclear Information System (INIS)

    Wald, N.; Watson, J.A.

    1977-01-01

    In weighing the benefits and risks of utilizing nuclear energy, there must be a continuing reassessment as nuclear technology develops and changes. The health effects of radiation accidents, as most important part of the risk, must also be reevaluated as our medical ability grows to modify and ameliorate the consequences. The therapeutic efforts were classified as minimal, supportive or heroic. Supportive treatment included reverse isolation, detailed clinical laboratory measurements copious antibiotics, and transfusions of various blood cells, electrolytes and nutrients. Heroic treatment added bone marrow transplantation, while minimal treatment included none of these. It was concluded that while the LD 50 for man is about 340 rads with only minimal treatment, it could be increased to 510 rads with supportive therapy and to over 1,000 rads with heroic treatment. Hematopoietic injury predominated in this exposure range. Finally an estimate of the medical facilities available in the United States to meet these potential clinical needs was made. The relationship of the medical care resources to the likely needs following a serious nuclear power plant accident will be discussed

  18. Advanced maternal age: ethical and medical considerations for assisted reproductive technology.

    Science.gov (United States)

    Harrison, Brittany J; Hilton, Tara N; Rivière, Raphaël N; Ferraro, Zachary M; Deonandan, Raywat; Walker, Mark C

    2017-01-01

    This review explores the ethical and medical challenges faced by women of advanced maternal age who decide to have children. Assisted reproductive technologies (ARTs) make post-menopausal pregnancy physiologically plausible, however, one must consider the associated physical, psychological, and sociological factors involved. A quasi-systematic review was conducted in PubMed and Ovid using the key terms post-menopause, pregnancy + MeSH terms [donations, hormone replacement therapy, assisted reproductive technologies, embryo donation, donor artificial insemination, cryopreservation]. Overall, 28 papers encompassing two major themes (ethical and medical) were included in the review. There are significant ethical considerations and medical (maternal and fetal) complications related to pregnancy in peri- and post-menopausal women. When examining the ethical and sociological perspective, the literature portrays an overall positive attitude toward pregnancy in advanced maternal age. With respect to the medical complications, the general consensus in the evaluated studies suggests that there is greater risk of complication for spontaneous pregnancy when the mother is older (eg, >35 years old). This risk can be mitigated by careful medical screening of the mother and the use of ARTs in healthy women. In these instances, a woman of advanced maternal age who is otherwise healthy can carry a pregnancy with a similar risk profile to that of her younger counterparts when using donated oocytes.

  19. The role of medical physicist in radiation protection

    International Nuclear Information System (INIS)

    Nusslin, F.

    2010-01-01

    Ionizing Radiation is applied in Radiation Therapy, Nuclear medicine and Diagnostic Radiology. Radiation Protection in Medical Application of Ionizing Radiation requires specific Professional Competence in all relevant details of the radiation source instrumentation / equipment clinical dosimetry application procedures quality assurance medical risk-benefit assessment. Application in general include Justification of practices (sufficient benefit to the exposed individuals) Limitation of doses to individuals (occupational / public exposure) Optimization of Protection (magnitude and likelihood of exposures, and the number of individuals exposed will be ALARA. Competence of persons is normally assessed by the State by having a formal mechanism for registration, accreditation or certification of medical physicists in the various specialties (e.g. diagnostic radiology, radiation therapy, nuclear medicine). The patient safety in the use of medical radiation will be increased through: Consistent education and certification of medical team members, whose qualifications are recognized nationally, and who follow consensus practice guidelines that meet established national accrediting standards

  20. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  1. Association of Maternal Self-Medication and Over-the-Counter Analgesics for Children

    DEFF Research Database (Denmark)

    Jensen, Janne Fangel; Gottschau, Mathilde; Siersma, Volkert Dirk

    2014-01-01

    Self-medication with over-the-counter (OTC) analgesics, such as paracetamol (PCM), among children and adolescents is increasing and constitutes an important public health issue internationally. Reasons for this development are unclear; parental influence is suggested. Our objective was to examine...... whether self-medication with OTC analgesics among school-aged children is influenced by maternal self-reported health and medicine use, taking the child's frequency of pain into account....

  2. Pregnancy and medical radiation, ICRP Publication 84

    International Nuclear Information System (INIS)

    2000-01-01

    Thousands of pregnant patients and radiation workers are exposed to ionising radiation each year. Lack of knowledge is responsible for great anxiety and probably unnecessary termination of pregnancies. For many patients, the exposure is appropriate, while for others the exposure may be inappropriate, placing the unborn child at increased risk. Prenatal doses from most properly done diagnostic procedures present no measurably increased risk of prenatal death, malformation, or impairment of mental development over the background incidence of these entities. Higher doses, such as those involved in therapeutic procedures, can result in significant fetal harm. The pregnant patient or worker has a right to know the magnitude and type of potential radiation effects that might result from in utero exposure. Almost always, if a diagnostic radiology examination is medically indicated, the risk to the mother of not doing the procedure is greater than is the risk of potential harm to the fetus. Most nuclear medicine procedures do not cause large fetal doses. However, some radiopharmaceuticals that are used in nuclear medicine can pose significant fetal risks. It is important to ascertain whether a female patient is pregnant prior to radiotherapy. In pregnant patients, cancers that are remote from the pelvis usually can be heated with radiotherapy. This however requires careful planning. Cancers in the pelvis cannot be adequately treated during pregnancy without severe or lethal consequences for the fetus. The basis for the control of the occupational exposure of women who are not pregnant is the same as that for men. However, if a woman is, or may be, pregnant, additional controls have to be considered to protect the unborn child. In many countries, radiation exposure of pregnant females in biomedical research is not specifically prohibited. However, their involvement in such research is very rare and should be discouraged. Termination of pregnancy is an individual decision

  3. Pregnancy and medical radiation, ICRP Publication 84

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    Thousands of pregnant patients and radiation workers are exposed to ionising radiation each year. Lack of knowledge is responsible for great anxiety and probably unnecessary termination of pregnancies. For many patients, the exposure is appropriate, while for others the exposure may be inappropriate, placing the unborn child at increased risk. Prenatal doses from most properly done diagnostic procedures present no measurably increased risk of prenatal death, malformation, or impairment of mental development over the background incidence of these entities. Higher doses, such as those involved in therapeutic procedures, can result in significant fetal harm. The pregnant patient or worker has a right to know the magnitude and type of potential radiation effects that might result from in utero exposure. Almost always, if a diagnostic radiology examination is medically indicated, the risk to the mother of not doing the procedure is greater than is the risk of potential harm to the fetus. Most nuclear medicine procedures do not cause large fetal doses. However, some radiopharmaceuticals that are used in nuclear medicine can pose significant fetal risks. It is important to ascertain whether a female patient is pregnant prior to radiotherapy. In pregnant patients, cancers that are remote from the pelvis usually can be heated with radiotherapy. This however requires careful planning. Cancers in the pelvis cannot be adequately treated during pregnancy without severe or lethal consequences for the fetus. The basis for the control of the occupational exposure of women who are not pregnant is the same as that for men. However, if a woman is, or may be, pregnant, additional controls have to be considered to protect the unborn child. In many countries, radiation exposure of pregnant females in biomedical research is not specifically prohibited. However, their involvement in such research is very rare and should be discouraged. Termination of pregnancy is an individual decision

  4. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  5. Problems of medical personnel deontology during radiation emergency response

    International Nuclear Information System (INIS)

    Poplavskij, K.K.; Popov, A.O.

    1990-01-01

    Problems of deontology in the process of liquidation of radiation accident consequences are considered in the article. It is noted, that shortages of ethical nature in the activities of physicians are related to insufficient qualification of medical personnel in the area of radiation medicine. Problems of medical personnel participation in the large scale propaganda activities among various groups of population are considered. 5 refs

  6. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  7. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  8. Proposed Regulations for Medical Examination of the Radiation Worker

    International Nuclear Information System (INIS)

    Shabon, M.H.

    2015-01-01

    Owing to the widespread use of ionising radiation and radioactive isotopes and their well recognized adverse effects on human health. General requirements for workers to grant license to use ionizing radiation in Egypt was reported in the executive of Egyptian ionizing radiation regulation in 1962 following ionizing radiation law no. 59 for the year 1960. Egyptian Nuclear and Radiological Regulatory Authority (ENRRA) has enforced law no. 7 in 2010 and its executive regulation in 2011 through requesting certificates of medical examination as a requirement to grant Egyptian license to ionizing radiation worker. A deficiency in medical examination and special investigations for pre-placement and follow up of the radiation worker has been noticed. This paper provides practical guidance to the employers and the appointed doctors about health surveillance and medical examinations of the radiation worker. Past history, present history, clinical examination and investigations are presented. Illnesses and conditions that prevent the person to be classified are also mentioned.

  9. [Changing medical practices and nosocomial infection rates in French maternity units from 1997 to 2000].

    Science.gov (United States)

    Vincent-Boulétreau, A; Caillat-Vallet, E; Dumas, A M; Ayzac, L; Chapuis, C; Emery, M N; Girard, R; Haond, C; Lafarge-Leboucher, J; Tissot-Guerraz, F; Fabry, J

    2005-04-01

    In this study we describe the changes in medical practices and nosocomial infection rates in obstetrics observed through a surveillance network in the South East of France. The maternity units which belong to this network participated in voluntary surveillance using the network's methodology. The criteria for the diagnosis of nosocomial infections were in accordance with the methods described by the Centers for Disease Control and Prevention. 101240 pregnancies including 18503 caesareans (18.3%) were included in the network from 1997 to 2000. During the study period, nosocomial infection rates following caesarean section and vaginal delivery decreased respectively from 7.8% to 4.3% (p infection control programs in maternity units has been confirmed by the results of this surveillance network. During the study period, both obstetrics-related risk factors for nosocomial infection and observed hospital-acquired infection rates were dramatically reduced, what prove an improvement of quality of care in maternity units.

  10. Radiation emergency medical preparedness and assistance network in China

    International Nuclear Information System (INIS)

    Su, Xu

    2008-01-01

    Full text: Rapid economic growth in demand has given rise to power shortage in China. The installed capacity of nuclear power has been scheduled to reach 36-40 GW in preliminary plans, which is about 4% of China's energy supply by 2020. On the other hand, the number of radiation facilities rises 7% annually, while this figure for medical accelerators and CT is 15%. With the application of radiation sources increasing, the possibility of accidents exposure is growing. The radiation emergency medical preparedness is increasingly practically challenging. CCMRRE (Chinese Center for Medical Response to Radiation Emergency), which functions as a national and professional institute with departments for clinic, monitoring and evaluating and technical supporting, was established in 1992. Clinic departments of haematological and surgical centres, and specialists in the radiation diagnosis and therapy, is responsible for the medical assistance in radiation accidents. The monitoring and evaluating department with bio-dosimetry, physical dosimetry and radiation monitoring laboratory, concentrates in radiation monitoring, dose estimating of accident exposure. Technical support department with advisors and experts in exposure dose estimating, radiation protecting and injury treating, provides technical instruction in case of nuclear and radiological accidents. In addition, around whole country, local organization providing first assistance, regional clinic treatment and radiation protection in nuclear accidents has been established. To strengthen the capability of radiation emergency medical response and to improve the cooperation with local organization, the managers and involved staffs were trained in skill frequently. The medical preparedness exercise, which mimics the nuclear accidents condition, was organized by CCMRRE and performed in 2007. The performances demonstrated that the radiation emergency medical preparedness and assistance system is prompt, functional and

  11. International Standards for Radiation Sterilization of Medical Devices

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    For a terminally sterilized medical device to be designated '' STERILE '', probability of finding the viable micro-organisms in the device shall be equal to or less than 1 x 10 -6 (EN 556-1:2001: Sterilization of medical devices - Requirements for medical devices to be designated '' STERILE '' - Part 1: Requirements for terminally sterilized medical devices). Author presents the main legal aspects of the international standards for radiation sterilization of medical devices

  12. Advanced maternal age: ethical and medical considerations for assisted reproductive technology

    Directory of Open Access Journals (Sweden)

    Harrison BJ

    2017-08-01

    Full Text Available Brittany J Harrison,1 Tara N Hilton,1 Raphaël N Rivière,1 Zachary M Ferraro,1–3 Raywat Deonandan,4 Mark C Walker1–3,51Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; 2Division of Maternal-Fetal Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, ON, Canada; 3Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada; 4University of Ottawa Interdisciplinary School of Health Sciences, Ottawa, ON, Canada; 5Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, ON, CanadaObjectives: This review explores the ethical and medical challenges faced by women of advanced maternal age who decide to have children. Assisted reproductive technologies (ARTs make post-menopausal pregnancy physiologically plausible, however, one must consider the associated physical, psychological, and sociological factors involved.Methods: A quasi-systematic review was conducted in PubMed and Ovid using the key terms post-menopause, pregnancy + MeSH terms [donations, hormone replacement therapy, assisted reproductive technologies, embryo donation, donor artificial insemination, cryopreservation]. Overall, 28 papers encompassing two major themes (ethical and medical were included in the review.Conclusion: There are significant ethical considerations and medical (maternal and fetal complications related to pregnancy in peri- and post-menopausal women. When examining the ethical and sociological perspective, the literature portrays an overall positive attitude toward pregnancy in advanced maternal age. With respect to the medical complications, the general consensus in the evaluated studies suggests that there is greater risk of complication for spontaneous pregnancy when the mother is older (eg, >35 years old. This risk can be mitigated by careful medical screening of the mother and the use of ARTs in healthy women. In these instances, a woman of advanced maternal age who is otherwise healthy can carry a

  13. Chinese experience on medical response to radiation emergencies

    International Nuclear Information System (INIS)

    Liu, Ying; Qin, Bin; Lei, Cuiping; Chen, Huifang; Han, Yuhong

    2008-01-01

    Full text: Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). CCMRRE is a liaison of WHO/REMPAN and functions as a national and professional institute for medical preparedness and response to emergencies involving radioactive material. CCMRRE participates in drafting National Medical Assistant Program for Radiation Emergency and relevant technical documents, develops preventive measures and technique means of medical preparedness and response to radiation emergency. CCMRRE is responsible for medical response to radiological or nuclear accident on national level. CCMRRE holds training courses, organizes drills and provides technical support to local medical organizations in practicing medical preparedness and response to radiation emergency. CCMRRE collects, analyzes and exchanges information on medical response to radiological and nuclear emergency and establishes relevant database. CCMRRE also guides and participates in radiation pollution monitoring on accident sites. In the past ten years, we accumulate much knowledge and experience on medical response to radiation emergencies. In this context, we will discuss Xinzhou Accident, which took place in 1992 and involved in three deaths, and Ha'erbin Accident that took place in 2005 and involved one death. A father and two brothers in Xinzhou Accident died of over-exposed to 60 Co source and misdiagnosis and improper treatment, which indicates that most general practitioners are uncertain about the health consequences of exposure to ionizing radiation and the medical management of exposed patients. When Ha'erbin Accident happened in 2005, the local hospital gave the right diagnosis and treatment based on the clinic symptoms and signs, which prevent more people suffering from over-expose to 192 Ir source. The distinct changes comes from the education and training to primary doctors related

  14. Medical precautions of radiation diseases and radiation accidents

    International Nuclear Information System (INIS)

    Fehringer, Franz; Ludwig, Thomas

    2009-01-01

    The main topic deals essentially with the role of the Authorized Physician in industrial medicine, with the occupational diseases caused by ionizating radiation, with the tasks of regional radiation protection centers, and with the WHO REMPAN network. (orig.)

  15. Radiation protection requirements for medical application of ionizing radiation in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Nestoroska, Svetlana; Angelovski, Goran; Shahin, Nuzi

    2010-01-01

    In this paper, the regulatory infrastructure in radiation protection in the Republic of Macedonia is presented. The national radiation protection requirements for the medical application of ionizing radiation are reviewed for both occupational exposed persons and patients undergoing a medical treatment with ionizing radiation and their compliance with the international standards is considered. The gaps identified on the national level are presented and steps for overcoming such gaps are analyzed.(Author)

  16. Medical Managment of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group

    National Research Council Canada - National Science Library

    Waselenka, Jamie K; MacVittie, Thomas J; Blakely, William F; Pesik, Nicki; Wiley, Albert L; Dickerson, William E; Tsu, Horace; Confer, Dennis L; Coleman, Norman; Seed, Thomas

    2004-01-01

    .... This consensus document was developed by the Strategic National Stockpile Radiation Working Group to provide a framework for physicians in internal medicine and the medical subspecialties to evaluate...

  17. Medical treatment of radiation injuries-Current US status

    Energy Technology Data Exchange (ETDEWEB)

    Jarrett, D.G. [OSA - CBD and CDP, 3050 Defense Pentagon, Room 3C257, Washington, DC 20301-3050 (United States)], E-mail: david.jarrett@us.army.mil; Sedlak, R.G.; Dickerson, W.E. [Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States); Reeves, G.I. [Northrop Grumman IT, 8211 Terminal Road, Lorton, VA 22079-1421 (United States)

    2007-07-15

    A nuclear incident or major release of radioactive materials likely would result in vast numbers of patients, many of whom would require novel therapy. Fortunately, the numbers of radiation victims in the United States (USA) have been limited to date. If a mass-casualty situation occurs, there will be a need to perform rapid, accurate dose estimates and to provide appropriate medications and other treatment to ameliorate radiation injury. The medical management of radiation injury is complex. Radiation injury may include acute radiation sickness (ARS) from external and/or internal radiation exposure, internal organ damage from incorporated radioactive isotopes, and cutaneous injury. Human and animal data have shown that optimal medical care may nearly double the survivable dose of ionizing radiation. Current treatment strategies for radiation injuries are discussed with concentration on the medical management of the hematopoietic syndrome. In addition, priority areas for continuing and future research into both acute deterministic injuries and also long-term stochastic sequelae of radiation exposure have been identified. There are several near-term novel therapies that appear to offer excellent prognosis for radiation casualties, and these are also described.

  18. Gastroschisis in Europe - A Case-malformed-Control Study of Medication and Maternal Illness during Pregnancy as Risk Factors

    DEFF Research Database (Denmark)

    Given, Joanne E; Loane, Maria; Garne, Ester

    2017-01-01

    BACKGROUND: Gastroschisis, a congenital anomaly of the abdomen, is associated with young maternal age and has increased in prevalence in many countries. Maternal illness and medication exposure are among environmental risk factors implicated in its aetiology. METHODS: A population-based case-malf...

  19. Investigation research on improvement of safe handling techniques of radiation in medical fields; Reduction of exposure to medical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Minoru; Watabe, Makoto; Oono, Kuniko [Tokyo Metropolitan Isotope Research Center (Japan)

    1990-01-01

    Today, it is generally recognized that radiation exposure regardless of its use should be limited to the required minimum. The form of radiation utilization for medical treatment is extremely diverse, and to clarify the actual state of dose that doctors, radiation technicians, nurses and subjects as patients receive by the diagnosis and treatment accompanied by radiation exposure is not only indispensable for evaluating the risk they receive, but also to give the important data for pursuing the reduction of radiation exposure dose of those engaging in medical treatment and patients-subjects. In this investigation research, the actual state of radiation exposure in doctors, radiation technicians, nurses and patients or subjects was investigated, and the radiation exposure dose was measured, in this way the reduction of radiation exposure dose was attempted. The radiation exposure dose in one month was 10.8{+-}3.0 mrem in doctors, 10.4{+-}2.5 mrem in radiation technicians, and 6.3{+-}2.5 mrem in nurses. The risk coefficient in a specific medical university was 1155 men-rem. Also the case of nuclear medical diagnosis administering Ga-67 was measured. (K.I.).

  20. Contribution of maternal radionuclide burdens to prenatal radiation doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 μCi into a woman's blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors

  1. Contribution of maternal radionuclide burdens to prenatal radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  2. Competing risks model in screening for preeclampsia by maternal characteristics and medical history.

    Science.gov (United States)

    Wright, David; Syngelaki, Argyro; Akolekar, Ranjit; Poon, Leona C; Nicolaides, Kypros H

    2015-07-01

    The purpose of this study was to develop a model for preeclampsia based on maternal demographic characteristics and medical history. This was a screening study of 120,492 singleton pregnancies at 11-13 weeks' gestation, including 2704 pregnancies (2.2%) that experienced preeclampsia. A survival-time model for the gestational age at delivery with preeclampsia was developed from variables of maternal characteristics and history. This approach assumes that, if the pregnancy was to continue indefinitely, all women would experience preeclampsia and that whether they do so or not before a specified gestational age depends on competition between delivery before or after development of preeclampsia. A 5-fold cross validation study was conducted to compare the performance of the new model with the National Institute for Health and Clinical Excellence (NICE) guidelines. In the new model, increased risk for preeclampsia, with a consequent shift in the Gaussian distribution of the gestational age at delivery with preeclampsia to the left, is provided by advancing maternal age, increasing weight, Afro-Caribbean and South Asian racial origin, medical history of chronic hypertension, diabetes mellitus and systemic lupus erythematosus or antiphospholipid syndrome, family history and personal history of preeclampsia, and conception by in vitro fertilization. The risk for preeclampsia decreases with increasing maternal height and in parous women with no previous preeclampsia; in the latter, the protective effect, which is related inversely to the interpregnancy interval, persists beyond 15 years. At a screen-positive rate of 11%, as defined by NICE, the new model predicted 40%, 48%, and 54% of cases of total preeclampsia and preeclampsia requiring delivery at preeclampsia. Such estimation of the a priori risk for preeclampsia is an essential first step in the use of Bayes theorem to combine maternal factors with biomarkers for the continuing development of more effective methods of

  3. Quality assurance in medical radiation applications. The medical and dental appointment

    International Nuclear Information System (INIS)

    Ernst-Elz, Andreas

    2017-01-01

    Medical radiation applications cause averaged over the German population an annual exposure of almost 2 mSv. Medical authorities have the assignment to assure and control the diagnostic and therapeutic quality of these applications and to provide recommendations for operators with respect to dose reductions and radiation protection, including guidance for radiotherapy planning aimed to questions of dose and therapy optimization.

  4. Guide on medical management of persons exposed in radiation accidents

    International Nuclear Information System (INIS)

    1990-01-01

    The present guide has been prepared in order to provide guidance to medical and para-medical personnel regarding medical management of the different types of radiation accidents. It discusses briefly the physical aspects and biological effect of radiation, for the benefit of those who have not specialised in radiation medicine. The diagnosis, medical management and follow-up of persons involved in different types of radiation accidents are also dealt with. The implementation of the procedures described calls for organisation of appropriate facilities and provision of requisite equipment as well as education and training of the staff. It is emphasised that major radiation accidents are rare events and the multi-disciplinary nature of the response required to deal with them calls for proper planning and continuous liaison among plant management, radiation protection personnel, first-aid assistants and medical and paramedical staff. The organisation and conduct of emergency drills may help in maintaining preparedness of the medical facilities for efficient management of radiation casualities. (original). 64 refs., tabs., figs

  5. Radiation sterilization of medical products- current trends and future prospects

    International Nuclear Information System (INIS)

    Sharma, G.

    1997-01-01

    In medical practice use of sterile pharmaceuticals and single use disposable medical devices is steadily increasing. Sterile pharmaceuticals like injections and ophthalmic ointments are required for therapy. Medical devices are employed for diagnostic, drug administration or corrective purposes, and as implants for temporary, short term or long term residence in the human system. All these products are made available in sterile form by treating them to a suitable process of sterilization i.e. dry/wet heat, ethylene oxide (EtO) gas or ionizing radiation. In this paper current trends and future prospects of radiation sterilization of medical products are given in detail. 9 refs., 7 tabs

  6. Radiation protection calculations for diagnostic medical equipment

    International Nuclear Information System (INIS)

    Klueter, R.

    1992-01-01

    The standards DIN 6812 and DIN 6844 define the radiation protection requirements to be met by biomedical radiography equipment or systems for nuclear medicine. The paper explains the use of a specific computer program for radiation protection calculations. The program offers menu-controlled calculation, with free choice of the relevant nuclides. (DG) [de

  7. Medical device for applying therapeutic radiation

    International Nuclear Information System (INIS)

    Tokita, K.M.; Haller, B.L.

    1986-01-01

    A device is described for applying therapeutic radiation from a preselected radiation source to a predetermined portion of a body comprising, in combination: a body member having: an external peripheral surface; a first end surface; and a second end surface spaced from the first end surface; the body member further comprising: at least first internal walls defining a first radiation source receiving channel means spaced a preselected distance from the peripheral surface, and having: a first portion extending from the second end surface to regions adjacent the first end surface; and a second portion extending from the first portion at the first end surface to the second end surface; and, the channel means communicating with regions external the body member at the second surface whereby the radiation source of a preselected intensity inserted at least along a preselected portion of the channel means is applied to the predetermined area of the body requiring therapeutic radiation treatment

  8. Further studies into the emergency medical care of radiation accidents

    International Nuclear Information System (INIS)

    Nakao, Isamu

    1989-01-01

    The emergency medical care of radiation accidents constitute a peculier characteristics of radiation protection including the works of the administrative management, environmental radiological monitoring and health physics around the clinical medicine. It is thought to be an interdisciplinary medical field which is designated as a comprehensive medicine for radiation hazard. Moreover, it will be thought that the radiological medicine is not only the medical science which deals with the use of radiant energy in the diagnosis and treatment of disease, but also the art and science of maintenance of health and cure for radiation injuries, just as the two wheels of a cart. It should reward the needs of today. We would like to expect that this symposium will be a clue to the theoretical systematization of the comprehensive medicine of radiation accidents. (author)

  9. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  10. What does quality maternity care mean in a context of medical pluralism? Perspectives of women in Nigeria

    Science.gov (United States)

    Izugbara, Chimaraoke O; Wekesah, Frederick

    2018-01-01

    Abstract User priorities regarding quality care in contexts of medical pluralism are poorly documented. Drawing on group and individual interviews with women, we interrogate ideas of quality maternity care in the context of Nigeria’s medical pluralism. We found complex utilization patterns for conventional, complementary and alternative maternity care services as well as ideas of quality maternity care that stress effective coordination and integration of different typologies of maternity health services; socially sensitive and truthful providers; and socioeconomic, physical and parochial forms of safety. Informal providers were the commonly reported source of maternal health services in the study. Maternal health services in the country were also generally viewed as poor quality, characterized by pervasive abuse, quackery and lack of commitment to the needs and sensitivities of women. Convenience, availability and affordability of maternal health services, as well as sociocultural factors were major influences on women’s use of services. Results demonstrate the embeddedness of women’s quality of care notions in the vast socioeconomic inequities that typify Nigeria’s particular form of poorly regulated medical pluralism, raising need for strategies to strengthen the delivery, coordination and supervision of maternal health services in the country. PMID:29036530

  11. DEGRO 2009. Radiation oncology - medical physics - radiation biology. Abstracts; DEGRO 2009. Radioonkologie - Medizinische Physik - Strahlenbiologie. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The special volume of the journal covers the abstracts of the DEGRO 2009 meeting on radiation oncology, medical physics, and radiation biology, covering the following topics: seldom diseases, gastrointestinal tumors, radiation reactions and radiation protection, medical care and science, central nervous system, medical physics, the non-parvicellular lung carcinomas, ear-nose-and throat, target-oriented radiotherapy plus ''X'', radio-oncology - young academics, lymphomas, mammary glands, modern radiotherapy, life quality and palliative radiotherapy, radiotherapy of the prostate carcinoma, imaging for planning and therapy, the digital documentation in clinics and practical experiences, NMR imaging and tomography, hadrons - actual status in Germany, urinal tract oncology, radiotoxicity.

  12. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  13. Ionizing radiation sources used in medical applications in Brazil

    International Nuclear Information System (INIS)

    Araujo, A.M.C.; Carlos, M.T.; Cruz, L.R.F.; Domingues, C.; Farias, J.T.; Ferreira, R.; Figueiredo, L.; Peixoto, J.E.; Oliveira, S.M.V.; Drexler, G.

    1991-02-01

    Preliminary data about ionizing radiation sources used in medical applications and obtained through a national programme by IRD/CNEN together with Brazilian health authorities are presented. The data presentation follows, as close as possible, recommendations given by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). This programme has two main aims: First: to contribute for research in the field of ionizing radiation effects and risks including information about equipment quality control and procedures adopted by professionals working in Radiation Medicine. Second: to investigate the radiation protection status in Brazil, in order to give assistance to Brazilian health authorities for planning regional radiation programmes and training programmes for medical staffs. (F.E.). 13 refs, 19 figs, 34 tabs

  14. Radiation physics for medical physicists. 2. enl. ed.

    International Nuclear Information System (INIS)

    Podgorsak, Ervin B.

    2010-01-01

    This well-received textbook and reference summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other hand. This expanded and revised second edition offers reorganized and expanded coverage. Several of the original chapters have been split into two with new sections added for completeness and better flow. New chapters on Coulomb scattering; on energy transfer and energy absorption in photon interactions; and on waveguide theory have been added in recognition of their importance. Others training for professions that deal with ionizing radiation in diagnosis and treatment as well as medical residents, students of technology and dosimetry,and biomedical engineering will find many sections interesting and useful for their studies. It also serves as excellent preparatory materials for candidates taking professional certification examinations in medical physics, medical dosimetry, and in medical specialties such as radiotherapy, diagnostic radiology, and nuclear medicine. (orig.)

  15. Medical Physics expert and competence in radiation protection

    International Nuclear Information System (INIS)

    Vano, E.; Lamn, I. N.; Guerra, A. del; Van Kleffens, H. J.

    2003-01-01

    The Council Directive 97/43/EURATOM on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, defines the Medical Physical Expert as an expert in radiation physics or radiation technology applied to exposure, within the scope of the Directive, whose training and competence to act is recognized by the competent authorities; and who, as appropriate, acts or gives advice on patient dosimetry, on the development and use of complex techniques and equipment, on optimization, on quality assurance, including quality control, and on other matters relating to radiation protection, concerning exposure within the scope of this Directive. As a consequence, it might be implied that his competence in radiation protection should also cover the staff and the public. In fact, the training programmes of medical physics experts include all the aspects concerning these topics. Some confusion could arise in the medical area when the Qualified Expert defined in the Council Directive 96/29/Euratom laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation is considered. The Qualified Expert is defined as a person having the knowledge and training needed to carry out physical, technical or radiochemical tests enabling doses to be assessed, and to give advice in order to ensure effective protection of individuals and the correct operation of protective equipment, whose capacity to act a qualified expert is recognized by the competent authorities. A qualified expert may be assigned the technical responsibility for the tasks of radiation protection of workers and members of the public. In Europe, the Qualified Expert is acting at present in the Medical Area in countries where there are not enough Medical Physics Experts or in countries where this role was established before the publication of the Council Directive 97/43/EURATOM. Now, the coherent

  16. Radiation and Your Patient: A Guide for Medical Practitioners

    International Nuclear Information System (INIS)

    Cosset, J.M.; Liniecki, J.; Ortiz-Lopez, P.; Ringertz, H.; Sharp, C.; Mettler, F.A. Jr.; Harding, L.K.; Nakamura, H.; Rehani, M.M.; Sasaki, Y.; Ussov, W.Y.; Guiberteau, M.J.; Hiraoka, M.; Vafio, E.; Gusev, L.A.; Pinillos-Ashton, L.V.; Rosenstein, M.; Yin, W.; Mattsson, S.; Cousins, C.

    2004-01-01

    The medical exposures are the first cause of irradiation of populations. The benefit/risk ratio must be taken into consideration. Progress margin exists to reduce the radiation doses delivered to patients. The British people have noticed a reduction of 30% in the doses received by the patients during the last years. A better radiation protection needs a better dialogue between physicians and patients. This is the object of this ICRP guide which is a French translation of the original title 'Supporting guidance 2. Radiation and Your Patient: A Guide for Medical Practitioners', published by Pergamon (2002)

  17. Medical records and radiation exposure cards

    International Nuclear Information System (INIS)

    Vigan, C.

    1975-01-01

    Some ideas concerning medical records at the Ispra Centre are exposed. The approved medical practitioner has two main tasks: he must gather enough relevant information to decide on the worker's suitability and also to determine his physical condition, normal or otherwise, and he must record it with enough detail to permit comparison with findings at later examinations. for the purposes of medical records, clinical examinations and complementary investigations, a large proportion of the measurements are of course made on the critical organs. The problems of the container or physical medium receiving the information to be recorded is considered. The possibilities offered by computer techniques are discussed

  18. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  19. Radioprotection in the medical applications of the ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    This publication presents information about of the radiological safety in the medical application of the ionizing radiation compiled in 11 chapter and 1 annex. The first four chapters are principally dedicated to technical uses in radioprotection, the external and internal irradiation and the biological radiation effects. The radioprotection principles, the individual monitoring techniques, and the radioprotection systems are developed afterwards in the followings three chapters. The second half of the document is dedicated entirely to the medical practices using ionizing radiations, specially to the radioprotection aspects in radiodiagnosis, nuclear medicine and radiotherapy. The final chapter is dedicated to radiological accidents happened worldwide in the field of the medical applications of the ionizing radiations. The annex, about of the regulatory area, established a set of standards, laws, decrees and other force regulations in radiological safety, related in radiodiagnosis, nuclear medicine and radiotherapy

  20. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  1. Guidelines for the medical surveillance of atomic radiation workers

    International Nuclear Information System (INIS)

    1991-11-01

    These guidelines are provided for the use and guidance of occupational physicians concerned with the medical surveillance of atomic radiation workers (ARWs). Persons employed in industries where there is exposure to ionizing radiation should be screened medically for fitness for certain jobs before starting such work and at appropriate intervals while employed. This includes workers at uranium mines, mills and refineries, nuclear fuel fabrication plants, nuclear power plants and research facilities, and facilities using radionuclides in an industrial setting. An important purpose of medical surveillance is to ensure that workers are fit both physically and psychologically to undertake the tasks they may be called upon to perform

  2. Medical management of the acute radiation syndrome

    International Nuclear Information System (INIS)

    Lopez, M.; Martin, M.

    2011-01-01

    The acute radiation syndrome (ARS) occurs after whole-body or significant partial-body irradiation (typically at a dose of >1 Gy). ARS can involve the hematopoietic, cutaneous, gastrointestinal and the neurovascular organ systems either individually or in combination. There is a correlation between the severity of clinical signs and symptoms of ARS and radiation dose. Radiation induced multi-organ failure (MOF) describes the progressive dysfunction of two or more organ systems over time. Radiation combined injury (RCI) is defined as radiation injury combined with blunt or penetrating trauma, burns, blast, or infection. The classic syndromes are: hematopoietic (doses >2 - 3 Gy), gastrointestinal (doses 5- 12 Gy) and cerebrovascular syndrome (doses 10 - 20 Gy). There is no possibility to survive after doses >10 - 12 Gy. The Phases of ARS are - prodromal: 0 - 2 days from exposure, latent: 2 - 20 days, and manifest illness: 21 - 60 days from exposure. Granulocyte-colony stimulating factor (G-CSF) at a dose of 5 micro g/kg body weight per day subcutaneously has been recommended as treatment of neutropenia, and antibiotics, antiviral and antifungal agents for prevention or treatment of infections. If taken within the first hours of contamination, stable iodine in the form of nonradioactive potassium iodide (KI) saturates iodine binding sites within the thyroid and inhibits incorporation of radioiodines into the gland. Finally, if severe aplasia persists under cytokines for more than 14 days, the possibility of a hematopoietic stem cell (HSC) transplantation should be evaluated. This review will focus on the clinical aspects of the ARS, using the European triage system (METREPOL) to evaluate the severity of radiation injury, and scoring groups of patients for the general and specific management of the syndrome. (authors)

  3. Medical and industrial application of radiation

    International Nuclear Information System (INIS)

    Ajayi, I.R.

    1999-01-01

    While dosimetry is not a radiation application, accurate dosage of radiation of utmost importance for all radiation applications. For both therapeutic and industrial applications it can be matter of life and death. For this reason, great efforts have been made to ensure that radiation dosages given to patients and used in all industrial applications are as near as possible to those prescribed. The World Health Organization (WHO) and the IAEA, together with many National Standard Laboratories and with the International Bureau of Weight and Measures, have been very active and successful during the last 20 years in ascertaining that normal cobalt-60 therapy unit. For this purpose, 63 Secondary Standard Dosimetry Laboratories have been established of which more than half are in developing countries. FRPS houses one of the Secondary Standard Dosimetry Laboratories. As accurate dosimetry is a prerequisite in radiotherapy, so it is in industrial exposures and all laboratories responsible for dosimetry have to make frequent intercomparisons with one of the Primary Standard Dosimetry Laboratories. The SSDL at FRPS hopes to commence this as soon as our new Harshaw 6600 TLD reader arrives. This has already been approved by the IAEA. Much high doses of radiation are used for some industrial applications, as discussed in a previous lecture, such as sterilization of rubber, and food preservation and newly developed techniques are being used for the assurance of the prescribed dose. IAEA provides assistance in this area also through the secondary standard dosimetry laboratories. The IAEA has a broad programme of assistance which includes the calibration of all instruments in the laboratories of the participants, be it for radiation protection, or high dose measurements

  4. Radiation exams in occupational medical evaluations

    International Nuclear Information System (INIS)

    Gelsleichter, A.M.; Hunh, A.; Nandi, D.M.

    2017-01-01

    Introduction: In occupational medicine, medical care must be geared toward the prevention of worker health. However, occupational medical exams often seek only through rigorous screening, reduce absenteeism, and thus increase productivity. To meet this goal, many institutions include radiological examinations indiscriminately in their medical and expert evaluations, contrary to the principle of justification. Objective: To provide a reflection about the presence of radiological exams in occupational medical evaluations. Methodology: Literary review including legislation related to the research topic. Results: Portaria 453/98 ANVISA prohibits the performance of radiological examinations for employment or expert purposes, except in cases where the exam may bring a benefit to the health of the individual examined or to society. However, in some situations the Norma Regulamentadora number 7 of the Ministry of Labor and Employment provides for radiological exams as a parameter for monitoring occupational exposure. Article 168 of the Consolidation of Labor Laws also prescribes that additional examinations may be required, at the medical discretion, to determine the physical and mental fitness of the employee for the job. Conclusion: Although there are legal provisions that prohibit and others that allow radiological exams in medical occupational evaluations, companies and institutions should take into account that any radiological exam has a risk involved and should not request them in a compulsory and indiscriminate manner. Radiological exams are only permissible to elucidate the diagnostic hypothesis produced by clinical evaluation, in order to provide a real benefit for the individual

  5. Medical legal aspects of radiation oncology

    International Nuclear Information System (INIS)

    Wall, Terry J.

    1996-01-01

    The theoretical basis of, and practical experience in, legal liability in the clinical practice of radiation oncology is reviewed, with a view to developing suggestions to help practitioners limit their exposure to liability. New information regarding the number, size, and legal theories of litigation against radiation oncologists is presented. The most common legal bases of liability are then explored in greater detail, including 'malpractice', and informed consent, with suggestions of improving the specialty's record of documenting informed consent. Collateral consequences of suffering a malpractice claim (i.e., the National Practitioner Data Bank) will also be briefly discussed

  6. Medical aid in the initial period of radiation accident

    International Nuclear Information System (INIS)

    Selidovkin, G.D.

    1995-01-01

    The main tasks of medical arrangements on the initial stage of rendering aid after radiation accident are the prime medical classification of the injured persons among the personnel of the plant and population, and realization of measures to avoid the increase of doses. The volume of medical aid depends on the type of accident, on the after-accident radiation situation, on the influence of hazardous factors, on the number of people involved in accident situation and the spectrum of sanitary losses, etc., which is to be predicted in advance and to be taken into consideration when rendering aid. The proper and sufficient aid on the initial stage will build the foundation of the ultimate efficiency of medical aid after radiation accident. 14 refs

  7. Background radiation levels and medical exposure levels in Australia

    International Nuclear Information System (INIS)

    Webb, D.V.; Solomon, S.B.; Thomson, J.E.M.

    1999-01-01

    The average effective background dose received by the Australian population has been reassessed to be ∼1.5 millisievert (mSv) per year. Over half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This background is to be compared with medical radiation, primarily diagnostic, which could add half as much again to the population exposure. This paper reviews research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background and from medical use. While the latter exposure is accepted to have a social benefit, there is a need to ensure that doses are no more than necessary to provide effective diagnosis and optimal treatment. Copyright (1999) Australasian Radiation Protection Society Inc

  8. Radiation Oncology in Undergraduate Medical Education: A Literature Review

    International Nuclear Information System (INIS)

    Dennis, Kristopher E.B.; Duncan, Graeme

    2010-01-01

    Purpose: To review the published literature pertaining to radiation oncology in undergraduate medical education. Methods and Materials: Ovid MEDLINE, Ovid MEDLINE Daily Update and EMBASE databases were searched for the 11-year period of January 1, 1998, through the last week of March 2009. A medical librarian used an extensive list of indexed subject headings and text words. Results: The search returned 640 article references, but only seven contained significant information pertaining to teaching radiation oncology to medical undergraduates. One article described a comprehensive oncology curriculum including recommended radiation oncology teaching objectives and sample student evaluations, two described integrating radiation oncology teaching into a radiology rotation, two described multidisciplinary anatomy-based courses intended to reinforce principles of tumor biology and radiotherapy planning, one described an exercise designed to test clinical reasoning skills within radiation oncology cases, and one described a Web-based curriculum involving oncologic physics. Conclusions: To the authors' knowledge, this is the first review of the literature pertaining to teaching radiation oncology to medical undergraduates, and it demonstrates the paucity of published work in this area of medical education. Teaching radiation oncology should begin early in the undergraduate process, should be mandatory for all students, and should impart knowledge relevant to future general practitioners rather than detailed information relevant only to oncologists. Educators should make use of available model curricula and should integrate radiation oncology teaching into existing curricula or construct stand-alone oncology rotations where the principles of radiation oncology can be conveyed. Assessments of student knowledge and curriculum effectiveness are critical.

  9. Industrial, agricultural, and medical applications of radiation metrology

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1987-01-01

    Photon and particle radiations (gamma rays, X-rays, bremsstrahlung, electrons and other charged particles, neutrons) from radioactive isotopes, X-ray tubes, and accelerators are now widely used in gauging, production control, and other monitoring and metrology devices where avoidance of mechanical contact is desirable. The general principles of radiation gauges, which rely on detection of radiation transmitted by the sample, or on detection of scattered or other secondary radiations produced in the sample, are discussed. Examples of such devices currently used in industrial, agricultural, and medical situations are presented, and some anticipated developments are mentioned. (author)

  10. Fitness of equipment used for medical exposures to ionising radiation

    International Nuclear Information System (INIS)

    1998-01-01

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious consequences, the incident would not

  11. Genetic susceptibility to radiation: which impact on medical practice?

    Energy Technology Data Exchange (ETDEWEB)

    Alapetite, C.; Cosset, J.M. [Institut Curie, Dept. de Radiotherapie, 75 - Paris (France); Bourguignon, M.H.; Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2001-07-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiations. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiations for a better cure of their malignant tumors. Although only a small percentage of individuals are 'hypersensitive' to radiation effects, all medical specialists using ionising radiations should be aware of these new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiations. Then the main tests capable to detect in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for these specific subset of patients suffering from a genetic disorder with a susceptibility to radiations. (author)

  12. Genetic susceptibility to radiations. Which impact on medical practice

    International Nuclear Information System (INIS)

    Alapetite, C.; Cosset, J. M.; Bourguignon, M. H.; Masse, R.

    2000-01-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiation. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiation for better treatment of their malignant tumors. Although only a small percentage of individuals are hypersensitive to radiation effects, all medical specialists using ionising radiation should be aware of this new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes ...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiation. Then the main tests capable of detecting in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for this specific subset of patients suffering from a genetic disorder with a susceptibility to radiation

  13. Genetic susceptibility to radiation: which impact on medical practice?

    International Nuclear Information System (INIS)

    Alapetite, C.; Cosset, J.M.; Bourguignon, M.H.; Masse, R.

    2001-01-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiations. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiations for a better cure of their malignant tumors. Although only a small percentage of individuals are 'hypersensitive' to radiation effects, all medical specialists using ionising radiations should be aware of these new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiations. Then the main tests capable to detect in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for these specific subset of patients suffering from a genetic disorder with a susceptibility to radiations. (author)

  14. Radiation shielding and health physics instrumentation for PET medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Modern Medical Cyclotrons produce a variety of short-lived positron emitting PET radioisotopes, and as a result are the source of intense neutron and gamma radiations. Since such cyclotrons are housed within hospitals or medical clinics, there is significant potential for un-intentional exposure to staff or patients in proximity to cyclotron facilities. Consequently, the radiological hazards associated with Cyclotrons provide the impetus for an effective radiological shielding and continuous monitoring of various radiation levels in the cyclotron environment. Management of radiological hazards is of paramount importance for the safe operation of a Medical Cyclotron facility. This work summarised the methods of shielding calculations for a compact hospital based Medical Cyclotron currently operating in Canada, USA and Australia. The design principle and operational history of a real-time health physics monitoring system (Watchdog) operating at a large multi-energy Medical Cyclotron is also highlighted

  15. Cosmetic and medical applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1987-01-01

    The social desirability of a tanned skin is apparent and many people associate a bronzed body with good health and a sense of well-being. In Northern Europe and America the lack of long periods of sunshine has led to the establishment of the suntanning industry where artificial sources of ultraviolet radiation emitting almost entirely in the UV-A region supplement sunlight exposure

  16. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  17. Radiation sterilization of some pharmaceutical preparations and medical products

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Makhkamov, Sh.M.; Urinov, Sh.S.; Turaev, A.S.; Sultanov, M.S.; Inagomov, Kh.S.

    2006-01-01

    Full text: In connection with intensive development of pharmacology and medical techniques, use of the products contacting to blood, with the internal environment of an organism, with wound surface, with mucous membranes and skin there were high requirements to sterility of pharmaceutical preparations and medical products. Traditional methods of sterilization (heat treatment, gas processing and processing the ferry) have some restrictions in application, and not insufficient degree of sterilization required for pharmaceutical preparations and medical products. Thermal processing can lead to degradation of structure (medicine), mechanical changes and loss of medical properties. Besides, it is impossible to carry out sterilization of many pharmaceutical preparations by a method of heat treatment. Sterilization of products in packing is very complicated, because sterilization temperature of packing and a product is different. Gas processing is basically applied to sterilization of medical products (syringes, bandage, cotton wools, etc.). However, the degree of sterility is low, because of rather low ability and heterogeneity of sterilizing substance. Sterilization in packing represents special difficulty and demands additional charges related with delivery of the purified gas from abroad. Last years alongside with known technological methods of sterilization of medical products and pharmaceutical preparations radiating methods of processing have found wide application. Use of electronic bunches with the moderate energy and various isotopes became a basis for formation and development of a new direction in the medicine, called by 'radiation sterilization'. The radiation technology is highly harmless and economic, not polluting substance and surrounding space. Unlike the specified traditional methods, radiating processing of products by the isotope 60 Co, radiating the gamma quantum, has unique opportunities - high penetrability in substance, providing uniformity of

  18. Measures against radiation disaster/terrorism and radiation emergency medical assistance team

    International Nuclear Information System (INIS)

    Tominaga, Takako; Akashi, Makoto

    2016-01-01

    The probability of occurrence of radiological terrorism and disaster in Japan is not low. For this reason, preparations for coping with the occurrence of radiological terrorism should be an urgent issue. This paper describes the radiation medical system and the threat of radiological terrorism and disaster in Japan, and introduces the Radiation Emergency Medical Assistance Team (REMAT), one of the radiation accident/disaster response organizations at the National Institute of Radiological Sciences. Radiation exposure medical systems in Japan are constructed only in the location of nuclear facilities and adjacent prefectures. These medical systems have been developed only for the purpose of medical correspondence at the time of nuclear disaster, but preparations are not made by assuming measures against radiological terrorism. REMAT of the National Institute of Radiological Sciences is obligated to dispatch persons to the requesting prefecture to support radiation medical care in case of nuclear disaster or radiation accident. The designation of nuclear disaster orientated hospitals in each region, and the training of nuclear disaster medical staffing team were also started, but preparations are not enough. In addition to enhancing and strengthening experts, specialized agencies, and special forces dealing with radiological terrorism, it is essential to improve regional disaster management capacity and terrorism handling capacity. (A.O.)

  19. Radiation dosimetry for medical management in nuclear/radiological disaster

    International Nuclear Information System (INIS)

    Narayan, Pradeep

    2012-01-01

    Medical Management of radiation exposed victims depends on the amount of radiation doses received in their body and individual organs. The severity of radiation sickness; and early/late biological effects of radiation can be judged on the basis of absorbed dose level of the exposed individual. Radiation Dosimetry is a scientific technique for estimating radiation doses in material and living being. It is an important task for managing radiation effects/injuries to the living being in case of radiological accidents/disasters. In such scenario occupational radiation workers as well as public in general may be exposed with ionizing radiations such as; gamma, alpha, beta and neutron. Radiation dosimetric equipment's are available for occupational radiation workers, however, public in general may not have any dosimetry system with them. Therefore, absorbed dose estimation to the public on individual basis is a challenge to the society. The ambient environment materials in close proximity to the exposed individual may be analyzed using scientific techniques to estimate their personal radiation doses. The blood sample from exposed individual can be examined in laboratory using citometry techniques for dose estimation, however these techniques are very time consuming and may not be suitable for quick radiation management. The other human biological material such as; tooth, hair, and bone etc., can be examined using Electron Spin Resonance (ESR) spectrometry techniques. This technique is very efficient and capable in measuring radiation doses of the order of 20-30 mGy in very less time typically 2-3 min. In reality, this technique is costly affair and available mostly in developed countries. Thermoluminescence (TL) technique is very versatile and cost effective for routine personal dose estimation, This technique has been found suitable for measuring TL in many accidentally exposed environmental materials. The radiation exposed natural environmental materials, such as

  20. Conditions of radiation protection in medical stations

    International Nuclear Information System (INIS)

    Sa, L.R.B.S.; Tomaz Neto, A.; Pires, A.; Azevedo, H.; Boasquevisque, E.M.

    1988-01-01

    The purpose of this study is to clear up what safety procedures are normally' observed for occupational and environmental radiology. 30 Public Medical station in Rio de Janeiro were investigated. A questionaire of 13 questions was prepared to be filled up by the professionals directly involved with the radiologic work, intending to evaluate, the personal and environmental aspect of radioprotection, the individual responsability of each worker and of the whole institution. It was also verified that knowledge of safety norms is doubtful and precarious in the despite of the fact that a great number of the people in question declare to have specific graduation for the activity. Only 45% from the total really make use of the dosimeters, the periodical medical examinations are not frequent (65%), and fewer employes make use of this lead apron (23%). We come to the conclusion that there is a remarkable bewilderment as for the personal observences about the work conditions in controlled areas. (author) [pt

  1. Occupational exposure to ionizing radiation in Jordanian medical institutions

    International Nuclear Information System (INIS)

    Al-Shakhrah, A. I; Hilow, M. H.

    1999-01-01

    This research survey analyses occupational radiation data 214 Jordanian medical workers during the five-year time period 1990-1994 with the objective of identifying any time dose trend and to determine if annual dose variations exist with regard to sex and job or work status. Comparison of radiation status in Joedanian medical field with that of other countries is a second objective of this study. Biological effects of radiation will, however, not be studied in this research. The statistical analysis of the collected data has shown existence of a decreasing annual dose time trend during the five-year period. This year-to-year variation amy indicate that Jordanian radiation workers are becoming more aware of radiation hazards and they have benefited reasonably from the radiation protection training programmes that were held during that period. These workers are then becoming well abiders by the regulations of the Jordanian radiation authorities. analysis of variance has shown as well that the three factors, which are working status, qualifications and sex, contribute significantly to explaining the variability in annual radiation dose. (authors). 10 refs 4 figs., 7 tabs

  2. Medical uses non-ionizing radiation

    International Nuclear Information System (INIS)

    Ubeda Maeso, A.; Trillo Ruiz, M. A.

    2016-01-01

    This article reviews various clinical applications of non-ionizing radiation, focusing on the Hz-GHz frequency range. Depending on the signal characteristics, the applications cover several therapeutic areas, including osteology and traumatology, tissue regeneration, physiotherapy, chronic pain treatment, neurology, cardiology, urology and oncology. Electromagnetic therapies have proved simple, safe, low cost, devoid of side effects and able to treat the underlying pathology rather than simply alleviate the symptoms. Therefore, it is predictable that these therapies will have as serious impact on public health and associated costs. (Author)

  3. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Terrell, J.D.

    1989-01-01

    This paper will first of all deal with a scenario in which a radiation hazard arises within the DPH's Health District and, building on this, will go on to consider a modified role for the Community Physician where a hazard arises outside his District but poses some threat to it. The submissions made on the role of the Community Physician as Director of Public Health of a District Health Authority are based on experience of exercises conducted over recent years in relation to a possible incident at Sellafield in West Cumbria. (author)

  4. Medical surveillance according to the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.

    1981-01-01

    The author explains the concept and purpose of medical surveillance by means of which it is determined whether persons occupationally exposed to radiation are suited for practising or continuing with their respective activities. He describes the group of persons concerned and explains the necessity of medical surveillance by explaining the first examination and follow-up examinations or opinions given after a year's time. A special examination by a physician in case of extraordinary exposition to radiation is regulated in sect. 70 (1) of the Radiation Protection Ordinance. In addition, the procedure required for issuing the medical certificate and its condition are described. Surveillance measures may only be taken by approved physicians . The scope of their tasks and duties is shown. (HSCH) [de

  5. The national institute of radiation hygiene and the medical application of radiation

    International Nuclear Information System (INIS)

    Baarli, J.

    1988-01-01

    This paper gives a review of the rules and regulations concerning medical application of radiation in Norway. It discusses the intention of the regulations, the way in which the regulations is applied and how the National Institute of Radiation Hygiene as the competent authority assures the application of the regulations. The paper furthermore gives an indication of the areas of radiation application in medicine and the number of location of X-ray equipment, nuclear medical laboratories, radiation therapy equipment, etc. The number of X-ray examinations in Norway per year are also given, together with their distribution among the various types of examinations. Summary results of a quality assurance investigation of nuclear medical laboratories are given, as well as the results of inspections of the various types of equipment used in medical diagnostics

  6. Poverty and maternal mortality in Nigeria: towards a more viable ethics of modern medical practice

    Directory of Open Access Journals (Sweden)

    Lanre-Abass Bolatito A

    2008-04-01

    Full Text Available Abstract Poverty is often identified as a major barrier to human development. It is also a powerful brake on accelerated progress toward the Millennium Development Goals. Poverty is also a major cause of maternal mortality, as it prevents many women from getting proper and adequate medical attention due to their inability to afford good antenatal care. This Paper thus examines poverty as a threat to human existence, particularly women's health. It highlights the causes of maternal deaths in Nigeria by questioning the practice of medicine in this country, which falls short of the ethical principle of showing care. Since high levels of poverty limit access to quality health care and consequently human development, this paper suggests ways of reducing maternal mortality in Nigeria. It emphasizes the importance of care ethics, an ethical orientation that seeks to rectify the deficiencies of medical practice in Nigeria, notably the problem of poor reproductive health services. Care ethics as an ethical orientation, attends to the important aspects of our shared lives. It portrays the moral agent (in this context the physician as a self who is embedded in webs of relations with others (pregnant women. Also central to this ethical orientation is responsiveness in an interconnected network of needs, care and prevention of harm. This review concludes by stressing that many human relationships involve persons who are vulnerable, including pregnant women, dependent, ill and or frail, noting that the desirable moral response is that prescribed by care ethics, which thus has implications for the practice of medicine in Nigeria.

  7. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  8. Medical radiation exposure and genetic risks

    International Nuclear Information System (INIS)

    Baker, D.G.

    1980-01-01

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%

  9. Law and the medicalization of maternity, paternity, and childbirth in Cuba

    Directory of Open Access Journals (Sweden)

    García-Jordá D

    2012-05-01

    Full Text Available The childbirth is a transcendental moment in personal and family life. During this event, some aspects are revised related with femininity and masculinity. Objective: from this perspective, was carried out this research with the purpose of understand how the maternity representation, the medical system that attend childbirth and the laws influence in the conception and practice of maternity and paternity during the pregnant, labour, and puerperium. Methodology: some qualitative techniques were used, as interviews and open observation to women and their partners (spouses or common laws who were attended in three hospitals of Havana. Results: the results show as the traditional gender roles are reinforced by the laws, institutional regulations and the medical practice in hospitals. This traditional view has been that women take on most child care responsibilities and men are relegated of this. Parallel with this, a new form of masculinity emerges as a result of the increasing of participation of men in the event and in household activities and the externalization of feelings when they know their children. Conclusion: New gender policies are needed in order to deconstruct the patriarchal culture and develop egalitarian and democratic relationships in Cuban society

  10. Medical applications of synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Lewis, R.A.

    2005-01-01

    The Australian synchrotron is being built at Monash University near Melbourne. The 3 GeV machine is well-suited to the mid X-ray region and will have nine beamlines in its initial phase. The high level of biomedical research in Australia has led to the demand for a beamline capable of supporting medical research in both imaging and therapy. The design features for a versatile imaging and hard X-ray beamline capable of operating in the energy range 10-120 keV are outlined here together with a short review of some of the science that is envisaged

  11. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  12. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  13. The Academic Curriculum of Medical Radiation Technologists: Continuous Development

    International Nuclear Information System (INIS)

    Sergieva, K.; Gagova, P.; Bonninska, N.

    2016-01-01

    Full text: The purpose is to present the activities of Department of Radiation technologists at Medical College Sofia in knowledge management (KM) in human health applications and namely: continuous development of academic curriculum (AC) for medical radiation technologists (MRT) in sense of the conference motto “Nuclear Knowledge Management: Challenges and Approaches”. Our challenge is to realize, in practice, the important role of MRT professionals in healthcare. They are the front line in the patient safety and the last person with the patient before exposure. The existing AC has been periodically peer-reviewed: in 2011, 2014, and ongoing reviews, with the aim to guarantee that we are providing knowledge, skills and competencies that meet modern requirements for the training of radiation technologists. The AC compromises both academic and clinical education. The clinical component occurs throughout the academic course, accenting the role of MRT in radiology, radiotherapy and nuclear medicine. The approach of continuously developing the AC will meet the stringent requirements recently published by IAEA, with the goal that radiological medical practitioners, medical physicists, medical radiation technologists and other health professionals with specific duties in relation to protection and safety for patients in a given radiological procedure are specialized in the appropriate area. (author

  14. Recent trend of radiation doses of medical workers

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, I [Tokyo Univ. (Japan). Faculty of Medicine; Tanaka, M; Nakamura, S; Nawa, H; Nukazawa, A

    1981-10-01

    Radiation doses of medical workers in Japan between 1976 and 1979 were analysed based on the data provided by a film badge servicing company. Average annual radiation doses between April, 1978 and March, 1979 were 129 mrems for 2556 doctors, 108 mrems for 2074 radiographers, and 60 mrems for 1915 nurses. It was also suggested that the log-normal distribution could provide a good fit to the frequency distribution of radiation doses of these medical staffs. Time series data of monthly average doses during the period between April, 1976 and March, 1979 were analysed using a computer code named EPA that had been developed by the Japanese Economic Planning Agency. The EPA code separated the original time series data into three components, i.e., the trend and cycle factor, the seasonal factor and the irregular factor based on a multiplicative model. The results of analyses strongly suggested that there existed a significant common pattern among the trend factors of doctors, radiographers and nurses. The similar phenomenon was also observed about the seasonal factors. Some specific cases of medical workers who received considerably high radiation doses were studied, and it was pointed out that, in order to lower the doses of medical workers, the factors which are peculiar to each medical facility must be precisely examined in addition to the strengthening of general radiological protective measures.

  15. Maternity patients' access to their electronic medical records: use and perspectives of a patient portal.

    Science.gov (United States)

    Megan Forster, Megan; Dennison, Kerrie; Callen, Joanne; Andrew, Andrew; Westbrook, Johanna I

    Patients have been able to access clinical information from their paper-based health records for a number of years. With the advent of Electronic Medical Records (EMRs) access to this information can now be achieved online using a secure electronic patient portal. The purpose of this study was to investigate maternity patients' use and perceptions of a patient portal developed at the Mater Mothers' Hospital in Brisbane, Australia. A web-based patient portal, one of the first developed and deployed in Australia, was introduced on 26 June 2012. The portal was designed for maternity patients booked at Mater Mothers' Hospital, as an alternative to the paper-based Pregnancy Health Record. Through the portal, maternity patients are able to complete their hospital registration form online and obtain current health information about their pregnancy (via their EMR), as well as access a variety of support tools to use during their pregnancy such as tailored public health advice. A retrospective cross-sectional study design was employed. Usage statistics were extracted from the system for a one year period (1 July 2012 to 30 June 2013). Patients' perceptions of the portal were obtained using an online survey, accessible by maternity patients for two weeks in February 2013 (n=80). Descriptive statistics were employed to analyse the data. Between July 2012 and June 2013, 10,892 maternity patients were offered a patient portal account and access to their EMR. Of those 6,518 created one (60%; 6,518/10,892) and 3,104 went on to request access to their EMR (48%; 3,104/6,518). Of these, 1,751 had their access application granted by 30 June 2013. The majority of maternity patients submitted registration forms online via the patient portal (56.7%). Patients could view their EMR multiple times: there were 671 views of the EMR, 2,781 views of appointment schedules and 135 birth preferences submitted via the EMR. Eighty survey responses were received from EMR account holders, (response

  16. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  17. Radiation protection of workers in medical practices

    Energy Technology Data Exchange (ETDEWEB)

    Towson, J. [Royal Prince Alfred Hospital, Dept of PET and Nuclear Medicine, Sydney (Australia)

    2006-07-01

    Full text of publication follows: Employees working in a PET/CT facility may receive the highest occupational exposures of all groups in the hospital setting. Their environment presents a number of challenges: radionuclide and x-ray apparatus sources are present singly and in combination, radionuclide sources are both stationary and mobile, and shielding is not always an option. Demand for this diagnostic imaging service generally mandates a high workload. It is therefore worthwhile to consider what levels of dose to the body and hands from the totality of sources are reasonably achievable and the contribution to dose minimisation of facility design and work practices respectively. There are few contemporary guidelines for PET/CT facility design. Two aspects should be addressed: layout and space of areas where there will be close contact with radioactive patients, and shielding of areas including the PET/CT scan room - when close contact is not required. A Siemens LSO Biograph incorporating a dual-slice Emotion Duo CT scanner was installed in a facility with barriers designed using a modification of the methodology developed by the National Council for Radiological Protection (NCRP) for shielding of x-ray imaging facilities. Radiation levels measured throughout the day within the rooms of this facility validate the initial assumptions. Assuming barrier shielding is adequate, occupational exposures are then highly dependent on local operational factors such as the clinical workload, number of staff and the shielding for isotope vials and syringes. Strategies to minimise exposure to technologists and nurses are described. These control measures are sufficient to keep whole body dose below 0.5 mSv/month and extremity dose below 15 mSv/month with a mean workload of 18 patients per day injected with 350 MBq of 18 F-FDG. Monitoring of radiation dose to the technologists throughout the day illustrates the contribution from individual tasks. (author)

  18. Radiation protection of workers in medical practices

    International Nuclear Information System (INIS)

    Towson, J.

    2006-01-01

    Full text of publication follows: Employees working in a PET/CT facility may receive the highest occupational exposures of all groups in the hospital setting. Their environment presents a number of challenges: radionuclide and x-ray apparatus sources are present singly and in combination, radionuclide sources are both stationary and mobile, and shielding is not always an option. Demand for this diagnostic imaging service generally mandates a high workload. It is therefore worthwhile to consider what levels of dose to the body and hands from the totality of sources are reasonably achievable and the contribution to dose minimisation of facility design and work practices respectively. There are few contemporary guidelines for PET/CT facility design. Two aspects should be addressed: layout and space of areas where there will be close contact with radioactive patients, and shielding of areas including the PET/CT scan room - when close contact is not required. A Siemens LSO Biograph incorporating a dual-slice Emotion Duo CT scanner was installed in a facility with barriers designed using a modification of the methodology developed by the National Council for Radiological Protection (NCRP) for shielding of x-ray imaging facilities. Radiation levels measured throughout the day within the rooms of this facility validate the initial assumptions. Assuming barrier shielding is adequate, occupational exposures are then highly dependent on local operational factors such as the clinical workload, number of staff and the shielding for isotope vials and syringes. Strategies to minimise exposure to technologists and nurses are described. These control measures are sufficient to keep whole body dose below 0.5 mSv/month and extremity dose below 15 mSv/month with a mean workload of 18 patients per day injected with 350 MBq of 18 F-FDG. Monitoring of radiation dose to the technologists throughout the day illustrates the contribution from individual tasks. (author)

  19. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  20. Medical Management of Acute Radiation Syndromes : Immunoprophylaxis by Antiradiation Vaccine

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael; Kedar, Prasad

    Introduction: Traditionally, the treatment of Acute Radiation Syndrome (ARS) includes supportive therapy, cytokine therapy, blood component transfusions and even stem cell transplantation. Recommendations for ARS treatment are based on clinical symptoms, laboratory results, radiation exposure doses and information received from medical examinations. However, the current medical management of ARS does not include immune prophylaxis based on antiradiation vaccines or immune therapy with hyperimmune antiradiation serum. Immuneprophylaxis of ARS could result from stimulating the immune system via immunization with small doses of radiation toxins (Specific Radiation Determinants-SRD) that possess significant immuno-stimulatory properties. Methods: Principles of immuno-toxicology were used to derive this method of immune prophylaxis. An antiradiation vaccine containing a mixture of Hematotoxic, Neurotoxic and Non-bacterial (GI) radiation toxins, underwent modification into a toxoid forms of the original SRD radiation toxins. The vaccine was administered to animals at different times prior to irradiation. The animals were subjected to lethal doses of radiation that induced different forms of ARS at LD 100/30. Survival rates and clinical symptoms were observed in both control and vaccine-treated animals. Results: Vaccination with non-toxic doses of Radiation toxoids induced immunity from the elaborated Specific Radiation Determinant (SRD) toxins. Neutralization of radiation toxins by specific antiradiation antibodies resulted in significantly improved clinical symptoms in the severe forms of ARS and observed survival rates of 60-80% in animals subjected to lethal doses of radiation expected to induce different forms of ARS at LD 100/30. The most effective vaccination schedule for the antiradiation vaccine consisted of repeated injections 24 and 34 days before irradiation. The vaccine remained effective for the next two years, although the specific immune memory probably

  1. Analysis of occupational doses of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Sanaye, S.S.; Baburajan, Sujatha; Joshi, V.D.; Pawar, S.G.; Nalawade, S.K.; Raman, N.V.; Kher, R.K.

    2007-01-01

    Routine monitoring of occupational radiation workers is done for controlling the doses to the individuals and to demonstrate the compliance with occupational dose limits. One of the objective of personnel monitoring program is the assessment of the radiation safety of working area and trends of exposure histories of individuals or group of workers. Computerised dose registry of all monitored radiation workers along with their personnel data helps in analyzing these trends. This in turn helps the institutions in management of their radiation safety programs. In India, annual and life time occupational dose records are maintained as National Dose Registry in the Radiological Physics and Advisory Division, Bhabha Atomic Research Centre. This paper presents analysis of occupational dose data of monitored radiation workers in medical institutions in India during last five years (i.e. 2002-2006)

  2. Risk of occupational radiation-induced cataract in medical workers

    International Nuclear Information System (INIS)

    Snezana, Milacic

    2008-01-01

    The objective of this study was determination of criteria for recognition of a pre senile cataract as a professional disease in health care personnel exposed to small doses of ionizing radiation. Method: The study included 3240 health workers in medical centers of Serbia in the period 1992-2002. A total of 1560 workers were employed in the zone (group A) and 1680 out of ionizing radiation zone (group B). Among group A, two groups had been selected: 1. Group A-1: Health workers in the ionizing radiation zone who contracted lens cataract during their years of service while dosimetry could not reveal higher absorbed dose (A-1=115); 2. Group A-2: Health workers in the ionizing radiation zone with higher incidence of chromosomal aberrations and without cataract (A-2=100). Results: More significant incidence of cataract was found in group A, χ 2 =65.92; p<0.01. Radiation risk was higher in health workers in radiation zone than in others, relative risk is 4, 6. Elevated blood sugar level was found in higher percentage with health workers working in radiation zone who developed cataract. Conclusion: Low doses of radiation are not the cause of occupational cataract as individual occupational disease. X-ray radiation may be a significant cofactor of cataract in radiological technicians. (author)

  3. Radiation monitoring system in medical facilities

    International Nuclear Information System (INIS)

    Matsuno, Kiyoshi

    1981-01-01

    (1) RI selective liquid effluent monitor is, in many cases, used at medical facilities to obtain data for density of radioactivity of six radionuclides. In comparison with the conventional gross measuring systems, over-evaluation is less, and the monitor is more practical. (2) Preventive monitor for loss of radium needle is a system which prevents missing of radium needle at a flush-toilet in radium treatment wards, and this monitor is capable of sensing a drop-off of radium needle of 0.5 mCi (minimum). (3) Short-lived positron gas measuring device belongs to a BABY CYCLOTRON installed in a hospital, and this device is used to measure density of radioactivity, radioactive impurity and chemical impurity of produced radioactive gas. (author)

  4. Medical use of ionising radiation - challenges for the third millennium

    International Nuclear Information System (INIS)

    Leitz, W.

    2003-01-01

    From the very beginning after its discovery ionising radiation has been in beneficial use for health care. But even the drawbacks showed up very early: only a few months after Roentgens discovery reports were published on patients who got severe skin damage after fluoroscopy with x-rays. This finding of the adverse effects was soon turned into something positive: ionising radiation could be used for treatment of cancer. In 1928 radiologists took the initiative to the foundation of what later became the International Commission on Radiological Protection, ICRP. Medical use of ionising radiation is giving by far the largest contribution to the radiation burden of the global population from artificial sources, on average 0,3 mSv per year and inhabitant, excluding doses from radiation treatment. In the Nordic countries this dose is approximately 0,7 mSv. This isn't a problem by itself. The total benefit is exceeding the total radiation risk with large margins. But the margins could even be larger. Methods for examinations and treatments have often a potential for improvements, meaning that the medical effect can be obtained with a lower dose to the patient. In certain circumstances the examination does not contribute to the further treatment of the patient or to her/his well-being and is then regarded as not justified. The huge challenge we are facing depends among other things on the extreme fast technical development which enables exposures of a magnitude that we haven't seen before and applications we only could dream about. There is a risk that the motto 'do what is possible to do' is followed instead of 'do what the individual patient needs'. This presentation addresses the possibilities, but also the dangers that medical use of ionising radiation in medical care is facing in the new millennium, or at least in its first years. (orig.)

  5. Clinical Training of Medical Physicists Specializing in Radiation Oncology

    International Nuclear Information System (INIS)

    2009-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  6. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  7. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations

    Energy Technology Data Exchange (ETDEWEB)

    Linet, Martha S.; Rajaraman, Preetha [National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD (United States); Kim, Kwang pyo [National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD (United States); Kyung Hee University, Department of Nuclear Engineering, Yongin-si, Gyeonggi (Korea)

    2009-02-15

    While the etiology of most childhood cancers is largely unknown, epidemiologic studies have consistently found an association between exposure to medical radiation during pregnancy and risk of childhood cancer in offspring. The relation between early life diagnostic radiation exposure and occurrence of pediatric cancer risks is less clear. This review summarizes current and historical estimated doses for common diagnostic radiologic procedures as well as the epidemiologic literature on the role of maternal prenatal, children's postnatal and parental preconception diagnostic radiologic procedures on subsequent risk of childhood malignancies. Risk estimates are presented according to factors such as the year of birth of the child, trimester and medical indication for the procedure, and the number of films taken. The paper also discusses limitations of the methods employed in epidemiologic studies to assess pediatric cancer risks, the effects on clinical practice of the results reported from the epidemiologic studies, and clinical and public health policy implications of the findings. Gaps in understanding and additional research needs are identified. Important research priorities include nationwide surveys to estimate fetal and childhood radiation doses from common diagnostic procedures, and epidemiologic studies to quantify pediatric and lifetime cancer risks from prenatal and early childhood exposures to diagnostic radiography, CT, and fluoroscopically guided procedures. (orig.)

  8. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations

    International Nuclear Information System (INIS)

    Linet, Martha S.; Rajaraman, Preetha; Kim, Kwang pyo

    2009-01-01

    While the etiology of most childhood cancers is largely unknown, epidemiologic studies have consistently found an association between exposure to medical radiation during pregnancy and risk of childhood cancer in offspring. The relation between early life diagnostic radiation exposure and occurrence of pediatric cancer risks is less clear. This review summarizes current and historical estimated doses for common diagnostic radiologic procedures as well as the epidemiologic literature on the role of maternal prenatal, children's postnatal and parental preconception diagnostic radiologic procedures on subsequent risk of childhood malignancies. Risk estimates are presented according to factors such as the year of birth of the child, trimester and medical indication for the procedure, and the number of films taken. The paper also discusses limitations of the methods employed in epidemiologic studies to assess pediatric cancer risks, the effects on clinical practice of the results reported from the epidemiologic studies, and clinical and public health policy implications of the findings. Gaps in understanding and additional research needs are identified. Important research priorities include nationwide surveys to estimate fetal and childhood radiation doses from common diagnostic procedures, and epidemiologic studies to quantify pediatric and lifetime cancer risks from prenatal and early childhood exposures to diagnostic radiography, CT, and fluoroscopically guided procedures. (orig.)

  9. Medical radiation safety in the angiography room

    International Nuclear Information System (INIS)

    Kudou, Tamaki

    2011-01-01

    Author's efforts for angiographic procedure and technique aiming to reduce patient's exposure are described on a case with radiation skin hazard and on considerations of regulations and investigations. The case is a male patient (45 years old at the first intracardiac catheter examination, stature 164 cm, body wt. 116 kg), who, due to the diagnosis of angina pectoris and cardiac infarction, has the 5-year history of 5 coronary angiography (CAG), 6 percutaneous coronary intervention (PCI) and 1 off-pump coronary arterial bypass grafting (CABG). Because of serious skin injury and pain development after later PCI (172.2 min) (Oct. 2006) and their exacerbation after the latest PCI (27.1 min) (Apr. 2007), skin transplantation is conducted (Nov.). The exposure dose at the later PCI above is estimated to be around 12 Gy. Based on the case, consideration is made on regulatory recommendations by FDA, IAEA, ICRP, and investigational results of fluoroscopic mode vs dose by members of Japanese Circulatory Technology. With those references where the fluoroscopy at 20 mGy/min is assumed, the dose 12 Gy estimated above is thought to be resulted from the fluoroscopic dose >50 mGy/min within about 4 hr. To reduce the exposure, the author gives 11 items to be noted in interventional radiology: short fluoroscopic time, low rate pulse, minimal acquisition, use of additional filter, dose optimization, long distance between focus and skin, short distance between image intensifier (I.I.) and/or flat panel detector (FPD), minimal field, to avoid the excess inch-up, continuous maintenance of equipment, and record/preservation of the dose indicated by the machine. (T.T.)

  10. Investigations of actual conditions of medical radiation technologists

    International Nuclear Information System (INIS)

    2002-01-01

    At 50 year after enactment of the law of medical radiation technologists, their actual conditions were investigated. The investigation was done in December 2001 by questionnaire to directors of 10,514 facilities and answers were obtained from 4,241 facilities (40.37%). Following 11 questions (major answers and their analysis in parenthesis) were made: Nature of the facility (Private hospitals 45.8%, public ones 20.8%); State of radiation department (Independent department of the technologists from medical one about 30%); Actual job of the technologists (X-ray about 81% of the facilities, angiography 34%, CT 78%, MRI 38% where 94% of technologists conduct, nuclear medicine 17%, ultrasound 51% where, 10%); Personnel of the radiation department (21,897 persons in total/male 85%); Fulfillment of the personnel number; Treatment of the personnel; Acknowledgement system of the Technologist Society; Management of radiation instruments like daily examination; Radiation control (Leak dose measurement by technologists by themselves about 50% facilities for X-ray and radio-therapy); Medical exposure (Measurement experience about 50%); and Possession of dose rate-meter/survey-meter (Possession in about 40% facilities). (N.I.)

  11. Investigations of actual conditions of medical radiation technologists

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    At 50 year after enactment of the law of medical radiation technologists, their actual conditions were investigated. The investigation was done in December 2001 by questionnaire to directors of 10,514 facilities and answers were obtained from 4,241 facilities (40.37%). Following 11 questions (major answers and their analysis in parenthesis) were made: Nature of the facility (Private hospitals 45.8%, public ones 20.8%); State of radiation department (Independent department of the technologists from medical one about 30%); Actual job of the technologists (X-ray about 81% of the facilities, angiography 34%, CT 78%, MRI 38% where 94% of technologists conduct, nuclear medicine 17%, ultrasound 51% where, 10%); Personnel of the radiation department (21,897 persons in total/male 85%); Fulfillment of the personnel number; Treatment of the personnel; Acknowledgement system of the Technologist Society; Management of radiation instruments like daily examination; Radiation control (Leak dose measurement by technologists by themselves about 50% facilities for X-ray and radio-therapy); Medical exposure (Measurement experience about 50%); and Possession of dose rate-meter/survey-meter (Possession in about 40% facilities). (N.I.)

  12. Medical management of radiation/nuclear emergencies

    International Nuclear Information System (INIS)

    Bhatnagar, Aseem

    2014-01-01

    The medical issues in a radioactive fallout eventuality include radioprotectors, radioactivity de corporators, hemopoietic system regenerators, community and individual dosage issues, logistic and scale-up issues, regulatory issues. These issues are further compounded by the fact that published literature is (and will be) sparse and outdated, and pharma majors are unlikely to involve themselves in the R and D as well as in the supply chain. Self-developed out-of-box solutions are therefore needed. INMAS, DRDO has recently made progress on all these fronts. Many of these products have already been approved by DCGI and others are in an advanced development stage. Radioprotector has been and is an Achilles heals for the concerned scientists and a number of state agencies for a long time. However, it is a difficult area to work in for a number of reasons. New research in this area shall be highlighted. Finally, clinical trials, which are considered a norm and the final step before introduction of new drugs, are not strictly possible in case of decorporating agents and radioprotectors. Ways and means to collect safety-efficacy data shall be discussed

  13. Organisational measures and medical care after indicents involving radiation exposure

    International Nuclear Information System (INIS)

    Kemmer, W.

    1980-01-01

    West Germany has emergency plans for all kinds of catastrophes, from conventional causes to nuclear accidents. Emergency provisions refer to organisational measures, technical equipment, and medical equipment for the treatment of radiation injuries. These provisions require constant training of responsible persons. Emergency plans and provisions in the Federal Republic of Germany have not been optimized yet. (DG) [de

  14. Medical intervention in case of nuclear or radiation event

    International Nuclear Information System (INIS)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C.

    2002-01-01

    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  15. An interactive tutorial on radiation protection for medical students

    International Nuclear Information System (INIS)

    Sendra-Portero, F.; Martinez-Morillo, M.

    2003-01-01

    The aim of this project is to develop an interactive tutorial designed for medical students training in radiation protection in order to use its definitive version in a collaborative group of medical schools. The contents of the tutorial matchers the outlines proposed by the EC guidelines on education and training in Radiation Protection for Medical exposures (RP118), for medical and dental schools. The tutorial is organised in virtual lectures, following a similar structure than the traditional lectures, slides and explanations. There is a central script for each theme with a forward-return interaction. Additionally, branches with deeper explanations (drawings, images, videos,...) are provided to the user. The tutorial is being developed on a set of power Point presentations, linked between them. The user can choose two ways sto launch each lecture, based either on spoken (audio) or written explanations. We present the initial version of a useful tool for pre-graduate training of general practitioners in Radiation Protection, which is a complementary tool for personally adapted computed-based education. Most of the contents can be easily adapted for other students of health related careers (i. e. nurses, technologists...) The use of multimedia tools has been recommended in the field of radiation protection, but developing these tools is time consuming and needs expertise in both, educative and multimedia resources. This projects takes part of more than a dozen multimedia projects on different radiology related subjects developed in our department. (Author) 6 refs

  16. Control measures in industrial and medical applications of radiation

    International Nuclear Information System (INIS)

    Akinloye, M. K.

    1999-01-01

    Radiation and radioactive substances are natural and permanent features of the environment; additionally the use of human made radiation is widespread. Sources of radiation are essential to modern health care, disposable medical supplies sterilized by intense radiation have been central to combating disease, radiology is a vital diagnostic tool and radiotherapy is commonly part of the treatment of malignancies. Nuclear techniques are in growing use in industry, agriculture, medicine and many fields of research, benefiting hundreds of millions of people and giving employment to millions of people in the related occupations, Irradiation is used around the world to preserve and reduce wastage and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds and detect cracks and help prevent the failure of engineered structures. It is also known that exposure to ionizing radiation can result to injuries that manifest themselves in the individual and his descendants. It is therefore imperative that the use of radiation sources be accompanied with the methods necessary for the prevention of the harmful effects of the radiation. These methods are referred to as control measures. Control measures that have been applied in establishments can be classified into physical control measures and administrative control measures. Physical control measures involve the technical aspects while administrative control measures augment physical measures. The guidelines and recommendations for the safe use of radiation and radioactive materials are provided through legislative and regulatory controls

  17. Radiation emergency medical preparedness and assistance network in Korea

    International Nuclear Information System (INIS)

    Kim, E. S.; Kong, H. J.; Noh, J. H.; Lim, Y. K.; Kim, C. S.

    2003-01-01

    Nationwide Medical Preparedness for Nuclear Accidents as an integral part of nuclear safety system has been discussed for several years and Radiation Health Research Institute (RHRI) of Korea Hydro and Nuclear Power Co. was established on July, 1999. The National Radiation Emergency Medical Center (NREMC) of Korea Cancer Center Hospital was also founded on September, 2002. Two organizations have established Radiation Emergency Medical Preparedness and Assistance Network in Korea to cope with accidental situations in nuclear power plants and also in handling sites of radionuclides. In order to construct an effective Nationwide Emergency Medical Network System they maintain good cooperation among regional hospitals. RHRI is going to make three types of medical groups, that is to say, the collaboration of the regional (primary appointed) hospital group around the nuclear power plants, the regional core (secondary appointed) hospital group and the central core hospital (RHRI). NREMC is also playing a central role in collaboration with 10 regional hospitals. Two cores are working key role for the maintenance of the network. Firstly, They maintain a radiological emergency response team consisting of physicians, nurses, health physicists, coordinators, and necessary support personnel to provide first-line responders with consultative or direct medical and radiological assistance at their facility or at the accident site. Secondly, they serves educational programs for the emergency personnel of collaborating hospitals not only as a treatment facility but also as a central training and demonstration unit. Regularly scheduled courses for the physician and nurse, and health/medical physicists are conducted. Therefore, to activate Nationwide Emergency Medical Network System and to maintain it for a long time, well-trained specialists and budgetary supports are indispensable

  18. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  19. Far infrared radiation (FIR): its biological effects and medical applications.

    Science.gov (United States)

    Vatansever, Fatma; Hamblin, Michael R

    2012-11-01

    Far infrared (FIR) radiation (λ = 3-100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3- 12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.

  20. Radiation protection programme for planned medical exposure situation

    International Nuclear Information System (INIS)

    Hanciles, Milford

    2016-04-01

    Radiation protection programme for planned medical exposure situation which involved diagnostic and interventional radiology was discussed. The radiation protection programme (RPP) should reflect the management’s commitment to radiation protection and safety through the management structure, policies, procedures and organizational arrangement commensurate with the nature and extent of the risk. Registrants and licensees should use the RPP as a tool for the development of a safety culture in diagnostic and interventional radiology departments .Recommendations are provided which when implemented in the education and training of radiographers, referral physician and all those involved in the use of ionizing radiation for diagnosis purposes will improve protection and safety of the occupationally exposed worker, the patient, the public and the environment. (au)

  1. Serum alpha-fetoprotein in the three trimesters of pregnancy: effects of maternal characteristics and medical history.

    Science.gov (United States)

    Bredaki, F E; Sciorio, C; Wright, A; Wright, D; Nicolaides, K H

    2015-07-01

    To define the contribution of maternal variables which influence the measured level of maternal serum alpha-fetoprotein (AFP) in screening for pregnancy complications. Maternal characteristics and medical history were recorded and serum AFP was measured in women with a singleton pregnancy attending for three routine hospital visits at 11 + 0 to 13 + 6, 19 + 0 to 24 + 6 and 30 + 0 to 34 + 6 weeks' gestation. For pregnancies delivering phenotypically normal live births or stillbirths ≥ 24 weeks' gestation, variables from maternal demographic characteristics and medical history that are important in the prediction of AFP were determined from a linear mixed-effects multiple regression. Serum AFP was measured in 17 071 cases in the first trimester, 8583 in the second trimester and 8607 in the third trimester. Significant independent contributions to serum AFP were provided by gestational age, maternal weight, racial origin, gestational age at delivery and birth-weight Z-score of the neonate of the previous pregnancy and interpregnancy interval. Cigarette smoking was found to significantly affect serum AFP in the first trimester only. The machine used to measure serum AFP was also found to have a significant effect. Random-effects multiple regression analysis was used to define the contribution of maternal variables that influence the measured level of serum AFP and express the values as multiples of the median (MoMs). The model was shown to provide an adequate fit of MoM values for all covariates, both in pregnancies that developed pre-eclampsia and in those without this pregnancy complication. A model was fitted to express measured serum AFP across the three trimesters of pregnancy as MoMs, after adjusting for variables from maternal characteristics and medical history that affect this measurement. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  2. Radiation and your patient: A guide for medical practitioners

    International Nuclear Information System (INIS)

    Valentin, Jack; )

    2002-01-01

    This didactic text is devoted to patients' protection against unnecessary exposure to ionizing radiation. There are obvious benefits to health from medical uses of radiation, i.e. in X-ray diagnostics, in interventional radiology, nuclear medicine and radiotherapy. However, there are well-established risks from improperly applied high doses of radiation (therapy, interventional radiology) and possible deleterious effects from small radiation doses used in diagnostics). Appropriate use of large doses prevents serious harm from therapy, but low doses carry a risk that cannot be entirely eliminated. Diagnostic use of radiation requires therefore such methodology that would secure high diagnostic gains while limiting the possible harm to the lowest possible level. The text provides ample information on opportunities to minimize the doses, and therefore the risk from diagnostic uses of radiation. This objective may be reached by avoiding unnecessary (unjustified) examinations, and optimizing the applied procedures both from the standpoint of diagnostic quality and of reduction of the excessive doses to patients. Optimization of patient protection in radiotherapy must depend on maintaining sufficiently high doses to irradiated tumours, securing a high cure rate, while protecting the healthy tissues to the largest extent possible. Problems related to special protection of human embryo and foetus in course of diagnostic and therapeutic uses of radiation are presented and respective practical solutions are recommended

  3. The ionising radiation (medical exposure) regulations - IR (ME) R, Malta

    International Nuclear Information System (INIS)

    Desai, R.; Brejza, P.; Cremona, J.

    2004-01-01

    Full text: The regulations in Malta at present are in draft stage. These regulations partially implement European Council Directive 97/43/Euratom. This Directive lays down the basic measurements for the health and protection of individuals against dangers of ionising radiation in relation to medical exposure. The regulations impose duties on persons administering radiations, to protect people from unnecessary exposure whether as part of their own medical diagnosis, treatment or as part of occupational health worker for health screening, medico-legal procedures, voluntary participation in research etc. These regulations also apply to individuals who help other individuals undergoing medical exposure. Main provisions 1. Regulation 2 contains the definitions of 28 terms used in these regulations. 2. Regulation 3.1 and 3.2 sets out the medical exposures to which the regulations apply. 3. Regulation 4 requires approval of medical exposures due to medical research, from radiation protection board of Malta. 4. Regulation 5 prohibits new procedures involving medical exposure unless it has been justified in advance. 5. Regulation 6 provides conditions justifying medical exposures. It prohibits any medical exposure from being carried out which has not been justified and authorized and sets out matters to be taken into account for justification. 6. Regulation 7 requires that practitioner justifies the exposure, shall pay special attention towards (a) exposure from medical research procedures where there is no direct health benefit to the individual undergoing exposure, (b) exposures for medico-legal purposes; (c) exposures to pregnant or possible pregnant women and (d) exposures to breast-feeding women. 7. Regulation 8.1 to 8.3 prohibit any medical exposure from being carried out which has not been justified and sets out matters to be taken for justification 8. Regulation 8.4 prohibits an exposure if it cannot be justified. 9. Regulation 9 requires the employer to provide a

  4. Education of medical radiation physicists in the Czech Republic

    International Nuclear Information System (INIS)

    Cechak, T.; Dvorak, P.; Musilek, L.

    2005-01-01

    In this paper courses in new specialization in Medical Radiation Physics, now renamed as Dosimetry and Ionising Radiation Application realized on Czech Technical University in Prague (CTU) are described. The Department of Dosimetry and Application of Ionizing Radiation offers graduate study leading to the Ing. degree (M. S.) in Radiological Physics, bachelor study leading to the Bachelor in Radiological Technique. The Department offers furthermore graduate study leading to the Ing. degree (M. S.) in Dosimetry and Application of Ionizing Radiation and bachelor study leading to the Bachelor in Radiation Protection and Environment, traditionally . The curriculum of the Radiological Physics combines theoretical, experimental and applied radiological science courses. After graduation, students are prepared for employment as radiological physics in the departments of radiotherapy , radiodiagnostics and nuclear medicine or many continues studies leading to the PhD. In addition to pre-graduate education, CTU also intends to apply for Ministry ,of Health certification for special courses in medical physics aimed at graduates from other mathematics- and physics-based programs who wish to be employed as MPs in hospitals. This will be possible in the near future, when the new legislation becomes valid and the Institute for Postgraduate Education loses its monopoly on postgraduate education in health care. (authors)

  5. The radiation oncology workforce: A focus on medical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org [American Association of Medical Dosimetrists, Herndon, VA (United States); Mobile, Katherine [American Association of Medical Dosimetrists, Herndon, VA (United States); Yu, Yan [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-07-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.

  6. The radiation oncology workforce: A focus on medical dosimetry

    International Nuclear Information System (INIS)

    Robinson, Gregg F.; Mobile, Katherine; Yu, Yan

    2014-01-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field

  7. Study warns of radiation risk in medical imaging

    Science.gov (United States)

    Gwynne, Peter

    2009-10-01

    A study of a million US patients suggests that some who undergo medical imaging could be exposed to more ionizing radiation than those who work with radioactive materials in nuclear power plants. The study, reported in The New England Journal of Medicine (361 849), implies that current exposure to radiation from conventional X-ray equipment as well as computed tomography (CT) and positron-emission tomography (PET) scanners could lead to tens of thousands of extra cases of cancer in the US alone.

  8. Use of radiation in medicine and medical research in Australia

    International Nuclear Information System (INIS)

    Bonnyman, J.

    1994-01-01

    On 1 April, 1994, The Age, Melbourne, published an article claiming that hundreds of Australians had been given radioactive doses in medical experiments performed after the Second World War. Data for the article were obtained by researching information available in the Australian Radiation Laboratory (ARL) library and the Nation Health and Medical Research Council (NHMRC) Minutes in Canberra. In this article, the author gives a balanced view of the situation relating to medical experiments with radioactive substances in the 1930-1940s. Usage can be classified into the following categories : established therapeutic use; investigational therapeutic use; established diagnostic use; investigational diagnostic use and research. The limited search has indicated that considerable use has been made of radioisotopes in medicine and medical research in Australia. In most of the research studies, there would have been no benefit to the patient. Although in some cases the radiation dose would have exceeded that which is acceptable today for research studies, no cases were found where the dose delivered was dangerous. The concern is that there may be isolated studies published in medical journals which could be described in poor light in the print and electronic news media

  9. Review of Radiation Safety in Medical X-Ray Diagnosis

    International Nuclear Information System (INIS)

    Koteng, O.A.

    2015-01-01

    Medical X-Ray machines have been used for more than a century for non-invasive diagnosis of patients for the benefit of mankind. The safety of operators and patients during such practice has improved with time, but, still cases of detrimental effects to Radiation Workers in Kenya including cancer related deaths have been reported in the recent past. An ongoing study is reviewing the safety status of the worker and patients during medical and dental exposures. The study was initiated following complaint of recurrent headaches by a radiographer working in a busy Kenyan hospital. (author)

  10. Estimates of Maternal Mortality Ratio and the associated medical causes in Orissa and Rajasthan States - A cross sectional study

    Directory of Open Access Journals (Sweden)

    Abha Rani Aggarwal

    2015-03-01

    Full Text Available Background: Maternal Mortality Ratio (MMR is an important indicator of reproductive health and its reduction remains a challenge in India. Aims &Objective: This study was conducted with the aim of estimating MMR in two states Orissa and Rajasthan having high MMR as well as to identify the associated medical causes of maternal mortality. Material Methods: This survey was conducted from October 2010-June 2012 on a sample of 13 Primary Health Centres (PHCs in Orissa and 15 PHCs in Rajasthan. These numbers have been derived after estimating the total number of live births using MMR and birth rate from Sample Registration System. 1997-2003.An adapted snowball technique was adopted wherein maternal deaths were captured by snowball technique and the numbers of live births were taken from the available records from the various health facilities in the study.  Results: The overall birth rate in Orissa was found to be 19 per 1000 population while in Rajasthan it was 24 per 1000 population. The study revealed that 17% additional maternal deaths could be captured by snowball technique as against the official record. The overall weighted estimate of MMR was 252 per one lakh live births (95% CI: 246-259 per 1,00,000 live births in Orissa and 209 per one lakh live births (95% CI: 207-211 per one lakh live births in Rajasthan. The main causes of maternal deaths were post-partum haemorrhage, anaemia and septicaemia. More than 25% maternal deaths could be attributed to indirect causes including suicide, accident and infectious diseases. Conclusion: There appears to be a positive trend towards reduction of maternal mortality in Orissa and Rajasthan. Greater care is essential to reduce medical as well as incidental causes of death during pregnancy.

  11. Estimates of Maternal Mortality Ratio and the associated medical causes in Orissa and Rajasthan States - A cross sectional study

    Directory of Open Access Journals (Sweden)

    Abha Rani Aggarwal

    2015-03-01

    Full Text Available Background: Maternal Mortality Ratio (MMR is an important indicator of reproductive health and its reduction remains a challenge in India. Aims &Objective: This study was conducted with the aim of estimating MMR in two states Orissa and Rajasthan having high MMR as well as to identify the associated medical causes of maternal mortality. Material Methods: This survey was conducted from October 2010-June 2012 on a sample of 13 Primary Health Centres (PHCs in Orissa and 15 PHCs in Rajasthan. These numbers have been derived after estimating the total number of live births using MMR and birth rate from Sample Registration System. 1997-2003.An adapted snowball technique was adopted wherein maternal deaths were captured by snowball technique and the numbers of live births were taken from the available records from the various health facilities in the study.  Results: The overall birth rate in Orissa was found to be 19 per 1000 population while in Rajasthan it was 24 per 1000 population. The study revealed that 17% additional maternal deaths could be captured by snowball technique as against the official record. The overall weighted estimate of MMR was 252 per one lakh live births (95% CI: 246-259 per 1,00,000 live births in Orissa and 209 per one lakh live births (95% CI: 207-211 per one lakh live births in Rajasthan. The main causes of maternal deaths were post-partum haemorrhage, anaemia and septicaemia. More than 25% maternal deaths could be attributed to indirect causes including suicide, accident and infectious diseases. Conclusion: There appears to be a positive trend towards reduction of maternal mortality in Orissa and Rajasthan. Greater care is essential to reduce medical as well as incidental causes of death during pregnancy.

  12. Situation of radiation exposure in medical personnel, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Minoru; Kumazaki, Hiroshi; Tsuchiya, Mitsuaki; Nakamura, Masamoto; Nonomura, Takuo [Tokyo Metropolitan Isotope Research Center (Japan)

    1982-09-01

    In connection with the radiation protection for medical personnel, the logarithmic normal distribution of their exposure doses has been examined, which is a prerequisite for the practice. The data were the doses measured by film badges from April, 1976, to March, 1981, for physicians, radiation technicians and nurses. The dose measurement by film badges was carried out monthly, 12 times a year; the values given were mrem/year. For the probability distribution of exposure doses, the following items were surveyed: comparison between three types of the profession and the kinds of film badges, i.e. for X-ray and ..gamma..-ray, the linearity of the logarithmic normal distribution for the types of medical institution, and comparison in the linearity between Japan and other countries. The fitting to linearity was found to be very good.

  13. Dosimetric studies for gamma radiation validation of medical devices

    International Nuclear Information System (INIS)

    Soliman, Y.S.; Beshir, W.B.; Abdel-Fattah, A.A.; Abdel-Rehim, F.

    2013-01-01

    The delivery and validation of a specified dose to medical devices are key concerns to operators of gamma radiation facilities. The objective of the present study was to characterize the industrial gamma radiation facility and map the dose distribution inside the product-loading pattern during the validation and routine control of the sterilization process using radiochromic films. Cardboard phantoms were designed to achieve the homogeneity of absorbed doses. The uncertainty of the dose delivered during validation of the sterilization process was assessed. - Highlights: ► Using γ-rays for sterilization of hollow fiber dialyzers and blood tubing sets according to ISO 11137, 2006. ► Dosimetry studies of validations of γ-irradiation facility and sterilized medical devices. ► Places of D min and D max have been determined using FWT-60 films. ► Determining the target minimum doses required to meet the desired SAL of 10 −6 for the two products.

  14. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    When ionizing radiation was discovered more than 100 years ago its beneficial uses were quickly discovered by the medical profession. Over the years new diagnostic and therapeutic techniques have been developed and the general level of health care has improved. This has resulted in medical radiation exposures becoming a significant component of the total radiation exposure of populations. Current estimates put the worldwide annual number of diagnostic exposures at 2500 million and therapeutic exposures at 5.5 million. Some 78% of diagnostic exposures are due to medical X rays, 21% due to dental X rays and the remaining 1% due to nuclear medicine techniques. The annual collective dose from all diagnostic exposures is about 2500 million man Sv, corresponding to a worldwide average of 0.4 mSv per person per year. There are, however, wide differences in radiological practices throughout the world, the average annual per caput values for States of the upper and lower health care levels being 1.3 mSv and 0.02 mSv, respectively. It should, however, be noted that doses from therapeutic uses of radiation are not included in these averages, as they involve very high doses (in the region of 20-60 Gy) precisely delivered to target volumes in order to eradicate disease or to alleviate symptoms. Over 90% of total radiation treatments are conducted by teletherapy or brachytherapy, with radiopharmaceuticals being used in only 7% of treatments. Increases in the uses of medical radiation and the resultant doses can be expected following changes in patterns of health care resulting from advances in technology and economic development. For example, increases are likely in the utilization of computed tomography (CT), digital imaging and, with the attendant potential for deterministic effects, interventional procedures; practice in nuclear medicine will be driven by the use of new and more specific radiopharmaceuticals for diagnosis and therapy, and there will be an increased demand for

  15. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    When ionizing radiation was discovered more than 100 years ago its beneficial uses were quickly discovered by the medical profession. Over the years new diagnostic and therapeutic techniques have been developed and the general level of health care has improved. This has resulted in medical radiation exposures becoming a significant component of the total radiation exposure of populations. Current estimates put the worldwide annual number of diagnostic exposures at 2500 million and therapeutic exposures at 5.5 million. Some 78% of diagnostic exposures are due to medical X rays, 21% due to dental X rays and the remaining 1% due to nuclear medicine techniques. The annual collective dose from all diagnostic exposures is about 2500 million man Sv, corresponding to a worldwide average of 0.4 mSv per person per year. There are, however, wide differences in radiological practices throughout the world, the average annual per caput values for States of the upper and lower health care levels being 1.3 mSv and 0.02 mSv, respectively. It should, however, be noted that doses from therapeutic uses of radiation are not included in these averages, as they involve very high doses (in the region of 20-60 Gy) precisely delivered to target volumes in order to eradicate disease or to alleviate symptoms. Over 90% of total radiation treatments are conducted by teletherapy or brachytherapy, with radiopharmaceuticals being used in only 7% of treatments. Increases in the uses of medical radiation and the resultant doses can be expected following changes in patterns of health care resulting from advances in technology and economic development. For example, increases are likely in the utilization of computed tomography (CT), digital imaging and, with the attendant potential for deterministic effects, interventional procedures. Practice in nuclear medicine will be driven by the use of new and more specific radiopharmaceuticals for diagnosis and therapy, and there will be an increased demand for

  16. Radiation exposure of patients due to medical measures

    International Nuclear Information System (INIS)

    Schwarz, E.R.; Tsavachidis, C.; Hinz, G.; Eigelsreiter, H.

    1987-01-01

    The main objective of this research project supported by the Federal Ministry of the Interior was to collect the data required as a basis for an up-to-date assessment of the radiation exposure of the population as a result of medical measures. Apart from the fact that this had to be done in order to fulfill a commitment required by the EURATOM principles, the report in hand also presents a useful survey of the improvements achieved over the last years in terms of radiation hygiene in the field of imaging technology applied for medical diagnostics. The data obtained from four hospital centers (2 university hospitals, 1 city hospital, and one county hospital) and from three medical practices (radiologist, internal specialist, orthopedics), the changes experienced in the selection of imaging methods for diagnostic purposes in the period 1976 to 1983 or 1985 are illustrated, and analyses show the developmental trends. The results show that there is reason to assume the radiation exposure of the population to be receding. (orig./MG) [de

  17. Romanian Radiation Protection Training Experience in Medical Field

    International Nuclear Information System (INIS)

    Steliana Popescu, F.; Milu, C.; Naghi, E.; Calugareanu, L.; Stroe, F. M.

    2003-01-01

    Studies conducted by the Institute of Public Health Bucharest during the last years emphasised the need of appropriate radioprotection training in the medical field. With the assistance of the International Atomic Energy Agency in Vienna, the Pilot Centre on Clinical Radio pathology in the Institute of Public Health-Bucharest, provided, from 2000 a 7 modular courses (40 hours each), covering the basic topics of ionizing radiation, biological and physical dosimetry, effects of exposure to ionising radiation, radioprotection concepts, planning and medical response in case of a nuclear accident or radiological emergency. The courses are opened for all health specialists, especially for occupational health physicians, focusing on health surveillance of radiation workers and medical management of overexposed workers. Each module is followed up by an examination and credits. The multidisciplinary team of instructors was trained within several train-the-trainers courses, organised by IAEA. The paper discusses the evaluation of these 3 years experience in training and its feedback impact, the aim of the program being to develop a knowledge in the spirit of the new patterns of radiological protection, both for safety and communication with the public. (Author)

  18. Medical management of three workers following a radiation exposure incident

    International Nuclear Information System (INIS)

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L.

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms

  19. Preventive medical programmes to personnel exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Estrada F, E.

    1996-01-01

    The increasing use of ionizing radiation in the medical field as well as in industry and research grants has special importance to the security aspects related to the individual as well as his surroundings, reason for which the implementation of effective Occupational Radiation Protection Programmes constitutes a priority. Presently, in Guatemala, an Occupational Medicine Programme, directed to the Radiosanitary watch over of occupationally exposed personnel does not exist. It is the goal in this project to organize and establish such programme, based on protective and training actions focused toward the employee as the main entity, his specific activities and his work surroundings. Medical watch over together with Radiation Protection will permit the reduction of the occurrence probability of accidents or incidents, as well as the limitation of stochastic effects to the undermost values. The application scope of the present project is, in the first place, directed to the occupationally exposed personnel of the Direcci[n General de Energ[a Nuclear, as regulatory entity of these activities, and afterwards, its application in the different institutions which work with ionizing radiations. All the previously exposed is based on the Nuclear Legislation prevailing in Guatemala as well as the recommendations of international organizations. (author)

  20. Medical management of three workers following a radiation exposure incident

    Energy Technology Data Exchange (ETDEWEB)

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L. (Department of Occupational and Environmental Health, St. Michael' s Hospital, Toronto, Ontario (Canada))

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.

  1. Prospects for radiation sterilization of medical products in Egypt

    International Nuclear Information System (INIS)

    Roushdy, H.M.

    1975-01-01

    The pharmaceutical industry in Egypt is continually expanding its activity and each year marks new accomplishments and additions which enable the companies to apply the most modern scientific means in the production of pharmaceutical preparations and consequently to improve their market potentialities. The certainty of expansion and the possibility of increasing exports of sterilized medical products, particularly to Arab and African countries, indicate a need for a gamma-sterilization plant. This technology permits the introduction of the latest practices with regard to used disposables, thus greatly reducing the chances of cross-contamination which usually results in serious complications enhanced by local environmental conditions. This paper reviews the current state and future prospects for radiation sterilization of medical products and biological tissues in connection with other related industrial radiation processings. Moreover, the paper reviews the Egyptian scientific and technical experience with irradiation facilities and the parameters underlying the choice of Egypt's first industrial gamma and electron-beam irradiators designed for more than a single-purpose use, with hygienic measures taken to avoid biological contamination of sterilized medical packages throughout the sterilization process. In addition, the paper deals with the policy set up for establishing the Egyptian National Centre for Radiation Technology with a view to introducing irradiation techniques in the sterilization of medical products, and to improving the properties and increasing the competitiveness of Egyptian fabrics. Apart from medical sterilization, certain industrial processes have been mentioned to show how a multi-purpose irradiation facility may be utilized in a developing country to justify significantly the large investment required. (author)

  2. Reinforcing the protection against ionizing radiation in medical uses through following the progress in modern medical physics

    International Nuclear Information System (INIS)

    Zheng Junzheng; Li Junli

    2008-01-01

    The medical application of ionizing radiation has the longest history, the most extensive uses and the strongest effect among the multiple applications of ionizing radiation technology. With the development of diagnostic radiology and radiotherapy, for instances, the radiology, the interventional radiology, the nuclear medicine, and the radiation oncology; the infrastructures and teambuilding of medical physics in China has been becoming more and more important and urgent. Fortunately, people in relevant fields have already recognized this situation and made lots of progresses in the recent years, for example, the 221 st Xiangshan Science Conference took 'The Development of Medical Physics' as its main topic in 2004; in recent years, a series of regulations and national standards regarding to the quality assurance and radiological protection of medical exposure and the teambuilding of the relevant departments in hospital have been successively issued; the subject of Medical Physics was opened as both undergraduate and graduated courses in more and more universities (Tsinghua University, Peking University etc); the Committee on Medical Physics was enrolled as a new member of the Chinese Physical Society. Modern medical physics should include 4 parts, medical imaging physics, nuclear medicine physics, radiation oncology physics, and health physics. Protection against ionizing radiation needs to fully cover the development of medical physics, which includes the protection against ianizing radiation in medical uses. This article emphasizes the improvement of the ionizing radiation protection in medical uses, for marking of 30th anniversary of the Journal of Radiation Protection. (authors)

  3. Medical treatment of radiation damages and medical emergency planning in case of nuclear power plant incidents and accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1981-03-01

    Medical measures in case of radiation damages are discussed on the basis of five potential categories of radiation incidents and accidents, respectively, viz. contaminations, incorporations, external local and general radiation over-exposures, contaminated wounds, and combinations of radiation damages and conventional injuries. Considerations are made for diagnostic and therapeutic initial measures especially in case of minor and moderate radiation accidents. The medical emergency planning is reviewed by means of definations used in the practical handling of incidents or accidents. The parameters are: extent of the incident or accident, number of persons involved, severity of radiation damage. Based on guiding symptoms the criteria for the classification into minor, moderate or severe radiation accidents are discussed. Reference is made to the Medical Radiation Protection Centers existing in the Federal Republic of Germany and the possibility of getting advices in case of radiation incidents and accidents. (orig.) [de

  4. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  5. [Staffing levels in medical radiation physics in radiation therapy in Germany. Summary of a questionnaire].

    Science.gov (United States)

    Leetz, Hans-Karl; Eipper, Hermann Hans; Gfirtner, Hans; Schneider, Peter; Welker, Klaus

    2003-10-01

    To get a general idea of the actual staffing level situation in medical radiation physics in 1999 a survey was carried out by the task-group "Personalbedarf" of Deutsche Gesellschaft für Medizinische Physik (DGMP) among all DGMP-members who are active in this field. Main components for equipment and activities are defined in Report 8 and 10 of DGMP for staffing requirements in medical radiation physics. 322 forms were sent out, 173 of them have been evaluated. From the answers regarding equipment and activities numbers for staff are calculated by the methods given in Report 8 and 10 for this spot check target and compared with effective staffing levels. The data of the spot check are then extrapolated on total Germany. The result is a calculated deficit of 865 medical physicists for the whole physics staff, 166 of them in radiation therapy. From the age distribution of DGMP-members and the calculated deficit resulted a training capacity of about 100 medical physicists at all per year (19 in radiation therapy) if the deficit shall be cut back in 10 years.

  6. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  7. Claims about Medical Malpractices Resulting in Maternal and Perinatal Mortality Referred to Iranian Legal Medicine Organization During 2011–2012

    Science.gov (United States)

    Taghizadeh, Ziba; Pourbakhtiar, Maryam; Ghadipasha, Masoud; Soltani, Kamran; Azimi, Khadijeh

    2017-01-01

    Background: Obstetricians, gynecologists, and midwives are the most common specialists of the medical sciences group against whom medical malpractices are claimed, many of which are avoidable and preventable. Therefore, the present study was conducted to investigate the causes of claims regarding medical malpractices resulting in maternal and perinatal mortality. Materials and Methods: A descriptive cross-sectional study was conducted and 7616 claims of medical malpractices in the field of obstetrics, gynecology, and midwifery that were referred from all 31 provinces to the central commission of legal medicine were studied during 2011–2012. Therefore, the present research is a national inclusive study covering all the provinces across Iran. To collect information from the transcript of medical malpractices cases, a researcher-made checklist was used, and the collected data were analyzed. Results: The results of the present study showed that among all the medical malpractice claims regarding pregnancy and childbirth (42.24%), the majority concerned perinatal death (71.82%) and maternal death (28.16%). Conclusions: Medical malpractice complaints are increasing; although, most of these claims are preventable. To achieve this aim, it is necessary for obstetricians, gynecologists, and midwives to try to reduce the complaints by paying more attention to the signs and symptoms of diseases, performing all the diagnostic and therapeutic measures according to the scientific criteria, and fully document patients' records. In addition, patients' acquaintance with the importance of measurements and examinations, before and during pregnancy care and even after childbirth is crucial. PMID:28904542

  8. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  9. Radiation exposure in medicare-occupational and medical exposure

    International Nuclear Information System (INIS)

    Morozumi, Kunihiko

    2012-01-01

    Recent cases of the occupational and medical exposures are discussed in relation to the justification of practice, optimization of protection and effort to reduce the dose. Instances of the occupational exposure in doctors and nurses like 26.5 mSv/15 mo and 53.9 mSv/y, and of skin cancer were reported in newspapers of 1999-2004, which might have had been prevented by their self evaluation of daily and monthly exposed dose. For reasonably lowering the occupational dose and number of exposed stuff in the present law, the prior radiation protection measures are to be taken in consideration of social/economical factors to conduct beneficial radiation medicare without restriction of practice under safest conditions, protecting personal determinative hazard and preventing stochastic effect. Medical stuff must be equipped with personal dosimeter. Further, recent media also commented such cases as unwished abortions after careless X-CT of pregnant women, and risk of increased cancer prevalence (3.2% in Japan) due to medical exposure, etc (200-2010). The prevalence is calculated on the linear non-threshold (LNT) hypothesis and is probably overestimated, possibly causing patient's fear. There has been a history of proposal by IAEA (1996) of the guidance levels of the ordinary roentgenography and in vivo nuclear medical test, and introduction of the concept of dose constraint by ICRP (Pub. 60). The incident dose rate to the patient under fluoroscopy defined by Japan Medical Service Law (2001) is, as an air-kerma rate, 15,600 residents for their contamination as well as remains, and measured the ambient dose rate of cities nearby. (T.T.)

  10. Assessment of medical occupational radiation doses in Costa Rica

    International Nuclear Information System (INIS)

    Mora, P.; Acuna, M.

    2011-01-01

    Participation of the Univ. of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H p (10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs. (authors)

  11. Assessment of medical occupational radiation doses in Costa Rica.

    Science.gov (United States)

    Mora, P; Acuña, M

    2011-09-01

    Participation of the University of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H(p)(10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs.

  12. Radiation sterilization of medical products in the Philippines

    Science.gov (United States)

    Singson, C.; Carmona, C.; de Guzman, Z.; Barrun, W.; Lanuza, L.

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. Hence, the materials used were directly obtained from local manufacturers. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D 10 values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged. These studies indicated that radiation sterilization is technically feasible for locally manufactured medical products.

  13. A virtual environment for medical radiation collaborative learning.

    Science.gov (United States)

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

  14. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, Vladislav S.; Steranka, Steve A. [RadComm Systems Corp., 2931 Portland Dr., Oakville, ON L6H 5S4 (Canada)

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  15. Radiation exposure of fertile women in medical research studies

    International Nuclear Information System (INIS)

    Vetter, R.J.

    1988-01-01

    Fertile women may be exposed to ionizing radiation as human subjects in medical research studies. If the woman is pregnant, such exposures may result in risk to an embryo/fetus. Fertile women may be screened for pregnancy before exposure to ionizing radiation by interview, general examination, or pregnancy test. Use of the sensitive serum pregnancy test has become common because it offers concrete evidence that the woman is not pregnant (more specifically, that an embryo is not implanted). Evidence suggests that risk to the embryo from radiation exposure before organogenesis is extremely low or nonexistent. Further, demonstrated effects on organogenesis are rare or inconclusive at fetal doses below 50 mSv (5 rem). Therefore, there may be some level of radiation exposure below which risk to the fetus may be considered essentially zero, and a serum pregnancy test is unnecessary. This paper reviews the fetal risks and suggests that consideration be given to establishing a limit to the fetus of 0.5 mSv (50 mrem), below which pregnancy screening need not include the use of a serum pregnancy test

  16. Medical examination of the workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kato, Toshio

    1991-01-01

    The hazardous effects of ionizing radiation to man are well recognized, and they are divided into two groups, the stochastic effects (hereditary and carcinogenic effect) and non-stochastic effects (somatic effects such as depression of hematopoiesis, chronic dermatitis and cataracta). The basic framework of the International Commission on Radiological Protection (ICRP) is intended to prevent the occurrence of non-stochastic effects, by keeping doses below the relevant thresholds, and to ensure that all reasonable aspects are taken to reduce the incidence of stochastic effects. In Japan, the regulatory provisions of radiological protection of the workers occupationally exposed to ionizing radiation are based on the recommendation of ICRP adopted in 1977. According to these regulations, the dose equivalent limits of occupational exposure of man has been decided at 50 mSv/year. The monitoring of exposure to the individual and the procedure of medical examination of the workers are briefly described and discussed. (author)

  17. External radiotherapy. Particle accelerator - Radiation protection: medical sheet ED 4246

    International Nuclear Information System (INIS)

    2007-06-01

    After having indicated the required authorizations for the use of external radiotherapy installations, this document presents the various aspects and measures related to radiation protection of workers when performing such treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks

  18. Radiation protection training for personnel employed in medical facilities

    International Nuclear Information System (INIS)

    McElroy, N.L.; Brodsky, A.

    1985-05-01

    This report provides information useful for planning and conducting radiation safety training in medical facilities to keep exposures as low as reasonably achievable, and to meet other regulatory, safety and loss prevention requirements in today's hospitals. A brief discussion of the elements and basic considerations of radation safety training programs is followed by a short bibliography of selected references and sample lecture (or session) outlines for various job categories. This information is intended for use by a professional who is thoroughly acquainted with the science and practice of radiation protection as well as the specific procedures and circumstances of the particular hospital's operations. Topics can be added or substracted, amplified or condensed as appropriate. 8 refs

  19. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  20. Radiation processed hydrogels (wound dressings) for medical applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2004-01-01

    Thermal analysis plays an important role in study and development of hydrogel materials for medical applications. Thermal stability of the ingredients which is important from the point of manufacturing, rate of evaporation for shelf life evaluation, determination of gelation and temperature responsive temperatures, cooling behaviour, gel elasticity, radiation effects etc. can be studied using thermal analysis equipment like Differential scanning calorimetry (DSC), Thermo-gravimetric analysis (TGA) and thermo-mechanical analysis (TMA). In this use of these techniques in development, evaluation and quality control of hydrogel wound dressing is discussed

  1. Quality assurance in medical radiation applications. The medical and dental appointment; Qualitaetssicherung bei medizinischen Strahlenanwendungen. Die aerztlichen und zahnaerztlichen Stellen

    Energy Technology Data Exchange (ETDEWEB)

    Ernst-Elz, Andreas [Ministerium fuer Energiewende, Landwirtschaft, Umwelt, Natur und Digitalisierung des Landes Schleswig-Holstein, Kiel (Germany)

    2017-07-01

    Medical radiation applications cause averaged over the German population an annual exposure of almost 2 mSv. Medical authorities have the assignment to assure and control the diagnostic and therapeutic quality of these applications and to provide recommendations for operators with respect to dose reductions and radiation protection, including guidance for radiotherapy planning aimed to questions of dose and therapy optimization.

  2. Quality assurance in military medical research and medical radiation accident management.

    Science.gov (United States)

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  3. Utilization technique of 'radiation management manual in medical field (2012).' What should be learnt from the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Kikuchi, Toru

    2014-01-01

    From the abstract of contents of the 'Radiation management manual in medical field (2012),' the utilization technique of the manual is introduced. Introduced items are as follows: (1) Exposure management; exposure management for radiation medical workers, patients, and citizens in the medical field, and exposure management for radiation workers and citizens involved in the emergency work related to the Fukushima nuclear accident, (2) Health management; health management for radiation medical workers, (3) Radiation education: Education/training for radiation medical workers, and radiation education for health care workers, (4) Accident and emergency measures; emergency actions involved in the radiation accidents and radiation medicine at medical facilities

  4. Analysis of the experience in participation of army medical service in medical arrangement in case of radiation accident

    International Nuclear Information System (INIS)

    Zhilyaev, E.G.; Goncharov, S.F.; Vorontsov, I.V.; Legeza, V.I.; Berzin, I.A.

    1995-01-01

    The paper presented calculations of manpower and money funds for rendering aid to the injured persons in case of radiation accident. The authors offered a scheme of using medical anti-radial aids on various stages of radiation accident; immediately after the accident in case of non-predicted and controlled radiation exposure. Army Medical Service is capable of solving promptly the tasks of medical aid with the help of highly mobile specialized medical units, the use of which is stipulated in the system of the Russian Service of disaster medicine. 10 refs.; 1 tab

  5. Implementation of the learning problems of physics-based medical and radiation protection in a medical school

    International Nuclear Information System (INIS)

    Munoz Montplet, C.; Casas Curto, J. D.; Pedraza Gutierrez, S.; Vilanova Busquets, J. C.; Balliu Collgros, E.; Barcelo Obregon, J.; Fuentes Raspall, R.; Guirao Marin, S.; Maroto Genover, A.; Pont Valles, J.; Agramunt Chaler, S.; Jurado Bruggeman, D.

    2013-01-01

    The learning objectives related to medical physics and radiation protection work mostly in the module of Radiology and physical medicine of the second year of the curriculum, complemented by a visit to medical physics and radiation protection and radiation oncology at the Hospital services University of reference during the third course. In this paper we present our experience in the design and implementation during the period 2009-2012 of the module focusing in these disciplines. (Author)

  6. Medical emergency and first aid for radiation accident

    International Nuclear Information System (INIS)

    Suzuki-Yasumoto, Masashi

    1980-01-01

    The thinkings concerning the injuries to human beings in nuclear accidents differ somewhat between Japan and the U.S.A. and other European countries. In accordance with the historical evolution of nuclear power and the characteristics of medical system in respective countries, there are more or less modified measures in the scheme of three phases; i.e. first aid stations on the sites of nuclear facilities, support hospitals, and radiation injury centers, in order. So far, easy reliance on such as the National Institute of Radiological Sciences was large, but with the Three Mile Island nuclear plant accident as the turning point, the emergency and first aid systems are being studied intensively both in the Government and private nuclear power enterprises. The following matters are described: the differences in thinkings between Japan and other countries; fundamentals in the medical emergency scheme in radiation accidents; the systems in U.S.A., U.K., France and West Germany; and the problems and measures in the scheme of Japan. (J.P.N.)

  7. Radiation doses from medical diagnostic procedures in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, J E; Lentle, B C; Vo, C [British Columbia Univ., Vancouver, BC (Canada). Dept. of Radiology

    1997-03-01

    This document sets out to record and analyze the doses incurred in Canada from medical procedures involving the use of ionizing radiation in a typical year. Excluded are those doses incurred during therapeutic irradiation, since they differ in scale to such a large degree and because they are used almost exclusively in treating cancer. In this we are following a precedent set by the United Nations Scientific Committee on the Effects of Ionizing Radiation. Although the International Commission on Radiological Protection (ICRP) notes that dose limits should not be applied to medical exposures, it also observes that doses in different settings for the same procedure may vary by as much as two orders of magnitude, and that there are considerable opportunities for dose reductions in diagnostic radiology. Because these data do not stand in isolation the report also encompasses a review of the relevant literature and some background comment on the evolving technology of the radiological sciences. Because there is a somewhat incomplete perception of the changes taking place in diagnostic methods we have also provided some introductory explanations of the relevant technologies. In addition, there is an analysis of at least some of the limitations on the completeness of the data which are reported here. (author).

  8. Factors impacting public acceptance of medical radiation exposure

    International Nuclear Information System (INIS)

    Tsuji, Satsuki; Kanda, Reiko

    2009-01-01

    We undertook a survey to determine the public acceptance of medical radiation exposure throughout Japan, and 1,357 responses (67.9% response rate) were obtained using a two-stage systematic stratified random sampling method. The acceptance of exposure of children was generally similar to that of adults. For each of the attributes, 45-60% of the participants were accepting of exposure for cancer treatment and diagnosis, but only 30% were accepting of exposure for X-ray diagnoses of bone fractures and dental caries. In general, the presence of a child did not markedly affect women's acceptance of exposure. Factor analyses identified 3 factors influencing the acceptance of child exposure: symptomatic diseases to determine treatment, the possibility of high-risk diseases (or major organ diseases), and the association with cancer. Cluster analysis showed 4 clusters: a positive group regarding children's exposure for the diagnosis of bone fractures and dental caries (12.9% of all participants), a positive group for major organ disease and cancer (15.5%), a negative group excluding cancer (55.2%), and a positive group for all cases (16.4%). The cluster distributions revealed that mothers with 10- to 18-year-old firstborn children showed a tendency to accept the medical radiation exposure of their children in all cases. (author)

  9. Radiation doses from medical diagnostic procedures in Canada

    International Nuclear Information System (INIS)

    Aldrich, J.E.; Lentle, B.C.; Vo, C.

    1997-03-01

    This document sets out to record and analyze the doses incurred in Canada from medical procedures involving the use of ionizing radiation in a typical year. Excluded are those doses incurred during therapeutic irradiation, since they differ in scale to such a large degree and because they are used almost exclusively in treating cancer. In this we are following a precedent set by the United Nations Scientific Committee on the Effects of Ionizing Radiation. Although the International Commission on Radiological Protection (ICRP) notes that dose limits should not be applied to medical exposures, it also observes that doses in different settings for the same procedure may vary by as much as two orders of magnitude, and that there are considerable opportunities for dose reductions in diagnostic radiology. Because these data do not stand in isolation the report also encompasses a review of the relevant literature and some background comment on the evolving technology of the radiological sciences. Because there is a somewhat incomplete perception of the changes taking place in diagnostic methods we have also provided some introductory explanations of the relevant technologies. In addition, there is an analysis of at least some of the limitations on the completeness of the data which are reported here. (author)

  10. Radiation oncology medical physics education and training in Queensland

    International Nuclear Information System (INIS)

    West, M.P.; Thomas, B.J.

    2011-01-01

    Full text: The training education and accreditation program (TEAP) for radiation oncology commenced formally in Queensland in 2008 with an initial intake of nine registrars. In 2011 there are 17 registrars across four ACPSEM accredited Queensland Health departments (Mater Radiation Oncology Centre, Princess Alexandria Hospital, Royal Brisbane and Women's Hospital, Townsville Hospital). The Queensland Statewide Cancer Services Plan 2008-2017 outlines significant expansion to oncology services including increases in total number of treatment machines from 14 (2007) to 29-31 (2017) across existing and new clinical departments. A direct implication of this will be the number of qualified ROMPs needed to maintain and develop medical physics services. This presentation will outline ongoing work in the ROMP education and Training portfolio to develop, facilitate and provide training activities for ROMPs undertaking TEAP in the Queensland public system. Initiatives such as Department of Health and Aging scholarships for medical physics students, and the educational challenges associated with competency attainment will also be discussed in greater detail.

  11. European union legislation in medical application of ionizing radiation and radiation protection

    International Nuclear Information System (INIS)

    Vanlic-Razumenic, N.; Pavlovic, R.; Plecas, I.

    1999-01-01

    The most important aspects of the latest EU legislation concerning medical application of ionizing radiation, with the special emphasis on nuclear medicine are presented in this paper. The EU member countries will start to apply this regulation on 13 th May 2000. Our legislation is already adjusted to IAEA standards and ICRP Recommendation. Those regulations are of special concerns in the Radioisotope Laboratory of The Vinca Institute of Nuclear Sciences. (author)

  12. Nature of Medical Malpractice Claims Against Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Deborah; Tringale, Kathryn [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); University of California Irvine School of Medicine, Irvine, California (United States); Punglia, Rinaa [Department of Radiation Oncology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona, E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2017-05-01

    Purpose: To examine characteristics of medical malpractice claims involving radiation oncologists closed during a 10-year period. Methods and Materials: Malpractice claims filed against radiation oncologists from 2003 to 2012 collected by a nationwide liability insurance trade association were analyzed. Outcomes included the nature of claims and indemnity payments, including associated presenting diagnoses, procedures, alleged medical errors, and injury severity. We compared the likelihood of a claim resulting in payment in relation to injury severity categories (death as referent) using binomial logistic regression. Results: There were 362 closed claims involving radiation oncology, 102 (28%) of which were paid, resulting in $38 million in indemnity payments. The most common alleged errors included “improper performance” (38% of closed claims, 18% were paid; 29% [$11 million] of total indemnity), “errors in diagnosis” (25% of closed claims, 46% were paid; 44% [$17 million] of total indemnity), and “no medical misadventure” (14% of closed claims, 8% were paid; less than 1% [$148,000] of total indemnity). Another physician was named in 32% of claims, and consent issues/breach of contract were cited in 18%. Claims for injury resulting in death represented 39% of closed claims and 25% of total indemnity. “Improper performance” was the primary alleged error associated with injury resulting in death. Compared with claims involving death, major temporary injury (odds ratio [OR] 2.8, 95% confidence interval [CI] 1.29-5.85, P=.009), significant permanent injury (OR 3.1, 95% CI 1.48-6.46, P=.003), and major permanent injury (OR 5.5, 95% CI 1.89-16.15, P=.002) had a higher likelihood of a claim resulting in indemnity payment. Conclusions: Improper performance was the most common alleged malpractice error. Claims involving significant or major injury were more likely to be paid than those involving death. Insights into the nature of liability claims against

  13. Health physics limitations for radiation protection of patients and medical staff

    International Nuclear Information System (INIS)

    Golikov, V.Ya.; Ermolina, E.P.

    1997-01-01

    Norm-setting documents regulating the requirements to radiation safety during medical x-ray and radiological procedures are reviewed. Besides the Federal Law On Radiation Safety of the Population and Radiation Safety Norms-96, the authors comment on the norm-setting documents issued later and supplementing the above documents. The authors emphasize the obligatory licensing during medical use of ionizing radiation sources. Effective dose is introduced as the criterion of radiation safety of the patients and staff during prophylactic x-ray examinations. Principles of normsetting, validation, and optimization of medical exposures and criteria of radiation safety of patients are discussed

  14. Current status on educational program for radiation emergency medical preparedness in Korea

    International Nuclear Information System (INIS)

    Kim, E. S.; Kong, H. J.; Noh, J. H.; Kim, C. S.

    2002-01-01

    There are several educational programs in worldwide for the user of radiation, radioisotopes, and nuclear power plant. REAC/TS is one of the most famous centers for radiation emergency personnel. REMPAN, one of the World Health Organization is also to promote the medical preparedness for radiation accident and provide advice and assistance in the case of radiation accident and radiological emergency. There are a variety of educational programs of radiation emergency, but not many programs of medical preparedness in Korea. Therefore, it is introduced here Korean current environment and future direction of educational programs for the radiation emergency medical preparedness

  15. Current issues regarding radiation risk education in Medical Universities of Japan

    International Nuclear Information System (INIS)

    Tsuzuki, Teruhisa; Hosoi, Yoshio; Matsuda, Naoki; Kanda, Reiko; Hosoya, Noriko; Miyagawa, Kiyoshi; Awai, Kazuo; Kondo, Takashi

    2017-01-01

    The main purpose of radiation research is to understand the biological effects of radiation exposure to humans, the molecular mechanisms of biological response m organisms, and its sale application for medical and industrial use. In order to know the current state or education on fundamentals of radiology including radiation biology, a nation-wide questionnaire survey had been performed at medical schools and different co-medical courses in Japanese universities, during the period of 2004 and 2005. The survey results showed: (1) Difference in teaching hours for education on radiation between medical schools with and without department or division of radiation biology or radiation-related field. (2) Teaching hours for education on radiation in nursing course were very limited among the co-medical courses. Although, some improvement have been found about the state of education on radiation risk at medical schools, after the disaster of nuclear accident at Fukushima No.1 Nuclear Power Plant of TEPCO in March 2011. However, still much more effort t is needed to improve basic education on radiation. Science Council of Japan issued the recommendation on September 4, 2014 'Making radiation health risk education compulsory in medical education'. The working group for this purpose was set up under the Council of Head of National Medical Schools of Japan, on January 28, 2015. Here, we describe the details and current issues regarding radiation risk education in medical schools of Japan, as well as the efforts required for its betterment. (author)

  16. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system... equipment, patient and equipment supports, treatment planning computer programs, component parts, and...

  17. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...

  18. Optimization and radiation protection of the patient in medical exposure

    International Nuclear Information System (INIS)

    Mwambinga, S.A.

    2012-04-01

    Radiography has been an established imaging modality for over a century, continuous developments have led to improvements in technique resulting in improved image quality at reduced patient dose. If one compares the technique used by Roentgen with the methods used today, one finds that a radiograph can now be obtained at a dose which is smaller. The International Atomic Energy Agency (IAEA) has a statutory responsibility to establish standards for the protection of people against exposure to ionising radiation and to provide for the worldwide application of those standards. A fundamental requirement of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (BSS) is the optimization of radiological protection of patients undergoing medical exposure. By using technique such as added filtration, use of high kVp techniques, low mAs, use of appropriate screen-film combination and making sure that all practices and any exposure to patient are justified, using ALARA principles and diagnostic Reference Levels, patient protection can be optimised. (author)

  19. Regulatory aspects of the radiation safety in the medical practice

    International Nuclear Information System (INIS)

    Sajaroff, P.M.; Arias, C.F.

    1987-01-01

    The biological effects of the ionizing radiations can be stochastic and non-stochastic. These latter show a dose-effect relation with defined level of threshold dose. The stochastic effects lack of the threshold dose and the possibility of their occurrence is proportional to the received dose. The radiation protection objetive is to avoid the occurrence of the non-stochastic effects and to limit the probability of the stochastic effects, based on three principles: justification, dose limitation and optimization. All use of radiation source must be justified by real benefits; nevertheless, the risks are not limited, so dose limits to reduce them must be adopted. In the medical practice, both worker and patient expositions are considered. In case of patients, the concept of dose limits is not applied, but justification and optimization, are used. The Authorities of Radiological Inspection are: the National Atomic Energy Comission for the use of radioactive sources, and the Secretary of Health for X-ray equipments. Both organisms work in coordination since 1967 (M.E.L.) [es

  20. Radiation protection in newer medical imaging techniques: Cardiac CT

    International Nuclear Information System (INIS)

    2008-01-01

    Medical imaging has seen many developments as it has evolved since the mid-1890s. In the last 30-40 years, the pace of innovation has increased, starting with the introduction of computed tomography (CT) in the early 1970s. During the last decade, the rate of change has accelerated further, in terms of continuing innovation and its global application. Most patient exposure now arises from practices that barely existed two decades ago. These developments are evident in the technology on which this volume is based - multislice/detector CT scanning and its application in cardiac imaging. However, this advance is achieved at the cost of a radiation burden to the individual patient, and possibly to the community, if its screening potential is exploited. Much effort will be required to ensure that the undoubted benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed as part of the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture

  1. Medical surveillance according to the resolution radiation protection nuclear-power-law in working with ionizing radiation

    International Nuclear Information System (INIS)

    1988-01-01

    The rules with regard to the medical surveillance of persons who, during the execution of their duties, may be exposed to certain amounts of ionizing radiation are treated. After an explanation of the general starting points of the policy with regard to radiation hygiene, two governing tools are reviewed: the set of licences and the radiation hygiene standards. 10 refs.; 1 table

  2. Preclinical diagnosis and emergency medical care in case of radiation accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1990-01-01

    Reference is made to preclinical diagnosis and emergency medical care at the site of a potential radiation accident. Possibilities and limits, respectively, of the medical measures are shown. Cooperation between the experts of the technical and medical rescue services is described. Exposition to radiation for the emergency medical staff resulting from the medical care of contaminated persons, is negligible if the personal precautions are observed. (orig.) [de

  3. Course on medical aspects of nuclear and radiation accidents. Proceedings

    International Nuclear Information System (INIS)

    El-Naggar, A.M.; Nentwich, D.

    1992-01-01

    The Tchernobyl event deflected the attention from other potential hazards related to ionizing radiation as can result from misfunction or misuse of radioactive sources widely applied in human medicine or in industry. It was only after the Goiania accident in Brazil that these radiation sources retrieved the attention they deserve. Around the world, great efforts have been undertaken by the producers and users of these sources, supported by scientific investigations and by legislative backing, to minimize to the greatest extent possible any risk to public health. Nevertheless, accidents involving serious overexposures of individuals cannot be excluded entirely for the future. It is therefore a matter of professional responsibility to carefully evaluate the experiences gathered in the wake of radiation accidents and proliferate this knowledge to those professionals-health physicists, decontamination specialists, medical and paramedical staff - that might be confronted with the consequences of an accident and from whose expertise and proper handling human lifes might depend. It was with this aim that the Atomic Energy Authority and the International Bureau of the Forschungszentrum Juelich undertook to organize a joint training course within the German-Egyptian governmental agreement on bilateral cooperation in scientific research and technological development signed on 11.4.1979. Selected experts from both sides convened and presented both compended text book knowledge as well as own recent scientific data reflecting the state of the art. This material was selected and prepared in order to fit the needs of the invited 25 Egyptian physicians and paramedical course participants who where to be given guidelines on how to react to radiation overexposure incidents. (orig.)

  4. Research on dose setting for radiation sterilization of medical device

    International Nuclear Information System (INIS)

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping

    2002-01-01

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  5. Radiation protection in newer medical imaging techniques: PET/CT

    International Nuclear Information System (INIS)

    2008-01-01

    A major part of patient exposure now arises from practices that barely existed two decades ago, and the technological basis for their successful dissemination only began to flourish in the last decade or so. Hybrid imaging systems, such as the combination of computed tomography (CT) and positron emission tomography (PET), are an example of a technique that has only been introduced in the last decade. PET/CT has established a valuable place for itself in medical research and diagnosis. However, it is an application that can result in high patient and staff doses. For practitioners and regulators, it is evident that innovation has been driven both by the imaging industry and by an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill the growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed within the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through

  6. Practice and problems in radiation protection in medical institutions in Papua New Guinea

    International Nuclear Information System (INIS)

    Patel, I.C.

    1984-01-01

    Sources of ionizing radiations employed in medical centres in Papua New Guinea are outlined and the present practice in radiation protection is discussed. Steps being taken or proposed to improve the standard of radiological protection are also considered

  7. Maternal Medical Complexity: Impact on Prenatal Health Care Spending among Women at Low Risk for Cesarean Section.

    Science.gov (United States)

    Cunningham, Shayna D; Herrera, Carolina; Udo, Ifeyinwa E; Kozhimannil, Katy B; Barrette, Eric; Magriples, Urania; Ickovics, Jeannette R

    Obstetric procedures are among the most expensive health care services, yet relatively little is known about health care spending among pregnant women, particularly the commercially-insured. The objective of this study was to examine the association between maternal medical complexity, as a result of having one or more comorbid conditions, and health care spending during the prenatal period among a national sample of 95,663 commercially-insured women at low risk for cesarean delivery. We conducted secondary analyses of 2010-2011 inpatient, outpatient, and professional claims for health care services from the Health Care Cost Institute. Allowed charges were summed for the prenatal and childbirth periods. Ordinary least squares regressions tested associations between maternal health conditions and health care expenditures during pregnancy. Thirty-four percent of pregnant women had one or more comorbidities; 8% had two or more. Pregnant women with one or more comorbidities had significantly higher allowed charges than those without comorbidities (p prenatal period was nearly three times higher for women with preexisting diabetes compared with women with no comorbid conditions. Average levels of prenatal period spending associated with maternal comorbidities were similar for women who had vaginal and cesarean deliveries. Patient characteristics accounted for 30% of the variance in prenatal period expenditures. The impact of maternal comorbidities, and in particular preexisting diabetes, on prenatal care expenditures should be taken into account as provider payment reforms, such as pay-for performance incentives and bundled payments for episodes of care, extend to maternal and child health-related services. Copyright © 2017 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  8. Maternal vaginal microflora during pregnancy and the risk of asthma hospitalization and use of antiasthma medication in early childhood

    DEFF Research Database (Denmark)

    Benn, Christine Stabell; Thorsen, Poul; Jensen, Jørgen Skov

    2002-01-01

    the establishment of the infant flora and, as a consequence, the development of wheezing and allergic diseases. OBJECTIVE: We sought to study the associations between the composition of the maternal vaginal microflora and the development of wheezing and asthma in childhood. METHODS: We performed a population......-based cohort study in Denmark. Vaginal samples for bacterial analysis were obtained during pregnancy. A total of 2927 women (80% of the invited women) completed the study and had 3003 live infants. Infant wheezing was assessed as one or more hospitalizations for asthma between 0 and 3 years of age. Asthma...... was assessed as use of 3 or more packages of antiasthma medication between 4 and 5 years of age. RESULTS: Maternal vaginal colonization with Ureaplasma urealyticum during pregnancy was associated with infant wheezing (odds ratio [OR], 2.0; 95% CI, 1.2-3.6), but not with asthma, during the fifth year of life...

  9. MO-E-213-00: What Is Medical Physics Without Radiation Safety?

    International Nuclear Information System (INIS)

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  10. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    International Nuclear Information System (INIS)

    Rehani, M.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  11. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  12. MO-E-213-00: What Is Medical Physics Without Radiation Safety?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  13. Radiation poisoning with Po-210 in London: The medical implications

    International Nuclear Information System (INIS)

    Perkins, A.C.

    2007-01-01

    Full text: The death of Alexander Litvinenko on 23 November 2006 has elevated the prospect of a deliberate radiation poisoning from a theoretical possibility to a reality. This was an unprecedented event in the UK. Poison that was certainly not the work of an amateur assassin was found, and it is possible that there have been previous killings of this nature outside the UK. Po-210 is a highly toxic radioactive heavy metal with a half-life of 138 days that decays, giving off 5.3MeV alpha particles having a range of 40-50mm in tissue. The poison was probably administered in a small volume of liquid or as a solid powder added to food or drink. Dispersal of the material resulted in widespread contamination that was detected across London and on British Airways' flights to the east. Following the event, the main task of the UK Health Protection Agency was of contamination monitoring and reassurance of the general public. With many researchers now investigating the use of targeted alpha therapy, this incident has highlighted the possible effects from the uptake of alpha emitters into the sensitive normal tissues. On reaching the bloodstream, Po- 210 is rapidly deposited in major organs and tissues including the liver, kidneys and bone marrow. The intense alpha radiation within these tissues would result in massive destruction of cells, leading to a rapid decline in health. It has been concluded that ingestion of 1-3 GBq or greater of Po-210 is likely to result in death within a few weeks, assuming there is 10% absorption to blood. Anyone receiving such doses would show symptoms of acute radiation sickness syndrome, with death resulting from multiple organ failure. Remedial medical treatment strategies would be unsuccessful within a few hours of ingestion, once significant amounts of Po-210 had entered the blood stream and deposited in tissues. The surreptitious nature of this act almost escaped detection. The fact that the nature of the poison was not known until the

  14. Medical and industrial radiation sources as radiological weapons

    International Nuclear Information System (INIS)

    Bielefeld, T.; Fischer, H.W.

    2006-01-01

    The execution of attacks with radiological weapons are well within the capabilities of both local terrorist groups and transnational terrorist networks. In a research project, plausible attack scenarios have been developed, based on medical and industrial radioactive sources widely used in Germany. Special emphasis was put on how such sources could be obtained applying criminal tactics. To this end, working procedures in hospitals and companies have been analyzed. Furthermore, by means of simulations, the consequences of a terrorist attack using such sources were estimated. None of the scenarios we investigated led to doses at the site of the explosion which might cause acute radiation effects. However, in some scenarios, an attack would result in the necessity of a potentially very costly clean-up of large urban areas. Therefore, improvements in sources security are recommended. (orig.)

  15. Basic research on cancer related to radiation associated medical researches

    International Nuclear Information System (INIS)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed

  16. Basic research on cancer related to radiation associated medical researches

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon [and others

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed.

  17. Human exposure to ionizing radiation for medical reasons

    International Nuclear Information System (INIS)

    Thomas, R.H.; Busick, D.D.

    1977-01-01

    The central issue in this debate is not whether there is a threshold dose below which deleterious effects in humans occur nor whether the dose-effect relationship is linear or curvilinear. The central issue is whether there is merit in a continuing effort to reduce radiation exposures to patients no matter at what level. This should be determined by a careful balancing of potential risks against expected benefits. It is this element of risk-benefit analysis that is absent in Morgan's philosophy. A good example of the changing nature on the risk-benefit balance is that of the use of mass radiography programs to diagnose tuberculosis. Before the Second World War this disease was a terrible scourge of the poor who could ill-afford adequate medical care. The use of mass radiography programs have played a large part in the elimination of this disease

  18. Practical questions of organization of medical aid and treatment in specialized medical care facilities to the people exposed to radiation

    International Nuclear Information System (INIS)

    Baranov, A.E.; Bad'in, V.I.; Gasteva, G.N.

    1995-01-01

    Basing on the accident at the Chernobyl Nuclear Power Plant, the paper studied practical questions of organization of medical aid and treatment in specialized medical establishments prepared well in advance, and in temporary arranged specialized medical institutions. The requirements to such medical treatment establishments are studied herein: the aims and structure of the admission department; the measures of decontamination and emergency medical aid in case of acute intake of certain radionuclides; control of radioactive contamination of human organism of the injured persons and dosimetry of medical personnel; minimum degree of clinical examinations; schemes of therapy of various forms of acute radiation disease with combined effects. The authors indicated a list of the necessary drug preparations for treatment of patients with acute radiation disease of 3-4 degree of severity and the regulations of autopsy and taking samples for biophysical investigations of persons who died from radiation disease. 5 tabs

  19. Radiation protection in newer medical imaging techniques: CT colonography

    International Nuclear Information System (INIS)

    2008-01-01

    Multislice/detector computed tomography (CT) scanning, applied to visualization of the colon in CT colonography (CTC), also known as virtual colonoscopy (VC), is a relatively new application of CT introduced in recent years. The possibility of its application in population screening techniques raises a number of questions. Effort is required to ensure that the benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind the industrial and clinical innovations being achieved. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice to bear on the problems involved. Under its statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for worldwide application of these standards, the IAEA has developed the Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The BSS was issued by the IAEA and co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and requires radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. The IAEA programme on radiation protection of patients encourages the reduction of patient doses without losing diagnostic benefits. To facilitate this

  20. Uses of ionizing radiation and medical-care-related problems

    International Nuclear Information System (INIS)

    Smathers, J.B.

    1988-01-01

    The uses of ionizing radiation in medicine are currently undergoing changes due to at least four major influences: (1) the constantly changing public perception of the hazards of radiation, (2) continuing technical innovation and development in equipment, (3) the imposition of diagnosis-related group funding by government health-care funding agencies, and (4) an increase in the average age of the U.S. population. The combined effect of these influences will probably result in a major increase in biplanar fluoroscopic examinations to support nonsurgical approaches such as percutaneous transluminal coronary angioplasty, percutaneous transluminal neuroembolism, and lithotripsy (the fracturing of kidney stones). As some of these examinations can result in 1.5 h of fluoroscopy, major doses to the patient and to the clinical staff can be expected. In addition, improved diagnostic techniques, such as using positron emission tomography (a combination of biochemistry and positron-emitting isotopes), can be expected to increase the number of small cyclotrons installed in medical centers. Counteracting these increases in radiation exposure is the development of digital radiography, which generally results in a lowering of the dose per diagnostic procedure. In the realm of therapeutic uses, one can expect higher-energy treatment accelerators, more patients being released from the hospital on therapeutic doses of isotopes, and a potential acceptance of neutron therapy as a cancer treatment modality. The latter treatment may take the form of boron capture therapy, 252Cf implant therapy, or external beam therapy using high-energy cyclotrons and the p,Be or the d,Be reaction to create the neutrons

  1. Application of the ICRP recommendations in medical radiation practice and in medical monitoring of workers

    International Nuclear Information System (INIS)

    Lafontaine, A.

    1979-01-01

    Medical exposure in connection with an existing or suspected illness may be made subject to the ICRP principles, but it must be realized that the dose limitation system cannot necessarily be applied when the individual at risk is the one benefiting from examination or treatment. Justification is the responsibility of the doctor prescribing the examination or treatment and/or of the person carrying it out. Optimization will be achieved by virtue of the rules imposed on doctors and by the requirements applicable to equipment and techniques. The same rules and requirements apply mutatis mutandis to check-ups, routine medical examinations, examinations for professional purposes, medico-legal examinations and medical research. In the last case ethical rules and criteria for the validity of the proposed research also need to be applied. Medical monitoring of workers must take the ICRP principles into account, but a qualified doctor should nevertheless be able to form his own judgement on the basis of his knowledge of different types of exposure (both to radiation and to other agents), to intervene in cases of accidental or planned exposure, and to gather data in order to evaluate the long-term effects and the consequences of occupational exposure in terms of doses to the public. Moreover, the doctor should inform the worker of his conclusions and recommendations. (author)

  2. Radiation risk, medical surveillance programme and radiation protection in mining and milling of uranium ores

    International Nuclear Information System (INIS)

    Rakshit, A.K.

    1991-01-01

    Mining and milling of uranium ores comprise multiple operations such as developement, drilling, blasting, handling, crushing, grinding, leaching of the ore and concentration, drying, packaging and storing of the concentrate product. Apart from the hazards of any metal mining and milling operations due to dust, noise, chemicals, accidents etc there are radiation risks also resulting from exposure to airborne radioactivity and external radiation. The inhalation risk is of more concern in underground mines than in open pit mines. The objective of a Medical Surveillance Programme (an occupational Health Programme) is to ensure a healthy work force. It should ultimately lead to health maintenance and improvement, less absenteeism increased productivity and the achievement of worker and corporate goals. The programme includes prevention, acute care, counselling and rehabilitation. Radiological workers require special monitoring for their work-related radiation exposure effect by film monitoring service, whole body counting and bioassay. Radiation protection in the mining and milling of Uranium ores include the use of personal protective equipment, work station protection, personal hygiene and house keeping. (author). 15 refs

  3. Ionizing radiations used in medical diagnostics as a source of radiation exposure of the Bulgarian population

    International Nuclear Information System (INIS)

    Ingilizova, K.; Vasilev, G.

    1998-01-01

    X-ray and radionuclide application in medical diagnosing is the major sources of Bulgarian population exposure to ionizing radiations exceeding the radiation background. The number of X-ray examination on a nationwide scale shows an increase from 1600 thousand annually in 1950 to 10300 thousand in 1980 and decreases to about 4700 thousand annually for the period 1992-1993. The frequency for the above mentioned time intervals varies in the range 0.22 to 1.17 examinations per capita annually and decreases to 0.56. The roentgenoscopy to roentgenography ratio varies from 2.5:1 to 0.9:1 (1975) and increases to 2.0:1 (1993). The number of radioisotope examinations increased from 34 thousand in 1970 to 170 thousand annually in 1985 and decreased to about thousand annually in 1992-1993 with a number of studies per capita varying from 0.004 to 0.020 and decreasing to 0.010. In 1993 the annual collective effective dose due to X-ray diagnostics amounts to about 7000 man-Sv/a which exceeds the radiation background exposure by 76%. Radioisotope diagnostics in the period reviewed accounted for nearly 700 man-Sv/a with an exposure exceeding the radiation background by 7.7%. The major problems relating to patient protection and benefit/risk ratio improvement are discussed. (author)

  4. Study on quantities of radiation protection in medical X-rays radiation field with polyhedron phantom

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Zhang Liangan

    1997-01-01

    The author have studied tissue-equivalent material with the elemental composition recommended by report No.44 of ICRU. Three different calibration phantoms in shape have been prepared with the tissue-equivalent material in order to study the influence of the angular dependence factor R(d,α) in the radiation field of X-rays on the calibration of individual dose equivalent Hp(d). The requirement of mono-genous radiation field to calibrate several dosimeters on one phantom at the same time can be met by application of dodecahedron phantom, which is difficult on ICRU sphere. Angular dependence factor R(d,α) of 0 degree∼90 degree and conversion coefficients between individual dose equivalent Hp(0.07, α) and the exposure of radiation of different energies and different angles have been established by taking advantage of the dodecahedron. Besides, the authors have studied the variation relation between the individual dose equivalent Hp (10,α) and Hp(0.07,α) in the medical X-rays radiation field

  5. Radiation sterilization of medical products in the Philippines

    International Nuclear Information System (INIS)

    Singson, C.; Carmona, C.; Guzman, Z. de; Barrun, W.; Lanuza, L.

    1983-01-01

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D 10 values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged. (author)

  6. Radiation sterilization of medical products in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Singson, C; Carmona, C; Guzman, Z de; Barrun, W; Lanuza, L [Philippine Atomic Energy Commission, Diliman, Quezon City

    1983-01-01

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D/sub 10/ values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged.

  7. Effect of the ionizing radiation in polyurethane of medical grade

    International Nuclear Information System (INIS)

    Ceron, P.; Rivera, T.; Calderon, J. A.; Paredes, L.

    2011-10-01

    The polyurethane is a material broadly used in implant medical devices, such as the connection blocks of the pacemakers and the insulator of the electrodes. Some patients that are users of these devices possibly have the necessity to receive external radiotherapy. For that reason is necessary to know the effects induced by the ionizing radiation in this polymer. In this study samples of Pellethane 2363 80a (thermoplastic polyurethane of medical grade) were irradiated. It was used the same energy and absorbed dose of a treatment of external radiotherapy in pelvis, by means of a linear accelerator of X-rays of 6 MeV and absorbed dose of 60 Gy to isocenter. The irradiation corresponding to the gamma sterilization of the material was reproduced (1, 5, 7.5, 10 and 25 kGy for the Co 60) the effects induced by the radiotherapy and for the sterilization in the material were studied by means of an analysis of the chemical connection, the molecular structure and identification of the functional groups of the polymer, by means of the infrared spectroscopy by Fourier transform in the infrared half region. (Author)

  8. Bridging the gap between textbook and maternity patient: a nurse-developed teaching model for first-year medical students.

    Science.gov (United States)

    Cooksey, Nancy Rumsey

    2010-12-01

    Providing more opportunities for first-year medical students to interact with patients in clinical settings is a current discussion topic in medical student education reform. Early clinical experience helps students bridge the gap between textbook and patient while observing patient-centered care, and serves as a first step for students to develop the skills needed to work cooperatively as members of a multidisciplinary health care team. The author developed a model to provide perinatal education to first-year medical students, consistent with the concept of interprofessional education. Primarily first-year medical students participated in the nurse-developed education model, a component of a noncredit extracurricular, student-run perinatal program at a Midwestern university medical center. Students were placed at the bedsides of hospitalized women to provide support and education to them during perinatal procedures, labor, childbirth, and cesarean delivery. A total of 350 students participated over a period of 13 school calendar years. Students remarked that participation in the program reinforced the importance of their concurrent anatomy and physiology classes. They observed interdependence and cooperation among the members of the health care team caring for women, and their evaluations of their experiences at the bedside were highly positive. Women consistently expressed appreciation for the additional individualized attention and education received from our student and nurse team. Nurses can enhance the learning of first-year medical students in the maternity care clinical setting. This nurse-developed education program provided students with a variety of vivid clinical experiences with maternity patients. © 2010, Copyright the Author. Journal compilation © 2010, Wiley Periodicals, Inc.

  9. The role of medical physicist in health care and radiation protection

    International Nuclear Information System (INIS)

    Mattsson, S.; Adliene, D.

    2004-01-01

    Medical physics is a part of physics that is associated with the practice of medicine dealing with a use of various types of ionizing and non-ionizing radiation for medical purposes as well as with the radiation protection of patients and personnel. The role, responsibilities and duties of medical physicists in the fields of radiation therapy, diagnostic imaging using X-rays and magnetic resonance methods, diagnostics and therapeutic nuclear medicine, radiation dosimetry and radiation protection are discussed in this paper. It is shown that, the medical physicists have the unique possibility to combine their knowledge in medical radiation physics with the recent achievements in medicine and technology and to apply this knowledge for the adequately safe treatment or diagnosis of patients during radiological procedures. (author)

  10. Radiation protection perspectives in developing new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The medical technical development with ionizing radiation is and will be followed by an effort to control and reduce their inherent risks and make it a safe tool that offers more exact diagnoses and more effective treatments. However, it is not foreseeable to achieve a decrease on the annual effective dose equivalent per capita due to medical irradiation (1.06 mSv in OECD countries), since the general population will go on increasing, and the same will happen to the elder population (with greater morbidity). The turn of the century will bring a time of major cost savings, but also a higher demand on the quality of life. The high cost technologies help the diagnostic and therapeutic procedures and therefore their use and spread are absolutely justified, according to health policy objectives. However, their diffusion should be spread out under efficiency and equity criteria. (author). 32 refs

  11. Possibilities of radiation sterilization for re-usage of medical devices in the medical management

    International Nuclear Information System (INIS)

    Tabei, Masae; Kudo, Hisaaki; Katsumura, Yosuke

    2004-01-01

    The rule for re-usage of medical single-use devices was established in US in 2000 based on the concept of Managed Care (total management of medicare on cost, quality and patients' satisfaction) and 20-30% of those devices are re-used at present. The re-usage is conducted in not only US but also Canada, Denmark, UK, India, China etc. Standing on the viewpoint, this paper described and discussed the possibility of re-usage of the single-use devices now prohibited in Japan, possible re-sterilization, possible re-usage of hollow fiber-type hemodialyzer following γ-ray sterilization with consideration for D-values against bacteria and viruses, cost estimation of electron beam sterilization for re-usage, and radiation sterilization of waste water and plastic materials. Radiation sterilization for re-usage of medical devices was concluded possible if their materials and records for their usage processes are proper, and should be conducted in a large scale after sufficient examinations by industries/government/academia. (N.I.)

  12. Consequences of low birth weight, maternal illiteracy and poor access to medical care in rural India: infantile iatrogenic Cushing syndrome

    OpenAIRE

    Karande, Sunil

    2015-01-01

    Home delivery, low birth weight babies and maternal illiteracy among the poor in rural India are frequent. The rural poor prefer to seek healthcare from private providers, most of whom have no formal medical training and buy medicines from private pharmacies without a prescription owing to a weakly regulated environment. This report is of a 4-month-old baby from a remote village in northern India, who presented with exogenous Cushing syndrome. This baby was a full-term low birth weight home d...

  13. The Internet and the medical radiation science practitioner

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Madeleine [School of Medical Science, RMIT University, Bundoora, Victoria 3083 (Australia)], E-mail: mshanahan@rmit.edu.au; Herrington, Anthony; Herrington, Jan [Faculty of Education, University of Wollongong, New South Wales (Australia)

    2009-08-15

    Purpose: The Internet is an important information source for health practitioners providing immediate access to the most current health and medical information. Factors limiting practitioner access to the Internet have been identified and the literature shows that access to the Internet varies across and within health professions. There is therefore a need for each health profession to investigate practitioner access to the Internet. There has been, however, no identified empirical research investigating medical radiation science (MRS) practitioner access to or use of the Internet. This research sought to establish the professional use of Internet-based tools by Australian MRS practitioners and issues affecting access to the Internet within MRS workplaces. Methods: Qualitative and quantitative approaches were used in this research. These included interviews with 28 MRS practitioners from the four areas of specialisation, namely nuclear medicine, radiation therapy, radiography and sonography and a survey of MRS practitioners. In 2007 a 4-page postal survey was sent to a random sample of 1142 MRS practitioners with a response rate of 32.8%. Results: The Internet is an important information source widely used by MRS practitioners. MRS practitioners search the Internet (87%), access specific web pages (86%), use email (82%) and listservs (39.4%) to update their professional knowledge. It was evident that access to the Internet within the workplace varied within the MRS profession. Whilst the majority (96.4%) of MRS practitioners had some level of access to the Internet in their workplace, factors shown to affect practitioner access were workplace setting (p = 0.000), work environment (p = 0.000), and geographic location (p = 0.025). The majority of clinical workplaces (81%) did not provide practitioners with remote access to electronic resources available in the workplace such as e-journals and databases. Conclusions: This research provides baseline data to the MRS

  14. The Internet and the medical radiation science practitioner

    International Nuclear Information System (INIS)

    Shanahan, Madeleine; Herrington, Anthony; Herrington, Jan

    2009-01-01

    Purpose: The Internet is an important information source for health practitioners providing immediate access to the most current health and medical information. Factors limiting practitioner access to the Internet have been identified and the literature shows that access to the Internet varies across and within health professions. There is therefore a need for each health profession to investigate practitioner access to the Internet. There has been, however, no identified empirical research investigating medical radiation science (MRS) practitioner access to or use of the Internet. This research sought to establish the professional use of Internet-based tools by Australian MRS practitioners and issues affecting access to the Internet within MRS workplaces. Methods: Qualitative and quantitative approaches were used in this research. These included interviews with 28 MRS practitioners from the four areas of specialisation, namely nuclear medicine, radiation therapy, radiography and sonography and a survey of MRS practitioners. In 2007 a 4-page postal survey was sent to a random sample of 1142 MRS practitioners with a response rate of 32.8%. Results: The Internet is an important information source widely used by MRS practitioners. MRS practitioners search the Internet (87%), access specific web pages (86%), use email (82%) and listservs (39.4%) to update their professional knowledge. It was evident that access to the Internet within the workplace varied within the MRS profession. Whilst the majority (96.4%) of MRS practitioners had some level of access to the Internet in their workplace, factors shown to affect practitioner access were workplace setting (p = 0.000), work environment (p = 0.000), and geographic location (p = 0.025). The majority of clinical workplaces (81%) did not provide practitioners with remote access to electronic resources available in the workplace such as e-journals and databases. Conclusions: This research provides baseline data to the MRS

  15. On occupational-appointment demands on radiation hygiene for medical radiologists

    International Nuclear Information System (INIS)

    Usol'tsev, V.I.; Kuzin, V.I.; Tselikov, N.V.

    1988-01-01

    The aim of the work was to determine occupational requirements on radiation hygiene for medical radiologists. To solve the problem using questionnaire, personal conversations with doctors, analysis of basis control and examinations volume and character of work on radiation hygiene were studied in 510 medical radiologists. Occupational requirements for these specialists were worked out on the basis the obtained data. 4 refs

  16. S.I. No 189 of 1988, European Communities (Medical Ionizing Radiation) Regulations, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    The Regulations provide that all those engaged in the use of ionizing radiation for medical (including dental) purposes must be competent in radiation protection and have appropriate training. They also specify that the exposure of a patient to ionizing radiation must be medically justified and the dose delivered must be as low as is reasonably achievable. The Regulations implement the provisions of the Directive of the Council of the European Communities No 84/466 Euratom of 3 September 1984 laying down basic measures for the radiation protection of persons undergoing medical examination or treatment [fr

  17. Inspecting the medical use of radiation at five large hospitals in 2004 - to new radiation protection regulations

    International Nuclear Information System (INIS)

    Widmark, Anders; Bjerke, Hans; Unhjem, Jan Frede; Friberg, Eva; Hult, Elin Agathe; Boerretzen, Ingelin; Olerud, Hilde

    2005-01-01

    An audit has been performed in five health enterprises. The audit was carried out in relation to new radiation protection legislation and comprised all use of medical radiation at the enterprises. This report summarizes some of the findings and also gives an evaluation on the level of implementation of the legislation and what challenges that are left for the enterprises. (Author)

  18. Training programmes and experiences of medical emergency preparedness for radiation accident in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Yasumoto, M

    1982-01-01

    Our policy of training programmes for medical radiation emergency preparedness is described. We found it is necessary to have two approaches to the training of relevant personnel. The first approach was to conduct adequate basic training of nurses and health physics personnel in large nuclear installations for medical radiation emergency preparedness. We found it was necessary to have courses for basic knowledge of nuclear radiation and industrial activities, radiation monitoring procedures, radiation injuries, human counters and wound monitors, first aid practices, and radiation medical emergency procedures including practices. The second approach was to make a simple and introductory training program on the subject using lectures and visual presentations in the vicinity of big nuclear installations for personnel relating to the nuclear industrial activities and for concerned local personnel, including medical doctors and nurses. These two training courses and approaches were planned and have been conducted. 2 refs. (DT)

  19. A view from the UK III: radiation protection in Europe - medical issues

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, R.H.; Faulkner, K. [Freeman Hospital, Newcastle-upon-Tyne (United Kingdom). Dept. of Medical Physics

    1997-12-31

    Perhaps the major problem in the medical world is one of communication. While there is a clear chain of information dissemination in management circles, radiation protection is a Cinderella subject by comparison. There will be an important role for Radiation Protection Advisors (RPAs) and Radiation Protection Supervisors (RPSs) to interpret and review the new standards and apply them within their departments. (orig.)

  20. Radiation protection in medicine and medical research; Strahlenschutz in der Heilkunde und der medizinischen Forschung

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, Christoph [Wuerzburg Univ. (Germany). Klinik fuer Nuklearmedizin

    2017-07-01

    Ionizing radiation might have considerable effects on human health as Hiroshima and Chernobyl have shown. According to the author's opinion the public is therefore prone to an overvaluation of radiation hazards. Radiation doses and hazards in case of medical care are discussed. Experiences from patient information are reviewed.

  1. Medical radiation workers and the risk of cancer: A retrospective follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seul Ki; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Medical radiation workers are important population to study of chronic low dose radiation exposure and the numbers are continuously increasing worldwide. We have launched a retrospective cohort for medical radiation workers to investigate their health status and to assess the association with occupational radiation exposure. In this first analysis of cancer incidence using data from national dose registry, a number of significant findings at specific cancer sites were observed. Further investigation is needed to assess the association with observed cancer risk and occupational radiation exposure. In this first analysis of cancer incidence using data from national dose registry, a number of significant findings at specific cancer sites were observed.

  2. Obligations and responsibilities in radiation protection in the medical field; Obligations et responsabilites en radioprotection dans le domaine medical

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  3. Radiation protection in medical equipment therapy and diagnosis in (RICK) and (MC)

    International Nuclear Information System (INIS)

    Mohammed, M.I.

    2006-04-01

    In the present research work we are trying to study the status of the radiation protection applications around some medical facilities in Khartoum. The rules and principles of radiation protection in Radiation and Isotope Center (Khartoum), and at Medical Corporation (MC) were investigated. It is found that the rules are applied in accordance with international recommendations. Results of the investigations, measurements and some concluding remarks to improve the situation are reported.(Author)

  4. Environmental impact assessment methods of the radiation generated by the runing medical linear accelerator

    International Nuclear Information System (INIS)

    Yin haihua; Yao Zhigang

    2014-01-01

    This article describes the environmental impact assessment methods of the radiation generated by the runing. medical linear accelerator. The material and thickness of shielding wall and protective doors of the linear accelerator were already knew, therefore we can evaluate the radiation by the runing. medical linear accelerator whether or not in the normal range of national standard by calculating the annual effective radiation dose of the surrounding personnel suffered. (authors)

  5. Medical radiation exposure and usage for diagnostic radiology in Malaysia

    International Nuclear Information System (INIS)

    Ng, Kwan-Hoong; Rassiah, Premavathy; Abdullah, B.J.J.; Wang, Hwee-Beng; Shariff Hambali, Ahmad; Muthuvelu, Pirunthavany; Sivalingam, S.

    2001-01-01

    A national dose survey of routine X-ray examinations in Malaysia (a Level II country) from 1993 to 1995 had established baseline data for seven common types of x-ray examinations. A total of 12 randomly selected public hospitals and 867 patients were included in this survey. Survey results are generally comparable with those reported in the UK, USA and IAEA. The findings support the importance of the ongoing national quality assurance programme to ensure doses are kept to a level consistent with optimum image quality. The data was useful in the formulation of national guidance levels as recommended by the IAEA. The medical radiation exposure and usage for diagnostic radiology (1990-1994) enabled a comparison to be made for the first time with the UNSCEAR 2000 Report. In 1994, the number of physicians, radiologists, x-ray units and x-ray examinations per 1000 population was 0.45, 0.005, 0.065 and 183, respectively; 3.6 million x-ray examinations were performed; the annual effective dose per capita was 0.05 mSv and collective dose was 1000 person-Sv. Chest examinations contributed 63% of the total. Almost all examinations experienced increasing frequency except for barium studies, cholecystography, and intravenous urography (-23%, -36%, -51%). Notable increases were observed in computed tomography (161%), cardiac procedures (190%), and mammography (240%). (author)

  6. Lifelong learning in medical radiation science: stakeholders' views

    International Nuclear Information System (INIS)

    Sim, J.; Zadnik, M.G.; Radloff, A.

    2002-01-01

    Following the Australian Institute of Radiography promotion of Continuing Professional Development, a nationwide survey on lifelong learning in Medical Radiation Science (MRS) was conducted in June 1999. It is the first national study, which collates various stakeholders' views on the essential attributes of MRS practitioners and how respondents view lifelong learning. A total of twenty-five attributes (professional, generic and lifelong learning) were included in the survey. For each attribute listed, respondents were asked to rate its importance and the perceived level of attainment. The three major groups of stakeholders who participated in the survey were MRS practitioners, Heads of MRS clinical Departments and students from the eight Australian universities. Analysis of survey responses showed that all respondents regard lifelong learning attributes to be important for MRS practitioners. As might have been expected, professional attributes and generic attributes were regarded as more important than lifelong learning attributes. Moreover, for each attribute surveyed, there was a statistically significant difference between the perceived level of importance and perceived level of attainment, with the attainment level being lower than the level of importance. The implications of these findings for the profession and recommendations for continuing professional development are discussed. Copyright (2002) Australian Institute of Radiography

  7. Development of qualitative evaluation of medical radiation protective apron

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hui Gyeom; Kim, Tae Hyung; So, Woon Young [Dept. of Radiological Science, Kangwon National University, Chuncheon (Korea, Republic of); Kim, Sang Hyun [Dept. of Radiological Science, Shinhan University, Uijeongbu (Korea, Republic of); Lee, Tae Hui [Dept. of Radiology, Wonju Medical Center, Wonju (Korea, Republic of); Kim, Seung Chul [Dept. of Health Science, Korea University, Seoul (Korea, Republic of); Kim, Jin Tae [Dept. of Materials Research Institute, Truabutment Korea Co., Ltd, Bucheon (Korea, Republic of)

    2017-09-15

    This study proposes effective quality control and maintenance method by developing a new qualitative evaluation method of apron for medical radiation protection. As an experimental material, one of 0.45 mm lead and 100 of 0.45 mm Pb aprons were used and irradiated under the conditions of a tube voltage of 75 kVp and a tube current of 12.5 mAs to obtain an image. and using the Image J program, PSNR values were compared and analyzed. The results showed that there were 40 aprons (less than 11dB), 55 aprons (less than 11dB, less than 30dB), and 5 aprons (30dB or more). In addition, the dose showed a normal distribution for the apron, and 5 aprons with PSNR less than 11dB and 30dB or more were selected and divided into 8 zones, and these groups were statistically significant.

  8. Radiation protection study of radiology medical workers in radiodiagnosis area

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.; Orozco, M.; Rincon, A.; Padilla, Y.; Martinez, A.

    1996-01-01

    Aspects related to radiological safety and its organization in radiodiagnosis were evaluated by means of scanning carried out in 18 hospitals of Mexico City, divided in 11 public institutions and 7 private ones. The population being studied was: hospital personnel that works in radiodiagnosis. The survey was made with 31 dichotomic variables, being obtained 132 surveys. The personnel characteristics are 83% works in public institutions, 49% works in radiodiagnosis, 3% has an academic degree, 13% is member of a hospital professional association, 13% has updated information on radiological protection, 36% was trained, 45% works for more than 2 years, 52% uses personal dosemeter, less than the 20% knows about the fundamentals of the radiological protection and 24% states to suffer from biological radiation effects, due to the exposure to x-rays. As result of the study, it was found that the main problems that the radiological protection has, are: lack of training programs in radiological protection and supervision, medical surveillance and the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  9. Development of qualitative evaluation of medical radiation protective apron

    International Nuclear Information System (INIS)

    Lim, Hui Gyeom; Kim, Tae Hyung; So, Woon Young; Kim, Sang Hyun; Lee, Tae Hui; Kim, Seung Chul; Kim, Jin Tae

    2017-01-01

    This study proposes effective quality control and maintenance method by developing a new qualitative evaluation method of apron for medical radiation protection. As an experimental material, one of 0.45 mm lead and 100 of 0.45 mm Pb aprons were used and irradiated under the conditions of a tube voltage of 75 kVp and a tube current of 12.5 mAs to obtain an image. and using the Image J program, PSNR values were compared and analyzed. The results showed that there were 40 aprons (less than 11dB), 55 aprons (less than 11dB, less than 30dB), and 5 aprons (30dB or more). In addition, the dose showed a normal distribution for the apron, and 5 aprons with PSNR less than 11dB and 30dB or more were selected and divided into 8 zones, and these groups were statistically significant

  10. Radiation hygiene analysis of medical activities in Norway

    International Nuclear Information System (INIS)

    Lundgren, L.; Olerud, H.; Saxeboel, G.

    1987-01-01

    A status report from the project ''Radiation hygiene analysis of medical activities in Norway'' is presented. A principal project description as well as the main purpose of the project are presented. The report gives information on methods and strategy in connection with patient dose measurements and instrument calibration. The main task of the report is to present and explain the development of an analytical tool based on computer programs. At present, five different programs are produced, linked together in a menusystem. The programs deal with registration of observed variables, compute aritmetic mean/median values, make statistics,and plot and calculate integrated doses from X-ray examinations of interest. So far approximately 2200 X-ray examinations have been observed, each limited to 24 observation variables. The potential power of the analytical tool is demonstrated for the barium meal examination. The analysis indicates a mean integrated energy of 229 mJ per examination, while the annual collective dose from these examinations is 200 manSv in Norway. Discussion of facts relevant to optimization clearly shows that the use of 100 mm technique should be encouraged

  11. Studies on risk estimation to public from medical radiation (III)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hai Yong; Kim, Jong Hyung; Kim, Hyeog Ju; Kim, Ji Soon; Oh, Hyeon Joo; Kim, Cheol Hyeon; Yang, Hyun Kyu [Korea Food and Drug Administraion, Seoul (Korea, Republic of); Park, Chan Il [Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    A nationwide survey was conducted to give representative levels of effective doses to patient for 17 types of CT examination and also representative level of MGD (mean glandular dose) to standard breast for mammography X-ray equipment. The effective doses to patient from 16 CT scanners were estimated from measurement of CTDI (Computed Tomography Dose Index) in air by multiplying conversion coefficients which are specified by National Radiological Protection Board in United Kingdom. The lowest and hightest mean values of effective dose measured to patient from CT scanner were 0.05 mSv for IAM examination and 17.75 mSv for routine abdomen examination, respectively. The average values of 17 effective doses were lower than other results of foreign countrys' surveys. The mean glandular doses to a standard breast for 26 mammography units were estimated from measurement of the air kerma at the surface of a 40 mm plain Perspex phantom by applying conversion factors described in Report 59 of the Institute of Physical Sciences in Medicine of United Kingdom. The exposure factors for this measurement were those used clinically at each hospital. The average MGD to standard breast was 1.06 mGy in units with grid and 0.49 mGy in units without grid. These results are lower than guidance levels by IPSM and AAPM. These results will be used for risk estimation to the Korean public from the medical radiation.

  12. A study to assess burnout among nurses of maternity department in Gauhati Medical College Hospital, Assam

    Directory of Open Access Journals (Sweden)

    Marami Baishya

    2016-01-01

    Full Text Available Background: Burnout in healthcare workers, especially among nurses, can have an impact on overall healthcare delivery system. For health in general and maternal health in particular, wellbeing of healthcare workers, including nurses, is of paramount importance. Material and methods: This study aimed to assess burnout among nurses working in the maternity department. One hundred nurses of a tertiary care centre, selected by non-purposive convenient sampling, were examined by a standardised questionnaire. Data were analysed by descriptive statistics. Results: Burnout in depersonalisation was moderate while that in emotional exhaustion and personal achievement were of low-levels. Conclusion: Understanding the nature of the problem of burnout can guide in better management.

  13. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    International Nuclear Information System (INIS)

    Park, Cheol Koo; Hwang, Chul Hwan; Kim, Dong Hyun

    2017-01-01

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions

  14. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Koo [Dept. of Radiological Science, Graduate School of Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of); Kim, Dong Hyun [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions.

  15. An investigation of medical radiation detection using CMOS image sensors in smartphones

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Gyu [Department of Senior Healthcare, Graduate School of Eulji University, Daejeon 301-746 (Korea, Republic of); Song, Jae-Jun [Department of Otorhinolaryngology-Head & Neck Surgery, Korea University, Guro Hospital,148, Gurodong-ro, Guro-gu, Seoul 152-703 (Korea, Republic of); Lee, Kwonhee [Graduate Program in Bio-medical Science, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Nam, Ki Chang [Department of Medical Engineering, College of Medicine, Dongguk University, 32 Dongguk-ro, Goyang-si, Gyeonggi-do 410-820 (Korea, Republic of); Hong, Seong Jong; Kim, Ho Chul [Department of Radiological Science, Eulji University, 553 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 431-713 (Korea, Republic of)

    2016-07-01

    Medical radiation exposure to patients has increased with the development of diagnostic X-ray devices and multi-channel computed tomography (CT). Despite the fact that the low-dose CT technique can significantly reduce medical radiation exposure to patients, the increasing number of CT examinations has increased the total medical radiation exposure to patients. Therefore, medical radiation exposure to patients should be monitored to prevent cancers caused by diagnostic radiation. However, without using thermoluminescence or glass dosimeters, it is hardly measure doses received by patients during medical examinations accurately. Hence, it is necessary to develop radiation monitoring devices and algorithms that are reasonably priced and have superior radiation detection efficiencies. The aim of this study is to investigate the feasibility of medical dose measurement using complementary metal oxide semiconductor (CMOS) sensors in smartphone cameras with an algorithm to extract the X-ray interacted pixels. We characterized the responses of the CMOS sensors in a smartphone with respect to the X-rays generated by a general diagnostic X-ray system. The characteristics of the CMOS sensors in a smartphone camera, such as dose response linearity, dose rate dependence, energy dependence, angular dependence, and minimum detectable activity were evaluated. The high energy gamma-ray of 662 keV from Cs-137 can be detected using the smartphone camera. The smartphone cameras which employ the developed algorithm can detect medical radiations.

  16. An investigation of medical radiation detection using CMOS image sensors in smartphones

    International Nuclear Information System (INIS)

    Kang, Han Gyu; Song, Jae-Jun; Lee, Kwonhee; Nam, Ki Chang; Hong, Seong Jong; Kim, Ho Chul

    2016-01-01

    Medical radiation exposure to patients has increased with the development of diagnostic X-ray devices and multi-channel computed tomography (CT). Despite the fact that the low-dose CT technique can significantly reduce medical radiation exposure to patients, the increasing number of CT examinations has increased the total medical radiation exposure to patients. Therefore, medical radiation exposure to patients should be monitored to prevent cancers caused by diagnostic radiation. However, without using thermoluminescence or glass dosimeters, it is hardly measure doses received by patients during medical examinations accurately. Hence, it is necessary to develop radiation monitoring devices and algorithms that are reasonably priced and have superior radiation detection efficiencies. The aim of this study is to investigate the feasibility of medical dose measurement using complementary metal oxide semiconductor (CMOS) sensors in smartphone cameras with an algorithm to extract the X-ray interacted pixels. We characterized the responses of the CMOS sensors in a smartphone with respect to the X-rays generated by a general diagnostic X-ray system. The characteristics of the CMOS sensors in a smartphone camera, such as dose response linearity, dose rate dependence, energy dependence, angular dependence, and minimum detectable activity were evaluated. The high energy gamma-ray of 662 keV from Cs-137 can be detected using the smartphone camera. The smartphone cameras which employ the developed algorithm can detect medical radiations.

  17. The report of medical exposures in diagnostic radiology. Pt. 1. The questionnaire of medical exposure and standard radiation exposure

    International Nuclear Information System (INIS)

    Sasakawa, Yasuhiro; Matsumura, Yoshitaka; Iwasaki, Takanobu; Segawa, Hiroo; Yasuda, Sadatoshi; Kusuhara, Toshiaki

    1997-01-01

    We had made reports of patient radiation exposure for doctors to judge adaptation of medical radiation rightly. By these reports the doctors can be offered data of exposure dose and somatic effect. First, we sent out questionnaires so that we grasped the doctor's understanding about radiation exposure. Consequently we understood that the doctors had demanded data of exposure dose and somatic effect. Secondly, by the result of questionnaires we made the tables of exposure dose about radiological examination. As a result we have be able to presume exposure dose about high radiation sensitive organization as concrete figures. (author)

  18. Medical radiation exposure and its impact on occupational practices in Korean radiologic technologists

    International Nuclear Information System (INIS)

    Ko, Seul Ki; Lee, Won Jin

    2016-01-01

    The use of radiology examinations in medicine has been growing worldwide. Annually an estimated 3.1 billion radiologic exams are performed. According to this expansion of medical radiation exposure, it has been hard to pay no attention to the effects of medical radiation exposures in the exposure from different types of radiation source. This study, therefore, was aimed to assess the association of medical and occupational radiation exposure in Korean radiologic technologists and evaluate necessity for its consideration in occupational studies. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure.

  19. Medical radiation exposure and its impact on occupational practices in Korean radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seul Ki; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    The use of radiology examinations in medicine has been growing worldwide. Annually an estimated 3.1 billion radiologic exams are performed. According to this expansion of medical radiation exposure, it has been hard to pay no attention to the effects of medical radiation exposures in the exposure from different types of radiation source. This study, therefore, was aimed to assess the association of medical and occupational radiation exposure in Korean radiologic technologists and evaluate necessity for its consideration in occupational studies. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure.

  20. System of medical response to radiation emergency after a terror attack in China

    International Nuclear Information System (INIS)

    Liu, Y.; Wang, Z.

    2005-01-01

    Full text: Nuclear or radiological accident is an unintended or unexpected event occurring with a radiation source or during a practice involving ionizing radiation, which may result in significant human exposure and/or material damage. Recent events involving terrorist activities have focused attention on the radiological threats. The full spectrum of radiological threats from terrorist spans the deliberate dispersal of radioactive material to the detonation of a nuclear weapon. While the most likely threat is the dispersal of radioactive materials, the use of a crude nuclear weapon against a major city cannot be dismissed. Radiological incident response requires functions similar to non-radiological incident response. Radiation emergency system in China has been established for radiological emergency preparedness and response. National coordination committee of radiation emergency has been setup in 1994, which consist of 17 ministries. The ministry is responsible for the medical assistance for radiation emergency. Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). The CCMRRE has been as one liaison institutes of WHO/REMPAN and functions as a national and professional institute for medical assistance in radiation accidents and terrorist events involving radioactive material. Under Provincial Committee of Radiation Emergency, there are local organizations of medical assistance in radiation emergency. The organizations carry out the first aid, regional clinic treatment, radiation protection and radiation monitory in nuclear accidents and radiological accidents. (author)

  1. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  2. Medical program in radiation protection from the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Perez, M. R.; Gisone, P.; Di Trano, J.L.; Dubner, D.L.; Michelin, S.C.

    1998-01-01

    This program is carried out by the Radio pathology Laboratory, belonging to the Nuclear Regulatory Authority. The program includes the following aspects: 1) planning and organization of medical response in radiological emergencies. A three-level system of medical assistance has been developed considering: a- determination of each level of care and their potential roles; b- choice of medical facilities for medical assistance; c- preparedness for medical response (equipment s, logistic support, human resources, training). 2) scientific research activities related to radio pathology subjects: a- hematological indicators in radioinduced aplasia; b- biological and biophysical dosimeters; c- radiation effects on the developing brain. 3) edition of practical guidelines for diagnostic and treatment: a- external and internal radioactive contamination; b- acute radiation syndrome; c- radiological burns. 4) medical advising in radioprotection (risk assessment in radiation workers, medical exposures, potential effects of prenatal irradiation). 5) international interactions: activities related with the constitution of a Latin American radio pathology network, linkage with international reference centers. (author) [es

  3. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  4. The Brotherhood Medical Center: Collaborative Foundation of Maternity and Children’s Healthcare Facility for Displaced Syrians

    Science.gov (United States)

    Aburas, Rahma; Najeeb, Amina; Baageel, Laila; Mackey, Tim K.

    2018-01-01

    The United Nations has declared the Syrian conflict, with more than 50% of Syria’s population currently displaced, as the worst humanitarian crisis of the twenty-first century. The Syrian conflict has led to a collapse of infrastructure, including access to critical and lifesaving healthcare services. Women and children account for approximately 75% of internally displaced Syrians and refugees. This population is also particularly vulnerable to poor health outcomes, a condition worsened by lack of access to maternal and child health services. In response to this crisis, a partnership of Saudi and Syrian physicians established a non-profit healthcare facility named the Brotherhood Medical Center (BMC) to serve women and children within a safe area near the Syrian–Turkish border. The project began in September 2014 and was implemented in three phases of establishment, phased construction and formal launch and operation. Currently, the BMC is working at about 70% of its capacity and is run in partnership with the Syrian Expatriate Medical Association. Although there was strong initial support from donors, the BMC continues to face many financial and operational challenges, including difficulties in transferring money to Syria, shortage of medical supplies, and lack of qualified medical personnel. Despite these challenges, the BMC represents a critical model and an important case study of the challenges of delivering healthcare services to underserved populations during an ongoing conflict. However, more robust support from the international community is needed to ensure it continues its important health and humanitarian mission. PMID:29721489

  5. The Brotherhood Medical Center: Collaborative Foundation of Maternity and Children’s Healthcare Facility for Displaced Syrians

    Directory of Open Access Journals (Sweden)

    Rahma Aburas

    2018-04-01

    Full Text Available The United Nations has declared the Syrian conflict, with more than 50% of Syria’s population currently displaced, as the worst humanitarian crisis of the twenty-first century. The Syrian conflict has led to a collapse of infrastructure, including access to critical and lifesaving healthcare services. Women and children account for approximately 75% of internally displaced Syrians and refugees. This population is also particularly vulnerable to poor health outcomes, a condition worsened by lack of access to maternal and child health services. In response to this crisis, a partnership of Saudi and Syrian physicians established a non-profit healthcare facility named the Brotherhood Medical Center (BMC to serve women and children within a safe area near the Syrian–Turkish border. The project began in September 2014 and was implemented in three phases of establishment, phased construction and formal launch and operation. Currently, the BMC is working at about 70% of its capacity and is run in partnership with the Syrian Expatriate Medical Association. Although there was strong initial support from donors, the BMC continues to face many financial and operational challenges, including difficulties in transferring money to Syria, shortage of medical supplies, and lack of qualified medical personnel. Despite these challenges, the BMC represents a critical model and an important case study of the challenges of delivering healthcare services to underserved populations during an ongoing conflict. However, more robust support from the international community is needed to ensure it continues its important health and humanitarian mission.

  6. Utilization of radiation in industrial, agricultural and medical fields and its perspective

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2008-01-01

    The current status for the utilization of radiation in Japan was given from the view point of the economic scale. The topics which will be developed in near future such as lithography, radiation processing, radiation analysis in the industry, mutation breeding, sterile insect technique, food irradiation in agriculture, and radiation diagnosis, radiation therapy in medical field were presented. The important techniques for the further development of utilization of radiation will be the techniques related to the fabrication of semiconductor, developments of small accelerators and compact neutron generators. (author)

  7. Medical Preparedness in Radiation Accidents: a Matter of Logistics and Communication not Treatment!

    Directory of Open Access Journals (Sweden)

    A Staudenherz

    2011-06-01

    Full Text Available The currently reactor wreckage in Fukushima raised the following important questions: Is our knowledge of the possible dangers of ionizing radiation sufficient to warrant special action? What is the role of the medical community in technical radiation accidents from Windscale to Fukushima? What is the role of the medical community in terrorist radiation attacks? Are we prepared for those challenges? How can medical services communicate information in the media framework? What have we learned recently? And, what should be improved? In this review of the current literature on ionizing radiation, we try to answer these questions. Our conclusion is that medical services have to improve their communication skills and convince the public that the dangers of ionizing radiation can be quantitated within certain limits to support a qualified discussion about its risks and benefits.

  8. Advanced maternal age: ethical and medical considerations for assisted reproductive technology

    OpenAIRE

    Harrison,Brittany; Hilton,Tara; Rivière,Raphaël; Ferraro,Zachary; Deonandan,Raywat; Walker,Mark

    2017-01-01

    Brittany J Harrison,1 Tara N Hilton,1 Raphaël N Rivière,1 Zachary M Ferraro,1–3 Raywat Deonandan,4 Mark C Walker1–3,51Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; 2Division of Maternal-Fetal Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, ON, Canada; 3Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada; 4University of Ottawa Interdisciplinary School of Health Sciences, Ottawa, ON, Canada; 5...

  9. Principles of medical rehabilitation of survivors of acute radiation sickness induced by gamma and beta and gumma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nedejina, N.M.; Galstian, I.A.; Savitsky, A.A.; Sachkov, A.V.; Rtisheva, J.N.; Uvatcheva, I.V.; Filin, S.V. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose of this study is to reveal the principles of medical rehabilitation different degree acute radiation syndrome (ARS) survivors, who exposed {gamma}{beta}- and {gamma}{eta}-irradiation in different radiation accidents. The main reasons of working disability in the late consequences of ARS period are consequences of local radiation injures (LRI) and joining somatic diseases. Its revealing and treatment considerably improves quality of life of the patients. The heaviest consequence of LRI of a skin at {gamma}{beta}- radiation exposure is the development of late radiation ulcers and radiation fibrosis, which require repeated plastic surgery. LRI at {gamma}{eta}-radiation exposure differ by the greater depth of destruction of a underlying tissues and similar defects require the early amputations. Last 10 years microsurgery methods of plastic surgery allow to save more large segments of extremities and to decrease expression of the late consequences (radiation fibrosis and late radiation ulcers) LRI severe and extremely severe degrees. Medical rehabilitation of radiation cataract (development at doses more than 2.0 Gy) includes its extraction and artificial lens implantation, if acuity of vision is considerably decreased. Changes of peripheral blood, observed at the period of the long consequences, as a rule, different, moderate, transient and not requiring treatment. Only one ARS survivor dead from chronic myeloid leukemia. Thyroid nodes, not requiring operative intervention, are found out in Chernobyl survivors. Within the time course the concurrent somatic disease become the major importance for patients disability growth, which concurrent diseases seem to be unrelated to radiation dose and their structure does not differ from that found in general public of Russia. The rehabilitation of the persons who have transferred ARS as a result of radiating failure, should be directed on restoration of functions critical for ionizing of radiation of bodies and

  10. Development of medical surveillance system for personnel dealing with ionizing radiation

    International Nuclear Information System (INIS)

    Stepanov, A.I.; Saperov, S.K.; Karpov, V.B.

    1988-01-01

    A series of requirement to the quality and efficiency of medical examinations, performed by medical commissions is presented. Recommendations on improvement of forms and methods of examinations and dispensary surveillance of the contingent operating with ionizing radiation sources. Attention is drawn to the intensification of radiation trend role in examinations, carried out by physicans of treatment-and-prophylactic health service. Change in orientation of physicians, performing medical examinations of practically healthy contingent operating with radiation sources is substantiated. Attention is paid to solving problems of social-hygienic and sanitary character leading to decrease of sick rate conditioned by nonperformance of hygienic standards, regimes of work. 6 refs

  11. The efficacy and usefulness of problem based learning in undergraduate medical school education of radiation oncology

    International Nuclear Information System (INIS)

    Uchino, Minako; Itazawa, Tomoko; Someya, Masanori; Nakamura, Satoaki

    2007-01-01

    The Japanese Association for Therapeutic Radiation Oncology (JASTRO) holds a seminar for medical students every summer, which has developed into a joint program with a session addressing radiation treatment planning. To clarify this topic for medical students, we have incorporated Problem Based Learning skills into the session. Not only has the students' comprehension improved but the instructors have also found this teaching experience valuable and productive in advancing their own clinical skills. Our experience suggests that the application of this Problem Based Learning session for radiation treatment planning in undergraduate medical school education has proven to be effective. (author)

  12. Principles and practices for keeping occupational radiation exposures at medical institutions as low as reasonably achievable

    International Nuclear Information System (INIS)

    Brodsky, A.

    1977-10-01

    Some of the major considerations in establishing management policies, staff, facilities and equipment, and operational procedures to promote radiation safety in medical or hospital care programs using radioactive materials licensed by the U.S. Nuclear Regulatory Commission (NRC) are presented. It is a compendium of good practices for establishing adequate radiation safety programs in medical institutions. The information presented is intended to aid the NRC licensee in fulfilling the philosophy of maintaining radiation exposures of employees, patients, visitors, and the public as low as reasonably achievable (ALARA). Each subsection of this report is designed to include the major radiation safety considerations of interest to the specific type of activity

  13. Radiation as a microbiological contamination control of drugs, cosmetics and medical devices

    International Nuclear Information System (INIS)

    Ishizeki, Chuichi

    1985-01-01

    This paper deals with current status of radiation sterilization or disinfection of drugs, cosmetics, their materials, and medical devices, and with quality control as a tool for securing microbiological safety, especially current status of sterilization tests. Ointment containing tetracyclin, steroid hormones, gelatin, and enzymes are presented as drug samples to be irradiated, and explanations for radiation sterilization of these drugs are provided. An outline of the application of radiation in cosmetics and medical devices is given. Issues are also provided from the viewpoint of safey and effectiveness of radiation sterilization. (Namekawa, K.)

  14. [Institutional violence, medical authority, and power relations in maternity hospitals from the perspective of health workers].

    Science.gov (United States)

    Aguiar, Janaina Marques de; d'Oliveira, Ana Flávia Pires Lucas; Schraiber, Lilia Blima

    2013-11-01

    The current article discusses institutional violence in maternity hospitals from the health workers' perspective, based on data from a study in the city of São Paulo, Brazil. Eighteen health workers from the public and private sectors were interviewed, including obstetricians, nurses, and nurse technicians. A semi-structured interview was used with questions on professional experience and the definition of violence. The analysis revealed that these health workers acknowledged the existence of discriminatory and disrespectful practices against women during prenatal care, childbirth, and the postpartum. Examples of such practices cited by interviewees included the use of pejorative slang as a form of "humor", threats, reprimands, and negligence in the management of pain. Such practices are not generally viewed by health workers as violent, but rather as the exercise of professional authority in what is considered a "difficult" context. The institutional violence is thus trivialized, disguised as purportedly good practice (i.e., "for the patient's own good"), and rendered invisible in the daily routine of care provided by maternity services.

  15. Medical interventional procedures--reducing the radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, C. E-mail: claire.cousins@addenbrookes.nhs.uk; Sharp, C

    2004-06-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up.

  16. Medical interventional procedures--reducing the radiation risks

    International Nuclear Information System (INIS)

    Cousins, C.; Sharp, C.

    2004-01-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up

  17. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Ongolo-Zogo, P.; Nguehouo, M.B.; Yomi, J.; Nko'o Amven, S.

    2013-01-01

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  18. High beta radiation exposure of medical staff measures for optimisation of radiation protection

    International Nuclear Information System (INIS)

    Barth, I.; Rimpler, A.

    2006-01-01

    Full text of publication follows: New therapies applying beta radionuclides have been introduced in medicine in recent years, especially in nuclear medicine, e. g. radio-synoviorthesis, radioimmunotherapy and palliative pain therapy. The preparation of radiopharmaceuticals, their dispensary as well as injection require the handling of vials and syringes with high activities of beta emitters at small distances to the skin. Thus the medical staff may be exposed to a high level of beta radiation. Hence the local skin dose, Hp(0,07), was measured at these workplaces with thin-layer thermoluminescent dosemeters TLD (LiF:Mg,P,Cu) fixed to the tip of the fingers at both hands of the personnel. In addition, official beta/photon ring dosemeters were worn at the first knuckle of the index finger. Very high local skin doses were measured at the tip of index finger and thumb. The findings indicate that the exposure of the staff can exceed the annual dose limit for skin of 500 mSv when working at a low protection standard. By the use of appropriate shieldings and tools (e.g. tweezers or forceps) the exposure was reduced of more than one order of magnitude. The German dosimetry services provide official beta/photon ring dosemeters for routine monitoring of the extremity exposure of occupationally exposed persons. But even monitoring with these official dosemeters does not provide suitable results to control compliance with the dose limit in the majority of cases because they can mostly not be worn at the spot of highest beta exposure (finger tip). Therefore, a study was performed to identify the difference of readings of official ring dosemeters and the maximum local skin dose at the finger tips. At workplaces of radio-synoviorthesis a correction factor of 3 was determined provided that the staff worked at high radiation protection standard and the ring dosemeters were worn at the first knuckle of the index finger. The correction factor increases significantly when the radiation

  19. Administration of ionizing radiation to human subjects in medical research

    International Nuclear Information System (INIS)

    1985-01-01

    Any administration of ionizing radiation to human subjects for the purposes of diagnostic or therapeutic research involving either irradiation or the administration of radionuclides, should be undertaken only after approval by an institutional ethics committee. The ethics committee should obtain advice from a person experienced in radiation protection before granting approval. The research proposal must conform to regulatory requirements relating to the use of ionizing radiation

  20. Radiation protection for medical and allied health personnel

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The primary objective of this new report is to update the material to include new radiation sources used in medicine. In addition, an attempt has been made to reflect current practice in medicine and present the material in terms readily understood by an audience, most of whom have limited expertise in radiation protection terminology and principles. This report is intended to cover those sources of ionizing radiation encountered commonly in the clinical environment

  1. Organization of medical aid and treatment of victims of mass ionizing radiation injuries

    International Nuclear Information System (INIS)

    Gus'kova, A.K.; Burenin, P.I.; Barabanova, A.V.

    1987-01-01

    General organization points on medical aid and treatment of mass ionizing radiation injuries in population are presented. Characteristic of losses and structure of injuries induced by a nuclear explosion are given. Destructions in a town caused by a nuclear explosion and medical aid conditions for patients are analysed. Main information about structure of medical surveillance of civil defence and criteria of medical classification and evacuation of the injured are presented

  2. Consequences of low birth weight, maternal illiteracy and poor access to medical care in rural India: infantile iatrogenic Cushing syndrome.

    Science.gov (United States)

    Karande, Sunil

    2015-08-21

    Home delivery, low birth weight babies and maternal illiteracy among the poor in rural India are frequent. The rural poor prefer to seek healthcare from private providers, most of whom have no formal medical training and buy medicines from private pharmacies without a prescription owing to a weakly regulated environment. This report is of a 4-month-old baby from a remote village in northern India, who presented with exogenous Cushing syndrome. This baby was a full-term low birth weight home delivery. As the baby was not growing well, treatment was started at 1 month by a private doctor with betamethasone drops The mother on her own volition continued giving the betamethasone drops by buying the medicine over the counter from a private pharmacy. This case highlights the gaps in essential health services in rural India and the steps being taken to improve the situation. 2015 BMJ Publishing Group Ltd.

  3. International Medical Graduates in Radiation Oncology: Historical Trends and Comparison With Other Medical Specialties

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vivek333@gmail.com [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Shah, Chirag [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Lautenschlaeger, Tim [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Lin, Chi [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Beriwal, Sushil [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Zhen, Weining [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Mehta, Minesh P. [Department of Radiation Oncology, Miami Cancer Institute, Coral Gables, Florida (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-07-15

    Purpose: This is the first National Resident Matching Program analysis evaluating historical patterns of international medical graduates (IMGs) in radiation oncology (RO) and providing comparison with American (MD) medical graduates (AMGs), osteopathic students (DOs), unfilled positions, and other specialties. Methods and Materials: National Resident Matching Program data for IMGs were available from 2003 to 2015, with limited data for other specialty matches. The following RO-specific figures were obtained per year: total positions available; total matched positions; number of unfilled positions; and number of IMG, AMG, and DO matches. In addition, the number of IMG matches and total matched positions were obtained for 19 other specialties. Fisher exact tests and χ{sup 2} tests were considered significant at α <.05. Results: From 2010 to 2015, 0.8% of RO matches were IMGs, a decline from 2.4% in 2003 to 2009 (P=.006). Proportions of DO matches during these intervals increased by 40% (from 1.0% to 1.4%), significantly lower than IMGs for 2003 to 2009 (P=.03) but not 2010 to 2015 (P=.26). From 2003 to 2015, the percentage of IMG matches, at 1.5%, was significantly lower than the percentage of unfilled seats, at 3.5% (P<.001). In comparison with other specialties (2003-2015), RO had the fewest IMG matches (1.5%), followed by otolaryngology (1.9%) and orthopedics (2.2%); specialties with the highest IMG proportions were internal medicine (37.1%), family medicine (35.7%), and neurology (31.1%). Conclusions: Presently, IMGs represent <1% of RO matches, the lowest among major specialties. There are several speculative factors associated with this low proportion. There are significantly more unfilled positions than those filled by IMGs; programs at risk of not matching could weigh the advantages and disadvantages of interviewing IMGs.

  4. Children who face development risks due to maternal addiction during pregnancy require extra medical and psychosocial resources.

    Science.gov (United States)

    Rangmar, Jenny; Lilja, Maria; Köhler, Marie; Reuter, Antonia

    2018-05-21

    This study examined medical and psychosocial risk factors in children born to women with addiction problems during pregnancy and the children's needs for extra medical and psychosocial resources. Swedish midwives routinely screen pregnant women for drugs and alcohol and refer women with addictions to the Maternity and Child Healthcare Resource Team. We investigated the medical records of 127 children (51% girls) whose mothers were referred to the Resource Team from 2009-2015. Additional data were obtained from local child healthcare services (CHS), which provide routine paediatric care. More than three-quarters (76%) of the children had prenatal exposure to alcohol and drugs and 17% were born with withdrawal symptoms. The mothers had a high rate of psychiatric diagnoses (38%) and were more likely to smoke after delivery and less likely to breastfeed than the general population. However, adherence to the CHS programme was generally high. Additional visits to the nurse, referrals to specialists, collaboration meetings and reports of concerns to social services decreased when the children began attending ordinary CHS centres. Children born to women with addictions during pregnancy faced a high risk of developmental problems and should be offered additional CHS resources to minimise negative long-term consequences. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    Science.gov (United States)

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  6. The role of radiation in the sterilization of medical products

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1980-01-01

    An outline is given of radiation sterilisation as a relatively new sterilisation technique and the advantages which this technique holds in both technical and economic fields are indicated. The microbiological basis of radiation sterilisation is outlined and the present status of this technique both overseas and in South Africa is finally discussed [af

  7. Professional reading and the Medical Radiation Science Practitioner

    International Nuclear Information System (INIS)

    Shanahan, Madeleine; Herrington, Anthony; Herrington, Jan

    2010-01-01

    Purpose: Updating professional knowledge is a central tenet of Continuing Professional Development (CPD) and professional reading is a common method health practitioners use to update their professional knowledge. This paper reports the level of professional reading by Medical Radiation Science (MRS) practitioners in Australia and examines organisational support for professional reading. Materials and Methods: Survey design was used to collect data from MRS practitioners. A questionnaire was sent to 1142 Australian practitioners, which allowed self-report data to be collected on the length of time practitioners engage in professional reading and the time workplaces allocate to practitioners for professional reading. Results: Of the 362 MRS practitioners who returned the survey, 93.9% engaged in professional reading on a weekly basis. In contrast, only 28.9% of respondents reported that their workplace allocates time for professional reading to practitioners. MRS practitioners employed in universities engaged in higher levels of reading than their colleagues employed in clinical workplaces (p < 0.01) and more university workplaces allocated time for professional reading to their employees than clinical workplaces (p < 0.01). There were no significant differences for clinical practitioners in level of reading across geographic, organisational and professional demographic factors. Significant differences in workplace allocation of time for professional reading in clinical workplaces were evident for health sector (p < 0.01); work environment (p < 0.01); geographic location (p < 0.01) and area of specialisation (p < 0.01). Conclusion: The vast majority of respondent MRS practitioners engage in professional reading to update their professional knowledge. This demonstrates an ongoing commitment at the individual practitioner level for updating professional knowledge. Updating professional knowledge is an organisational as well as an individual practitioner issue. Whilst

  8. Professional reading and the Medical Radiation Science Practitioner

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Madeleine, E-mail: mshanahan@rmit.edu.a [School of Medical Science, RMIT University, Bundoora, Victoria (Australia); Herrington, Anthony [Head, School of Regional, Remote and eLearning (RRE), Curtin University, Perth (Australia); Herrington, Jan [School of Education, Murdoch University, Perth (Australia)

    2010-11-15

    Purpose: Updating professional knowledge is a central tenet of Continuing Professional Development (CPD) and professional reading is a common method health practitioners use to update their professional knowledge. This paper reports the level of professional reading by Medical Radiation Science (MRS) practitioners in Australia and examines organisational support for professional reading. Materials and Methods: Survey design was used to collect data from MRS practitioners. A questionnaire was sent to 1142 Australian practitioners, which allowed self-report data to be collected on the length of time practitioners engage in professional reading and the time workplaces allocate to practitioners for professional reading. Results: Of the 362 MRS practitioners who returned the survey, 93.9% engaged in professional reading on a weekly basis. In contrast, only 28.9% of respondents reported that their workplace allocates time for professional reading to practitioners. MRS practitioners employed in universities engaged in higher levels of reading than their colleagues employed in clinical workplaces (p < 0.01) and more university workplaces allocated time for professional reading to their employees than clinical workplaces (p < 0.01). There were no significant differences for clinical practitioners in level of reading across geographic, organisational and professional demographic factors. Significant differences in workplace allocation of time for professional reading in clinical workplaces were evident for health sector (p < 0.01); work environment (p < 0.01); geographic location (p < 0.01) and area of specialisation (p < 0.01). Conclusion: The vast majority of respondent MRS practitioners engage in professional reading to update their professional knowledge. This demonstrates an ongoing commitment at the individual practitioner level for updating professional knowledge. Updating professional knowledge is an organisational as well as an individual practitioner issue. Whilst

  9. Studies on the radiation resistances of bioburden for medical devices

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1997-01-01

    Radiation resistances of reference bacteria strains and the bioburden obtained from hypodermic needles were estimated with gamma- and electron- irradiators calibrated with NPL (National Physics Laboratory) alanine dosimeter. Radiation resistances of the TSB-bacteria suspension samples dried on glass test tubes showed about two times higher than those of the water-bacteria suspension dried on glass fiber paper or paper filter. Radiation resistances of the dried TSB-bacteria suspension samples irradiated by both gamma rays and electron beams were fluctuated. The overall increase ratio of radiation resistance was estimated by dividing D-values of TSB-bacteria suspension samples by that of water-bacteria suspension samples for individual bacteria. Then, the survival curve of hypodermic needle bioburden revised by the increase ratio was obtained, and which compared with that of standard distribution of radiation resistances of ISO(SDR). (author)

  10. Contribution of maternal radionuclide burdens to prenatal radiation doses: Relationships between annual limits on intake and prenatal doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1993-10-01

    This addendum describes approaches for calculating and expressing radiation doses to the embryo/fetus from maternal intakes of radionuclides at levels corresponding to fractions or multiples of the Annual Limits on Intake (ALI). Information, concerning metabolic or dosimetric characteristics and the placental transfer of selected, occupationally significant radionuclides was presented in NUREG/CR-5631, Revision 1. That information was used to estimate levels of radioactivity in the embryo/fetus as a function of stage of pregnancy and time after entry. Extension of MIRD methodology to accommodate gestational-stage-dependent characteristics allowed dose calculations for the simplified situation based on introduction of 1 μCi into the woman's transfer compartment (blood). The expanded scenarios in this addendum include repeated or chronic ingestion or inhalation intakes by a woman during pregnancy and body burdens at the beginning of pregnancy. Tables present dose equivalent to the embryo/fetus relative to intakes of these radionuclides in various chemical or physical forms and from preexisting maternal burdens corresponding to ALI; complementary intake values (fraction of an ALI and μCi) that yield a dose equivalent of 0.05 rem are included. Similar tables give these measures of dose equivalency to the uterus from intakes of radionuclides for use as surrogates for embryo/fetus dose when biokinetic information is not available

  11. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  12. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  13. Medical exposure to ionising radiation and the risk of brain tumours

    DEFF Research Database (Denmark)

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence

    2007-01-01

    BACKGROUND: The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. METHODS: We...... used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. RESULTS: For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95...... regions. CONCLUSION: We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation....

  14. Cost-Benefit Analysis of Radiation Therapy Services at Tripler Army Medical Center

    National Research Council Canada - National Science Library

    Diehl, Diane S

    2004-01-01

    The purpose of this analysis was to examine the costs and benefits associated with continuance of "in-house" radiation therapy services to eligible beneficiaries at Tripler Army Medical Center (TAMC...

  15. Review of existing issues, ethics and practices in general medical research and in radiation protection research

    International Nuclear Information System (INIS)

    Schreiner-Karoussou, A.

    2008-01-01

    A literature review was carried out in relation to general medical research and radiation protection research. A large number of documents were found concerning the subject of ethics in general medical research. For radiation protection research, the number of documents and the information available is very limited. A review of practices in 13 European countries concerning general medical research and radiation protection research was carried out by sending a questionnaire to each country. It was found that all countries reviewed were well regulated for general medical research. For research that involves ionising radiation, the UK and Ireland are by far the most regulated countries. For other countries, there does not seem to be much information available. From the literature review and the review of practices, a number of existing ethical issues were identified and exposed, and a number of conclusions were drawn. (authors)

  16. Radiation environmental impact assessment of the radioisotope's application on nuclear medical science

    International Nuclear Information System (INIS)

    Liu Hongshi

    2004-01-01

    The radiation environmental impact assessment of the radioisotope's application on nuclear medical science is introduced, including the assessment criteria, the assessment methods and the environmental impact assessment of three wastes emission. (authors)

  17. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  18. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  19. Specialized medical sections for the treatment of radiation injuries from accidents in nuclear power plants

    International Nuclear Information System (INIS)

    Deanovic, Z.; Boranic, M.; Vitale, B.

    1980-01-01

    Presented is the organization of the final, highly specialized treatment (diagnostic and therapeutic) of persons that have been severely injured in a radiation or nuclear accident. In this organizational scheme, the leading idea was to group and establish suitable medical sections for the acceptance, diagnosic work-up, and treatment of radiation casualties, around a strong medical center in which the different specialists would be available

  20. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    Energy Technology Data Exchange (ETDEWEB)

    Alanazi, A.; Alkhorayef, M.; Dalton, A.; Bradley, D. A. [University of Surrey, Department of Physics, College for Nuclear and Radiation Physics, Guildford, Surrey GR2 7XH (United Kingdom); Alzimami, K. [King Saud University, Department of Radiological Sciences, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Abuhadi, N., E-mail: a.alanazi@surrey.ac.uk [Jazan University, Faculty of Medical Applied Sciences, Diagnostic Radiology Department, P. O. Box 114, Jazan (Saudi Arabia)

    2015-10-15

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  1. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    International Nuclear Information System (INIS)

    Alanazi, A.; Alkhorayef, M.; Dalton, A.; Bradley, D. A.; Alzimami, K.; Abuhadi, N.

    2015-10-01

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  2. Development of medical application methods using radiation. Radionuclide therapy

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C.; Oh, B. H.; Hong, H. J.

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: 1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology

  3. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  4. Organizational forms of medical care in the event of radiation accidents in the German Democratic Republic

    International Nuclear Information System (INIS)

    Nack, P.; Arndt, D.; Schuettmann, W.

    1977-01-01

    Medical care of radiation casualties in the German Democratic Republic (GDR) is organized on two levels. On the level of users the responsible Medical Officers guarantee both the routine control of persons occupationally exposed to radiation and first aid in the event of accidents. On the second level medical treatment is given either in the Clinical Department of the National Board of Nuclear Safety and Radiation Protection or in specialized national health system clinics having facilities for intensive medical care. A decision on hospitalization is made according to the conditions of the accident and the necessary diagnostic and therapeutic measures as a rule are based on consultations between the responsible Medical Officer and the departments of the Board (Emergency Assistance Service, Clinical Department, Consultative Committee). For serious cases where haematological complications can be expected, a central medical clinic with facilities for bone-marrow transplants is available. The casualties are treated in local clinics which are provided with continuous support and advice by the Board. This support consists in: (i) immediate activity by a consultative committee of the Board's physicians and scientists experienced and trained in radiation protection and the treatment of radiation accidents; (ii) the requirement of compulsory examination methods and take-over of specialized laboratory investigations; and (iii) the use of a mobile emergency measuring system in cases of additional incorporation. It is the main principle of medical care in case of radiation accidents to consult, as early as possible, a medical consultative committee of the Board in the field of radiation protection at each step of medical care. (author)

  5. Grade Inflation in Medical Student Radiation Oncology Clerkships: Missed Opportunities for Feedback?

    International Nuclear Information System (INIS)

    Grover, Surbhi; Swisher-McClure, Samuel; Sosnowicz, Stasha; Li, Jiaqi; Mitra, Nandita; Berman, Abigail T.; Baffic, Cordelia; Vapiwala, Neha; Freedman, Gary M.

    2015-01-01

    Purpose: To test the hypothesis that medical student radiation oncology elective rotation grades are inflated and cannot be used to distinguish residency applicants. Methods and Materials: The records of 196 applicants to a single radiation oncology residency program in 2011 and 2012 were retrospectively reviewed. The grades for each rotation in radiation oncology were collected and converted to a standardized 4-point grading scale (honors, high pass, pass, fail). Pass/fail grades were scored as not applicable. The primary study endpoint was to compare the distribution of applicants' grades in radiation oncology with their grades in medicine, surgery, pediatrics, and obstetrics/gynecology core clerkships. Results: The mean United States Medical Licensing Examination Step 1 score of the applicants was 237 (range, 188-269), 43% had additional Masters or PhD degrees, and 74% had at least 1 publication. Twenty-nine applicants were graded for radiation oncology rotations on a pass/fail basis and were excluded from the final analysis. Of the remaining applicants (n=167), 80% received the highest possible grade for their radiation oncology rotations. Grades in radiation oncology were significantly higher than each of the other 4 clerkships studied (P<.001). Of all applicants, 195 of 196 matched into a radiation oncology residency. Higher grades in radiation oncology were associated with significantly higher grades in the pediatrics core clerkship (P=.002). However, other medical school performance metrics were not significantly associated with higher grades in radiation oncology. Conclusions: Although our study group consists of a selected group of radiation oncology applicants, their grades in radiation oncology clerkships were highly skewed toward the highest grades when compared with grades in other core clerkships. Student grading in radiation oncology clerkships should be re-evaluated to incorporate more objective and detailed performance metrics to allow for

  6. Effective Patient Education in Medical Imaging: Public Perceptions of Radiation Exposure Risk.

    Science.gov (United States)

    Ludwig, Rebecca L.; Turner, Lori W.

    2002-01-01

    In a cross-sectional survey of 200 adults, less than half agreed with experts on the risks of radiation exposure; 75-90% thought that medical imaging providers should be highly regulated; and less than one-quarter knew that most radiation damage is not permanent. (SK)

  7. Selected methodological aspects of routine medical supervision of radiation workers

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1981-01-01

    Examinations of the blood, skin, chromosomes, eyes and lungs provide an important means for detecting biological radiation effects in occupationally exposed workers. The diagnostic value of these five methods is discussed. (author)

  8. Radiation safety status at a bio medical research centre

    International Nuclear Information System (INIS)

    Mishra, S.K.

    1998-01-01

    Radioisotopes are being used for biomedical research purpose at School of Life Science, Jawaharlal Nehru University for the last twenty five years. Present paper analyses the overall status of radiation safety at this Centre

  9. Senior medical students' awareness of radiation risks from common diagnostic imaging examinations.

    Science.gov (United States)

    Scali, Elena; Mayo, John; Nicolaou, Savvas; Kozoriz, Michael; Chang, Silvia

    2017-12-01

    Senior medical students represent future physicians who commonly refer patients for diagnostic imaging studies that may involve ionizing radiation. The radiology curriculum at the University of British Columbia provides students with broad-based knowledge about common imaging examinations. The purpose of this study was to investigate students' awareness of radiation exposures and risks. An anonymous multiple-choice cross-sectional questionnaire was distributed to final year medical students to assess knowledge of radiation from common diagnostic examinations and radiation-related risks following completion of the longitudinal radiology curriculum, carried out over the four years of medical training. Sixty-three of 192 eligible students participated (33% response rate). The majority felt that knowledge of radiation doses of common imaging examinations is somewhat or very important; however, only 12% (N = 8) routinely discuss radiation-related risks with patients. While all respondents recognized children as most sensitive to the effects of radiation, only 24% (N = 15) correctly identified gonads as the most radiation-sensitive tissue. Almost all respondents recognized ultrasound and MRI as radiation free modalities. Respondents who correctly identified the relative dose of common imaging examinations in chest x-ray equivalents varied from 3-77% (N = 2 - 49); the remaining responses were largely underestimates. Finally, 44% (N = 28) correctly identified the excess risk of a fatal cancer from an abdominal CT in an adult, while the remainder underestimated this risk. Medical students acknowledge the importance of radiation-related issues to patient care. While almost all students are familiar with radiation-free modalities, many are not familiar with, and commonly underestimate, the relative doses and risks of common imaging studies. This may expose patients to increasing imaging investigations and exposure to radiation hazards.

  10. Antioxidant-Conjugated Onto Gamma-Generated Chitosan Nanoparticle for Radiation Sterilized Medical Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Pasaphan, W. [Department of Applied Radiation and Isotopes, Faculty of Science Kasetsart University, Bangkok (Thailand)

    2009-07-01

    The Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok, Thailand, mainly gives the course of study in the field of radiation and nuclear science and technology. The research actitivies relevant to the department are about nuclear instrument and analytical technique by nuclear methodology, radiation chemistry and processing technology, and radiation biology and agriculture. My work going on in the department is separated into two main responsibilities, i.e. (i) teaching courses and (ii) research activity. For (i), in the present time, there are 5 courses (i.e., radiation detection technique, radiation health protection, nuclear method of analysis, radioistope tracer techniques in biology and seminar) for bachelor degree and 4 courses (radiation chemistry and processing, radiation detection and dosimetry, nuclear facilities and utilization, research method in applied radiation and isotope) for master degree. In the case of (ii), my research interests head on the radiation chemistry and processing applicable to material and nanomaterial development for industrial applications, e.g. nanofilter and metal absorbent material; for medical applications, e.g. bio-additive for medical material, nanoparticle for drug delivery system, radiosensitizer for radiotherapy; for agricultural applications, e.g. pest controlled compound and plastic. The researches are also attended to biopolymer especially chitin-chiosan including functional polymer. The material for radiation dosimeter based on EPR is furthermore interesting to look for.

  11. Antioxidant-Conjugated Onto Gamma-Generated Chitosan Nanoparticle for Radiation Sterilized Medical Plastic

    International Nuclear Information System (INIS)

    Pasaphan, W.

    2009-01-01

    The Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok, Thailand, mainly gives the course of study in the field of radiation and nuclear science and technology. The research actitivies relevant to the department are about nuclear instrument and analytical technique by nuclear methodology, radiation chemistry and processing technology, and radiation biology and agriculture. My work going on in the department is separated into two main responsibilities, i.e. (i) teaching courses and (ii) research activity. For (i), in the present time, there are 5 courses (i.e., radiation detection technique, radiation health protection, nuclear method of analysis, radioistope tracer techniques in biology and seminar) for bachelor degree and 4 courses (radiation chemistry and processing, radiation detection and dosimetry, nuclear facilities and utilization, research method in applied radiation and isotope) for master degree. In the case of (ii), my research interests head on the radiation chemistry and processing applicable to material and nanomaterial development for industrial applications, e.g. nanofilter and metal absorbent material; for medical applications, e.g. bio-additive for medical material, nanoparticle for drug delivery system, radiosensitizer for radiotherapy; for agricultural applications, e.g. pest controlled compound and plastic. The researches are also attended to biopolymer especially chitin-chiosan including functional polymer. The material for radiation dosimeter based on EPR is furthermore interesting to look for

  12. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  13. [Radiation protection in medical research : Licensing requirement for the use of radiation and advice for the application procedure].

    Science.gov (United States)

    Minkov, V; Klammer, H; Brix, G

    2017-07-01

    In Germany, persons who are to be exposed to radiation for medical research purposes are protected by a licensing requirement. However, there are considerable uncertainties on the part of the applicants as to whether licensing by the competent Federal Office for Radiation Protection is necessary, and regarding the choice of application procedure. The article provides explanatory notes and practical assistance for applicants and an outlook on the forthcoming new regulations concerning the law on radiation protection of persons in the field of medical research. Questions and typical mistakes in the application process were identified and evaluated. The qualified physicians involved in a study are responsible for deciding whether a license is required for the intended application of radiation. The decision can be guided by answering the key question whether the study participants would undergo the same exposures regarding type and extent if they had not taken part in the study. When physicians are still unsure about their decision, they can seek the advisory service provided by the professional medical societies. Certain groups of people are particularly protected through the prohibition or restriction of radiation exposure. A simplified licensing procedure is used for a proportion of diagnostic procedures involving radiation when all related requirements are met; otherwise, the regular licensing procedure should be used. The new radiation protection law, which will enter into force on the 31st of december 2018, provides a notification procedure in addition to deadlines for both the notification and the licensing procedures. In the article, the authors consider how eligible studies involving applications of radiation that are legally not admissible at present may be feasible in the future, while still ensuring a high protection level for study participants.

  14. Radiation safety in educational, medical and research institutions. Regulatory guide G-121

    International Nuclear Information System (INIS)

    2000-05-01

    This regulatory guide is intended to help educational, medical and research institutions design and implement radiation protection programs that meed regulatory requirements. This guide applied to educational, medical or research institutions that require a licence from the CNSC to posses or use radioactive materials. It describes programs to assure that radioactive materials are used safely during licensed activities. (author)

  15. The new system of education and training of medical staff in radiation protection in Albania

    International Nuclear Information System (INIS)

    Grillo, B.; Preza, K.; Titka, V.; Shehi, G.

    2001-01-01

    The present situation as regarding the education and training of medical staff in radiological protection is discussed. In particular the protection of patients, children and pregnant women were the most sensible topics in some courses held in recent years. Emphasis is given on a number of courses and course units dealing with radiation safety problems in the medical field and their content. (author)

  16. Systematic medical control of the personnel concerning damage due to ionizing radiation

    International Nuclear Information System (INIS)

    Djukic, Z.

    1961-01-01

    The department for medical monitoring of the staff employed at the Institute has performed 21395 medical check-ups of the personnel employed in the Institute and individuals who applied for different posts. Some new methods for laboratory analyses specific for personnel exposed to radiation were introduced. The activities of the department were fulfilled according to the plan

  17. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  18. Report on Workshop 'Radiation protection of the 'consumer' of medical irradiation applications'

    International Nuclear Information System (INIS)

    Geus, W.W.A.A.

    1989-01-01

    The Main division Radioactivity and Applications of Radiation of the Dutch Department of Welfare, Public Health and Culture has organized a 'workshop' on the protection of the patient ( or consumer) in medical applications of radiation. The EG guideline of september 3rd 1984 'In behalf of assessment of fundamental measures with regard to radiation protection of persons who are examined or treated medically' and the advice of the National Council for Public Health brought out thereabout in april 1988, served as background of the contributions and discussions presented in this collection. (H.W.). Refs.; figs.; tabs

  19. Better health care: Ghana uses radiation technology to sterilize medical items

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2015-01-01

    Infections acquired from improperly sterilized equipment are recognized as a major impediment to safe health care delivery, with consequences that are often deadly for patients. Radiation technology plays a major role in many countries in making medical equipment safer. “The use of nuclear applications, such as exposing medical items to gamma radiation, helps Ghana protect its people from avoidable sicknesses that can occur if items like syringes are not properly sterilized,” said Abraham Adu-Gyamfi, Manager of the Radiation Technology Centre of the Ghana Atomic Energy Commission’s Biotechnology and Nuclear Agriculture Research Institute in Accra.

  20. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  1. Female all cancer incidence in medical radiation workers in Latvia 1982-2002

    International Nuclear Information System (INIS)

    Matisane, L.; Carpenter, L.; Venables, K.

    2005-01-01

    Medical radiation workers belong to one of the oldest occupational groups exposed to external radiation. Since the various radiological protection recommendations have been introduced, now ths process has resulted in low-dose exposure, regular monitoring of exposure and establishment of national dose registration bodies. In order to provide additional information to studies on cancer incidence among medical radiation workers (specially female workers) and in order to assess all cancer incidence in female medical radiation workers in Latvia, a retrospective cohort study based on the National Dose Register was set up in Latvia. The study cohort consisted of all workers employed in health care, occupationally exposed to ionising radiation for more than one year in any of the public health care establishments in Latvia, except military ones, between 1 January 1972 and 1 January 2002 and who were registered in the National Dose Register of Latvia. The cohort consisted of 1416 female medical radiation workers either in hospitals or outpatient departments, or both. The cohort included diagnostic and therapeutic radiologists with predominantly medical qualification, it also included radiotechnologits, nurses, junior nurses, but it did not include academic, physicists and dentists. In all cases the calculated SIR was over than expected or close to expected. Several major differences in study design makes ir difficult to compare the results of this study with the results of the studies carried out in other countries

  2. Paradigm of radiation-laser medical equipment and technology

    International Nuclear Information System (INIS)

    Kharchenko, V.P.; Skobelkin, O.K.; Trofimolv, N.N.; Makarova, G.V.; Pan'shin, G.A.; Ryabov, V.I.; Stranadko, E.F.; Shevelevich, O.S.

    1997-01-01

    New concepts on possibility of controlling biochemical reactions in biological tissues through simultaneous two-beam (roentgen or elementary particles flux and laser radiation) impact on biotissue are formulated on the basis of the quanta chemistry and chemical kinetics. It is shown that radiation-laser impact on pathological center makes it possible to realize principally new approach to treatment of oncological diseases of the main internal organs. Filamentous laser with lamp feedup, laser quantron where of is applicable for simultaneous excitation of laser radiation in the channel and transport by adjacent capillar filaments of elementary charged particles, is developed. The laser quantron is especially efficient as a feedup source for semiconductor light guides. 24 refs., 2 tabs

  3. Radiation exposures of medical employees and its management

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, K; Arimizu, N [Chiba Univ. (Japan). School of Medicine; Uchiyama, A

    1982-03-01

    For the five years period from April, 1976, to March, 1981, the usage of film badges at the hospital of Chiba University is described as follows: the number of personnel using film badges, the distribution of radiation exposure dose, and the employees exposed beyond 500 mrem yearly in respective years, departments and professional types. The cumulative number of personnel was 2,476 (yearly average was 495). Professional types were physician, nurse, radiation technician, researcher, etc. The number of personnel using film badges has been increasing year after year; of which about 500, 70% are physicians. A cumulative total of the employees exposed exceeding 500 mrem yearly was 11, ten being physicians; the highest dose was 1,840 mrem. The average yearly exposure dose per person was the highest in radiation technicians (100 - 30 mrem/person/year), followed by physicians (50 - 24 mrem) and nurses (9 - 1 mrem). As a whole, the value was 45 - 20 mrem/person/year.

  4. The comparison of health status between male and female medical radiation workers in China

    International Nuclear Information System (INIS)

    Wang, Hui; Liu, Guochao; Tian, Youjia; Zhang, Fengmei; Feng, Zhihui; Chen, Qianshu; Qu, Jianying; Lim, David

    2017-01-01

    To assess the health statue of chronically exposed Chinese medical radiation workers. A cross-sectional study of 530 medical radiation workers in a city of China was conducted to document the health status and the monitored annually absorbed doses. Long-term and low-dose radiation exposure can affect a number of health indicators in the individuals, which covered the cardiovascular system, hematologic system, ophthalmology, liver and kidney s functions, chromosome aberration and micronucleus. The differences in the health status between male and female individuals were associated with job types and exposed years of service. The monitored doses of individuals were lower than the limit value of the national standard. The health status in chronically exposed individuals demonstrated some gender difference associated with length of exposure and work type. This study provides some evidence to understand the health status of medical radiation workers in China and have the potentially to inform screening and clinical diagnosis. (authors)

  5. Compendium to radiation physics for medical physicists 300 problems and solutions

    CERN Document Server

    Podgorsak, Ervin B

    2014-01-01

    This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  6. Occupational exposure of medical radiation workers in Lithuania, 1950-2003

    International Nuclear Information System (INIS)

    Samerdokiene, V.; Atkocius, V.; Kurtinaitis, J.; Valuckas, K.P.

    2008-01-01

    This study presents the summary of historical exposures, measurement practice and evolution of the recording of the individual doses of medical radiation workers during 1950-2003 in Lithuania. The aim of this study is to present occupational exposure of medical radiation workers in Lithuania since the earliest appearance period. Data from publications have been used for the earliest two periods prior to 1969; data from the archives of the largest hospitals, for the period 1970-1990 and data from Lithuanian Subdivision of Individual Dosimetry of Radiation Protection Center, for the period 1991-2003. The analysis of the data obtained from personal records allows to conclude that the average annual effective dose of Lithuanian medical radiation workers was greatly reduced in radiology, radiotherapy and nuclear medicine in all occupational categories from 1950 to 2003. During the last period 1991-2003 extremity doses clearly decreased and after 1994 were no longer present in Lithuania. (authors)

  7. Training in radiation hygiene for the medical and paramedical professions in The Netherlands

    International Nuclear Information System (INIS)

    Broerse, J.J.; Beekman, Z.M.; Dullemen, S. van

    1991-01-01

    In view of the implementation of the Council Directive 84/466/EURATOM (CEC, 1984) laying down basic measures for the radiation protection of persons undergoing medical examination or treatment, it was necessary to obtain information on the level of training and related expertise of the medical and paramedical professions in The Netherlands. With the objective in mind a meeting of representatives of the professional groups involved was organized in Leiden in November 1988 at the initiative of the Dutch Ministry of Health and the Interuniversity Research Institute for Radiopathology and Radiation Protection, IRS (de Geus, 1989). The present paper is based on the discussions held at this meeting. Education in the areas of radiation physics, radiobiology and radiation hygiene will be summarized separately for the medical and the paramedical professions. (author)

  8. Problems associated with the organization and planning of medical aid for radiation accident casualties

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1977-01-01

    Problems associated with the organization and planning of medical treatment for radiation accident casualties are considered for different types of radiation accident: whole-body or partial irradiation, external or internal contamination and small or large numbers of cases. The problems posed are ones of competence, urgency and capacity; on the diagnostic side there is the problem of evaluating the exposure or contamination and assessing the resultant damage, while on the treatment side the questions of first aid, conventional treatment and specialized treatment have to be considered. The solutions envisaged involve organization at the local and national levels and planning of medical treatment by skilled, multidisciplinary medical teams. (author)

  9. Basic trends in the medical observation of staff exposed to ionizing radiations

    International Nuclear Information System (INIS)

    Ingilizova, K.

    1991-01-01

    Some problems of the preliminary and regular medical examinations are discussed as well as the necessity of medical surveillance of the personnel after leaving the sphere of ionizing radiation. The main points which should be included in the preliminary anamnesis are pointed out, as well as the volume of the conventional clinical examinations and special investigations connected with the potential radiation hazards. The necessity of using suitable criteria for evaluation of the occupational fitness for particular cases is stressed. Some considerations are given about the frequency of the regular medical examinations and the type of the test included in them. 3 refs

  10. Basic trends in the medical observation of staff exposed to ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Ingilizova, K [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1991-01-01

    Some problems of the preliminary and regular medical examinations are discussed as well as the necessity of medical surveillance of the personnel after leaving the sphere of ionizing radiation. The main points which should be included in the preliminary anamnesis are pointed out, as well as the volume of the conventional clinical examinations and special investigations connected with the potential radiation hazards. The necessity of using suitable criteria for evaluation of the occupational fitness for particular cases is stressed. Some considerations are given about the frequency of the regular medical examinations and the type of the test included in them. 3 refs.

  11. [Carl Gustav Carus, the first director of the newly established maternity institute of the Dresden Royal Surgical-Medical Academy 1814-1827].

    Science.gov (United States)

    Sarembe, B

    1989-01-01

    Carl Gustav Carus was born in 1789 in Leipzig. He studied at the University of Leipzig. His specialization in Gynecology and Obstetrics took place at the Triersches Maternity Hospital. In 1814 he was named Professor for Obstetrics in Dresden at the Royal-Surgical-Medical-Academy. He was the head of the Maternity Hospital till 1827. Under his direction many midwives, students and physicians were educated. He published numerous articles and books on medical and philosophical-psychological topics. He was a talented artist of the Romantic especially in painting landscapes. He was a friend of Caspar David Friedrich and Johann Wolfgang von Goethe. After 1827 he was the physician in ordinary to 3 saxonian kings. He died in 1869. The Medical Academy in Dresden bears his name "Carl Gustav Carus" since its foundation.

  12. Improving Information on Maternal Medication Use by Linking Prescription Data to Congenital Anomaly Registers

    DEFF Research Database (Denmark)

    de Jonge, Linda; Garne, Ester; Gini, Rosa

    2015-01-01

    INTRODUCTION: Research on associations between medication use during pregnancy and congenital anomalies is significative for assessing the safe use of a medicine in pregnancy. Congenital anomaly (CA) registries do not have optimal information on medicine exposure, in contrast to prescription...... databases. Linkage of prescription databases to the CA registries is a potentially effective method of obtaining accurate information on medicine use in pregnancies and the risk of congenital anomalies. METHODS: We linked data from primary care and prescription databases to five European Surveillance...... of Congenital Anomalies (EUROCAT) CA registries. The linkage was evaluated by looking at linkage rate, characteristics of linked and non-linked cases, first trimester exposure rates for six groups of medicines according to the prescription data and information on medication use registered in the CA databases...

  13. Radiation exposure of the population due to medical procedures

    International Nuclear Information System (INIS)

    Frischauf, H.

    1976-01-01

    The question of individual benefit-risk ratio in X-ray exposures is considered. The growth rate of the number of radiological examinations in New Zealand, Sweden, UK and USA is stated to be between 2 and 6 per cent per annum. The risks of internal radioisotope tests are emphasised and reductions of exposure are reported when 99Tc isotopes are used, counterbalanced by the increasing number of exposures made; the question of radiation-induced leukemia is raised in this respect. The problems of analysing delayed radiation effects are discussed, and the possibility of animal tests is suggested. (G.M.E.)

  14. Microbiological problems of radiation sterilization control of disposable medical products

    International Nuclear Information System (INIS)

    Horakova, V.

    1975-01-01

    Dose-response curves were determined for three strains of cocci and seven strains of aerobic spore-forming rods after irradiation by two different 60 Co sources and Van de Graaff electron accelerator. Besides the test strains Streptococcus faecium A 2 1, Bacillus sphericus Csub(I)A and Bacillus pumilus E601, some strains isolated from irradiated vaccines and animal diets, or found among common air-contaminating bacteria and pathogenic cocci were examined. The efficiency of the used radiation sources was compared. The control of the microbiological efficiency of radiation sterilization is discussed regarding routine practice. (author)

  15. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Spektor, Alexander [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Rudra, Sonali; Ranck, Mark C. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States)

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency.

  16. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    International Nuclear Information System (INIS)

    Golden, Daniel W.; Spektor, Alexander; Rudra, Sonali; Ranck, Mark C.; Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency

  17. Identifying and managing the risks of medical ionizing radiation in endourology.

    Science.gov (United States)

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  18. Risk of occupational exposure to ionizing radiation among medical workers in Canada

    International Nuclear Information System (INIS)

    Zielinski, Jan M.; Band, Pierre R.; Garner, Michael J.; Krewski, Daniel; Shilnikova, Natalia S.; Jiang, Huixia; Ashmore, Patrick J.; Sont, Willem N.; Fair, Martha E.; Letourneau, Ernest G.; Semenciw, Robert

    2010-01-01

    Medical workers are exposed to chronic low dose ionizing radiation from a variety of sources. Potential cancer risks associated with ionizing radiation exposures have been derived from cohorts experiencing acute high intensity exposure, most notably the Japanese atomic bomb survivors. Since such extrapolations are subject to uncertainty, direct information on the risk associated with chronic low dose occupational exposure to ionizing radiation is needed. We examined possible associations with cancer incidence and mortality in a cohort of medical workers ascertained by the National Dose Registry of Canada (NDR). Data from the NDR were used to assess the exposure to ionizing radiation incurred between 1951 to 1987 inclusive in a cohort of 67,562 subjects classified as medical workers. Standardized mortality (SMRs) and incidence (SIRs) ratios were ascertained by linking NDR data with the data maintained by Statistics Canada in the Canadian Mortality and in the Canadian Cancer Incidence Databases respectively. Dosimetry information was obtained from the National Dosimetry Services of the Radiation Protection Bureau of Health Canada. There were 23,580 male and 43,982 female medical workers in the cohort. During the follow-up period, 1309 incident cases of cancer (509 in males, 800 in females) and 1,325 deaths (823 in males, 502 in females) were observed. Mortality from cancer and non-cancer causes was generally below expected compared to the Canadian population. Thyroid cancer incidence was significantly elevated in both males and females, with a combined SIR of 1.74 and 90% confidence interval (90% CI: 1.40-2.10). Our result of an increased risk of thyroid cancer among medical workers occupationally exposed to ionizing radiation confirms previous reports. Over the last 50 years, radiation protection measures have been effective in reducing occupational exposures of medical workers to ionizing radiation to current very low levels. (author)

  19. Manual on the medical management of individuals involved in radiation accidents

    International Nuclear Information System (INIS)

    Swindon, T.N.

    1991-09-01

    This manual is concerned with accidents or emergencies which involve sources of ionizing radiation. It does not cover other forms of radiation such as non-ionizing radiation (ultra-violet, light, radiofrequency radiations), heat, etc. Most radiation accidents have involved individuals either at the workplace or with medical misadministrations; they have received external exposure from X-ray or gamma-ray sources or have been contaminated with radioactive material. A few members of the public have also been involved through misadventures with radioactive sources although these may not be thought of as accidents; more commonly, they are referred to as 'incidents'. For the purpose of this manual, there is not differentiation between an accident and an incident, as the medical care required is the same in both situations. Some of the reference papers are reprinted at the back of the manual. 17 refs., 12 tabs., 9 figs

  20. Real and perceived risks of medical radiation exposure

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1983-01-01

    After considering all the evidence related to the health effects of exposure to low levels of radiation, it is apparent that the risk is immeasurably small to any single person in a population exposed to small amounts of radiation. However, multiplying this immeasurably small estimate of risk by very large populations yields numbers that seem to imply that significant health effects (cancer, malformations, genetic effects) occur following exposure to small quantities of radiation. Although many advisory groups have cautioned against this procedure and conclusion, both continue to be used by some scientists and political action groups. In a public opinion poll conducted by Decision Research, Inc. of Eugene, Oregon, three groups were asked to rank the relative risks of various societal activities. Two of the three groups ranked nuclear power as the most hazardous of all societal activities, with a risk factor greater than that for smoking, automobiles, handguns and alcohol. Actually, nuclear power is the least hazardous of all 30 of the activities included in the poll. It is a conservative posture and probably a wise course of action to assume that exposure to any amount of radiation carries with it some element of risk. For example, requests for x-ray studies and nuclear medicine procedures should always be accompanied by an appreciation of the possibility of risk to the patient and to radiological personnel. At the same time, this element of risk should be placed in a realistic perspective by comparing it with other risks we assume every day

  1. The design of diagnostic medical facilities using ionizing radiation

    International Nuclear Information System (INIS)

    1988-03-01

    This Code, setting out the general principles of radiological protection as applied to diagnostic radiation facilities in hospitals and clinics, is intended as a guide to architects and to works departments concerned with their design and construction, and with the modification of existing units

  2. Project reconversion Service Hospital Radiation Oncology Clinics-Medical School

    International Nuclear Information System (INIS)

    Quarneti, A.; Levaggi, G.

    2004-01-01

    Introduction: The Health Sector operates within the framework of Social Policy and it is therefore one of the ways of distribution of public benefit, like Housing, Education and Social Security. While public spending on health has grown in recent years, its distribution has been uneven and the sector faces funding and management problems. The Service Hospital Radiation Oncology has reduced its health care liavility , lack technological development and unsufficient human resources and training. Aim: developing an inclusive reform bill Service Hospital Radiation Oncology .Material and Methods: This project tends to form a network institutional, introducing concepts of evidence-based medicine, risk models, cost analysis, coding systems, system implementation of quality management (ISO-9000 Standards). Proposes redefining radiotherapy centers and their potential participation in training resource development goals humanos.Promueve scientific research of national interest. Separate strictly administrative function, management and teaching. The project takes into account the characteristics of demand, the need to order it and organize around her, institutional network system and within the Hospital das Clinicas own related services related to Service Hospital Radiation Oncology , Encourages freedom of choice, and confers greater equity in care. The project would managed by the Hospital Clínicas. Conclusions: We believe this proposal identifies problems and opportunities, Service Hospital Radiation Oncology proposes the development of institutional network under one management model

  3. Medical effects and risks of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Mettler, Fred A

    2012-01-01

    Effects and risk from exposure to ionising radiation depend upon the absorbed dose, dose rate, quality of radiation, specifics of the tissue irradiated and other factors such as the age of the individual. Effects may be apparent almost immediately or may take decades to be manifest. Cancer is the most important stochastic effect at absorbed doses of less than 1 Gy. The risk of cancer induction varies widely across different tissues; however, the risk of fatal radiation-induced cancer for a general population following chronic exposure is about 5% Sv −1 . Quantification of cancer risk at doses of less than 0.1 Gy remains problematic. Hereditary risks from irradiation that might result in effects to offspring of humans appear to be much lower and any such potential risks can only be estimated from animal models. At high doses (over 1 Gy) cell killing and modification causes deterministic effects such as skin burns, and bone marrow depression, in which case immunosuppression becomes a critical issue. Acute whole body penetrating gamma irradiation at doses in excess of 2 Gy results in varying degrees of acute radiation sickness and doses over 10 Gy are usually lethal as a result of combined organ injury. (note)

  4. Computational Modeling of Medical Images of Brain Tumor Patients for Optimized Radiation Therapy Planning

    DEFF Research Database (Denmark)

    Agn, Mikael

    In brain tumor radiation therapy, the aim is to maximize the delivered radiation dose to the targeted tumor and at the same time minimize the dose to sensitive healthy structures – so-called organs-at-risk (OARs). When planning a radiation therapy session, the tumor and the OARs therefore need...... to be delineated on medical images of the patient’s head, to be able to optimize a radiation dose plan. In clinical practice, the delineation is performed manually with limited assistance from automatic procedures, which is both time-consuming and typically suffers from poor reproducibility. There is, therefore...

  5. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  6. Evaluation of Medical and Dosimetric Monitoring of the Personnel Exposed to Ionizing Radiations in Industry

    International Nuclear Information System (INIS)

    Hammou, A.; Ben Hariz, N.; Ben Omrane, L.

    2008-01-01

    Increasing use of the ionizing radiations in industry, in particular in the field of the non destructive testing (NDT) exposes the operators to low radiation doses. Therefore Radiation protection measures in this field are needed. We report the results of a survey carried out on a sample of 50 workers in NDT in Tunisia; Our purpose is to evaluate the professional training levels in radiation protection of the operators, to determine their exposure dose rate. In case of over-exposure, to determine the causes, to evaluate the medical follow-up, and to propose adequate recommendations

  7. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    Science.gov (United States)

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  8. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique.

    Science.gov (United States)

    Wrzesień, Małgorzata; Napolska, Katarzyna

    2015-03-01

    Positron emission tomography (PET) is now one of the most important methods in the diagnosis of cancer diseases. Due to the rapid growth of PET/CT centres in Poland in less than a decade, radiation protection and, consequently, the assessment of worker exposure to ionising radiation, emitted mainly by the isotope (18)F, have become essential issues. The main aim of the study was to analyse the doses received by workers employed in the Medical Diagnostic Centre. The analysis comprises a physicist, three nurses, three physicians, three technicians, as well as two administrative staff employees. High-sensitivity thermoluminescent detectors (TLDs) were used to measure the doses for medical staff. The personnel was classified into categories, among them employees having direct contact with the 'source of radiation'-(18)FDG. The TLDs were placed on the fingertips of both hands and they were also attached at the level of eye lenses, thyroid and gonads depending on the assigned category. The highest dose of radiation was observed during the administration of the (18)FDG to the patients. In the case of the physicist, the highest dose was recorded during preparation of the radiopharmaceutical-(18)FDG. The body parts most exposed to ionizing radiation are the fingertips of the thumb, index and middle finger.

  9. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E., E-mail: Ariel.hirsch@bmc.org

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.

  10. Beyond the standard curriculum: a review of available opportunities for medical students to prepare for a career in radiation oncology.

    Science.gov (United States)

    Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E

    2014-01-01

    To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    International Nuclear Information System (INIS)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E.

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students

  12. Research on medical applications of radioisotopes and radiation in Australia

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1987-01-01

    The Australian Atomic Energy Commission (AAEC) produces and distributes commercially in Australia and abroad a range of radioisotopes and radiopharmaceuticals for medical applications. The AAEC carries out research and development on new and improved processes and procucts is collaboration with medical specialists in hospitals and research workers in other organisations. Examples of these processes and products are: a gel generator for production of 99m Tc; radiopharmaceuticals for diagnosis of tumours and brain disease and therapy for arthritis; 64 Cu for study of copper metabolism; and monoclonal antibodies for tumour diagnosis and therapy. New medical applications in Australia of neutron irradiation include the measurement of total body nitrogen and neutron capture in boron-labelled compounds in vivo for melanoma therapy. (author)

  13. Opportunity for Collaboration Between Radiation Injury Treatment Network Centers and Medical Toxicology Specialists.

    Science.gov (United States)

    Davlantes, Elizabeth; Shartar, Samuel; Venero, Jennifer; Steck, Alaina; Langston, Amelia; Kazzi, Ziad N

    2017-08-01

    The Radiation Injury Treatment Network (RITN) comprises >50 centers across the United States that are poised to care for victims of a radiation emergency. The network is organized around bone marrow transplant centers because these facilities excel in both radiation medicine and the care of patients with severe bone marrow depression. A radiation emergency may cause not only irradiation from an external source but also internal contamination with radioactive material. Because medical toxicologists are trained in radiation injury management and have expertise in the management of internal contamination, RITN centers may benefit from partnerships with medical toxicology resources, which may be located at academic medical centers, hospital inpatient clinical services, outpatient clinics, or poison control centers. We determined the locations of existing RITN centers and assessed their proximity to various medical toxicology resources, including medical toxicology fellowship programs, inpatient toxicology services, outpatient toxicology clinics, and poison control centers. Data were derived from publicly available Internet sources in March 2015. The majority of RITN centers do not have a medical toxicology fellowship, an inpatient toxicology service, or an outpatient toxicology clinic within the same institution. Fifty-seven percent of RITN centers have at least one of these resources located in the same city, however, and 73% of centers have at least one of these resources or a poison control center within the same city. Ninety-five percent of RITN centers have at least one medical toxicology resource within the state. Most RITN centers are located in the same city as at least one medical toxicology resource. Establishing relationships between RITN centers and medical toxicologists needs to be explored further.

  14. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  15. Basic radiation protection education and training for medical professionals; Georgian experience and future perspective

    International Nuclear Information System (INIS)

    Todua, F.; Nadareishvili, D.; Ormotsadze, G.; Sanikidze, T.

    2016-01-01

    The level of knowledge provided by the Tbilisi State Medical University (TSMU) standard curriculum modules in 'Medical physics' and 'Radiation risk estimates' was assessed as was the learning outcome of modern standards elective course in 'Radiation protection'. Two groups of medical students were examined: Group 1: 5 y students, participants in elective course 'Radiobiology and radiogenic health risk' and Group 2: 1-2 y students, participants in winter and summer schools. Students were tested before and after training courses with the same tests questionnaire. The results of the tests showed the necessity for improvement of the educational curriculum. The changes needed are the inclusion of a basic radiobiological course in the curricula of the faculty of medicine and expansion of the medical physics course through a more detailed presentation of medical imaging methods. (authors)

  16. Biological and medical effects of UV radiation on human health

    International Nuclear Information System (INIS)

    Piazena, H.

    1994-01-01

    Effecsts of UV radiation on human health are discussed. UV radiation is taken up through the skin and eyes. In the case of the eyes, the only known effects are damaging ones (e.g. cataracts). Irradiation of the skin, on the other hand, may either have a prophylactic and therapeutic effect or cause health problems if the exposure is too frequent and/or the dose too high. Positive effects are: Stimulation of the vitamin-D-3 synthesis and the autoimmune system, economisation of blood circulation, higher fitness, and the development of a UV protection system in the skin. Negative effects are: UV erythema, disturbances of the unspecific resistance and the immune system, and photocarcinogenesis. (orig.) [de

  17. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  18. Radiation protection of the patient during medical uses of ionizing radiation in the GDR

    International Nuclear Information System (INIS)

    Arndt, D.

    1987-01-01

    Section 18 of the new Radiation Protection Ordinance of the GDR defines basic principles for the radiation protection of patients undergoing diagnostic examinations or treatments with ionizing radiation, including, for example, the requirements that necessary exposures should be justifiable in terms of the benefit to be expected and that doses administered should be limited to as low an amount as possible. An outline is given of these principles, their importance and enforcement. (author)

  19. Compendium to radiation physics for medical physicists. 300 problems and solutions

    International Nuclear Information System (INIS)

    Podgorsak, Ervin B.

    2014-01-01

    Can be used in combination with other textbooks. Exercise book for graduate and undergraduate students of medical physics and engineering. Well chosen and didactically presented problems. Perfect set for learning in connection with the textbook by Podgorsak and others. Detailed derivation of results with many detailed illustrations. Fully worked-out solutions to exercises/questions. Combines exercises in radiation physics and medical physics. This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook ''Radiation Physics for Medical Physicists'', Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the ''Radiation Physics for Medical Physicists'' textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  20. Radiation hygiene analysis of medical activities in Norway

    International Nuclear Information System (INIS)

    Olerud, H.M.

    1987-01-01

    A computer program for the evaluation of radiation protection parameters connected to diagnostic X-ray examination has been developed. For a selected X-ray examination the program picks out key values from a data base containg patient observations and calculates integral doses, collective doses and i njury cases . When the volume of the data base is sufficient large, a total concequence analysis of diagnostric X-ray activities in Norway will be carried out

  1. Radiation exposures of medical employes and its management

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Akira.

    1982-01-01

    For the five years period from April, 1976, to March, 1981, the usage of film badges at the hospital of Chiba University is described as follows: the number of personnel using film badges, the distribution of radiation exposure dose, and the employes exposed beyond 500 mrem yearly in respective years, departments and professional types. The cumulative number of personnel was 2,476 (yearly average was 495). Professional types were physician, nurse, radiation technician, researcher, etc. The number of personnel using film badges has been increasing year after year; of which about 500, 70% are physicians. A cumulative total of the employes exposed exceeding 500 mrem yearly was 11, ten being physicians; the highest dose was 1,840 mrem. The average yearly exposure dose per person was the highest in radiation technicians (100 - 30 mrem/person/year), followed by physicians (50 - 24 mrem) and nurses (9 - 1 mrem). As a whole, the value was 45 - 20 mrem/person/year. (J.P.N.)

  2. Biological effects and medical applications of infrared radiation.

    Science.gov (United States)

    Tsai, Shang-Ru; Hamblin, Michael R

    2017-05-01

    Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760nm and 100,000nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600-100nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths. Copyright © 2016. Published by Elsevier B.V.

  3. Evaluation of medical radiation exposure in pediatric interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Valeria Coelho Costa; Navarro, Marcus Vinicius Teixeira; Oliveira, Aline da Silva Pacheco, E-mail: vccnavarro@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador, BA (Brazil); Maia, Ana Figueiredo [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Oliveira, Adriano Dias Dourado [Sociedade Brasileira de Hemodinamica e Cardiologia Intervencionista, Salvador, BA (Brazil)

    2012-07-15

    Objective: To evaluate pediatric radiation exposure in procedures of interventional radiology in two hospitals in the Bahia state, aiming at contributing to delineate the scenario at the state and national levels. The knowledge of exposure levels will allow an evaluation of the necessity of doses optimization, considering that peculiarities of radiology and pediatrics become even more significant in interventional radiology procedures which involve exposure to higher radiation doses. Materials and Methods: A total of 32 procedures were evaluated in four rooms of the two main hospitals performing pediatric interventional radiology procedures in the Bahia state. Air kerma rate and kerma-area product were evaluated in 27 interventional cardiac and 5 interventional brain procedures. Results: Maximum values for air kerma rate and kerma-area product and air kerma obtained in cardiac procedures were, respectively, 129.9 Gy.cm{sup 2} and 947.0 mGy; and, for brain procedures were 83.3 Gy.cm{sup 2} and 961.0 mGy. Conclusion: The present study results showed exposure values up to 14 times higher than those found in other foreign studies, and approximating those found for procedures in adults. Such results demonstrate excessive exposure to radiation, indicating the need for constant procedures optimization and evaluation of exposure rates. (author)

  4. FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Joe M. Aldrich

    2004-11-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

  5. FINAL REPORT. FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    International Nuclear Information System (INIS)

    Aldrich, Joe M.

    2004-01-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC--05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004

  6. Analysis of overexposure cases for female radiation workers in medical and research institutions in India

    International Nuclear Information System (INIS)

    Mahajan, J.M.; Massand, O.P.; Venkataraman, G.

    1996-01-01

    Radiation Protection Services Division, Bhabha Atomic Research Centre conducts country wide personnel monitoring service for 40,000 radiation workers, of which about 22,000 radiation workers are from industrial, medical and research institutions. The number of female radiation workers constitute about 5% of the total radiation workers monitored. Basis for control of occupational exposures of women are same as that for men except for pregnant women (foetus). Equivalent dose above 10 mSv in a service period is investigated as to the causes of exposure whether the exposure was really received by the worker (genuine) or only the monitoring badge received the exposure due to other reasons (non-genuine) and necessary remedial actions are taken. Analysis of overexposure cases in female radiation workers as a group has been done for the period of four years (1990-1993) and the conclusions are presented. (author). 2 refs., 4 tabs

  7. Uso de medicamentos durante a lactação Breastfeeding and maternal medications

    Directory of Open Access Journals (Sweden)

    Roberto G. Chaves

    2004-11-01

    THE FINDINGS: Most of the drugs are compatible with breastfeeding. Few were considered inadequate, such as antineoplastic drugs, radiopharmaceuticals and drugs of abuse. Some drugs require concern, as they may cause adverse effects in breastfed babies or reduce the mother's breast milk volume. However, further knowledge on some medicines during lactation is required. CONCLUSION: The fundamental principle in the prescription of medicines for lactating mothers is mostly based on the concept of risk and benefit. The option must be, as much as possible, for a drug that has already been studied, which is little released in the maternal milk or that does not mean an apparent risk for the infant's health. Medicines that reduce the mother's production of milk should be avoided during the lactation period. The use of galactogogos is reserved for particular situations. Therefore, only safety drugs should be administered during breastfeeding, which should rarely be discouraged or discontinued in such cases.

  8. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    International Nuclear Information System (INIS)

    Lavender, Charlotte; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-01-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study

  9. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Charlotte, E-mail: charlavender@gmail.com; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-04-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  10. Research priorities in Maternal, Newborn, & Child Health & Nutrition for India: An Indian Council of Medical Research-INCLEN Initiative

    Directory of Open Access Journals (Sweden)

    Narendra K Arora

    2017-01-01

    Full Text Available In India, research prioritization in Maternal, Newborn, and Child Health and Nutrition (MNCHN themes has traditionally involved only a handful of experts mostly from major cities. The Indian Council of Medical Research (ICMR-INCLEN collaboration undertook a nationwide exercise engaging faculty from 256 institutions to identify top research priorities in the MNCHN themes for 2016-2025. The Child Health and Nutrition Research Initiative method of priority setting was adapted. The context of the exercise was defined by a National Steering Group (NSG and guided by four Thematic Research Subcommittees. Research ideas were pooled from 498 experts located in different parts of India, iteratively consolidated into research options, scored by 893 experts against five pre-defined criteria (answerability, relevance, equity, investment and innovation and weighed by a larger reference group. Ranked lists of priorities were generated for each of the four themes at national and three subnational (regional levels [Empowered Action Group & North-Eastern States, Southern and Western States, & Northern States (including West Bengal]. Research priorities differed between regions and from overall national priorities. Delivery domain of research which included implementation research constituted about 70 per cent of the top ten research options under all four themes. The results were endorsed in the NSG meeting. There was unanimity that the research priorities should be considered by different governmental and non-governmental agencies for investment with prioritization on implementation research and issues cutting across themes.

  11. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    International Nuclear Information System (INIS)

    Jung, Young Jin; Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan

    2016-01-01

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science

  12. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Jin [Dept. of Radiological Science, Dongseo University, Busan (Korea, Republic of); Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-09-15

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science.

  13. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  14. Risk evaluation of medical and industrial radiation devices

    International Nuclear Information System (INIS)

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.

    1994-03-01

    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis

  15. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2004-01-01

    The radiation safety training course has been conducted for nurses of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours covering basics of radiation, effects on human body, tips for radiation protection in clinical settings, and practical training, to more than 350 nurses overall. The pre-instruction survey by questionnaire revealed that 60% of nurses felt fears about radiation when they care for patients, which reduced to less than 15% in the post-instruction survey. The course also motivated nurses to give an answer patients' questions about radiation safety. In contrast, more than 30% of nurses were aware of neither their glass badge readings nor the maximum dose limit of radiation exposure even after the course. These results suggested that medical-educational collaborative training for nurses were effective on reducing nurses' fears about radiation and that repeated and continuous education would be necessary to establish their practice for radiation protection. (author)

  16. A questionnaire survey of medical physicist and quality manager for radiation therapy

    International Nuclear Information System (INIS)

    Nishio, Teiji; Ashino, Yasuo; Onishi, Hiroshi

    2008-01-01

    A questionnaire survey of medical physicists and quality managers for radiation therapy was performed by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO) Future Planning Committee. We mailed the questionnaire to 726 radiotherapy facilities with the answers returned from 353 radiotherapy facilities. The result showed 178 facilities were staffed by radiotherapy workers who were licensed medical physicists or quality managers. A staff of 289 was licensed radiotherapy workers. Most of the staff were radiotherapy technologists. Quality control for radiation therapy was rated satisfactory according to each facility's assessment. Radiation therapy of high quality requires continued education of medical physicists and quality managers, in addition to keeping up with times for quality control. (author)

  17. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Tang Bo; Tu Yu; Zhang Yin

    2009-01-01

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  18. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    International Nuclear Information System (INIS)

    Han, Eun Ok; Kwon, Deok Mun; Dong, Kyung Rae; Han, Seung Moo

    2010-01-01

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment

  19. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kwon, Deok Mun [Daegu Health College, Daegu (Korea, Republic of); Dong, Kyung Rae [Gwangju Health College University, Gwangju (Korea, Republic of); Han, Seung Moo [Kyung Hee University, Seoul (Korea, Republic of)

    2010-12-15

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment.

  20. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique

    International Nuclear Information System (INIS)

    Wrzesień, Małgorzata; Napolska, Katarzyna

    2015-01-01

    Positron emission tomography (PET) is now one of the most important methods in the diagnosis of cancer diseases. Due to the rapid growth of PET/CT centres in Poland in less than a decade, radiation protection and, consequently, the assessment of worker exposure to ionising radiation, emitted mainly by the isotope 18 F, have become essential issues. The main aim of the study was to analyse the doses received by workers employed in the Medical Diagnostic Centre. The analysis comprises a physicist, three nurses, three physicians, three technicians, as well as two administrative staff employees. High-sensitivity thermoluminescent detectors (TLDs) were used to measure the doses for medical staff. The personnel was classified into categories, among them employees having direct contact with the ‘source of radiation’— 18 FDG. The TLDs were placed on the fingertips of both hands and they were also attached at the level of eye lenses, thyroid and gonads depending on the assigned category. The highest dose of radiation was observed during the administration of the 18 FDG to the patients. In the case of the physicist, the highest dose was recorded during preparation of the radiopharmaceutical— 18 FDG. The body parts most exposed to ionizing radiation are the fingertips of the thumb, index and middle finger. (paper)

  1. Epidemiological study on patient exposure to medical radiation

    International Nuclear Information System (INIS)

    Kitabatake, Takashi

    1975-01-01

    Several aspects of radiation risk were studied: 1) epidemiology, 2) X-ray mass surveys, 3) factors related to patients dose, 4) clinical judgment and the indications for X-ray examination, 5) abdominal X-rays of women of child bearing age, 6) irradiation of the fetus, and 7) radiotherapy for benign disease. The survey results showed that 1) frequent fluoroscopic examinations may be related to late induction of leukemia, 2) radiation risk in X-ray mass surveys can be reduced by solving some technical problems and general problems of mass screening, 3) patients with high benefit health insurance tend to receive more X-rays than patients with low benefit insurance, 4) of 2000 patients on whom gastrointestinal tract X-ray examinations were requested, no necessity for the examination was recognized in 10% of the cases, 5) only about half of the female patients of child bearing age were checked for menstrual cycle at the time of an X-ray study, 6) radiodiagnostic histories of 1485 pregnant women showed that 22% were X-rayed at any time during the gestation period, with an over age dose of 61 mrad (a dose which would correspond to introduction of 19.5 excess leukemias in children under the age of 10 years), and 7) about 10% of the patients in radiotherapy departments are being treated for benign diseases. (Evans, J.)

  2. Epidemiological study on patient exposure to medical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kitabatake, T [Niigata Univ. (Japan). School of Medicine

    1975-04-01

    Several aspects of radiation risk were studied: 1) epidemiology, 2) X-ray mass surveys, 3) factors related to patients dose, 4) clinical judgment and the indications for X-ray examination, 5) abdominal X-rays of women of child bearing age, 6) irradiation of the fetus, and 7) radiotherapy for benign disease. The survey results showed that 1) frequent fluoroscopic examinations may be related to late induction of leukemia, 2) radiation risk in X-ray mass surveys can be reduced by solving some technical problems and general problems of mass screening, 3) patients with high benefit health insurance tend to receive more X-rays than patients with low benefit insurance, 4) of 2000 patients on whom gastrointestinal tract X-ray examinations were requested, no necessity for the examination was recognized in 10% of the cases, 5) only about half of the female patients of child bearing age were checked for menstrual cycle at the time of an X-ray study, 6) radiodiagnostic histories of 1485 pregnant women showed that 22% were X-rayed at any time during the gestation period, with an over age dose of 61 mrad (a dose which would correspond to introduction of 19.5 excess leukemias in children under the age of 10 years), and 7) about 10% of the patients in radiotherapy departments are being treated for benign diseases. (Evans, J.).

  3. Protection by lead aprons against diffused radiation by medical x-ray utilization

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Franken, Y.; Hummel, W.

    1995-01-01

    A lead apron can reduce the effective dose of radiological workers in medical roentgen applications. The reduction is not only determined by the thickness of the lead, but in particular by the model and fit of the apron. It also depends on the geometry of the radiation field to which the worker is exposed and the tube voltage. Based on model calculations it is determined how much protection against radiation is possible. 6 figs., 1 tab., 5 refs

  4. 'REACTS'. A pragmatic approach for providing medical care and physician education for radiation emergencies

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Andrews, G.A.; Huebner, K.F.; Cloutier, R.J.; Beck, W.L.; Berger, J.D.

    1976-01-01

    Because serious radiation incidents have been rare, few medical personnel (notably only some in France, Russia, Belgium, Canada, Yugoslavia, Japan, Great Britain and the United States) have first-hand experience in radiation-accident management. The generation of physicians who participated in those accidents now needs to pass on the bits of knowledge that were gleaned from them. These case histories are difficult for the local, non-radiology physician to obtain when he is called upon to help formulate the medical-emergency response plan required everywhere for licensing power reactors. The Radiation Emergency Assistance Center and Training Site (REACTS) in Oak Ridge, Tennessee, supported by the US Energy Research and Development Administration, is designed to meet these medical and educational needs. REACTS, located in the Oak Ridge Hospital of the Methodist Church, is not involved in the hospital's daily community functions except insofar as REACTS is the radiation emergency arm of the area's major disaster plan. Its dual mission is training physicians, nurses, and paramedical emergency personnel in radiation-accident management, and treating irradiated and contaminated persons. Its training activities are carried out by the Special Training Division of Oak Ridge Associated Universities. Formal courses in radiation medicine and health physics and practical laboratory experience are now conducted twice a year for physicians. They will be expanded in the future to include training of paramedical personnel. Follow-up studies of radiation-accident survivors are carried out in REACTS to ensure the preservation of valuable human data and radiation-accident experiences. This unique facility and its staff are dedicated to meet the needs of the far-flung public and private medical domains in the United States for nuclear-production energy

  5. Order no 206 concerning medical surveillance of work with ionizing radiation

    International Nuclear Information System (INIS)

    1990-03-01

    This Order implements Council Directive 80/836/Euratom on radiation protection as amended by Directive 84/467/Euratom. It entered into force on 4 April 1990, replacing the Decree of 29 February 1972. It prescribes in particular that persons required to perform work exposing them to ionizing radiation must first undergo a medical examination to determine their fitness for this work. They must also be subject to routine surveillance [fr

  6. Radiographic quality and radiation protection in general medical practice and small hospitals

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; Le Heron, J.C.

    1988-01-01

    Radiation protection and image quality were assessed in a survey of 22 general medical practices (GP) and the 24 smallest hospitals with x-ray facilities. Limited radiography, usually of extremities for trauma, was being performed in these facilities since access to regular radiology services was restricted, mainly for geographic reasons. An anthropomorphic phantom foot and ankle with two simulated fractures of the lateral and medical malleoli was presented at each facility for radiography, and the resulting films assessed for radiographic technique and basic diagnostic usefulness. The x-ray equipment was adequate for the range of procedures performed. While the standard of radiographic techniques was lower than in regular x-ray departments, most films of the phantom ankle were still diagnostically useful and only four were rejected entirely. The principal deficiency in general practice x-ray was in darkrooms and x-ray film processing. Consultation in this regard with registered medical radiation technologists is recommended. Generally, the x-ray equipment and working procedures complied with the National Radiation Laboratory Code of Safe Practice for the Use of X-rays in Diagnosis (Medical). Radiation doses to the phantom ankle ranged widely for effectively the same procedure, although none was excessive. Improved x-ray film processing, and tighter x-ray beam collimation, would result in a narrower range of doses to patients. Personnel exposures to radiation were satisfactorily low and special shieldings are not required in general practice. (author). 7 refs., 4 figs., 2 tabs

  7. DEGRO 2012. 18. annual congress of the German Radiation Oncology Society. Radiation oncology - medical physics - radiation biology. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The volume includes the abstracts of the contributions and posters of the 18th annual congress of the German Radiation Oncology Society DEGRO 2012. The lectures covered the following topics: Radiation physics, therapy planning; gastrointestinal tumors; radiation biology; stererotactic radiotherapy/breast carcinomas; quality management - life quality; head-neck-tumors/lymphomas; NSCL (non-small cell lung carcinomas); pelvic tumors; brain tumors/pediatric tumors. The poster sessions included the following topics: quality management, recurrent tumor therapy; brachytherapy; breast carcinomas and gynecological tumors; pelvis tumors; brain tumors; stereotactic radiotherapy; head-neck carcinomas; NSCL, proton therapy, supporting therapy; clinical radio-oncology, radiation biology, IGRT/IMRT.

  8. Ministerial Circular No. 73 of 1 December 1977 on the medical uses of ionizing radiation. Commentary

    International Nuclear Information System (INIS)

    This circular by the Minister of Public Health specifies the provisions for medical uses of sources of ionizing for radiation. Such uses are subject to prior notification and a licensing system as well as to inspections carried out by the Health Authorities and the National Commission for Nuclear Energy (CNEN). It follows the general decentralisation policy begun in Italy in 1972 and formulates recommendations to the regional competent bodies which are henceforth responsible for the surveillance of the medical uses of sources of ionizing radiation. (NEA) [fr

  9. The 1987 radiation accident in Goiania: medical and organizational experiences

    International Nuclear Information System (INIS)

    Oliveira, A.R. de; Souza, P.C. de

    1989-12-01

    The present works describes the circumstances of the accident occurred on 13 September 1987, in Goiania (Brazil), when two scavengers removed a teletherapy device a 50.9 TB q (1375Ci) cesium source, from a clinic. They took the apparatus home and tried to dismantled it. The authors describe the circumstances of the event, the first aid measures taken on the site, and the medical structure organized to triage and treat the casualties. Aspects relating to hospital contamination control, the environment, and radioprotection and decontamination procedures are also discussed. (L.M.J.) [pt

  10. Radiation accidents in the former Soviet Union: Medical consequences and experience in the application of radiation protection measures

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Institute of Biophysics of the Russian Federation is a scientific center which has extensive archives containing scientific studies and information on radiation safety problems and occurrences since the early days of nuclear science and research and nuclear weapons tests in the Soviet Union. Some of this classified, top secret material has recently been published by Prof. L.A. Iljin in a renowned Russian scientific journal in the form of a review of radiation accidents in the Soviet Union, general medical reports, case reports, and the effects of nuclear weapons tests. He also added his own expert view of the accidents and their effects, and his conclusions relating to public health effects and required radiation protection policy. The article in this issue of Strahlenschutz Praxis is a German translation of excerpts from the original journal article. (orig./CB) [de

  11. Medical-biological aspects of radiation effects in Daphnia magna

    International Nuclear Information System (INIS)

    Sarapultseva, E; Ustenko, K; Uskalova, D; Savina, N

    2017-01-01

    We have shown that γ-irradiation at doses of 100 and 1000 mGy significantly compromised fecundity and reproductive success of the directly exposed D. magna . These effects were also observed among the non-exposed first-generation progeny of irradiated parents, thus implying the manifestation of transgenerational effects in Daphnia . We have also shown that compromised viability of irradiated D. magna can be attributed cytotoxic effects of irradiation. It would therefore appear that the compromised viability may be attributed to the cytotoxic effects resulted from epigenetic changes affecting some metabolic pathways involved in detoxification of free-radicals. Additionally we have analyzed more distant progeny of irradiated at doses of 10, 100 and 1000 mGy Daphnia . Our data demonstrated that multicellular crustacean D. magna represent a very useful experimental model for analyse of long-term effects of ionising radiation at the organismal level. (paper)

  12. Trend of patient radiation doses in medical examination in Japan

    International Nuclear Information System (INIS)

    Suzuki, Shoichi

    2013-01-01

    We have investigated radiation doses to patients in selected types of examinations in Japan since 1974 and have analyzed the trend of patient radiation doses during a period of 37 years. This study covered regular plain X-ray scanning (including mammography) and computed tomography (CT) scanning. Dose evaluation was performed in terms of entrance skin dose (ESD) for regular plain X-ray scanning, average glandular dose (AGD) for mammography, and volume CT dose index (CTDIvol) for CT scanning. Evaluation was performed in 26 orientations at 21 sites for regular plain X-rays, and for cranial, thoracic, and abdominal scans of children and adults for CT scanning. With the exception of chest X-rays, the dose during regular plain X-ray scanning had decreased by approximately 50% compared with scans performed in 1974. The dose during mammography had decreased to less than 10% of its former level. In scans performed in 2011, dose at all sites were within International Atomic Energy Authority (IAEA) guidance levels. The increasing use of multiple detectors in CT scanning devices was evident in CT scanning. A comparison of doses from cranial non-helical scans performed in 2007 and 2011 found that the latter were higher. An examination of changes in doses between 1997 and 2011 revealed that doses had tended to increase in cranial scans of adults, but had hardly changed at all in abdominal scans. Doses during CT scanning of children were around half those for adults in cranial, thoracic, and abdominal scans. We have ascertained changes in the doses to which patients have been exposed during X-ray scanning in Japan. (author)

  13. The Study of Maternal Perception of Preterm Infants and Some Related Factors in Selected Hospitals of Iran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    M. Ghafoorie

    2015-05-01

    Full Text Available Background and Purpose: Appropriate maternal care is necessary to provide Physical growth and mental development of neonate which is related to establishing a good relationship between mother and infant. Positive perception of mothers to their neonates, creates a better relationship between them. Maternal perception of neonates is based on her understanding of biological behavior of the infant. Special features of prematurity, maternal stress and anxiety due to premature delivery are effective on maternal perceptions. The purpose of this study was to determine the maternal perception of premature infants as determining it’s related factors. Methods: In a cross-sectional design, 150 mothers of preterm infants who were been admitted to Neonatal intensive care units of 2 selected hospitals of Iran University of Medical Sciences, entered the study. Broussard questionnaire were used to measure the maternal perception. Data were analyzed by using descriptive statistical analysis and Kay square and Fisher's exact tests were used for analyzing the data. Results: Most of mother’s had a negative perception of their preterm infant. Based on the results, Mather’s job, fathers’ job, mothers’ age, husband’s support, desire about the pregnancy, history of miscarriage and still birth were related with perception of mothers of preterm infants. Discussion: Negative perceptions in mothers of preterm infants are prevalent and in some groups are in higher risk. As negative perception can have a role in developmental processes and cause problems in future, preparing circumstances to decrease mothers’ stress and providing facilities and interventions to increase mother-infant communications are essential. These are treatment team’s duties. The health care team can screen susceptible cases and by supportive interventions, it is possible to create better mother-baby relationship and prepare better care to prevent future developmental problems.

  14. Perspectives of radiological protection facing the development of new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The development of medical technologies with ionizing radiations is always showing a parallel effort on risks control. These technologies are a safe tool for accurate diagnosis and the elaboration of effective treatments. However it is not foreseen to achieve a decrease of the equivalent effective annual dose person due to medical irradiation (1.06 m Sv for OECD countries), because of the population growing and aging

  15. Radiation protection during the medical assistance to the victims of the accident in Goiania

    International Nuclear Information System (INIS)

    Silva, L.H.C.; Fajardo, P.W.; Rosa, R.

    1989-01-01

    Some of the casualities of the radiological accident occured in Goiania (Brazil), consequence of the violation of a Cs-137 source were assisted at Marcillo Dias Naval Hospital. The risks associated to the contact with the patients were radioactive contamination and external exposure. To deal with this problem, a Radiation Protection Group was formed and a Radiation Protection Program was developed and implemented in order to assure that risks would be maintained as low as reasonably achievable. The objective of this paper is to present the acquired experience on the radiation protection support in case of emergency medical assistance in radiological accidents. (author). 1 ref.; 2 tabs

  16. Pilot material handling system for radiation processing of agricultural and medical products

    International Nuclear Information System (INIS)

    Sandha, R.S.; Nageswar Rao, J; Dwivedi, Jishnu; Petwal, V.C.; Soni, H.C.

    2005-01-01

    A 10 MeV, 10 kW electron LINAC based radiation processing facility is being constructed at Centre for Advanced Technology, Indore for radiation processing of various food products like potatoes, onion, spices, home pack items and medical sterilization. A pilot material handling system has been designed, manufactured, and installed at CAT to verify process parameters viz. conveying speed, dose uniformity, and to study the effect of packing shape and size for radiation processing of different product. This paper describes various features of pilot material handling system. (author)

  17. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  18. Organization of medical aid and treatment of individuals affected in radiation accidents

    International Nuclear Information System (INIS)

    Mikhajlov, M.G.; Andreev, E.A.; Bliznakov, V.

    1979-01-01

    The emergency programme of the medical service for radiation accidents constitutes part of the whole emergency programme of the establishment whose production process is derectly connected with the utilization of ionizing radiation sources. The chief of the establishment health centre also heads the operative radiation accident group. When a radiation accident occurs the medical personnel, according to a previously developed plan, reports at the Health centre. The medical aid is based on the principle of step treatment and evacuation of the affected persons, according to the prescriptions. The first step of the medical evacuation is the health centre; the second - the District hospital, where a team of specialists is formed, all of them previously well trained in the recognition and treatment of radiation sickness. The third step is the specialized clinic for radiation injuries. Persons, who have received irradiation dose of up to 100 rad, or are in a shock state, or have incorporated radioactive substances, are temporarily hospitalized at the health centre. The assistance rended to them consists of: control of shock, asphyxia and bleeding, primary surgical treatment of wounds in cases of complex injuries, deactivation under dosimetric control, attempt for accelerated removal of the radioactive substances, etc. At the District hospital and the specialized clinic the therapeutic measures are conformed to the pathogenetic mechanism and severity of clinical symptoms, and their dynamics. Their aim is first of all to block the earlier radiation effects, to prevent and to treat the haemorrhagic phenomena and infectious complications, to restore the activity of the blood organs, etc. (A.B.)

  19. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    Directory of Open Access Journals (Sweden)

    John Paxton Kirkpatrick

    2013-04-01

    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  20. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok; Sung, Dong Wook; Do, Kyung Hyun; Jung, Seung Eun; Kim, Hyung Soo

    2013-01-01

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  1. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok [Dept. of Radiologic Science, Korea University, Seoul (Korea, Republic of); Sung, Dong Wook [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Do, Kyung Hyun [Dept. of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Seung Eun [Dept. of Radiology, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyung Soo [Dept. of Radiation Safety, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2013-09-15

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

  2. Clinical Training of Medical Physicists Specializing in Radiation Oncology (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  3. Clinical Training of Medical Physicists Specializing in Radiation Oncology (Spanish Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  4. Dose setting for radiation sterilization of disposable medical device, (3)

    International Nuclear Information System (INIS)

    Iwasaki, Yoshio; Hosobuchi, Kazunari.

    1985-01-01

    The microbial burden and dose setting for radiation sterilization of tampon for menstrual hygiene were examined, and the following results were obtained. 1. The maximum and minimum contaminants per a tampon were 100 and 0, and the average was 46.1. 2. The 91.2 % of the 125 strains isolated from the tampon was identified as bacilli by the microbiological and biochemical activities, and Bacillus pumilus compried 35.2 % of the strains. B. pumilus and B. megaterium spores indicated the highest radioresistance among those contaminants and both D-values were 0.22 Mrad. 3. The difference in the D-value was not found for the radioresistance of standard strain carried on a tampon and a glass fiber filter. 4. The sterilization dose (SD) was calculated to be 1.10 Mrad by the formula SD = D x log (No/N), while the SD was 0.90 and 0.76 Mrad, respectively, for the microbial burden informations and steility tests. From above ressults, it is supposed that the sterility assurance level in 10 -3 can be achieved by irradiating the dose less than 1 Mrad. (author)

  5. Field size dependent mapping of medical linear accelerator radiation leakage

    International Nuclear Information System (INIS)

    Vu Bezin, Jérémi; De Vathaire, Florent; Diallo, Ibrahima; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric

    2015-01-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies. (paper)

  6. Initial activities of a radiation emergency medical assistance team to Fukushima from Nagasaki

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Kouji; Nakashima, Kanami; Iwatake, Satoshi; Morita, Naoko; Ohba, Takashi; Yusa, Takeshi; Kumagai, Atsushi; Ohtsuru, Akira

    2013-01-01

    As an urgent response to serious radiological accidents in the Fukushima Daiichi nuclear power plant, the radiation emergency medical assistance team (REMAT) from Nagasaki University landed at Fukushima on March 14, 2011, two days after the initiation of radiation crisis by the hydrogen explosion at Unit-1 reactor. During a succession of unexpected disasters, REMAT members were involved in various activities for six days, such as setting the base for radiological triage at the Fukushima Medical University, considerations for administration of stable iodine, and risk communication with health care workers. This report briefly describes what happened around REMAT members and radiation doses measured during their activities. -- Highlights: ► The radiation emergency medical assistance team from Nagasaki was sent to Fukushima. ► The practical action level for body surface contamination was 100 kcpm. ► The ambient radiation dose in Fukushima drastically elevated on March 15, 2011. ► Higher than 10 kBq of I-131, Cs-134, and Cs-137 were detected in soil samples. ► The effective dose of the team members ranged between 51.7 and 127.8 μSv in 6 days

  7. Evaluation of conditions of radiation protection of medical personnel in intracavitary neutron therapy of cervical cancer

    International Nuclear Information System (INIS)

    Kostromina, K.N.; Korenkov, I.P.; Bocharov, A.L.; Gladkikh, N.N.

    1991-01-01

    Combined radiation therapy was provided to cervical cancer patients. Working conditions of personnel were examined, the rate of exposure doses and flows of neutrons at working places were measured, dose exposures of the personnel were evaluated. It has been concluded that occupational conditions for the medical personnel are considered to be relatively safe

  8. Family history and medical examination of occupationally exposed employees against ionizing radiation

    International Nuclear Information System (INIS)

    Heinemann, G.

    2000-01-01

    Searching for individual radiosensitivity could improve the quality of the medical examination of occupationally exposed employees and thus provide real protection of the individual against ionizing radiation. For this purpose genetic family history should be recorded by a skilled interviewer. (orig.) [de

  9. Optimization of the workers radiation protection in the electro nuclear, industrial and medical fields

    International Nuclear Information System (INIS)

    1998-01-01

    This conference is devoted to the radiation protection and the best way to optimize it. It reviews each area of the nuclear industry, and explores also the medical sector. Dosimetry, ALARA principle and new regulation are important points of this meeting. (N.C.)

  10. The Swedish radiation protection institute's regulations on general obligations in medical and dental practices using ionising radiation; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations are applicable to medical and dental practices with ionising radiation used for medical exposures. The regulations are also applicable to exposures of persons who knowingly and willingly, other than as part of their occupation, support and comfort patients undergoing medical exposure.

  11. The Swedish radiation protection institute's regulations on general obligations in medical and dental practices using ionising radiation; issued on April 28, 2000

    International Nuclear Information System (INIS)

    2000-04-01

    These regulations are applicable to medical and dental practices with ionising radiation used for medical exposures. The regulations are also applicable to exposures of persons who knowingly and willingly, other than as part of their occupation, support and comfort patients undergoing medical exposure

  12. Maternal Mortality in Texas.

    Science.gov (United States)

    Baeva, Sonia; Archer, Natalie P; Ruggiero, Karen; Hall, Manda; Stagg, Julie; Interis, Evelyn Coronado; Vega, Rachelle; Delgado, Evelyn; Hellerstedt, John; Hankins, Gary; Hollier, Lisa M

    2017-05-01

    A commentary on maternal mortality in Texas is provided in response to a 2016 article in Obstetrics & Gynecology by MacDorman et al. While the Texas Department of State Health Services and the Texas Maternal Mortality and Morbidity Task Force agree that maternal mortality increased sharply from 2010 to 2011, the percentage change or the magnitude of the increase in the maternal mortality rate in Texas differs depending on the statistical methods used to compute and display it. Methodologic challenges in identifying maternal death are also discussed, as well as risk factors and causes of maternal death in Texas. Finally, several state efforts currently underway to address maternal mortality in Texas are described. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Unintentional exposure to radiation during pregnancy from nuclear medical diagnostic procedures

    International Nuclear Information System (INIS)

    Moka, D.

    2005-01-01

    The administration of radiopharmaceuticals during pregnancy is contraindicated due to a lack of vital indications. However, if prenatal exposure to radiation should occur in the framework of a nuclear medical diagnostic procedure then fortunately no longterm side-effects would normally be expected. Radiation damage in the preimplantation phase leads to early abortion. However, if the further course of pregnancy remains uncomplicated then no subsequent side-effects need be expected. On a conservative estimate, it would require doses exceeding 50 mGy to cause radiation damage within the uterus after the preimplantation phase. However, the standard radioactivities applied for diagnostic purposes in nuclear medicine, can be obtained with doses of less than 20 mGy. On the basis of current knowledge, therefore, there is no reason to terminate pregnancy on medical grounds after diagnostic exposure to radiopharmaceuticals. (orig.)

  14. Contribution of the ARCAL XX/IAEA project to improvement of radiation safety in medical practices

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2001-01-01

    The objectives of the ARCAL XX Project: 'Guidelines on Control of Radiation Sources' (1997-2000) are to promote an effective control of the radiation sources used in medicine, industrial and research applications, harmonising and updating existing procedures within Latin American, adopting the International Basic Safety Standards, in order to avoid unnecessary expositions limiting the probability of accidents occurrence. Nine countries participate with experts in the development of guidelines based in the regional experience. The guidelines contain Radiological Safety Requirements, Guide for Authorisation Application and Inspections Procedures. At this moment, there are guidelines for Radiotherapy, Nuclear Medicine and Diagnostic Radiology. The implementation of these guidelines will improve the effectiveness of regulatory control of radiation sources in Latin American and the radiological protection in aspects of occupational, medical, public and potential exposure. This document presents the experience in the development of these guidelines and their contribution for elaborating national regulations in medical practices. (author) [es

  15. Risk of cataract among medical staff in neurosurgical department occupationally exposed to radiation

    International Nuclear Information System (INIS)

    Stankova-Mileva, I.; Vassileva, J.; Djounova, J.

    2012-01-01

    In this study we present the risk of cataract among medical staff in neurosurgical department occupationally exposed to radiation compared to those of non-radiation workers. Cataract is the most common degenerative opacity of the crystalline lens developing with aging. Other risk factors for cataract are: infrared and ultraviolet radiation, systemic diseases (diabetes, hypertonic disease), eye diseases (glaucoma, high myopia), drugs (steroids), etc. High risk of developing cataract we find among staff occupationally exposed to radiation during operations - interventional cardiologists and neurosurgeons. This study includes 30 people between 33 and 60 years of age working in neurosurgical department and control group (the same amount and age of people not exposed to radiation in their work). After visual acuity measurement, the lens was examined by retroillumination method (red reflex) and using a bio microscope. The patients were asked for presence of ocular and systemic diseases, eye trauma, drug, alcohol and tobacco abuse and for how many years they work in this department. There was one case with cataract among neurosurgeons. The doctor doesn't have eye or systemic diseases, doesn't take any drugs and is not alcohol or tobacco abuser. In the control group there were two persons with subcapsular cataract but they have diabetes. Radiation is one of the risk factors for cataract. Continuing of this epidemiological survey will provide further knowledge on the potential risk of occupational radiation-induced cataract among neurosurgical staff and will contribute for optimization of radiation protection. (authors)

  16. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu [Kaohsiung Medical University, Taiwan (China)

    2000-05-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  17. Radiation Protection in the Medical Practice: Myth and Reality the French Radiographers point of view

    International Nuclear Information System (INIS)

    Gerson, P.; Fraboulet, P.; Menechal, P.

    2002-01-01

    The use of the ionising radiation in the medical practice has evolved since its beginnings. Their benefit for the patient is considerable in term of comfort, diagnostic and therapeutic effectiveness. The users can be brought to think that the radiological risk is completely controlled and that the problems of radiation protection for the workers is now of the past. Indeed, the evolutions and the technical, material and scientific revolutions tend to decrease the doses delivered to the patients, and also to the professionals. In addition, the regulation associated with the use of the ionising radiation is strict and constraining, and one can estimate that radiation protection is a model of management of occupational hazards through its mode of declaration, authorization, controls, management and traceability. However, the daily practice and the experience on the hospital ground shows that the radiological exposures remain alarming and that any risk cannot be isolated, generally dependent on unsuited human behaviours. The participation of the radiographers to this reflection is essential. In fact, he is or should be the permanent link between the emission of radiation and the patient. For this reason, he is the last barrier regarding protection for the patient or the staff. He is thus the essential link beside the experts for a quality control in radiation protection. After a detailed and concrete description of the encountered problems, we will submit some non exhaustive but essential proposals for an improvement so that a real policy ALARA is applied and developed in the medical practice. (Author)

  18. Protection of the patient from ionizing radiation in medical exposure in Israel

    International Nuclear Information System (INIS)

    Schlesinger, T.; Ben Shlomo, A.; Berlovitz, Y.

    2002-01-01

    The ICRP issued in 1991 its recent recommendations related to the protection of the worker, the public and the patient from ionizing radiation. In 1996 the IAEA together with the WHO, the ILO and other major international bodies published the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the BSS). The BSS are based on the core principles of Justification, Optimization and Dose Limitation. Many countries adopted the radiation protection philosophy and the administrative framework presented in the BSS as the basis for their legal radiation protection system. Following the publication of the BSS, the EC published in 1997 its Medical Exposure Directive 97/43 /Euratom. Article 14 of the ME Directive requires that EC member states bring into force the laws and administrative provisions necessary to comply with this directive before 13 May 2000. Most EC member states have complied with this requirement and issued the relevant laws and /or regulations. The Ionizing Radiation (Medical Exposure) Regulations that came into force in the UK on 13 May 2000 are a good example

  19. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    International Nuclear Information System (INIS)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu

    2000-01-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  20. Radiation safety and operational health physics of hospital based medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Compact, low energy, high current Medical Cyclotrons are now primarily used to produce large activities of short lived, neutron deficient, positron- emitting radioisotopes. These isotopes constitute the key ingredients of important PET (Positron Emission Tomography) radiopharmaceuticals used in diagnostic nuclear medicine. The PET-radioisotope producing Medical Cyclotrons are now increasingly installed in modern urban hospitals in many countries of the world. Modern Medical Cyclotrons run at a very high beam current (∼100-200 micro Amp) level and thereby produce intense fields of parasitic gamma rays and neutrons, causing the activation of cyclotron components, ambient air and radiation exposure to patients and members of the public. This report highlights the important operational aspects and the characteristics of the radiation fields produced by Medical Cyclotrons. The pathways of personnel radiation exposure are also analyzed. The above information constitutes the scientific basis of a sound operational health physics service, which is manifested in an effective dose reduction and an enhanced radiological safety of the Medical Cyclotron facility within the framework of ALARA

  1. Set up and operation for medical radiation exposure quality control system of health promotion center

    International Nuclear Information System (INIS)

    Kim, Jung Su; Kim, Jung Min; Jung, Hae Kyoung

    2016-01-01

    In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT 357.9 mGy·cm in abdomen and pelvic CT, 572.4 mGy·cm in brain without CT, 55.9 mGy·cm in calcium score/heart CT, screening CT at 54 mGy·cm in chest screening CT(low dose screening CT scan), 284.99 mGy·cm in C-spine CT and 341.85 mGy·cm in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows 274.0 mGy·cm"2 and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure

  2. Set up and operation for medical radiation exposure quality control system of health promotion center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su; Kim, Jung Min [Korea University,Seoul (Korea, Republic of); Jung, Hae Kyoung [Dept. of Diagnostic Radiology, CHA Bundang Medical Center, CHA University, Sungnam (Korea, Republic of)

    2016-03-15

    In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT 357.9 mGy·cm in abdomen and pelvic CT, 572.4 mGy·cm in brain without CT, 55.9 mGy·cm in calcium score/heart CT, screening CT at 54 mGy·cm in chest screening CT(low dose screening CT scan), 284.99 mGy·cm in C-spine CT and 341.85 mGy·cm in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows 274.0 mGy·cm{sup 2} and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

  3. Guidance notes for the protection of persons against ionising radiations arising from medical and dental use

    International Nuclear Information System (INIS)

    1988-01-01

    Guidance notes have been prepared by the NRPB, the Health Departments and the Health and Safety Executive for the protection of all persons against ionising radiations arising from medical and dental use. The guidance notes are a guide to good radiation protection practice consistent with regulatory requirements. The areas covered include medical and dental radiology, diagnostic X-ray equipment for medical and dental radiography, beam therapy and remotely controlled after-loading, brachytherapy, diagnostic and therapeutic uses of unsealed radioactive substances, diagnostic uses of sealed or other solid radioactive sources, patients leaving hospital after administration of radioactive substances, precautions after death of a patient whom radioactive substances have been administered, storage and movement of radioactive substances, disposal of radioactive waste and contingency planning and emergency procedures. (U.K.)

  4. The effects of radiation on various materials and the qualification tests required for their use in medical devices

    International Nuclear Information System (INIS)

    Landfield, H.

    1980-01-01

    Many polymers used in the medical field show various degrees of degradation after radiation exposure either by visual or physical measurements. The general effects of radiation on such medical polymers are reviewed and discussed as well as the tests used to qualify their performance. (author)

  5. Medical radiological consequences of the Chernobyl catastrophe in Russia. Estimation of radiation risks

    International Nuclear Information System (INIS)

    Ivanov, V.; Tsyb, A.; Ivanov, S.; Pokrovsky, V.

    2004-01-01

    The Chernobyl accident, one of the worst radiation-related disasters ever, occurred about 18 year ago. A lot has been done over the past years to mitigate the consequences of this accident, especially in the worst affected territories of Belarus, Russia and Ukraine. The efforts to study health effects of the accident, however, need to be continued for many years to come, being an integral part of developing a general strategy for dealing with long-term effects. The question now arises: To what extent health consequences could be evaluated in 1986, given the existing scientific base of radiation epidemiology? The latest 20-30 years have seen a rapid development of radiation epidemiology, which was brought about, first of all, by the need to analyze long-term radiation effects of the 1945 atomic bombing in Hiroshima and Nagasaki. It may now be considered as proved that high and medium radiation doses (above 0.3 Sv) lead to an increase in cancer incidence rates. Based on the Japanese data, the ICRP proposed mathematical models to be used for predicting long-term effects of radiation exposure. This brings up a question: Are radiation risks derived for Hiroshima and Nagasaki applicable to low doses (0.2 Sv)? An answer is critically important, as the overwhelming majority of emergency workers and the population exposed as a result of the Chernobyl accident received doses within this range. Actually, understanding of these issues is crucial for dealing with long-term radiation effects of the Chernobyl accident. Deriving radiation risk factors for the Japanese cohort with medium and high doses was based on large-scale epidemiological studies of 86.5 thousand people during a prolonged period. As of now, no other approaches exist to estimating long-term radiation effects. Following the Chernobyl accident the All-Union Distributed Registry of persons exposed to radiation was established as soon as in the summer 1986. The Research Institute of Medical Radiology (Medical

  6. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  7. Radiation monitoring and dose distribution of medical workers in A.P. state 1999-2000

    International Nuclear Information System (INIS)

    Singh, D.R.; Reddy, K.S.; Kamble, M.K.; Roy, Madhumita

    2001-01-01

    Individual monitoring for external ionizing radiation is being conducted for all radiation workers in Andhra Pradesh State by TLD Unit located in Nuclear Fuel Complex, Hyderabad.The Unit comes under Personnel Monitoring Section of Bhabha Atomic Research Center, Mumbai. The aim of monitoring is to confirm that the radiation safety standards are strictly adhered in the institutions and also to investigate excessive exposures, if any. Personnel monitoring also provides data for epidemiological studies. In view of ICRP/AERB recommendations of 100 mSv dose limit for the five years block of 1994-98, the dose distribution among radiation workers in Andhra Pradesh State is analyzed for the period 1994-98. In continuation of above work, we have analyzed the data for the year 1999-2000 for various medical diagnostic procedures and these are presented

  8. Organization of medical physics and radiation protection: return on experience from some French and foreign health establishments. Report nr 306

    International Nuclear Information System (INIS)

    Badajoz, C.; Bataille, C.; Drouet, F.; Schieber, C.

    2009-04-01

    After having recalled the French legal context related to the missions of experts in radiation protection and of experts in medical radio-physics, as well as to the organization of medical physics and radiation protection, this report proposes a global analysis of the organization noticed in several visited units (in different health establishments in France, Switzerland and Spain) and of their actions regarding workers' and patients' radiation protection. Good practices have been identified and recommendations are made